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Introduction

Loops constitute an important category of non-regular sec-
ondary structures in globular proteins. Because of their va-
riety of forms, loops have evaded a descriptive taxonomy of
folds. They are also one of the most difficult structures to
delineate for X-ray crystallographers and NMR spectro-
scopists. Nevertheless, the conformation of loops in pro-
teins has been intensively investigated because of their fun-
damental and applied interest. Evaluation of the role of the
loop conformation on the fold of a protein has become one
of the main objectives pursued in this field [1-4].

Loops were mainly treated as “random coils”, and on
this basis energetic studies on the involvement of loops in
protein folding were performed. Thomas calculated the in-
ternal tension entropic energy involved in the fold of a loop
using the simplest available model of randomly joined chains
on the basis of a rubber-like elasticity [5]. Meirovitch and
Hendrickson did a similar calculation by assuming a
Gaussian distribution for the end-to-end extension of a loop
[5,6]. The validity of these studies became limited once it
was discovered that loops follow certain fixed patterns and
cannot be considered as random structures [7-10]. In addi-
tion, these studies used a single variable (the end-to-end dis-
tance) to define a loop which is a simple but insufficient
parameter to characterise it.

In order to define the minimum number and properties
of variables to use when classifying loops, we have performed
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an statistical analysis on a non-redundant database of 347
protein structures. Information-entropy shows that loops on
short connections (even less than 10 residues) do not present
random geometry.

Methods

Protein loops have been defined as polypeptide regions be-
tween two regular secondary structures (α-helices and β-
strands). The α-helices and β-strands of a protein were de-
fined with the program DSSP [11]. There are four types of
loops: α-α) loops between two α-helices; α-β) loops between
an α-helix and a β-strand; β-α) loops between a β-strand and
an α-helix; and β-β) loops between two β-strands, this being
β-hairpins or β-links. The total of loops extracted from the
Protein Data Bank [12] statistically defines an universe of
known protein loops. Here a non-redundant set of loops have
been analysed. That is, a set of loops extracted from those
proteins of the Protein Data Bank with homology lower than
the 25% [13,14].

Geometrical definition

The geometry of the motif comprising the loop is defined by
means of the main moments of inertia of the secondary struc-
tures flanking the loop [8]. This has been defined by the geo-
metrical co-ordinates of the loop (see Figure 1):

1) D, distance between secondary structures.
2) δ, “hoist angle”, angle between M1 and D.
3) θ, “packing angle”, angle between M1 and M2.
4) ρ, “meridian angle”, angle between M2 and the per-

pendicular plane.
For D, the interval ranged from 0 Å to 40 Å partitioned by

intervals of 2 Å. For angles δ and θ, they ranged from 0° to
180º partitioned by intervals of 45°. For angle ρ, the interval
ranged from 0 to 360° degrees, being this also partitioned by
intervals of 45°. This partition represents each loop in a four
dimensional space with geometrically independent variables:
D, δ, θ and ρ.

Statistical analysis of the protein-loops geometry

For the statistical analysis of the data we have incorporated a
function that calculate the correlation between pairs of vari-
ables by two different methods: (1) contingency tables using
measures of association based on χ2 [15] and on information
entropy [16]; and (2) non-parametric rank-order correlation
coefficients, with the Spearman’s rank [17] or Kendall’s τ
[18]. The result of all these methods is commonly represented
by a value lying between 0 and 1: Cramer’s V, contingency
coefficient for measures of χ2, and measures of the symmetri-
cal uncertainty coefficient based on the information-entropy,
equal zero when there is not association and 1 when there is
a perfect association. Also a value of significance is given to
determine the accuracy of is the correlation. This value is
smaller than 0.05 if the correlation is accurate enough, and
larger otherwise. We have also studied the results from the

Figure 1 Definition of the
internal co-ordinates used for
the geometrical description
of a loop motif (i.e. for the
α-β motif)



J. Mol. Model. 1998, 4 349

Spearman and Kendall’s analysis and we have represented
their significant correlation with similar ranges (smaller than
0.05 for remarkable correlation). The values of rank correla-
tion and Kendall’s τ are calculated in order to gain insight
into its strength, being positive correlation when Spearman’s
rank and/or Kendall’s τ are positive, and being an
anticorrelation when they are negative. The analysis of the
non-parametric rank correlation is allowed because the sta-
tistical variables are continuous (real and ordered numbers)
and also because their interval of existence is large enough.
However, for a small number of data it is not possible to rely
on the results. From the analysis of the contingency tables,
the strength of the correlation may be evaluated. Neverthe-
less, values of Cramer’s V or contingency coefficient lying
between both extremes are meaningless and only the sym-
metrical uncertainty coefficient shows up the intensity of the
correlation. The linear correlation of the ranks (Spearman)
or Kendall’s τ may also show the correlation type and strength.
Moreover, for the comparison of the values obtained from
the contingency tables it is necessary to define the tables with
the same sizes.

In order to be able to recognise the most stable size of a
loop, we have used the measure of association based on in-
formation-entropy [16]. The entropy of the set of variables in
the 4D-space that belongs to an specific loop size is defined
as:

( ) ( )Entropy= = = ∑S S D p pi i

i

, , , lnδ θ ρ
(1)
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  (D, δ ,θ, ρ ) of the 4D-space in the interval “i”, identified as a
4-cube of size ∆I=[2Å,45°,45°,45°] on a partition of the
vectorial space. For independent co-ordinates, the total en-
tropy is calculated by the addition of each individual entropic
term, analogously defined as
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and being the variable either D, δ, θ, or ρ, respectively. We
may represent the relation between the real and the inde-
pendent entropy as:

( )r
S

SD S S S
≡

+ + +δ θ ρ (2)

r being 1 when the variables are perfectly independent and
different otherwise. Hence, r can be a good estimator of the

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Loop Length

0

50

100

150

200

250

300

N
um

be
r 

of
 lo

op
s

 β−link
 β−hairpin
 β−α
 α−β
 α−α

Figure 2 Representation of the number of loop-motifs versus the number of residues forming the loop: β-hairpins, β-links,
α-α motifs, α-β motifs and β-α motifs
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independence of the variables. It is also meaningful the dif-
ference calculated as energy, that defines the entropic energy
necessary to produce the real correlated set of variables as:

( )[ ]E T S T S SD S S S= − = − − + + +∆ δ θ ρ (3)

with T=300K. This energy is positive when the set is non
random.

Statistical significance

The geometric co-ordinates (D,δ,θ,ρ) have been obtained
considering the regular secondary structures surrounding the
loop. Any relation between them shows the restrictions aris-
ing from the geometrical scaffold of the motif. The problem
is reduced to calculate the correlation between the set of val-
ues on this 4D-space.

To consider the statistically meaningful results it is nec-
essary to determine first if the number of loops is large enough.
This is shown by plotting of the number of loops versus its
size for each type of loop (Figure 2). We assume that loops
larger than 20 residues are unimportant. We represent the
results obtained from the statistical analysis by the measure
of the significant value of Spearman’s non parametric rank
correlation, the significant value of Kendall’s τ and the sig-
nificant value of the contingency tables based on χ2. We also
aim at representing the strength of the correlation. The re-
sults obtained for each statistical parameter did show that
Cramer’s V (CV), symmetrical dependency of entropy
(u(x,y)), the absolute value of the Spearman’s rank correla-
tion (SR), and the absolute value of Kendall’s τ (Kτ) had
similar curves. Therefore, we have defined a new parameter
formed by the combination of the statistical parameters. We
call this parameter the “correlation strength”. We require some
specific properties for the construction of this new param-
eter: 1) it must show the existence of correlation, 2) it must
distinguish the positive correlation from the anticorrelation,
3) it must be related with the intensity of the correlation, and
4) it should enable us to compare the different types of loops.
The strength of correlation is defined as:
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where “sig” is the significance of the correlation by contin-
gency tables, “sigSR” the significance of the correlation by
Spearman, “sigKτ” the significance of the correlation by
Kendall, and “Ω” is a function defined as:
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The desired properties 1, 2 and 3 follow immediately from
their definitions. Also property 4 is obtained if the param-
eters used on the linear combination have this property. This
comes out from its definition because the contingency tables
defined to calculate the measures of association have the same
size for each pair of geometrical variables, independently of
the type of loop.

Results and discussion

The results obtained for the correlation strength (Figure 3)
show that for any type of loop shorter than 10 residues there
are always some correlated geometrical variables. For sizes
between 10 and 16 there are always some pair of correlated
variables (except for the α-α motif). β-link loops present high
correlation in all pair of variables that involve the distance
between secondary structures (D). This correlation is observed
in loops shorter than 10 residues. However, the correlation
between D and the meridian angle (ρ) is not observed in loops
larger than 2 residues. A similar behaviour was observed for
β-hairpins. In this type of loops the correlations involving
the D variable are lower than in β-links. β-α loops (Figure
3c) showed correlation between all pairs of variables for loops
shorter than 7 residues indicating that an intrinsic relation
between the chosen conformational variables exists. This
behaviour is also observed in α-β loops. Finally, Figure 3d
shows the correlation strength for loops between α-helices.
In this case, the intrinsic relation between variables is lower
than for loops involving an α-helix and a β-strand. However,
there is significant correlation in loops shorter than 6 resi-
dues. The meridian angle (ρ) shows for all cases smaller cor-
relation with the rest of geometrical co-ordinates. The strength
of the correlation for the six possible combinations of pairs
of geometrical co-ordinates (sizes than 5 residues) is smaller
in both α-α motifs and β-hairpins than for the rest of motifs.
It is remarkable that all the correlation strengths involving
the end-to-end distance of the loop co-ordinates are not null
until sizes of about 8 residues. This shows the main relation
between the length of the loop and its shape. We conclude
that most of the loops with size smaller than 10 residues be-
long to a determined set of geometry, which involves recur-
rences of conformation. We describe those motifs where the
size ranges in the interval of minimum correlation-strength
as those with preference to be constructed with minimal re-
straints.

We have calculated the entropic energy necessary to pro-
duce the correlated set of geometrical co-ordinates to gain
insight into the problem of the energetically more stable loop
size. We obtain the same conclusion as for the correlation of
pairs of co-ordinates: short connections show the smallest
entropic energy (Figure 4a). Furthermore, the result of the
entropy estimator (Figure 4b) is also in agreement with the
result obtained from the comparison of the strength of the
correlation. The number of loops shorter than 10 residues
with similar geometry is higher than at obtained randomly. It
is also shown that the estimator is larger for lengths shorter
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than 6 residues than for lengths between 6 and 20 residues.
This is in agreement with the small entropic energy found
for short connections (around 3 kJ/mol). Therefore, loops
shorter than six residues are produced with the minimal en-
ergetic effort without being random. This energy is around 8
kJ/mol for lengths between 6 and 10 residues. In particular,
loops of type β-α show a minimum around 4 residues size of
about 3 kJ/mol.

Conclusions

The main goal of this work has been to reduce the geometri-
cal parameters of the loop to the minimum number of inde-
pendent co-ordinates and to analyse the independence of their
variables. Its aim has not been to cluster a set of non-ho-
mologous loops but to demonstrate that this is possible. Al-
though this has been shown by other authors [19,20], this
demonstration was not shown in a previous clustering work
using the same motif-geometry definition [8], this being a
requisite before tackling the classification of protein loops.
The geometry of the loop involves several restrictions on the

4D-space and leads to an additional projection into a subspace.
These restrictions have been demonstrated by statistical analy-
sis with the independence of the 4 geometrical co-ordinates.
The entropic estimator of independence has demonstrated
the intrinsic relation between the geometrical co-ordinates
of the 4D space for loops shorter than 10 residues (r<50%). It
has also been obtained the energetic expense due to the con-
struction of the restrictions on the 4D space. This energy is
involved in the increase of information-order with respect to
the chaos of a randomised system. The results have shown a
minimum energy (around 3 kJ/mol calculated at 300 K) for
short connections (shorter than 6-residues). This energy should
not be interpreted in terms of physico-chemical optima but
as the optimum size according with the statistics taken from
the data. In this sense, this is analogous to the pseudo-ener-
gies used on statistic potentials derived from a similar set of
non-homologous proteins [21]. The result obtained gives an
answer to the results obtained by Rooman et al. [22], Fidelis
et al. [23] and Bystroff and Baker [24], it explains why it is
easy to reconstruct and/or predict the conformation of short
segments when building a region embedded in a protein struc-
ture. Also, we have shown that the use of a database method
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was not effective for comparative modelling in Fidelis et al.’s
work because the same conformation may cause different
geometries, whilst for a given geometry, the number of avail-
able conformations for short segments is restricted and non-
randomly determined (also shown in ref. 20).

The statistics presented in this work demonstrate that the
four variables chosen to describe the loop geometry (D, δ, θ,
and ρ) are enough to explain the geometrical clustering of
loops described by Oliva and co-workers [8] and used in the
classification of antibody CDR3 loops by the same authors
[25]. Therefore, the results show that it is possible to obtain
clusters of short connections because their geometry is not
built randomly. The use of this 4D space to describe a loop
geometry could be used in other protein loop classification
with a limit on the number of residues involved in the loop.
Statistic shows that these four variables can be used in pro-
tein loop clustering when the loop is not longer than 10 resi-
dues. The conformation of loops longer than 10 residues do
not follow a pattern and the clustering leads to non distin-
guishable classes on a non-homologous database. The statis-
tical approach presented in this work differs from that pre-

sented by Oliva et al. [8]. We are not clustering loops but
analysing the possibilities of obtaining statistically meaningful
clusters, and therefore the objectives of the two studies are
different. The present work is intended to justify the exist-
ence of an inner relation for a given geometry of a loop (not
necessarily involved with the conformation of the loop). On
the other hand, the aim of the previous work was to cluster
the loops of a non-homologous set of proteins according with
their geometry and conformation as well as to extract the
main inner interactions. Also, most preceding works
[7,9,23,26] needed the use of an RMS cut-off to get clusters
with similar conformation restricted to two end points in-
volving the specific geometry of the motif. We have shown
that for a given motif-geometry and a short number of resi-
dues an inner relation can be found that determines the ge-
ometry and, therefore, there is less probability to be obtained
randomly. This was also shown by van Vlijmen and Karplus
[20] providing a direct correlation between the stem residues
(those adjacent to the loop) and the loop conformation. In
our work we have shown the same relation for the internal
co-ordinates that define the motif-geometry instead of using
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the stem residues, which improves the results already pre-
sented for the clustering method that uses these co-ordinates
[8].

The work is mainly a retroactive confirmation of the meth-
odology and finds a new specific insight. First, we raise the
need of demonstrations to be done on the cluster analysis of
protein loops [7-10,19,26]. All the previous authors found
the need of defining restrictions of loops, both related to the
conformation and to the motif geometry. A recent method
based on the iterative refinement of clusters has also improved
the clustering of short segments and cross-validated its pre-
dictive capabilities [24], without need of restrictions on the
geometry by means of a jack-knife test. However, the work
of van Vlijmen and Karplus [20] gave an important insight
into the use of this geometry to predict the most likely con-
formation for a target loop, ranking them according to the
van der Waals energies. The demonstration of how statisti-
cally meaningful were the clusters was mainly tackled in the
works of Ring et al. [19], where the existence of recurrences
of loop conformations was proved, and van Vlijmen and
Karplus [20], where the statistical correlation between loop
conformation and the stem residues was shown. Second, we
have obtained an energetic point of view to suggest the opti-
mum size of a motif according to the current methods based
on statistical potentials. This may be helpful for the ab initio
protein engineering of a loop segment embedded in the struc-
ture of a protein. However, it is important to note that we can
not carelessly relate this statistic pseudo-energy with the
atomic interactions within loops. In this sense, the work of
Tramontano et al. [27] and van Vlijmen and Karplus [20] did
succeed in tackling the problem of the energetic interactions
at the atomic level and illustrated the most feasible reasons
to explain these results. Tramontano et al. [27] showed that
the structural determinants involved interactions with other
parts of the protein. They also identified medium-sized loops
with characteristic packing interactions and/or main-chain
hydrogen bonds involved in the loop conformation, although
some of their conclusions were based on the complementary
determining regions (CDR) of immunoglobulins (a set of
homologous proteins). Therefore, the conclusions of our
analysis cannot be straightforward compared with their re-
sults because it only takes into account the motif-geometry
and uses a set of non-homologous proteins. On the other hand,
short and some medium sized loops present main inner inter-
actions within the motif or primarily depend on their sequence,
which could explain the statistical optimum size found in
our work and relate both, physico-chemical energy and
pseudo-energy, and also the use of clusters for the prediction
of conformation of short segments [24]

Our result is very important in order to save computa-
tional time and efforts trying to classify long loops because it
has been proved that this is not possible. Actually, most of
the papers presented in the literature about classification of
loops have been focused on classification of short connec-
tions, whilst for long loops it has not been achieved. In this
work we show that this is an impossible task with the present
database of proteins. Although Bystroff and Baker [24] have
improved the procedure for the prediction of the conforma-

tion of short segments, this is not yet available for long seg-
ments. Our work presents a similar conclusion: loops of
around 4 residues may show specific patterns because they
are constructed non-randomly. The energetic terms calculated
by means of the statistical potentials further support this con-
clusion. Finally, this conclusion can be used as a benchmark
on the construction of loops by protein engineering accord-
ing to the classification of short connections and a given loop
geometry.
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