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Abstract The conformations of protein loops from a non-redundant set of 347 proteins with less than
25% sequence homology have been studied in order to clarify the topological variation of protein
loops. Loops have been classified in five tymesi( a-B, B-a, B-links andB-hairpins) depending on the
secondary structures that they embrace. Four variables have been used to describe the loop geometry (3
angles and the end-to-end distance between the secondary structures embracing the loop). Loops with
well defined geometry are identified by means of the internal dependency between the geometrical
variables by application of information-entropy theory. From this it has been deduced that loops formed
by less than 10 residues show an intrinsic dependency on the geometric variables that defines the motif
shape. In this interval the most stable loops are found for short connections owing to the entropic
energy analysed.
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Loops were mainly treated as “random coils”, and on
this basis energetic studies on the involvement of loops in
. ) protein folding were performed. Thomas calculated the in-
Loops constitute an important category of non-regular secternga| tension entropic energy involved in the fold of a loop
ondary structures in globular proteins. Because of their vagsing the simplest available model of randomly joined chains
riety of forms, loops have evaded a descriptive taxonomy of, the basis of a rubber-like elasticity [5]. Meirovitch and
folds. They arealso one of the most difficult structures to Hendrickson did a similar calculation by assuming a
delineate for X-ray crystallographers and NMR spectro-gayssjan distribution for the end-to-end extension of a loop
scopists. Nevertheless, the conformation of loops in Profs,6]. The \alidity of these studies became limited once it
teins has been intensively investigated because of their funyas discovered that loops follow certain fixed patterns and
damental and gpplied interest. Evaluatiqn of the role of the annot be considered as random structures [7-10]. In addi-
loop conformation on the fold of a protein has become ongjon, these studies used a single variable (the end-to-end dis-
of the main objectives pursued in this field [1-4]. tance) to define a loop which is a simple but insufficient
parameter to characterise it.

In order to define the minimum number and properties
of variables to use when classifying loops, we have performed
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an statistical analysis on a non-redundant database of 3471) D, distance between secondary structures.

protein structures. Information-entropy shows that loops on2) &, “hoist angle”, angle betwedd1 andD.

short connections (even less than 10 residues) do not preser®) 6, “packing angle”, angle betwedvil and M2.

random geometry. 4) p, “meridian angle”, angle bewen M2 and the per-
pendicular plane.

For D, the interval ranged from 0 A to 40 A partitioned by

Methods intervals of 2 A. For angle§ and®, they ranged from 0° to

180° partitioned by intervals of 45°. For anglehe interval
) ] ) ) ranged from 0 to 360° degrees, being this also partitioned by
Protein loops have been defined as polypeptide regions gsrvals of 45°. This partition represents each loop in a four

tween two regular secondary structure(sh(alicgs andB-  gimensional space with geometrically independent variables:
strands). Thex-helices andB-strands of a protein were dep 5, 8 andp.

fined with the program DSSP [11]. There are four types of
loops:a-a) loops between twa-helicesp-f3) loops between

an a-hel!x and g3-strand;3-a) loops between ﬁ-stra_nd a_nd Statistical analysis of the protein-loops geometry
ana-helix; andp-p) loops between twf-strands, this being

B-hairpins orp-links. Thetotal of loops extracted from thep the statistical analysis of the data we have incorporated a
Protein Data Bank [12] statistically defines an universe fnction that calculate the correlation between pairs of vari-
known protein loops. Here a non-redundant set of 100ps "@ygas py two different methods: (1) contingency tables using
been analysed. That is, a set of loops extracted from thgge,sres of association based®iiL5] and on information
proteins of the Protein Data Bank with homology lower th%’htropy [16]; and (2) non-parametric rank-order correlation
the 25% [13,14]. coefficients, with the Spearman’s rank [17] or Kendall's
[18]. The result of all these methods is commonly represented
by a value lying between 0 and 1: Cramer’s V, contingency
Geometrical definition coefficient for measures gf, and measures of the symmetri-
cal uncertainty coefficient based on the information-entropy;,

The geometry of the motif comprising the loop is defined i§fual zero when there is not association and 1 when there is
means of the main moments of inertia of the secondary stri@erfect association. Also a value of significance is given to

tures flanking the loop [8]. This has been defined by the gét§termine the accuracy of is the cortiela This \alue is
metrical co-ordinates of the loop (see Figure 1): smaller than 0.05 if the correlation is accurate enough, and

larger otherwise. We have also studied the results from the

Figure 1 Definition of the
internal co-ordinates used for

the geometrical description L G
of 2 Joop Mot (6. for the oop Geometry
a-f motif)

D Distance Loop
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Spearman and Kendall's analysis and we have represented

their significant correlation with similar ranges (smaller thagNtropy=S= § D3.6,p)= Z pin( p) 1)
0.05 for remarkable correlation). The values of rank correla- '

tion and Kendall'st are calculated in order to gain insight n(D 5.0 )

into its strength, being positive correlation when Spearmaggng P = '0.8.P); .

rank and/or Kendall'st are positive, and being an ! ’
anticorrelation when they are negative. The analysis of the

non-parametric rank correlation is allowed because the %{ﬁ-dn(D 5,6,p), the number of loops with the vector

tistical variables are continuous (real and ordered numbe(r§)6 8.p) of the 4D-space in the interval “i", identified as a

and also because their interval of existence is large enough po o sizeAI=[2A,45°,45° 45°] on a partition of the

However, for a small number of data it is not possible to r dctorial space. For independent co-ordinates, the total en-

on the results. From the analysis of the contingency tab Spy is calculated by the addition of each individual entropic
the strength of the correlation may be evaluated. Nevert m, analogously defined as

less, values of Cramer’s V or contingency coefficient lying
between both extremes are meaningless and only the sym- n(variable)
metrical uncertainty coefficient shows up the intensity of th& = TN
correlation. Thdinear correlation of the ranks (Spearman)
or Kendall'st may also show the correlation type and strength. i . ) .
Moreover, for the comparison of the values obtained fro¥id being the variable either B, 6, or p, respectively. We
the contingency tables it is necessary to define the tables W@y represent the relation between the real and the inde-
the same sizes. pendent entropy as:

In order to be able to recognise the most stable size of a IS
loop, we have used the measure of association based orl m- 2
formation-entropy [16]. The entropy of the set of variables in (SD+ D+ B+ 5) @)
the 4D-space that belongs to an specific loop size is defined

as: r being 1 when the variables are perfectly independent and
different otherwise. Hence, r can be a good estimator of the
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Figure 2 Representation of the number of loop-motifs versus the number of residues forming tifehlmigpins, B-links,
a-a motifs, a-B motifs andB-a motifs
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independence of the variables. It is also meaningful the difie desired properties 1, 2 and 3 follow immediately from
ference calculated as energy, that defines the entropic enéngyr demitions. Also property 4 is obtained if the param-
necessary to produce the real correlated set of variables ef&rs used on the linear combination have this property. This
_ _ comes out from its definition because the contingency tables
E=-TAS=- 1[ S'( SB & & pﬁ (3)  defined to calculate the measures of association have the same
size for each pair of geometrical variables, independently of
with T=300K. This energy is positive when the set is nathe type of loop.
random.

Results and discussion
Statistical significance

The results obtained for the correlation strength (Figure 3)

The geometric co-ordinates @0,p) have been obtainedshow that for any type of loop shorter than 10 residues there
considering the regular secondary structures surrounding &he always some correlated geometrical variables. For sizes
loop. Any relation between them shows the restrictions arigstween 10 and 16 there are always some pair of correlated
ing from the geometrical scaffold of the motif. The problewariables (except for thee-a motif). B-link loops present high
is reduced to calculate the correlation between the set of akrelation in all pair of variables that involve the distance
ues on this 4D-space. between secondary structures (D). This correlation is observed

To consider the statistically meaningful results it is nefir loops shorter than 10 residues. However, the correlation
essary to determine first if the number of loops is large enougbtween D and the meridian angh i not observed in loops
This is shown by plotting of the number of loops versus itrger than 2 residues. A similar behaviour was observed for
size for each type of loop (FiguB. Weassume that loops B-hairpins. In this type of loops the correlations involving
larger than 20 residues are uninmtpat. We represent thethe D variable are lower than Brlinks. B-a loops (Figure
results obtained from the statistical analysis by the measgeg showed correlation between all pairs of variables for loops
of the significant value of Spearman’s non parametric ragkorter than 7 residues indicating that an intrinsic relation
correlation, the significant value of Kendaltsand the sig- between the chosen conformational variabbest® This
nificant value of the contingency tables base®We also behaviour is also observed inp loops. Finally, Figure 3d
aim at representing the strength of the coti@ia The re- shows the correlation strength for loops begwa-helices.
sults obtained for each statistical parameter did show thathis case, the intrinsic relation between variables is lower
Cramer’'s V (CV), symmetrical dependency of entropyan for loops involving aa-helix and a3-strand. However,
(u(x,y)), the absolute value of the Spearman’s rank correfRere is significant correlation in loops shorter than 6 resi-
tion (SR), and the absolute value of Kendatl'$Kt) had dues. The meridian anglp)(shows for all cases smaller cor-
similar curves. Therefore, we have defined a new parametgation with the rest of geometrical co-ordieg The strength
formed by the combination of the statistical parameters. \3ethe correlation for the six possible combinations of pairs
call this parameter ttfeorrelation stength”. We require some of geometrical co-ordinates (sizes than 5 residues) is smaller
specific properties for the construction of this new paraimr-botha-a motifs andB-hairpins than for the rest of motifs.
eter: 1) it must show the existence of correlation, 2) it mustis remarkable that all the correlation strengths involving
distinguish the positive correlation from the anticorrelatiofhe end-to-end distance of the loop co-ordinates are not null
3) it must be related with the intensity of the correlation, ap@til sizes of about 8 residues. This shows the main relation
4) it should enable us to compare the different types of loopgtween the length of the loop and its shape. We conclude

The strength of correlation is defined as: that most of the loops with size smaller than 10 residues be-
long to a determined set of geometry, which involves recur-
Strengtre Ko ECV+ l( X 3)+\ SR‘\ IQED rences of conformation. We describe those motifs where the
‘ T‘ 4 0 size ranges in the interval of minimum correlation-strength
T _ (4)  as those with preference to be constructed with minimal re-
Q(sig, iR sigk,) straints.

We have calculated the entropic energy necessary to pro-

e o . _duce the correlated set of geometrical co-ordinates to gain
where "sig” is the significance of the correlation by continiasight into the problem of the energetically more stable loop
gency tables, "sigSR” the significance of the correlation Ry;e ‘we obtain the same conclusion as for the correlation of
Spearman, “sig” the significance of the correlation bypairs of co-ordinates: short connections show the smallest

Kendall,and "Q" is a function defined as: entropic energy (Figure 4a). Furthermore, the result of the
s ; entropy estimator (Figure 4b) is also in agreement with the
Q(Slg’ SIgSR S'gK) result obtained from the comparison of the strength of the
_ [0 ifsig>0.05sigSR> Q05sigK = 005 correlation. The mmber of loops shorter than 10 residues
- Ell if sig < 0.050r sigSR< 0 050rsigk. < 005 with similar geometry is higher than at obtained randomly. It

is also shown that the estimator is larger for lengths shorter
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Figure 3 Correlation strength between geometric co-ordinates3-dpks ; b) B-hairpins; c) f-a motifs; d)a- motifs; and
e) a-a motifs

than 6 residues than for lengths between 6 and 20 residdBsspace and leads to an additional projection into a subspace.
This is in agreement with the small entropic energy foufthese restrictions have been demonstrated by statistical analy-
for short connections (around 3 kJ/mol). Therefore, loopis with the independence of the 4 geometrical co-ordinates.
shorter than six residues are produced with the minimal @ime entropic estimator of independence has demonstrated
ergetic effort without being random. This energy is aroundf& intrinsic relation between the geometrical co-ordinates
kJ/mol for lengths between 6 and 10 residues. In particulafrthe 4D space for loops shorter than 10 residues (r<50%). It
loops of type3-a show a minimum around 4 residues size bias also been obtained the energetic expense due to the con-
about 3 kJ/mol. struction of the restrictions on the 4D space. This energy is
involved in the increase of information-order with respect to
the chaos of a randomised system. The results have shown a
minimum energy (around 3 kJ/mol calculated at 300 K) for
short connections (shorter than 6-residues). This energy should

) ) not be interpreted in terms of physico-chemical optima but
The main goal of this work has been to reduce the geomefithe optimum size according with the statistics taken from

cal parameters of the loop to the minimum number of indge data. In this sense, this is analogous to the pseudo-ener-
pendent co-ordinates and to analyse the independence of 184 ysed on statistic potentials derived from a similar set of
variables. Its aim has not been to cluster'a'set of non-RBn-homologous proteins [21]. The result obtained gives an
mologouslloops but to demonstrate that this is possible. éﬁswer to the results obtained by Rooretal [22], Fidelis
though this has been shown by other authors [19,20], S, [23] and Bystroff and Baker [24], it explains why it is
demonstration was not shown in a previous clustering wWQifksy to reconstruct and/or predict the conformation of short
using the same motif-geometry definition [8], this being &gments when building a region embedded in a protein struc-

requisite before tackling the classification of protein loopgyre. Also, we have shown that the use of a database method
The geometry of the loop involves several restrictions on the

Conclusions
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Figure 4 Information-entropy energy and total correlation represented by the entropic association estimator for the five
loop-motif types

was not effective for comparative modelling in Fideliel's sented by Olivaet al [8]. We arenot clustering loops but
work because the same conformation may cause differanalysing the possibilities of obtaining statistically meaningful
geometries, whilst for a given geometry, the number of availusters, and therefore the objectives of the two studies are
able conformations for short segments is restricted and ndifferent. The pesent work is intended to justify the exist-
randomly determined (also shown in ref. 20). ence of an inner relation for a given geometry of a loop (not
The statistics presented in this work demonstrate that tiecessarily involved with the conformation of the loop). On
four variables chosen to describe the loop geometrg,(®, the other hand, the aim of the previous work was to cluster
and p) are enough to explain the geometrical clustering thfe loops of a non-homologous set of proteins according with
loops described by Oliva and co-workers [8] and used in tiveir geometry and conformation as well as to extract the
classification of antibody CDR3 loops by the same authargin inner inteactions. Also, most preceding works
[25]. Thereforethe results show that it is possible to obtaif7,9,23,26] needed the use of an RMS cut-off to get clusters
clusters of short connections because their geometry is wigh similar conformation restricted to two end points in-
built randomly. The use of this 4D space to describe a loaglving the specific geometry of the motif. We have shown
geometry could be used in other protein loop classificatithmat for a given motif-geometry and a short number of resi-
with a limit on the number of residues involved in the loopues an inner relation can be found that determines the ge-
Statistic shows that these four variables can be used in mnmetry and, therefore, there is less probability to be obtained
tein loop clustering when the loop is not longer than 10 resahdomly. This was also shown by van Vlijmen and Karplus
dues. Theconformation of loops longer than 10 residues da0] providing a direct correlation between the stem residues
not follow a pattern and the clustering leads to non distifthose adjacent to the loop) and the loop conformation. In
guishable classes on a non-homologous database. The stliswork we have shown the same relation for the internal
tical approach presented in this work differs from that pree-ordinates that define the motif-geometry instead of using
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the stem residues, which improves the results already pien of short segments, this is not yet available for long seg-

sented for the clustering method that uses these co-ordinateats. Our work presents a similar conclusion: loops of

[8]. around 4 residues may show specific patterns because they
The work is mainly a retroactive confirmation of the metlare constructed non-randomly. The energetic terms calculated

odology and finds a new specific insight. First, we raise tbg means of the statistical potentials further support this con-

need of demonstrations to be done on the cluster analysisla$ion. Finally, this conclusion can be used as a benchmark

protein loops [7-10,19,26]. All the previous authors fourmh the construction of loops by protein engineering accord-

the need of defining restrictions of loops, both related to timg to the classification of short connections and a given loop

conformation and to the motif geometry. A recent methggometry.

based on the iterative refinement of clusters has also improved
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