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Abstract

The accuracy of an alignment between two protein sequences can be improved by including other detectably
related sequences in the comparison. We optimize and benchmark such an approach that relies on aligning
two multiple sequence alignments, each one including one of the two protein sequences. Thirteen different
protocols for creating and comparing profiles corresponding to the multiple sequence alignments are
implemented in the SALIGN command of MODELLER. A test set of 200 pairwise, structure-based align-
ments with sequence identities below 40% is used to benchmark the 13 protocols as well as a number of
previously described sequence alignment methods, including heuristic pairwise sequence alignment by
BLAST, pairwise sequence alignment by global dynamic programming with an affine gap penalty function
by the ALIGN command of MODELLER, sequence-profile alignment by PSI-BLAST, Hidden Markov
Model methods implemented in SAM and LOBSTER, pairwise sequence alignment relying on predicted
local structure by SEA, and multiple sequence alignment by CLUSTALW and COMPASS. The alignment
accuracies of the best new protocols were significantly better than those of the other tested methods. For
example, the fraction of the correctly aligned residues relative to the structure-based alignment by the best
protocol is 56%, which can be compared with the accuracies of 26%, 42%, 43%, 48%, 50%, 49%, 43%, and
43% for the other methods, respectively. The new method is currently applied to large-scale comparative
protein structure modeling of all known sequences.
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Nucleic acid and protein sequence alignments are central to
many problems in biology, including gene assignment, phy-
logeny construction, protein structure modeling, protein de-
sign, and functional annotation of proteins (Barton 1996,
1998; Gotoh 1999). An alignment between two sequences
of residues is usually calculated by optimizing an alignment
scoring function. The two common ingredients of the scor-
ing function are a gap penalty function and a matrix of
substitution scores for matching every residue in one se-
quence to every residue in the other sequence. The align-
ment score is usually a sum of the gap penalties that depend
linearly on the gap lengths, and the pairwise substitution
scores that depend on the matched residue types. The origi-

nal and still widely used optimization method for sequence
alignment is based on dynamic programming (Needleman
and Wunsch 1970; Sellers 1974). Since its inception, the
scoring function and its optimization by dynamic program-
ming have been improved for alignment accuracy and
speed, and applied to a variety of alignment problems.

One of the most significant improvements in alignment
accuracy was achieved through the use of multiple sequence
alignments and the corresponding sequence profiles (Grib-
skov et al. 1987, 1990; Gribskov 1994). For proteins, a
sequence profile lists a preference for the 20 standard amino
acid residue types at each position in a given multiple se-
quence alignment. The PSI-BLAST program relies on the
BLAST algorithm (Altschul et al. 1990) to collect homologs
of a query sequence and construct its profile by iteratively
scanning a sequence database (Altschul et al. 1997; Park et
al. 1998); a basic step in this calculation is a comparison of
the query sequence profile with each sequence in the data-
base. A multiple sequence alignment can also be trans-
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formed into a Hidden Markov Model (HMM), a class of
probabilistic models that are generally applicable to a time
series or linear sequences (Eddy 1998). A particularly suc-
cessful method in this class is implemented in the SAM
package (Hughey and Krogh 1996) that outperforms other
sequence-based methods for fold recognition (Karplus et al.
1998; Park et al. 1998; Madera and Gough 2002). The
SATCHMO algorithm in the LOBSTER package simulta-
neously constructs a similarity tree and compares multiple
sequence alignments of each internal node of the tree using
HMMs (Edgar and Sjolander 2003a,b). The CLUSTALW
program compares two multiple sequence alignments by
scoring an alignment of two positions, one from each pro-
file, as the average of all pairwise substitution scores for the
amino acid residues in the two profiles (Higgins and Sharp
1988; Thompson et al. 1994). The LAMA program aligns
two multiple sequence alignments by first transforming
them into profiles and then comparing the two to each other
by the Pearson correlation coefficient (Pietrokovski 1996).
Similarly, the FFAS program was developed to align two
sequence profiles with each other (Jaroszewski et al. 2000;
Rychlewski et al. 2000). A related approach was also used
by Yona and Levitt (2000, 2002) to construct the ProtoMap
database of protein sequence families (Yona et al. 1999,
2000; Yona and Levitt 2002). Al-Lazikani and co-workers
(2001) combined multiple structure and sequence compari-
sons to improve the accuracy of alignments of SH2 do-
mains. Most recently, the COMPASS program was devel-
oped to locally align two multiple sequence alignments with
assessment of statistical significance (Sadreyev and Grishin
2003). These methods compare two profiles by constructing
a matrix of scores for matching every position in one profile
to each position in the other profile, followed by either local
or global dynamic programming to calculate the optimal
alignment. It was noted previously that profile–profile
alignment methods are capable of detecting more remote
relationships compared to the sequence-profile methods,
such as PSI-BLAST (Rychlewski et al. 2000; Panchenko
2003; Sadreyev and Grishin 2003).

Another significant improvement of the alignment accu-
racy in the low similarity range was achieved by consider-
ing protein structure information for one of the sequences in
a pairwise comparison. The methods in this class include
threading and 3D template matching (Bowie et al. 1991;
Godzik and Skolnick 1992; Jones et al. 1992; Kelley et al.
2000; Shi et al. 2001; Fischer 2003. For review, see Jones
1997; Levitt 1997; Smith et al. 1997; Torda 1997; David et
al. 2000).

Yet another approach is implemented in the SEA pro-
gram, which aligns a pair of remotely related sequences by
optimizing a match between the predicted conformations of
their short segments (Ye et al. 2003). The resulting align-
ments were more accurate than the pairwise sequence align-
ments by BLAST (Altschul et al. 1990) and ALIGN (Myers

and Miller 1988), as well as the profile–profile alignments
by FFAS (Jaroszewski et al. 2000; Rychlewski et al. 2000).

For closely related protein sequence pairs, with sequence
identity over 40%, an accurate alignment is almost always
trivial to obtain. In contrast, despite the methodological ad-
vances listed above, alignments in the so-called “twilight
zone” of less than 30% sequence identity still contain many
errors (Rost 1999). Unfortunately, most sequences share
less than 30% sequence identity to a known structure
(Sanchez and Sali 1998; Pieper et al. 2002). On average,
pairwise alignments between sequences at 30% sequence
identity have ∼20% of the residues aligned incorrectly
(Johnson et al. 1993). Some pairs of related proteins have
almost no correctly aligned positions when aligned by se-
quence-based alignments methods (Venclovas et al. 2001).

Alignment accuracy in the twilight zone is crucial for
several applications, including comparative protein struc-
ture prediction (Blundell et al. 1987; Marti-Renom et al.
2000; Baker and Sali 2001). To calculate an accurate com-
parative model, it is necessary to identify and correctly align
at least one template structure to the target sequence. An
incorrect alignment invariably leads to an inaccurate model,
because none of the existing comparative model building
methods can generally recover from an incorrect alignment
(Marti-Renom et al. 2000). A number of studies assessed
both the sensitivity of alignment methods in the detection of
remote homologs (Park et al. 1997; Muller et al. 1999;
Kelley et al. 2000; Rychlewski et al. 2000; Yona and Levitt
2000; Panchenko 2003; Sadreyev and Grishin 2003) and
alignment accuracy (Jaroszewski et al. 2000; Sauder et al.
2000; Blake and Cohen 2001; Panchenko 2003; Sadreyev
and Grishin 2003), as well as optimized the alignment ac-
curacy for protein structure prediction (Jaroszewski et al.
2000; John and Sali 2003).

In this study, we optimized alignments specifically for
comparative protein structure prediction. We begin by de-
scribing 13 profile–profile alignment protocols, the training
and testing alignment sets, and measures of alignment ac-
curacy (Materials and Methods). Next, we benchmark the
alignment accuracy of our profile–profile alignment proto-
cols relative to representative sequence-sequence, profile-
sequence, and other profile–profile alignment methods (Re-
sults). Finally, we discuss our improvements in sequence
alignment from the point of view of comparative protein
structure modeling (Discussion).

Materials and methods

We first describe the source of multiple sequence align-
ments used for calculating the profiles. We proceed by de-
fining the 13 profile–profile alignment protocols in terms of
four alternative schemes for transforming a multiple se-
quence alignment into a profile or a matrix and six alterna-
tive measures for comparison of two profiles. We also de-
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scribe the training and testing alignment sets and measures
of alignment accuracy.

Multiple sequence alignment

For each sequence in a pair of sequences to be aligned, a
multiple sequence alignment with its homologs was pre-
pared by scanning the nonredundant protein sequence data-
base at NCBI (June 2002) with the program PSI-BLAST,
version 2.11 (Altschul et al. 1997). The scanning was per-
formed without filtering out compositionally biased seg-
ments, was run for up to 20 iterations, and included all
matches with an e-value smaller than 0.0005. Up to 1000
sequences with the most significant e-values were retained
in the multiple sequence alignment. The default values were
used for all other parameters. The multiple sequence align-
ment and the profile were saved after each iteration. The
PSI-BLAST multiple sequence alignment of a sequence was
defined to be the sequence-profile alignment with the most
significant e-value from any of the iterations.

Sequence weighting

Sequence weighting is part of the calculation of a sequence
profile from a multiple sequence alignment, and is used to
compensate for nonuniform distribution of the homologs in
the alignment. We applied two different weighting schemes.

First, we tested the often used position-based sequence
weighting (Henikoff and Henikoff 1994) that assigns low
weights to overrepresented sequences and high weights to
unique sequences:

Wj
�1� = �

i

1

ri � ni,j
( 1)

where ri is the number of different residue types at position
i and ni,j is the frequency of the residue type in sequence j
at position i.

Second, we also tested our variation of the position-based
sequence weighting that increases the weights of those se-
quences that are more similar to the query sequence:

Wj
�2� = �

i

Oa�i,1�,b�i,j�

ri � ni,j
( 2)

where Oa(i,1),b(i,j) are the Blosum62 odds ratios for matching
the residue type a in the query sequence with the residue
type b in sequence j, defined as “qij/eij” in the original paper
(Henikoff and Henikoff 1992).

Sequence profile

A sequence profile of a given set of similar sequences speci-
fies a preference for each of the 20 standard amino acid
residue types at each of the residue positions in the set. A
number of different estimation schemes have been sug-
gested, because a multiple alignment may not contain a
sufficiently large number of homologs to calculate a statis-

tically robust profile solely from the occurrence of each
residue type in the multiple alignment. They generally de-
pend on prior or expected probabilities of residue occur-
rences and/or residue-residue substitutions (Henikoff and
Henikoff 1996). We tested three different profile-building
methods.

First, profiles generated by pseudo-counting (Henikoff
and Henikoff 1996) as implemented in the PSI-BLAST pro-
gram (Altschul et al. 1997): the use of pseudo-counting for
profile generation was chosen for its simplicity of imple-
mentation and comparable performance to other tested ap-
proaches (Henikoff and Henikoff 1996).

Second, profiles generated by pseudo-counting (Heni-
koff and Henikoff 1996) as implemented by us in the
MODELLER-7 program: the probability of a residue type a
to occur at position i in a multiple alignment is estimated by:

Pi,a =
Ni

Ni + Bi
�

ni,a

Ni
+

Bi

Ni + Bi
�

bi,a

Bi
( 3)

Bi = m � ri ( 4)

bi,a = Bi � �
a= 1
b= 1

20 ni,a

Ni
�

Ma,b

Ma
( 5)

Ni is the sum of the weights Wj
(1) (eq. 1) for the sequences

that do not have a gap at position i. ni,a is the sum of the
weights Wj

(1) for the sequences with residue type a at po-
sition i. Bi is the total number of pseudo-counts at position
i and depends on the parameter m that is set to the optimal
value of 5 (Henikoff and Henikoff 1996). bi,a is the number
of pseudo-counts for residue type a at position i. Ma is the
probability of residue type a in the background distribution
that is obtained from the Blosum62 matrix. Ma,b are the
Blosum62 probabilities (Henikoff and Henikoff 1992) for
matching the residue type a in the query sequence with the
residue type b in sequence j. Both ni,a/Ni and bi,a/Bi are
estimates of Pi,a, based on the observed and pseudo-counts,
respectively. Correspondingly, Pi,a is a weighted sum of the
two estimates, with the contributions determined by Ni and
Bi. If Ni is larger than Bi, Pi,a is dominated by the observed
counts, whereas if Bi is larger than Ni, Pi,a is dominated by
pseudo-counts.

Third, our variation of the Henikoff and Henikoff schema
with sequences weighted proportionally to their similarity to
the query sequence, using Wj

(2) (eq. 2) instead of Wj
(1)

(eq. 1).

Profile–profile substitution scores

Ideally, an optimal alignment of two profiles P and Q would
be obtained by relying on a matrix of probabilities Si,j that
any pair of profile positions Pi and Qj are “equivalent.” It is
not clear what the best definition of “equivalent” is and how
to calculate such a probability of equivalence, given two
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profile distributions Pi and Qj. As a result, we are forced
into a “parametric” approach, whereby we calculate a “sub-
stitution score” that approximates the probability of equiva-
lence. Such substitution scores, together with a gap penalty
function, can then be used to obtain an optimal alignment of
two profiles by dynamic programming. Six recipes for cal-
culating profile–profile substitution scores Si,j for each pair
of profile positions i and j were tested.

First, the dot product between two distributions Pi and Qi

at profile positions i and j, respectively:

Si,j
�1� = �

a

�Pi,a � Qj,a� ( 6)

Second, the correlation coefficient between two distribu-
tions Pi and Qj:

Si,j
�2� =

�
a

�Pi,a � Qj,a�

��
a

�Pi,a � Pi,a� � �Qj,a � Qj,a�
( 7)

Third, the Euclidean distance between two distributions
Pi and Qi:

Si,j
�3� = ��

a

�Pi,a − Qj,a�2 ( 8)

Fourth, a substitution score based on the Jensen-Shannon
divergence measure DJS for two distributions (Lin 1991;
Yona and Levitt 2000):

Si,j
�4� = DJS�Pi,Qj� = � � DKL�Pi,R� + �1 − �� � DKL�R,Qj� ( 9)

R = � � Pi + �1 − � � Qj� ( 10)

DKL�Pi,Qj� = �
a

Pi,alog2

Pi,a

Qj,a
( 11)

The R vector can be seen as the most likely parent dis-
tribution of Pi and Qj. DKL is the Kullback-Leibler distance,
also called the “cross-entropy measure” in information
theory. � is a parameter between 0 and 1, set to 0.5 in this
study. � and its complement (1-�) are the weights given to
the Pi and Qj distributions, respectively. The Jensen-Shan-
non divergence, though not being a true metric, is bound by
0 and 1. It is 0 when the two compared distributions are
identical and 1 when they are not related at all.

Fifth, for each position in a multiple sequence alignment,
a pairwise residue substitution probability matrix was cal-
culated as a weighted sum of the Blosum62 substitution
probability matrix and the matrix of relative residue substi-
tution frequencies observed at the given position in the mul-
tiple sequence alignment. Next, the substitution score for
two multiple alignment positions i and j was calculated by
averaging over these residue substitution probabilities for
all pairs of residues containing a residue from each of the
two compared positions:

Si,j
�5� = �

a= 1

20

�
b= 1

20

f a
�i� � f b

�j� � �Ma,b
�i� + Mb,a

�j� � ( 12)

Ma,b
�i� = �1 � Ma,b + �2 � f a,b

�i� ( 13)

�1 =
1

1 +
n

�

( 14)

�2 = 1 − �1 ( 15)

where fa
(i) is the observed frequency of residue type a at

position i in the first multiple alignment corrected for se-
quence weights as defined above (using equation 1), Ma,b

(i)

is the substitution probability matrix for residue types a and
b at position i in the first multiple alignment, Ma,b is the
Blosum62 substitution probability matrix for residue types a
and b, and �1 and �2 are scalar weights. Variable n is the
number of the pairwise residue-residue substitutions within
the multiple alignment at position i, and � is a smoothing
parameter (set to 0.1 by optimization of the alignment ac-
curacy on a learning set of alignments).

Sixth, the score Si,j
(6) was defined as the correlation co-

efficient between the corresponding values in two posterior
substitution matrices Ma,b

(i) and Mb,a
(j) for positions i and j

in the first and second multiple alignments, respectively.
After the substitution scores were computed according to

one of the six recipes above, they were scaled to fit the
range from 0 to 1000.

Alignment methods

The testing pairs of sequences were aligned by (1) heuristic
pairwise sequence alignment as implemented in BLAST
2.1.2 (Altschul et al. 1990), (2) pairwise sequence alignment
by global dynamic programming with an affine gap penalty
function as implemented in the ALIGN command of
MODELLER-7 (Sali et al. 2001), (3) sequence-profile
alignment as implemented by PSI-BLAST 2.1.2 (Altschul et
al. 1997), (4) Hidden Markov Model (HMM) as im-
plemented in SAM 3.3.1 (Hughey and Krogh 1996) and
LOBSTER (Edgar and Sjolander 2003a), (5) pairwise se-
quence alignment based on matching predicted local struc-
ture as implemented in the SEA Web server (Ye et al.
2003), (6) multiple sequence alignment by CLUSTALW
1.81 (Thompson et al. 1994), (7) profile–profile alignments
as implemented by COMPASS 1.24 (Sadreyev and Grishin
2003), and (8) the 13 schemes of profile–profile alignment
by global dynamic programming with an affine gap penalty
function as implemented by the SALIGN command of
MODELLER-7.

For BLAST, a high e-value threshold of 100 was used for
accepting an alignment between two sequences. Otherwise,
the pair of sequences was ignored. Here, we focus on the
alignment accuracy rather the accuracy of the methods to
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detect relationships. Therefore, we increased the e-value
threshold relative to the commonly used value of ∼10−4 to
produce the maximum number of pairwise alignments ob-
tained from the BLAST program. All other parameters were
kept at their default values. Only four pairs of sequences did
not have any fragments that could be aligned by this method.

For ALIGN, the default parameters were used. They in-
clude the AS1 residue type similarity matrix calculated from
the reference structure alignments (file “as1.mat” in the
MODELLER distribution; Overington et al. 1992), the ini-
tiation gap penalty u of −450, and the extension gap penalty
v of −50; the penalty for a gap of n residue positions is
u + v n.

For PSI-BLAST, multiple sequence alignments of each
one of the two sequences were calculated as described
above. The sequence-profile alignment with the most sig-
nificant e-value from any of the iterations with either of the
two sequences as queries was used as the PSI-BLAST align-
ment. Only two pairs of sequences did not have any frag-
ments that could be aligned by this method.

For SAM, the following protocol was used (R. Karchin,
pers. comm.). The w0.5 script with default parameters was
applied to build HMMs for the target and template se-
quences, using their PSI-BLAST multiple sequence align-
ments. Next, the program hmmscore in the SAM package
(sw � 0; select_align � 8; adpstyle � 5) was employed to
align the HMM of the target and the template with the
template and the target sequences, respectively, resulting in
two generally different template-target alignments. The
alignment with the most significant e-value as reported by
the hmmscore program was selected.

For LOBSTER, the COACH algorithm was used through
the -coach option to align a multiple sequence alignment
against a Hidden Markov Model. First, the program was
used to build HMMs for the target and the template se-
quences, using their PSI-BLAST multiple sequence align-
ments. Next, we aligned the HMMs of the target and the
template to the template and target sequences, respectively,
resulting in two generally different template-target align-
ments. The alignment with the higher bit score as reported
by LOBSTER was selected.

For SEA, the Web server at http://ffas.ljcrf.edu/sea/ was
used with the default parameters: the FRAGlib library
(http://ffas.ljcrf.edu/frag/) for extracting structural frag-
ments with a cutoff of −1.5, local alignment with the ini-
tiation gap penalty u of −5 and the extension gap penalty v
of −1, and the weight for local similarity of 0.5.

For CLUSTALW, the profile alignment option (i.e., num-
ber 3 in the main CLUSTALW menu) with the default
parameters was used (Thompson et al. 1994). We used this
option over the multiple sequence alignment option (i.e.,
number 2 in the main CLUSTALW menu) to benchmark
CLUSTALW using the same profiles as for the other tested
programs.

For COMPASS, the default parameters were used to align
the target and template multiple sequence alignments
(Sadreyev and Grishin 2003).

For SALIGN, the 13 different protocols were tested,
combining three different ways to construct a profile with
four different ways to score a match between two profile
positions, as well as two protocols based on posterior sub-
stitution probability matrices, as described above (Table 1).
The PSI-BLAST profiles cannot be used with the Jensen-
Shannon scheme for calculating the profile–profile substi-
tution scores because this scheme relies on probabilities Pi

and Qj that are not reported in the PSI-BLAST output.
The alignment of two multiple sequence alignments by

SALIGN requires approximately 40 sec for ∼250 sequences
with about ∼250 residues in each of the two profiles on a
typical Pentium 4 computer. The total CPU time is domi-
nated by the computing of the scoring matrix, rather than the
dynamic programming step. This CPU time is approxi-
mately proportional to the product of the numbers of se-
quences in the two profiles and the profile lengths.

Training and testing alignment sets

Because our aim is to improve the accuracy of comparative
protein structure modeling, the reference alignments were
pairwise, structure-based alignments. They were extracted
from our comprehensive database of pairwise structure-
based alignments, DBAli (Marti-Renom et al. 2001). The
alignments in DBAli were calculated by superposing all
pairs of proteins of known structure in the Protein Data
Bank (PDB, Feb. 1999; Berman et al. 2002) that are clas-
sified into the same H class in the CATH database (Orengo
et al. 1999), using the program CE (Shindyalov and Bourne
1998). There are 33,920 such alignments with a Z-score
higher than 3.8 (Shindyalov and Bourne 1998). They cover
the entire spectrum of sequence and structure similarities.

First, 387 alignments were extracted from DBAli by re-
quiring up to 40% sequence identity, at least 100 aligned
residues, at least 50% of the residues aligned, and that at
least 90% of the residues of one chain are covered in the
alignment. Second, structure pairs that did not have at least
50% of the residues in the shorter chain aligned by MAM-
MOTH (Ortiz et al. 2002) were also eliminated, resulting in
the final set of 300 reference alignments. These 300 align-
ments were randomly divided into the training and testing
sets of 100 and 200 alignments, respectively. The training
set of alignments was used to optimize the gap initiation and
gap extension penalties for all of our alignment protocols
and the parameter � for the two posterior substitution prob-
ability matrix protocols, and the testing set was used to
assess the performance of all examined alignment methods.
The PDB chain identifiers, chain lengths, percentage se-
quence identities, root-mean-square deviations (RMSDs)
for the aligned C� atoms, average percentages of the aligned
C� atoms, and percentages of structurally equivalent resi-
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dues (below) are listed separately for the training and testing
alignments in Supplementary Table 1 (http://salilab.org/
suppmat/suppmat.shtml). Distributions of these features for all
300 alignments are shown in Figure 1, indicating that the se-
lected structure pairs indeed represent difficult alignment
cases, with an average pair sharing only 20% sequence identity
and 65% of structurally equivalent C� atoms superposed with
an RMSD of 3.5 Å.

Measures of alignment accuracy

The accuracy of an alignment was measured by relying on
the aligned native structures extracted from the PDB (Ber-
man et al. 2002). First, the RMSD between the correspond-
ing C� atoms in the two structures was calculated upon
rigid-body least-squares superposition of all the C� atoms,
as implemented in the SUPERPOSE command of MOD-
ELLER (Sali et al. 2001).

Second, the percentage of structurally equivalent posi-
tions was defined as the percentage of the C� atoms in the
shorter of the sequences that are within a certain cutoff (e.g.,
1, 2, 3, 4, and 5 Å, and their average) of the corresponding
atoms in the superposed structure (“structure overlap”). Un-
less indicated otherwise, the structure overlap quoted is the
average over all cutoffs.

Additionally, the alignment methods were assessed by
the percentage of alignments with the structure overlap
higher than 30% (“success rate”); structure pairs with at
least as much overlap have the same fold (Abagyan and
Batalov 1997).

In addition to the assessment of structure similarity im-
plied by an alignment, we evaluated the accuracy of the

alignment through a comparison with the CE structure-
based alignment. First, the fraction of correctly aligned po-
sitions was defined as the percentage of positions in the
tested alignment that were identical to those in the CE struc-
ture-based alignment (“CE overlap”); the residue-gap
matches are ignored in this calculation.

Secondly, the shift score, which ranges from -e for two
completely different alignments to 1 for identical align-
ments, was also calculated (Cline and Karplus 1998). We
used e � 0.2, as suggested (Cline and Karplus 1998). The
shift score incorporates both coverage and error.

Optimization of gap penalties and �

The optimal gap initiation and extension penalties for the 11
profile–profile alignment protocols were identified by maxi-
mizing the average percentage of correctly aligned positions
for the training set of sequence pairs. The maximization
scanned all combinations of the initiation penalties from
−1000 to 0 in steps of 50 and the extension penalties from
−200 to 0 in steps of 10. The gap initiation, gap extension,
and the � parameters for the two posterior substitution
probability matrix protocols were optimized on a 3D grid,
with � ranging from 0.001 to 10 (0.001, 0.01, 0.1, 1, and
10). The optimal parameters for each alignment protocol are
listed in Table 1.

Significance of an observed difference
in the alignment accuracy

A statistical analysis of the differences between align-
ment accuracies of various methods was performed. For

Table 1. Thirteen protocols implemented in the SALIGN command in MODELLER-7

Protocol name Profile scheme

Profile–profile
comparison

scheme
Initiation

gap penalty
Extension

gap penalty
�

smoothing

CCPBP PSI-BLAST correlation coefficient7 −300 0 n/a
CCHH Henikoff-Henikoff1 correlation coefficient7 −300 0 n/a
CCHS Henikoff-Henikoff

with similarity bias2
correlation coefficient7 −150 0 n/a

CCMAT Henikoff-Henikoff matrix13 correlation coefficient7 −100 0 0.1
EDPBP PSI-BLAST Euclidean distance8 −450 −30 n/a
EDHH Henikoff-Henikoff1 Euclidean distance8 −550 0 n/a
EDHS Henikoff-Henikoff

with similarity bias2
Euclidean distance8 −450 −10 n/a

DPPBP PSI-BLAST dot product6 −250 −30 n/a
DPHH Henikoff-Henikoff1 dot product6 −550 0 n/a
DPHS Henikoff-Henikoff

with similarity bias2
dot product6 −100 −30 n/a

JSHH Henikoff-Henikoff1 Jensen-Shannon distance9 −150 0 n/a
JSHS Henikoff-Henikoff

with similarity bias2
Jensen-Shannon distance9 −250 0 n/a

AveMAT Henikoff-Henikoff matrix13 Average value12 −100 −50 0.1

The protocols are defined by the schemes used to calculate the profiles and the profile–profile comparison scores. In addition, the table lists the optimal
gap initiation and extension penalties, as well as the smoothing parameter �, obtained by optimizing the accuracy of the protocols on the training set of
alignments. Equation numbers (text) corresponding to the schemes are shown in superscript.

Marti-Renom et al.

1076 Protein Science, vol. 13



this analysis, the alignment accuracy of a method was
measured independently by the average shift score and
CE overlap, both calculated for the 200 testing pairs of
sequences. The significance of the differences was com-
puted using Student’s t-test statistics (Marti-Renom et al.
2002).

Results

As described in Materials and Methods, we devised and
implemented a profile–profile alignment method in the
SALIGN command of MODELLER-7 (available at http://
salilab.org/modeller/). There are 13 variations in the calcu-

Figure 1. Composition of the 300 reference alignments that constitute the training and testing sets. (A) Distributions corresponding
to the 100 alignments in the training set. (B) Distributions corresponding to the 200 alignments in the testing set. The percentage
sequence identity is defined by the ratio of the alignment positions with the same residue types and the number of aligned positions.
The RMSD is calculated over the aligned C� atoms. The percentage of structurally equivalent residues was calculated as the percentage
of residues within 3.5 Å after rigid superimposition.
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lation of the profiles and the profile–profile substitution
scores. The opening and extension gap penalties as well as
the � parameter were optimized separately for each one of
the 13 protocols, by relying on the 100 training alignments.
To assess SALIGN and a variety of other alignment meth-
ods, we used the 200 reference structure-based alignments.
First, we assessed the differences in accuracy between the
13 different SALIGN protocols. Next, we compared two of
the SALIGN protocols for profile–profile alignment by
global dynamic programming to a heuristic pairwise se-
quence alignment (BLAST), a pairwise sequence alignment
by global dynamic programming (ALIGN), a heuristic se-
quence-profile alignment (PSI-BLAST), two HMM meth-
ods (as implemented in SAM and LOBSTER), a pairwise
sequence alignment by matching predicted local structures
(SEA), and two profile–profile alignment methods
(CLUSTALW and COMPASS). Finally, to illustrate the
utility of our method, we describe two examples of com-
parative protein structure modeling that benefit from pro-
file–profile alignment.

SALIGN protocols

The SALIGN protocols that on average aligned most posi-
tions correctly were DPHH, CCHH, and CCHS (c.f. Table 1)
with the average CE overlaps of 56.4%, 56.3%, and 55.5%,
respectively (Table 2). These three protocols are marginally
superior to the other 10 SALIGN protocols, but the differ-
ences are significant only for CCHH and DPHH (Fig. 2A).
When the shift score is used to assess the alignment accu-
racy, we cannot differentiate in accuracy between CCHS,
CCHH, CCPBP, DPHS, and DPPBP at the confidence level of
95% (Fig. 2B). For assessment of SALIGN relative to other
alignment methods, we have chosen the protocols CCHH

and CCHS based on their marginal superiority over the other

protocols according to both accuracy measures as well as
previous studies that reported good performance of the cor-
relation coefficient (Pietrokovski 1996; Rychlewski et al.
2000; Edgar and Sjolander 2003a; Panchenko 2003;
Sadreyev and Grishin 2003).

We also assessed the average best accuracy obtained by
any of the 13 protocols for each one of the 200 alignments
in the test set (Table 2). The average best CE overlap is 6%
higher than that of CCHH and CCHS, and the average
best shift score is 0.06 points better than that of CCHH and
CCHS.

The accuracy of a profile–profile alignment method must
depend on the accuracy of the input multiple sequence
alignments. In general, a multiple sequence alignment pre-
pared by PSI-BLAST depends significantly on the number
of iterations and the e-value cutoff for inclusion of a se-
quence in the alignment. As described in Materials and
Methods, our protocol for constructing a multiple sequence
alignment already selects automatically the iteration that
results into the highest statistical significance of the
alignment between the profile and the other sequence.
This protocol is based on the empirical observation that
accuracy of the alignments correlates with their statistical
significance, albeit weakly in the low-similarity range
(Altschul et al. 1997; Brenner et al. 1998; Sauder et al.
2000). In addition, we tested the impact of the e-value cutoff
used for the construction of PSI-BLAST multiple sequence
alignments on the accuracy of the resulting SALIGN align-
ments. There is no dependence of the SALIGN alignment
accuracy on this e-value cutoff, in the range from 10−20 to
10−4 (e.g., the average structure overlap varies from 35% to
36%).

Assessment of SALIGN relative to other
alignment programs

For SAM, LOBSTER, ALIGN, CLUSTALW, and
SALIGN, the alignment covers 100% of the residues in the
input sequences. The average coverage by the SEA server is
97.2%; only five alignments (2.5% of all alignments in the
test set) have less than 90% coverage. Therefore, the cov-
erage of SEA is comparable to that of SAM, LOBSTER,
ALIGN, CLUSTALW, and SALIGN. However, the cover-
age of BLAST, PSI-BLAST, and COMPASS alignments is
smaller than any of the other methods (Fig. 3). For BLAST,
only 24 alignments (12% of the testing set) cover over 75%
of both chains, 70 for PSI-BLAST (35%), and 108 for
COMPASS (54%). BLAST could not find any significant
hits for four alignments, whereas PSI-BLAST could not
find a hit for two of the 200 test alignments.

The SALIGN method (protocols CCHH and CCHS) has
higher accuracy according to the CE overlap and shift
score measures than BLAST, ALIGN, PSI-BLAST,
CLUSTALW, COMPASS, SEA, SAM, and LOBSTER
(Table 3, Fig. 4). BLAST has the lowest accuracy by CE

Table 2. Accuracy of the SALIGN protocols

SALIGN protocol CE overlap [%] Shift score

CCPBP 55 ± 23 0.61 ± 0.24
CCHH 56 ± 23 0.61 ± 0.24
CCHS 56 ± 24 0.62 ± 0.23
CCMAT 51 ± 25 0.55 ± 0.27
EDPBP 54 ± 24 0.60 ± 0.25
EDHH 54 ± 24 0.59 ± 0.26
EDHS 55 ± 24 0.59 ± 0.26
DPPBP 55 ± 23 0.61 ± 0.24
DPHH 56 ± 23 0.60 ± 0.25
DPHS 55 ± 24 0.61 ± 0.24
JSHH 53 ± 24 0.60 ± 0.24
JSHS 54 ± 24 0.60 ± 0.24
AveMAT 49 ± 26 0.52 ± 0.29
TOP 62 ± 20 0.67 ± 0.20

The average accuracies and standard deviations of the protocols are ob-
tained from the runs on the testing set of 200 alignments. The last row
(TOP) corresponds to the average of the scores for the best of the 13
alignments, chosen independently for each of the 200 test pairs.
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overlap (26.1%). SEA, SAM, and LOBSTER align cor-
rectly about 50% of the residues (49.2%, 48.4%, and 49.9%
CE overlap, respectively); COMPASS aligns 43.2%,

whereas SALIGN (CCHH) correctly aligns about 56.4% of
the residues (Table 3). There are no statistically significant
differences in the average accuracy between LOBSTER,

Figure 2. Statistical significance of the differences in the accuracies of the tested SALIGN protocols. (Upper diagonal) Gray and white
squares indicate pairs of methods whose performance is and is not significantly different at a confidence level of 95%, respectively.
(Lower diagonal) The intensity of gray indicates the degree of the average difference between the corresponding methods. (A) The
accuracy of a method measured by the average CE overlap. (B) The accuracy of a method measured by the average shift score.
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SAM, and SEA, nor between ALIGN, PSI-BLAST, and
CLUSTALW (Fig. 4A). Individual SALIGN protocols dif-
fer from LOBSTER, SEA, SAM, COMPASS, PSI-BLAST,
CLUSTALW, ALIGN, and BLAST by 5.5%–31.0% in CE
overlap (Fig. 4A). On average, SALIGN (CCHH protocol)
outperforms LOBSTER, SEA, SAM, COMPASS, PSI-
BLAST, CLUSTALW, ALIGN, and BLAST by 6.3%,
7.0%, 7.8%, 13.1%, 13.9%, 13.7%, 14.8%, and 31.0%
in CE overlap, respectively. LOBSTER, SEA, and SAM
are statistically better than COMPASS, PSI-BLAST,
CLUSTALW, ALIGN, and BLAST by 5.1%–24.3%. How-
ever, LOBSTER, SEA, and SAM are statistically worse
than the SALIGN protocols, correctly aligning on the aver-
age 5.5%–7.8% less residues (Fig. 4A). Although these dif-
ferences may not seem large, the statistical analysis dem-
onstrates that SALIGN is significantly more accurate than
all other benchmarked methods at the 95% confidence level
(Fig. 4).

The alignments produced by the SALIGN protocols
CCHH and CCHS have an average C� RMSD of 7.8 Å (Table

3). SEA and SAM have a marginally higher average RMSD
(8.4 and 9.2 Å, respectively). The average C� RMSD upon
superimposition by PSI-BLAST, BLAST, and COMPASS
alignments of 6.5, 5.6, and 4.8 Å, respectively, is lower than
that of SALIGN. However, this difference is a consequence
of a much smaller number of aligned residues (Fig. 3). A
different trend is observed for “structure overlap” (Table 3).
The two SALIGN protocols have higher average structure
overlap than any of the other compared methods (36.7% and
36.5%, respectively). The SEA method has a lower average
structure overlap of 33.4%. In summary, although the av-
erage C� RMSD of SALIGN, PSI-BLAST, SEA, and SAM
are comparable, SALIGN has much higher coverage. There-
fore, it is more useful for comparative protein structure
modeling because it allows modeling of a larger fraction of
a target sequence without sacrificing the RMSD accuracy of
a model relative to the other tested alignment methods.

For the sequence-sequence alignment methods (ALIGN
and BLAST), the alignment success rate (i.e., the fraction of
the test alignments with at least 30% structure overlap) av-

Figure 3. The extent of the protein sequence that is aligned by the assessed alignment methods. (A) BLAST, (B) PSI-BLAST, (C)
SEA, and (D) COMPASS. In contrast, ALIGN, SAM, CLUSTALW, and our profile–profile alignment protocols generally align the
whole of the input protein sequences, either because they rely on global dynamic programming or because the aligned sequences are
of similar lengths.
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eraged over all superposition cutoffs is ∼30%; for sequence-
profile methods (PSI-BLAST, SAM, and LOBSTER), it is
∼40%; for the sequence-structure method (SEA), it is ∼45%;
for the COMPASS profile–profile method, it is 49%; for
SALIGN, it is ∼53% (Table 4). CLUSTALW, a profile–
profile method that aligns two consensus sequences based
on multiple sequence alignment, has the alignment success
rate of ∼36%. For the 5 Å cutoff alone, the SALIGN CCHH

and CCHS protocols also have a higher alignment success
rate than any other tested method, aligning more than 80%
of the test alignments with at least 30% structure overlap
(Table 4). This performance is 13% higher than that of
SEA and ∼20% higher than that of SAM, LOBSTER,
COMPASS, and PSI-BLAST. Only COMPASS’s success
rate for the higher-resolution cutoffs (i.e., 1, 2, and 3 Å) was
similar to that of SALIGN, indicating that the local align-
ments by COMPASS are more accurate than those by
PSI-BLAST and BLAST. The two SALIGN protocols have
a higher alignment success rate than any of the other tested
methods over the whole range of structural overlap cutoffs
(Fig. 5). Even pairs of sequences with as little as 4% se-
quence identity can sometimes be aligned reasonably well
by the CCHH and CCHS protocols.

The results presented above indicate that SALIGN on
average outperforms all other methods tested in this study.
We now ask to what extent this is true for the individual test
alignments. To answer the question, we tabulated the per-
centages of the 200 test alignments obtained by one method
that were of higher accuracy than those obtained by the
other methods (Table 5). The CCHH protocol has a lower
RMSD for 83.0%, 37.5%, 50.0%, 70.0%, 68.0%, 59.0%,
82.5%, and 28.5% of the alignments with respect to
ALIGN, BLAST, PSI-BLAST, SAM, LOBSTER, SEA,
CLUSTALW, and COMPASS, respectively (Table 5, top).

Similar results apply to CCHS. Approximately half of the
PSI-BLAST alignments have a lower RMSD than those of
SALIGN, but only 20% of the PSI-BLAST alignments have
higher structure overlap that those of SALIGN (Table 5,
bottom). Only ∼30% of the SAM and SEA alignments have
higher structure overlap than those of SALIGN (Table 5,
bottom).

Examples

To illustrate SALIGN, we aligned and modeled two target
sequences from the fourth Critical Assessment of Tech-
niques for Protein Structure Prediction (CASP) meeting
(Moult et al. 2001): an enolase enzyme from E. coli (target
T0111) and a hypothetical protein from H. influenzae (tar-
get T0092). T0111 shares 45% sequence identity to the
template structure with the PDB code of 5enl, and T0092 res
only 8% sequence identity with the most similar template
1d2c:A.

The model for the easy target T0111, based on the
SALIGN alignment and the default MODELLER model
building routine ‘model’ (Sali and Blundell 1993), is similar
in accuracy to the best model presented at the CASP4 meet-
ing (Fig. 6A). For this example, PSI-BLAST generated an
alignment that led to a slightly better model in terms of
RMSD, but with a smaller number of correctly modeled
residue positions (i.e., C� atoms within 3 Å of their correct
positions).

The model for the difficult target T0092, based on the
SALIGN alignment and the default MODELLER model
building routine ‘model’ (Sali and Blundell 1993), is better
than the best model presented at the CASP4 meeting, both
in terms of accuracy and the percentage of correctly mod-
eled residues (Fig. 6B). The PSI-BLAST alignment in-
cluded only the Rossman fold domain. SALIGN is a com-

Table 3. Comparison of the accuracies of the SALIGN protocols CCHH and CCHS with those of
BLAST, ALIGN, SAM, SEA, CLUSTALW, and PSI-BLAST

Method
CE overlap

[%] Shift score
RMSD

[A]
Structure

overlap [%]

CE 100 ± 0 1.00 ± 0.00 2.7 ± 0.6 59.8 ± 12.9
BLAST 26 ± 29 0.32 ± 0.33 5.6 ± 3.7 20.6 ± 23.7
PSI-BLAST 43 ± 31 0.48 ± 0.35 6.5 ± 3.9 30.3 ± 24.9
SAM 48 ± 26 0.50 ± 0.34 9.2 ± 4.7 28.9 ± 24.8
LOBSTER 50 ± 27 0.51 ± 0.32 9.1 ± 4.9 31.1 ± 25.2
SEA 49 ± 27 0.53 ± 0.29 8.4 ± 4.4 33.4 ± 24.3
ALIGN 42 ± 25 0.44 ± 0.28 10.6 ± 5.0 25.7 ± 24.1
CLUSTALW 43 ± 27 0.44 ± 0.31 10.2 ± 4.9 26.4 ± 24.3
COMPASS 43 ± 32 0.49 ± 0.35 4.8 ± 3.2 32.3 ± 24.7
CCHH 56 ± 23 0.61 ± 0.24 7.8 ± 4.2 36.7 ± 22.9
CCHS 56 ± 24 0.62 ± 0.24 7.8 ± 4.2 36.5 ± 23.2

See Materials and Methods for program versions. The average and standard deviation of the alignment-based and
structure-based accuracy criteria are shown for the benchmarking runs on the testing set of 200 alignments. For
comparison, the values are also shown for the reference alignments obtained by structure superposition with CE.
On average, BLAST, PSI-BLAST, and SEA cover 42%, 70%, and 97% of the aligned sequences, respectively,
while the other methods align entire sequences.
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Figure 4. Statistical significance of the differences in the accuracies of the tested alignment methods. (Upper diagonal) Gray and white
squares indicate pairs of methods whose performance is and is not significantly different at a confidence level of 95%, respectively.
(Lower diagonal) The intensity of gray indicates the magnitude of the average difference between the corresponding methods: white
indicates no difference in accuracy; black indicates maximum difference. (A) The accuracy of a method measured by the average CE
overlap. (B) The accuracy of a method measured by the average shift score.
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pletely automatic method without user intervention at any
stage, which is not always the case with predictions pre-
sented at CASP.

Discussion

Several methods that align protein sequences by comparing
their profiles have been described (Pietrokovski 1996; Ja-
roszewski et al. 2000; Yona and Levitt 2002; Edgar and
Sjolander 2003a; Panchenko 2003; Sadreyev and Grishin
2003). Relative to individual sequences, additional informa-
tion in the profiles has been employed to increase the ac-
curacies of both fold assignment and sequence alignment
(Ortiz et al. 1998; Park et al. 1998; Muller et al. 1999; Cuff
and Barton 2000; Jaroszewski et al. 2000; Bonneau et al.
2001).

We focused on the utility of sequence profiles to enhance
the coverage and accuracy of sequence alignment for com-
parative protein structure modeling (Sanchez and Sali 1997;
Marti-Renom et al. 2000; Pieper et al. 2002). We expected
that the conservation and variation of residue types at a
given position in a family alignment would allow us to score
more accurately whether or not two given positions should
be aligned than by comparing only two residue types (i.e.,
sequence-sequence alignment), or even a residue type and a
distribution of residue types (i.e., sequence-profile align-
ment). We combined several schemes to generate profiles
with several recipes to compare the profile positions with
each other, resulting in 13 different protocols. The corre-
sponding substitution scoring matrices were used in a global
dynamic programming procedure with an affine gap penalty
function to create optimal alignments. The protocols were
evaluated with the aid of a testing set of alignments and
subsequently compared to other existing and widely used
alignment programs. This comparison was performed with a
view of using the alignments for comparative protein struc-
ture modeling.

Comparative modeling is limited by the accuracy and
extent of the alignment between the modeled sequence and
the template structure(s) (Marti-Renom et al. 2000). Two
fundamentally distinct features that cannot trivially be com-
bined describe the quality of a model: (1) the fraction of the
protein sequence that is modeled (i.e., coverage) and (2) the
accuracy of the modeled region. Generally, the smaller the
fraction of the target modeled, the more accurate the model.
For example, the accuracy of a model can be increased at
the expense of coverage by retaining only the core of the
fold and eliminating loops and termini from the model.

A case in point are the local alignment methods, such as
BLAST (Altschul et al. 1990), PSI-BLAST (Altschul et al.
1997), and COMPASS (Sadreyev and Grishin 2003). These
algorithms generally do not align whole sequences, but only

Figure 5. Percentage of the 200 testing alignments as a function of the
minimal fraction of structurally equivalent positions at the 5 Å cutoff. The
vertical line indicates the threshold of alignments that have structural over-
lap of at least 30%.

Table 4. The alignment success rate of the different methods

Method

Alignment success rate

1Å 2Å 3Å 4Å 5Å Average

CE 20.5 82.5 100.0 100.0 100.0 100.0
BLAST 8.0 21.5 30.0 35.0 37.5 28.5
PSI-BLAST 8.0 31.0 45.5 55.0 60.0 43.0
SAM 7.5 28.5 42.0 52.0 63.0 39.5
LOBSTER 8.5 30.5 46.0 58.5 64.5 44.0
SEA 10.5 35.0 47.5 60.5 70.0 45.5
ALIGN 8.5 23.0 35.0 45.5 55.5 32.5
CLUSTALW 7.5 27.5 38.5 45.0 55.0 36.5
COMPASS 10.5 35.0 52.0 58.5 61.0 49.0
CCHH 10.0 35.5 58.0 71.5 84.0 53.5
CCHS 10.0 36.0 54.0 71.0 83.0 53.0

An alignment is “successful” when the structure overlap is at least 30%. The success rates are listed for the 1,
2, 3, 4, and 5 Å cutoffs used in the calculation of the structure overlap, as well as their average.
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regions that are quite similar to each other. In contrast,
global dynamic programming implemented in SALIGN en-
sures an optimal alignment that is forced to cover whole
sequences. In the testing set of 200 pairwise alignments,
PSI-BLAST covered less than 75% of the chain residues for
70 alignments and had 60 alignments under 50% coverage
(Fig. 3). In contrast, CLUSTALW (Thompson et al. 1994),
ALIGN (Sali and Blundell 1993), SAM (Hughey and Krogh
1996), LOBSTER (Edgar and Sjolander 2003a), and
SALIGN always covered 100% of the sequences, whereas
SEA (Ye et al. 2003) and COMPASS covered on the aver-
age 97% and 64% of the sequences, respectively. Despite
larger coverage, SALIGN still outperformed COMPASS,
PSI-BLAST, and BLAST in the accuracy of what was
covered. The Student’s t-test statistics show that the differ-
ences observed between SALIGN and the other tested
alignment methods are significant at the confidence level
of 95%.

We assessed the 13 different protocols of SALIGN. The
two marginally best protocols used the correlation
coefficient to compare two profile positions described
by (1) the Henikoff-Henikoff scheme (Henikoff and
Henikoff 1992, 1994) and (2) its variation that weighs
sequences proportionally to their similarity with the
target sequence. Most of the differences between the 13
SALIGN protocols were not significant at the 95%
confidence level (Fig. 2). However, there were signi-

ficant differences between the two protocols of SALIGN
that have the best average accuracy and the protocol that
always picks the best of the 13 alignments. This fact en-
courages further development of the profile–profile align-
ment method.

In summary, the alignment success rate (i.e., the fraction
of alignments with more than 30% structure overlap with-
in 5 Å) of the SALIGN method is ∼13% higher than that
for SEA, ∼20% higher than that for COMPASS, SAM,
LOBSTER, and PSI-BLAST, and 25%–45% higher than
those of CLUSTALW, ALIGN, and BLAST (Table 4).
Moreover, the best SALIGN protocols increased the struc-
ture overlap (5 Å cutoff) by 6%–28% relative to the other
benchmarked methods without sacrificing the coverage of
the aligned sequences. The fraction of the correctly aligned
residues relative to the structure-based alignment by our top
protocol is 56%, which can be compared with the accuracies
of 26%, 42%, 43%, 43%, 43%, 48%, 49%, and 50% for
BLAST, ALIGN, CLUSTALW, PSI-BLAST, COMPASS,
SAM, SEA, and LOBSTER, respectively.

The present results quantify the significant improvement
in the accuracy of sequence alignment that is achieved by
the use of multiple sequences, in agreement with previous
studies (Pietrokovski 1996; Rychlewski et al. 2000; Edgar
and Sjolander 2003a; Panchenko 2003; Sadreyev and
Grishin 2003). Here, we emphasize an implementation in
our publicly available program MODELLER (http://

Table 5. Comparison of the tested methods by the individual pairwise alignments

ALIGN BLAST PSI-BLAST SAM LOBSTER SEA CLUSTALW COMPASS CCHH CCHS

ALIGN 17.5 15.5 34.5 32.5 22.5 44.0 8.0 16.0 14.5
BLAST 80.5 55.5 68.0 66.0 60.5 76.5 38.5 60.0 59.5
PSI-BLAST 83.5 41.0 62.0 63.5 56.5 77.5 27.0 48.0 51.0
SAM 65.5 30.0 37.0 48.0 41.5 64.5 20.0 29.5 27.5
LOBSTER 67.0 32.0 35.5 52.0 43.5 69.0 18.5 29.5 29.5
SEA 76.5 36.5 41.5 57.5 55.5 75.0 27.0 39.0 39.5
CLUSTALW 55.5 21.5 21.5 35.0 29.5 24.0 8.5 16.0 16.0
COMPASS 92.0 59.0 71.0 80.0 81.5 72.0 91.5 71.0 72.0
CCHH 83.0 37.5 50.0 70.0 68.0 59.0 82.5 28.5 53.0
CCHS 85.0 38.0 46.5 72.0 69.0 59.0 82.5 27.5 43.5

ALIGN BLAST PSI-BLAST SAM LOBSTER SEA CLUSTALW COMPASS CCHH CCHS

ALIGN 73.0 33.5 39.0 37.0 24.5 50.5 35.0 16.5 14.0
BLAST 23.0 14.5 23.5 15.5 11.5 26.5 14.5 5.0 6.0
PSI-BLAST 65.0 82.0 49.5 42.0 35.0 61.5 36.5 20.5 21.5
SAM 60.5 74.5 47.5 44.0 36.5 61.0 40.0 25.5 27.5
LOBSTER 62.5 82.0 54.0 55.5 41.0 69.0 46.0 22.0 23.0
SEA 75.0 85.0 62.5 62.5 56.5 75.0 52.0 34.0 34.0
CLUSTALW 48.5 71.5 37.5 37.5 28.0 23.5 29.5 15.5 14.5
COMPASS 64.5 83.0 59.5 59.5 53.0 85.0 69.5 26.0 29.0
CCHH 83.0 91.5 77.5 73.5 74.5 63.5 85.0 72.5 50.0
CCHS 85.0 91.0 76.5 70.5 73.5 63.0 84.0 70.5 43.5

Each cell lists the percentage of alignments for which the method listed in the row header is more accurate than the method listed in the column header.
The accuracy is measured by the RMSD between the compared structures given the alignment (top table) and the percentage of structurally equivalent
positions (bottom table). Diagonally related percentages may not sum to 100% due to identical alignments from the two compared methods.
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salilab.org/modeller) as well as an increase in the coverage
and accuracy of the method, not its novelty. The tests de-
scribed in the Results section indicate that the SALIGN
protocol aligns pairs of sequences with significantly higher
coverage and accuracy than the other benchmarked methods
used with recommended settings. However, the gap penal-
ties for SALIGN were optimized for a training set of align-
ments of similar difficulty as the testing set of alignments.
In contrast, although we did use the recommended settings
for the other benchmarked programs, these settings may not
be optimal for this particular benchmark. It is difficult to
estimate how much better the other benchmarked methods
would perform if their options and parameters were opti-
mized based on the current training set of alignments.

Other existing methods for profile–profile alignment
were not compared in this analysis, for several reasons. The

LAMA program was developed to detect sequence relation-
ships between local conserved blocks (Pietrokovski 1996)
and not to align two sequences using global dynamic pro-
gramming that allows for gap insertions. The FFAS pro-
gram (Rychlewski et al. 2000) was developed for fold as-
signment and not optimized for sequence alignment. More-
over, the SEA program, which we did test here, was shown
by the authors to be superior in alignment accuracy to the
FFAS program (Ye et al. 2003). Finally, we could not find
programs by Yona and Levitt (2002) and Panchenko (2003).
In addition, the COMPASS program, which we did bench-
mark, compares favorably against the program developed
by Yona and Levitt (Sadreyev and Grishin 2003).

None of the methods benchmarked in this paper, includ-
ing SALIGN, rely on structural information to align two
multiple sequence alignments. However, there are methods

Figure 6. Comparative protein structure modeling with SALIGN and PSI-BLAST alignments. The comparative protein structure
models were built by satisfaction of spatial restraints, as implemented in MODELLER-7 (Sali and Blundell 1993). The default model
building routine ‘model’ was used. (A) CASP4 target T0011. The RMSD errors (percentage of structurally equivalent C� positions
within the 3 Å cutoff) for the SALIGN, PSI-BLAST, and the best CASP4 model (not shown; http://predictioncenter.llnl.gov) are 1.8
Å (96.1%), 1.0 Å (95.8%), and 1.8 Å (96.7%), respectively. (B) CASP4 target T0092. The RMSD errors (percentage of structurally
equivalent C� positions within the 3 Å cutoff) for the SALIGN, PSI-BLAST, and the best CASP4 model (not shown; http://
predictioncenter.llnl.gov) are 5.9 Å (67.8%), 4.0 Å (31.7%), and 6.0 Å (65.2%), respectively.
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that do use structure information, including threading and
consensus methods, and they can produce accurate se-
quence-structure alignments (e.g., Kelley et al. 2000; Shi et
al. 2001; Fischer 2003; John et al. 2003). We did not bench-
mark SALIGN against any structure-dependent methods,
for three reasons. First, there already is a published bench-
mark on the EVA Web site (http://cubic.bioc.columbia.edu/
eva; Eyrich et al. 2001; Koh et al. 2003) that compares
several sequence-structure, SAM, and PSI-BLAST meth-
ods. Therefore, the EVA Web site provides an indirect es-
timate of SALIGN relative to the sequence-structure meth-
ods. For example, the FUGUE program (Shi et al. 2001)
aligns correctly ∼6% more C� atoms within 3.5 Å than
the PSI-BLAST program, and is approximately comparable
to SAM (http://cubic.bioc.columbia.edu/eva/fr/Pairwise_
bestof5.html, December 15, 2003). Similar results are re-
ported by EVA for the 3D-PSSM server (Kelley et al.
2000). Second, many of the threading programs are imple-
mented as Web servers or are not generally available from
the authors. Their exact input and output are difficult to
control, and consequently informative comparisons are dif-
ficult. And finally, although we were motivated by com-
parative modeling, even application of profile–profile align-
ment to pairs of sequences, none of which has a known
structure, is an important problem.

SALIGN is a starting point for incorporating additional
information into the alignment process, to further increase
the accuracy of the resulting alignments. For example, in-
formation derived from the 3D structure of one of the
aligned sequences, such as the environment-dependent sub-
stitution matrices (Overington et al. 1992) and variable
structure-dependent gap penalties (Zhu et al. 1992; Koretke
et al. 1996; Yang 2002), is likely to further improve the
utility of sequence-structure alignment in comparative mod-
eling applications.

Currently, SALIGN is used as a module in ModPipe, our
software pipeline for large-scale modeling of all available
protein sequences (Bairoch and Apweiler 2000) that are
detectably related to at least one known protein structure
(Eswar et al. 2003). An extrapolation of the present results
indicates that SALIGN applied to large-scale modeling will
result in an additional ∼100,000 sequences that have more
than 30% of residues aligned correctly to the closest struc-
ture, in comparison to the current models that were calcu-
lated based on the PSI-BLAST alignments.
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