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Introduction

Helical integral membrane proteins have essential roles

in the cell, and account for almost one-fourth of all

proteins in most organisms [1]. However, our under-

standing of their biosynthesis and folding lags far

behind our understanding of water-soluble proteins.

The targeting and insertion of most integral membrane

proteins in eukaryotic cells occur cotranslationally,

whereby protein synthesis and integration into the

endoplasmic reticulum (ER) membrane are coupled. In

this case, the targeting of the ribosome–mRNA–nas-

cent chain complex to the membrane depends on the

signal recognition particle (SRP) and its interaction

with the membrane-bound SRP receptor [2], which is

located in close proximity to the translocon. The tran-

slocon, a multiprotein complex, facilitates the insertion

of integral membrane proteins into the lipid bilayer [3]

and the translocation of soluble proteins into the ER

lumen [4]. During insertion, nascent membrane pro-

teins have to adopt the correct orientation in the lipid

bilayer, undergo covalent modifications (e.g. signal

sequence cleavage and N-linked glycosylation), fold

properly, and interact with ER-resident proteins (e.g.
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Most integral membrane proteins are targeted, inserted and assembled in

the endoplasmic reticulum membrane. The sequential and potentially over-

lapping events necessary for membrane protein integration take place at

sites termed translocons, which comprise a specific set of membrane pro-

teins acting in concert with ribosomes and, probably, molecular chaperones

to ensure the success of the whole process. In this minireview, we summa-

rize our current understanding of helical membrane protein integration at

the endoplasmic reticulum, and highlight specific characteristics that affect

the biogenesis of multispanning membrane proteins.
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chaperones), to eventually adopt their native state. All

of these sequential (and potentially) overlapping events

take place in a very peculiar environment, the mem-

brane, where the physics significantly differ from those

in the aqueous environment. Therefore, characteriza-

tion of how membrane proteins integrate into the ER

membrane requires detailed knowledge of the con-

straints imposed by the hydrophobic lipid bilayer, as

well as its response to accommodate the transmem-

brane (TM) segments of integral proteins. In this

review, we focus on recent advances in our under-

standing of the targeting, insertion and folding of

mammalian integral membrane proteins.

Targeting to the ER – cotranslational
versus post-translational insertion

Protein targeting to the ER membrane can occur

cotranslationally or post-translationally, depending on

the hydrophobicity and location of the signal sequence

(SS), which consist of a short span of hydrophobic

residues flanked by a positively charged N-terminal

region and a polar but uncharged C-terminal region

[5,6]. In the cotranslational process, targeting of

secretory and membrane proteins is mediated by the

conserved SRP. The eukaryotic SRP, of which the

mammalian particle is the best characterized, is

composed of a 300-nucleotide 7S RNA and six protein

subunits with molecular masses of 9, 14, 19, 54, 68

and 72 kDa [2,7]. Among SRP proteins, only SRP54 is

highly conserved in all kingdoms of life, being essential

for SRP function [7]. SRP54 is composed of two

domains, the M-domain and the NG-domain. The M-

domain (methionine-rich domain) associates with SRP

RNA and provides the SS-binding site, and the NG-

domain is responsible for GTP binding (G-domain)

and the interaction with the ribosome (N-domain).

The SRP complex binds to a hydrophobic domain

(either an N-terminal SS or a TM segment) in the

nascent polypeptide as it emerges from the ribosome

[8]. SRP transiently arrests protein synthesis [9] and

docks the ribosome–nascent chain (RNC)–SRP

complex to the ER membrane via the SRP receptor

(SR) [10]. SR is a heterodimer formed by the GTPases

SRa and SRb. SRa is structurally and functionally

related to SRP54, also containing an NG-domain [11].

Interaction between the SRP and the SR requires GTP

binding to both complexes. Subsequently, the RNC is

transferred from the SRP to the Sec61 translocon, and

GTP hydrolysis triggers SRP–SR dissociation [12].

Structural studies of the RNC–SRP–SR complex

reveal that SR interacts with both the ribosome and

SRP, leading to conformational changes in SRP that

favor RNC transfer to the translocon [13]. Recent

studies with prokaryotic homologs have shown an

active role of the SRP RNA in coordinating SRP–SR

interactions and GTP hydrolysis [14,15]. SRP disas-

sembly leads to the resumption of translation, and

membrane proteins are laterally released by the Sec

translocon into the membrane bilayer, while secretory

proteins are threaded through the Sec61 machinery.

Despite the increasing mechanistic and structural

insights into cotranslational targeting, we have limited

knowledge on how SRP regulates its binding to a

diverse set of signal sequences, and on the conforma-

tional changes induced by SR binding that result in

transfer of the nascent chain to the translocon [16].

In the post-translational route, proteins are targeted

and inserted (or translocated) after translation by

cytosolic ribosomes. In yeast, where this pathway is

especially prominent, a dedicated complex, termed the

Sec62–Sec63 complex (also present in mammalian

cells), cooperates with the Sec61 translocon in post-

translational translocation of soluble (secretory)

proteins [17]. In this pathway, cytosolic Hsp40 ⁄Hsp70-

type chaperones maintain polypeptides in a transloca-

tion-competent state [18], and several luminal

chaperones are required to pull the precursor across

the membrane [19]. Another subset of proteins is

targeted post-translationally to the ER membrane by

the TRC40–GET pathway. This subset of proteins

comprises membrane proteins with a C-terminal TM

segment, also known as tail-anchored (TA) proteins

[20]. Although remarkable progress has been made in

the identification of targeting factors, the molecular

basis underlying TA membrane protein integration

remains to be fully clarified. The two post-translational

targeting mechanisms appear to be more complex than

cotranslational biogenesis of membrane proteins.

Hence, up to three distinct targeting pathways have

been described so far: the SRP-mediated pathway, the

ATP-dependent Hsp40 ⁄Hsc70-mediated pathway, and

the TRC40–GET pathway, which is also dependent on

ATP hydrolysis [21].

Translocon structure

The translocon complex is responsible for the insertion

of most integral membrane proteins into the lipid

bilayer, as well as for the translocation of secretory

proteins across the ER membrane [4]. The gating capa-

bility of this complex in two directions (i.e. across the

membrane and laterally into the lipid bilayer) differenti-

ates it from the rest of the cellular channels. In mamma-

lian cells, this proteinaceous complex is composed of

the Sec61 a-subunit, b-subunit and c-subunit plus the
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translocating chain-associating membrane protein

(TRAM) [22]. As translocon activity can be reproduced

by ab initio reconstitution of these four membrane pro-

teins in pure lipids [23], these proteins constitute the

core components of the mammalian translocon [3].

Sec61 complex

The eukaryotic Sec61 complex is a heterotrimeric

membrane protein complex (Sec61a, Sec61b and

Sec61c), called SecYEG in bacteria and archaeons. On

the one hand, the a-subunit and c-subunit are highly

conserved in all kingdoms, and are required for

survival in both Escherichia coli and Saccharomyces ce-

revisiae. The b-subunit, on the other hand, is not

required, and does not have significant sequence

homology between eukaryotes and eubacteria. The

high-resolution structure of mammalian Sec61 is not

yet available. However, we have the homologous struc-

tures from Methanococcus jannaschii [24], Ther-

mus thermophilus [25], Thermotoga maritima [26] and

Pyrococcus furiosus [27], the last two lacking the non-

essential b-subunit. The fitting of the crystal structure

of SecYEb from M. jannaschii into the cryo-electron

microscopy (cryo-EM) density map of an active

mammalian Sec61 [28], and of the cryo-EM structure

of SecYEG from E. coli with the mammalian Sec61 in

a resting state [29], indicate a high degree of structural

similarity between all Sec complexes.

The a-subunit

Sec61a constitutes the protein-conducting channel of

the translocon complex, crossing the membrane 10

times, with both its N-terminus and C-terminus facing

the cytosol. Viewed from the top, the protein adopts a

square shape that can be divided into two pseudosym-

metric halves, the N-terminal half containing TM seg-

ments 1–5 and the C-terminal half comprising TM

segments 6–10 (red and blue TM segments in Fig. 1,

respectively). These two parts form an indentation in

the centre through which the nascent chain passes, and

is aligned with the ribosomal exit tunnel [28]. From a

lateral view, Sec61a has a rectangular contour and the

channel within an hourglass shape [30]. When it is in

an inactive state, the cytoplasmic entry to the channel

has a diameter of � 20–25 Å [24]. Close to the middle

of the membrane, the translocation pore reaches its

narrowest point (5–8 Å), composed of a ring of bulky

hydrophobic residues followed by a short helix (TM

segment 2a) that blocks the channel pore (Fig. 1).

After this ‘plug’, the channel widens again towards the

ER lumen. Nevertheless, it has been reported that

there is a significant increase in the pore diameter [31],

which is probably needed to accommodate the multiple

TM segments of multispanning nascent chains that

may leave the translocon in pairs or groups (see

below).

The b-subunit

The b-subunit is the smallest component of the Sec61

complex. It contains a single TM domain located next

to TM segments 1 and 4 of Sec61a (Fig. 1A). Although

this subunit is not essential either for translocation

across the ER membrane or for insertion of TM

segments into the lipid bilayer, it has been reported to

kinetically facilitate cotranslational translocation [32],

A B

Fig. 1. Translocon structure. Top view of the translocon structure. (A) Closed structure of the translocon from M. jannaschii (Protein Data

Bank ID code: 1RHZ) [20]. (B) Partially open structure of the translocon from P. furiosus (Protein Data Bank ID code: 3MP7) [23]. In both

panels, all TM segments of Sec61a are colored (red and blue for each half; see text) except for the b-subunits and c-subunits, which are

shown in gray. All TM segments are numbered for easy comparison between the open and closed structures. The dotted arrows in (B) indi-

cate the helix displacements required for the widening of the channel and opening of the lateral gate. A solid arrow shows the lateral gate

exit pathway of a TM segment from the interior of the channel into the membrane.
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and to interact with the SR heterodimer, probably

facilitating recognition of unoccupied translocons by

the RNC–SRP–SR complex [33]. The participation of

Sec61b in the translocation process is also supported

by its direct interaction with the nascent chain and the

ribosome [34].

The c-subunit

Sec61c has two helices connected by an extended loop

(Fig. 1). The first helical region, an amphipathic helix,

sits parallel to the cytosolic side of the membrane and

contacts the cytoplasmic side of the Sec61a C-terminal

half. The second helix crosses the membrane diago-

nally, interacting with both N-terminal and C-terminal

parts of Sec61a, and acts as a clamp that brings both

halves of Sec61a together [24].

Translocation and insertion of a nascent chain

During cotranslational insertion ⁄ translocation, the nas-

cent polypeptide is extruded into the translocon from

the ribosome exit tunnel. The precise stoichiometry

and structure of the actively engaged translocon–ribo-

some complex has been a subject of great controversy

over the years. Initial cryo-EM studies indicated that

three or four copies of the Sec61 complex could inter-

act with the ribosome at the same time [35]. However,

biochemical studies and the structures that have

recently become available strongly suggest that only

one copy of the Sec61–SecY complex is required for

translocation [24,27–29,36,37]. Biochemical analysis of

Sec61 point mutants [38], and the cryo-EM reconstruc-

tions of the ribosome–translocon pair, indicate that the

loops between TM segments 6 ⁄ 7 and 8 ⁄ 9 of the tran-

slocon are involved in this association [28,39]. In fact,

point mutations within those loops of E. coli SecY are

known to affect the ribosome–SecY interaction [39].

However, similar changes in loop L6 of the yeast

translocon did not affect binding to the ribosome [28].

All of this indicates that, despite small differences,

the ribosome–Sec junction is well conserved among

species.

Although many details remain unknown, significant

insights into the mechanism of membrane insertion

have come from structural studies. The process starts

with the engagement between the translocon complex

and its cytosolic partner (i.e. the ribosome in the

cotranslational pathway). Either this contact or the

presence of the SS triggers the widening of the cyto-

solic side of the channel [25], including the hydropho-

bic ring, which increases from � 5 to � 14 Å [27]. In

this pre-open state, displacement of TM segments 6, 8

and 9 from their position in the closed configuration

would create a lateral ‘crack’ between the two halves

of Sec61a (i.e. at the interface between TM seg-

ments 2b and 7 ⁄ 8), which would occur only in the

cytosolic side of the channel. However, segment 2a

retains its location, keeping intact the permeability

barrier. Once the SS enters into the channel as a loop,

its first amino acids interact with the cytosolic residues

of TM segment 8. At the same time, the hydrophobic

core of the SS contacts TM segments 7 and 2b on both

sides of the channel and the phospholipids through the

already open lateral crack [40]. As the elongation of

the nascent chain continues, two rearrangements occur

in Sec61a. First, the plug is displaced to leave room

for the nascent polypeptide, which can now completely

expand the channel. Second, the pairs formed by TM

segments 2 ⁄ 3 on one side and 7 ⁄8 on the other half

move apart from each other (Fig. 1B), creating a lat-

eral gate across the entire channel, which exposes the

nascent polypeptide to the core of the membrane

[27,41]. The sequence within the translocon can then

partition into the lipids if it is hydrophobic enough, as

the SS would do, or continue through the translocon

into the ER lumen. The structural changes in the

a-subunit are accompanied by a dramatic shift

(Fig. 1B) in the location of the N-terminal helix of

Sec61c ⁄SecE [27], which releases the clamp over

Sec61a. Nevertheless, the opening of the lateral gate is

not required to accommodate a translocating peptide

within the channel [28]. Therefore, it is possible that

the opening of the lateral gate is triggered by the pres-

ence of a TM segment inside the translocon, which

would adjust its dynamic structure according to the

nature of the polypeptide within the channel. During

this process, the permeability barrier is kept by the

coordinated in and out movement of the ‘plug’ and

the widening ⁄narrowing of the hydrophobic ring, while

the opening ⁄ closing of the lateral gate exposes hydro-

phobic segments to the lipid bilayer, allowing their

partition into the membrane.

TRAM

TRAM was identified by crosslinking methods in

reconstituted proteoliposomes [22]. Although it is rec-

ognized as an essential component for the transloca-

tion or insertion into the membrane of several secreted

and membrane proteins, its precise function remains

unknown. TRAM is an integral membrane protein

with eight TMs and both the N-terminus and C-termi-

nus facing the cytosol [42]. The role of TRAM in the

translocation of secretory proteins is restricted to the

insertion of the SS into the membrane [43], where

L. Martı́nez-Gil et al. Membrane protein integration
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TRAM has been found to be required for the insertion

of SSs with either short hydrophobic sequences or with

low overall hydrophobicity. Regarding the insertion of

TM segments, TRAM has also been reported to cross-

link with a wide variety of TM segments [44–48], some

of them containing charged residues [49–51]. These

observations, together with the fact that TRAM itself

contains an unusually high number of charged residues

within its TM segments, led to the idea that TRAM

could act as a chaperone for the integration of nonop-

timal TM segments by providing a more favorable

context [42].

Translocon-associated proteins

Some other membrane proteins [i.e. translocon-associ-

ated protein (TRAP), PAT-10, RAMP4 and BAP31]

have been reported to interact with the translocon and

modulate its function at some stage. However, their

presence is not required for either insertion or translo-

cation, and thus they are not considered to form part

of the translocon core complex.

TRAP is a tetrameric complex (a, b, c and d) of

integral membrane proteins [52]. It is associated with

ribosome–Sec61 complexes with a 1 : 1 stoichiometry

[29]. It has been proposed that TRAP facilitates the

initiation of protein translocation [53], although the

details of the mechanism remain unknown. PAT-10

was discovered as a translocon-associated protein dur-

ing a search for Sec61 partners during opsin nascent

chain insertion [50]. It is a membrane protein that

crosslinks with some of the opsin TM segments [54].

This interaction is independent of the presence of

N-glycosylation sites, the amino acid sequence, or the

topology of its first TM segment. Apparently, PAT-10

binding is triggered by the relative location of this TM

segment within the opsin nascent chain. RAMP4 was

also found to be tightly associated with the translocon

[23]. RAMP4 is a small (66-residue) TA membrane

protein implicated in promoting correct integra-

tion ⁄ folding of integral membrane proteins by facilitat-

ing subsequent glycosylation [55]. In a translating

ribosome–translocon complex, RAMP4 is recruited to

the Sec61 complex before the TM segment emerges

from the ribosome exit tunnel; hence, it has been pos-

tulated that it is the presence of a TM sequence within

the ribosome that triggers this recruitment [56].

Another protein that has been reported to interact

with the translocon complex is BAP31. This multispan-

ning integral membrane protein participates in the

identification of misfolded proteins at the ER and their

retrotranslocation to the cytoplasm. The finding that

BAP31 interacts with both Sec61b and TRAM [57]

suggests a role of the translocon in membrane protein

quality control. The increasing number of interacting

partners of the translocon also indicates that different

functions of the channel may be performed in associa-

tion with different cellular components. Indeed, the

Sec61 complex might be merely the common player in

a wide variety of transient complexes, each one per-

forming different but related functions.

TM domain requirements

Hydrophobicity

Individual TM helices follow an ordered insertion

pathway, in which they pass from the tunnel in the

large ribosomal subunit into the Sec61 translocon

channel, and then exit the channel laterally into the

surrounding lipids [30,58]. Generally, the hydrophobic-

ity of the TM sequence drives integration into the

membrane. However, the efficiency of insertion of TM

segments by the translocon depends on amino acid

composition, the positions of residues within the

segment, TM segment orientation, and helix length

[59–62], suggesting that membrane insertion is funda-

mentally a fine-tuned thermodynamic partitioning

process. Several TM segments from multispanning

membrane proteins contain charged amino acids that

are nevertheless tolerated in the membrane [63,64].

Computational modeling suggests that integration of

TM sequences with a central ionized residue might be

assisted by helix–helix interactions within the mem-

brane more than the stabilization of this ionized group

by the translocon [65]. In vivo and in vitro studies

suggest that the translocon may act as a facilitator in

the insertion ⁄ selection process [59,60,66], whereby

protein–lipid interactions ‘decide’ the successful inte-

gration of the TM segment into the membrane through

favorable acyl chain solvation [67], which is also

affected by lipid composition [68]. Indeed, recent work

in yeast has shown that mutations in the hydrophobic

constriction ring of Sec61p influence translocation effi-

ciency, modifying the hydrophobicity threshold for

membrane insertion [69]. Such a mechanism based on

lipid-mediated partitioning would accommodate the

diversity of sequences that pass through the translocon

on their way to the membrane. Nevertheless, it has

previously been suggested that the translocon complex

can act as a chaperone during the integration of non-

optimal TM segments. Indeed, a recent observation

that ATP depletion can halt TM segment release from

the translocon into the bilayer strongly supports this

chaperone function [70], which supplement the thermo-

dynamic partitioning process.

Membrane protein integration L. Martı́nez-Gil et al.
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Amino acid preferences

A recent annotation on the amino acid composition of

a-helical TM segments showed that there is consider-

able information in sequences that relates to the intri-

cate contacts between TM segments [71]. Indeed, there

is a biased amino acid preference, depending on

whether the residue is exposed to the lipid bilayer or to

a soluble environment (Fig. 2). Using all annotations

in the MPTopo database [72], we selected amino acids

from TM segments and compared their occurrence

with that of amino acids in non-TM segments. In total,

there were 206 proteins with known three-dimensional

structure and topology, which had 1244 TM segments.

The total number of amino acids in TM segments was

25 281, as compared with a total of 63 107 amino

acids in non-TM regions. As previously reported [73],

the hydrophobic residues Leu and Ala make up the

bulk of the amino acids in the TM segments, account-

ing for one-fourth (24.5%) of all amino acids that are

inserted through the translocon, but these two residues

are also common in the non-TM regions (16.2%). This

effect is even more evident for Gly, as its prevalence is

almost equal in TM and non-TM regions (Fig. 2).

Interestingly, charged residues, together with Pro, are

underrepresented in TM domains relative to non-TM

regions. This feature is probably meaningful in terms

of both hydrophobicity and helicity.

Helical conformation of TM segments

The formation of an a-helix is critical for membrane

insertion of a TM segment. Even the most hydrophobic

polypeptides could not insert into lipid bilayers without

concomitant secondary structure formation [74]. One

of the most intriguing challenges that membrane pro-

teins have to face is desolvation and partitioning of the

polar peptide bond from water into the membrane,

which is as unfavorable as that of a charged side chain

[75]. However, the formation of intramolecular hydro-

gen bonds (i.e. adoption of secondary structure) can

compensate for the loss of hydrogen bonds between the

polypeptide backbone and water molecules [76]. Where

does a predestined TM segment adopt its a-helical con-
formation? According to the two-stage model (see

below), TM segments fold during insertion into the

membrane and, in the case of multispanning membrane

proteins, before helix association [77]. However, some

TM a-helices have been shown to be already folded in

the ribosomal tunnel [78–81], even before reaching the

translocon or inserting into the lipid bilayer, suggesting

that the folding inside the ribosome may regulate the

fate of the nascent polypeptide.

Integration mechanism in multispanning

membrane proteins

During the biogenesis of multispanning membrane pro-

teins, several TM segments in a single polypeptide need

to be integrated by the Sec61a translocon. Unfortu-

nately, our knowledge of the molecular mechanism

underlying this process is still very limited. During

translation, and once the SS or a TM segment has

reached the translocon, this first hydrophobic segment

has to be relocated to accommodate the following TM

segment within the translocon pore. Whether, at this

point, multiple TM segments partition into the mem-

brane sequentially (that is, each TM segment exits

the translocon individually [49]), or several TM seg-

ments can accumulate inside or in the proximity of the
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Fig. 2. Amino acid preferences in TM segments as compared with loop regions (non-TM) in membrane protein structures. The top two rows

show the percentage of occurrence of all amino acid types in TM segments and non-TM segments in membrane proteins of known struc-

ture. The lower plot shows the log odds ratio of the occurrence. Briefly, a log odds ratio is the log10 ratio of the odds of an amino acid occur-

ring in TM segments versus the odds of it occurring in a non-TM segment. Positive log odds indicate overoccurrence of the amino acid type

in TM segments. Negative log odds indicate underrepresentation of the amino acid type in TM segments. Amino acids are colored according

to an arbitrary division of their log odds (i.e. green for log odds > 0.3; orange for 0.3 £ log odds ‡ )0.3; and red for log odds < )0.3).
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translocon and be released into the bilayer in pairs or

groups [44,50,82,83], is thought to be protein-depen-

dent. Recent structural data have shown that, in the

pre-open state, the hydrophobic ring is widened to

� 14 Å in the direction of the lateral exit site [27],

which is enough for the accommodation of more than

one helix, especially because these dimensions could be

further increased in a fully open state [31]. It is also

known that hydrophobic TM segments leave the tran-

slocon sequentially from the N-terminus to the C-termi-

nus [82], and less hydrophobic segments interact with

other TM segments at early stages of membrane inte-

gration [46,54,84,85]. More hydrophilic TM segments

are forced by downstream hydrophobic sequence to

adopt a TM disposition [86,87]. However, whether these

hydrophilic helices are spontaneously inserted or helped

by the Sec61 translocon to insert together with their

partner helices is still unknown. Nevertheless, it has

been suggested that interhelical interactions are

required to neutralize polar groups in TM sequences

[76,88]. Indeed, recent comparison of helix–helix inter-

actions in available membrane protein structures reveal

that they constitute one of the most distinctive charac-

teristics of multispanning membrane proteins with more

than four TM segments [89]. These helix–helix interac-

tions might be coordinated in vivo by the translocon or

its associated proteins. For example, TRAM (see

above) plays a role in assisting the integration of hydro-

phobic sequences containing charged residues [43,51].

Therefore, unraveling the functions of translocon-asso-

ciated proteins will provide new insights into the inte-

gration mechanism of noncanonical TM segments.

Topology

During integration, nascent membrane proteins have

to adopt the correct topology (that is, it has to define

the number of TM segments and their orientation with

respect to the plane of the lipid bilayer [90]), which is

probably influenced by the translocon. However,

whether a TM segment adopts an N-teminal cytosolic

or reverse orientation depends on several factors. First,

it has been observed that the folding state of an extra-

membrane domain preceding a TM segment precludes

its translocation, and consequently forces the TM

segment towards an N-terminal cytoplasmic orienta-

tion [91]. Second, the hydrophobicity of the TM

sequence influences membrane orientation. For exam-

ple, highly hydrophobic sequences promote N-terminal

translocation despite the fact that the presence of

moderately hydrophobic TM segments favors the

opposite orientation [92]. Third, and most important,

it has been long known that the distribution of

charged residues between the flanking regions of a TM

segment is a major determinant of topology in

membrane proteins [93,94]. The so-called ‘positive-

inside rule’ was first observed for prokaryotic proteins,

where bacteria maintain a net negative-inside electrical

potential across the membrane, and a cytoplasmic

bilayer leaflet enriched in negatively charged lipids also

promotes charge bias. A similar skewed distribution

was also identified later in eukaryotes [95], where the

balance between positive and negative charges drives

protein topology. Indeed, changing the flanking

charges by site-directed mutagenesis can reverse the

topology of a TM segment [96]. Moreover, it has been

recently demonstrated that certain residues of the tran-

slocon also contribute to the positive-inside orientation

of signal sequences [97,98]. Therefore, the amino acid

sequence appears to be the primary determinant of

final topology that is initially interpreted by the tran-

slocon. Nevertheless, it has also been reported that

membrane lipid composition also influences the final

topological orientation of membrane proteins [99]. In

summary, both the amino acid sequence of a mem-

brane protein and the collective determinants in the

bilayer membrane influence protein topology.

Multispanning membrane proteins generally adopt

their native orientation depending on the insertion of

the SS or the first TM segment, which determines

that the subsequent TM segments would insert sequen-

tially with opposite orientations. Nevertheless, drastic

changes in loop regions that favor inverted orientations

have only local effects [100]. Furthermore, it has

recently been shown that the topology of a full-length

protein can be changed by simply adding a positively

charged residue, irrespective of the region of the protein

where the mutation is placed, including the C-terminal

end of the protein [101]. Unfortunately, the molecular

mechanisms by which downstream determinants con-

tribute to the topology are as yet unknown [102]. There-

fore, experimental evidence is now challenging the

classic static view of the attainment of membrane pro-

tein topology. For example, some proteins may adopt

multiple topologies, depending on the cellular localiza-

tion or environment [103], whereas others, such as viral

membrane proteins, have a strong preference for a spe-

cific topology [104].

Hydrophobic matching

The effect of the so-called hydrophobic matching on

the assembly and orientation of TM segments has been

widely studied [105]. A ‘mismatch’ occurs when the

hydrophobic thickness of the membrane does not

match the length of the hydrophobic region of a TM
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segment [106]. Two types of hydrophobic mismatch

have been described: (a) positive, when the membrane

is not thick enough for a TM segment; and (b) nega-

tive, when the length of the hydrophobic section of a

TM segment is too short to span the hydrophobic core

of the lipid bilayer. In both scenarios, either the mem-

brane or the polypeptide will adapt to minimize the

exposure of hydrophobic residues to the aqueous

media (positive mismatch) or the extrusion of polar

amino acids within the hydrophobic core of the mem-

brane (negative mismatch) [107]. Both rearrangements

are known to be important for determining the final

assembly of a membrane protein, as shown by fluores-

cence [108–110] and chimeric overexpression of dimer-

izing TM segments in membrane-mimetic environments

[111,112]. The ability of the Sec61 translocon to handle

negative mismatch has recently been studied [62]. In

this work, it has been demonstrated that polyleucine

segments as short as � 10 residues integrate efficiently

into the ER membrane. Finally, hydrophobic matching

may reflect an evolutionary strategy to regulate the

activity of membrane proteins by allowing the adapta-

tion of TM segment lengths to bilayer thickness in dif-

ferent cellular membranes [113].

Folding and assembly of multispanning
membrane proteins

Forces behind the folding of membrane proteins

Next, we briefly introduce the molecular interactions

driving protein folding within membranes. For a recent

complete review, see [74,75]. Although hydrophobic

collapse is a major driving force in the folding of

soluble proteins, its role in membrane proteins is

mostly limited to the formation of secondary structures

across the lipid bilayer. Similarly, salt bridges and aro-

matic interactions do not make a great contribution to

membrane protein folding. Conversely, interhelical

hydrogen bonding [114,115] and, especially, van der

Waals forces have been identified as major promoters

of membrane protein folding [116,117]. Therefore, the

restrictions imposed by the lipid bilayer allow for effec-

tive folding of TM segments of integral membrane

proteins, despite the low contribution of hydrophobic

forces and the reduced effect of salt bridges and

aromatic interactions [118].

Folding and assembly of membrane proteins –

the two-stage model

The folding and assembly of helical membrane

proteins was schematized more than two decades ago

as a two-stage process [77]. First, each TM helix is

formed and independently inserted into the lipid

bilayer. Second, these helices interact with each other

to establish the final structure of the protein. Although

this simplified view has since been refined, it still con-

stitutes a valid conceptual approach.

In vivo, the insertion into the ER membrane occurs

cotranslationally via the translocon complex. In this

scenario, a TM segment does not insert into the mem-

brane spontaneously; instead, the translocon facilitates

its partition from the aqueous environment within the

translocon pore into the lipid bilayer. After insertion

or, for some proteins, during insertion, the TM helices

interact with each other to form higher-order struc-

tures. These interactions create a microenvironment

that permits further changes in the protein structure,

such as insertion into the membrane of re-entrant loops

or short polypeptides, membrane packing of non-a-heli-
cal segments, and binding of prosthetic groups [119].

Finally, the influence of the specific lipid environ-

ment during the assembly of TM segments should also

be taken into account. The lipid and protein compo-

nents of biological membranes have coevolved, allow-

ing membrane proteins to assemble and function in the

heterogenic environment provided by the diverse lipid

bilayers in a cell. As well as membrane thickness,

membrane lateral pressure [120], charge density [121]

and even unique lipid–protein interactions [122] have

been identified as structural determinants of membrane

proteins. Furthermore, very recent cryo-EM studies

using RNC complexes bound to SecY reconstituted in

nanodisks revealed an interaction of the ribosome with

lipids, leading to disorder in the lipid microenviron-

ment adjacent to the translocon, which may favor

membrane insertion of TM segments [123]. All in all,

the final structure of a multispanning membrane pro-

tein will not be defined solely by protein–protein and

lipid–protein interactions but also by the folding of its

soluble domains. Thus, the aqueous environment on

both sides of the membrane imposes restrictions on the

folding of the extramembrane regions, and, by exten-

sion, on the overall protein structure.

Concluding remarks

Membrane protein integration appears to be orches-

trated by multiple determinants and factors that, in

unlimited combinations, give rise to native protein

structures. During protein targeting, TM segment

insertion and assembly into the membrane, several

interconnected processes occur simultaneously. Struc-

tural studies of the translocon, together with in vitro

quantitative thermodynamic analyses and biophysical
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dissection of TM interactions, have resulted in signifi-

cant advances in our understanding of membrane pro-

tein integration into the lipid bilayer. Our current

knowledge, coupled with bioinformatics analysis [124],

is opening new opportunities for de novo membrane

protein structure prediction and design.
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