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a b s t r a c t

How to describe the multiple chromosome structures that underlie interactions among genome loci
and how to quantify the occurrence of these structures in a cell population remain important
challenges to solve, which can be addressed via a proper demultiplexing of chromosome capture
conformation related data. Here, we first aim to review two main methodologies that have been
proposed to tackle this problem: restrained-based methods, in which the resulting chromosome
structures stem from the multiple solutions of a distance satisfaction problem; and
thermodynamic-based methods, in which the structures stem from the simulation of polymer
models. Next, we propose a novel demultiplexing method based on a matrix decomposition of
contact maps. To this end, we extend the notion of topologically associated domains (TADs) by
introducing that of statistical interaction domains (SIDs). SIDs can overlap and occur in a cell
population at certain frequencies, and we propose a simple method to estimate these frequency
values. As an application, we show that SIDs that measure 100 kb to tens of Mb long occur both
frequently and specifically in the human genome.

� 2015 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
1. Introduction

At scales beyond a few kilobase pairs (kb), most of our
knowledge of chromosome structure has originated from the
development of high-throughput molecular methods, which are
also known as chromosome capture conformation (3C)
techniques [1]; further reviewed in [2]. 3C-based techniques
allow for the generation of matrices of interactions – also called
contact maps (see Figures) – that gather contact frequencies
between all pairs of chromosomal loci (or bins), where the loci
are sorted according to their position along the chromosomes,
with sizes that can be as small as 1 kb [3]. At the smallest scales,
these contact maps, in combination with protein binding pro-
files, have revealed the ubiquitous presence of large protein
complexes that can bind multiple loci, with CCCTC-binding factor
(CTCF) and cohesin playing central roles [4,5]. Chromosomes in
interphase are thus bridged in many places by loops that mea-
sure tens to hundreds kbp long and strongly correlate with the
presence of CTCF binding sites [6,3]. However, all pairs of sites
are not equivalent, which indicates that loops form preferentially
between specific sites [3].

These loops lie at the core of the higher organization of chromo-
somes into the so-called topologically associated domains (TADs).
TADs are contiguous genomic domains in which all pairs of loci
interact frequently [7–10]. They can be easily identified from the
contact maps based on the presence of contiguous blocks of inter-
actions (see Figures). In mammals, they are typically 1 Mb long and
are visible during interphase [11]. In addition to their high repro-
ducibility [11], they are very similar between cell types, and many
of them are conserved between distant species, e.g., from mouse to
human [9,12]. Loops and TADs [13], together with CTCF and cohe-
sin [14], are thus likely to play important roles in the proper func-
tioning of cells, which supports the concept that the structure of
chromosomes is a key aspect of cell functions [15,16].

Chromosomes are also known to be continuously shaped by
transcription, by proteins that bind, wrap or stretch DNA, and by
enzymes that cut or repair DNA. Chromosomal loci are thus dynam-
ical, with Brownian-like types of motion that are constrained or
facilitated by the local chromosome structure [17,18]. Due to the
importance of the relative spatial positioning between cis-regula-
tory elements and genes in transcriptional regulation [19], these
dynamical properties are believed to play an important role in
the ability of chromosomal domains to respond differentially to
oi.org/
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regulatory signals [24,25]. In particular, variations in the structural
properties of chromosomes have been shown to be associated with
variations in transcriptional properties [24]. This can be observed,
for instance, by the reshaping of TADs during the sequential activa-
tion of hox genes in vertebrate limb development [27–29].

TADs and loops are also expected to be dynamical entities, as
suggested in particular by the heterogeneity of single-cell contact
maps obtained among a given cell population [30]. The major chal-
lenges of chromosome structuring thus include (i) identifying the
multiple structures that are responsible for the contact maps and
(ii) quantifying the occurrence of these structures. In the spirit of
signal analysis, we refer to this problem as the demultiplexing prob-
lem (demuxing problem in short) – this has also been recently
referred to as the ‘‘deconvolution problem’’ [24].

From an experimental point of view, precisely (e.g., at a 1-kb
resolution) and exhaustively quantifying the dynamics and
heterogeneities of chromosomal conformations raises extreme
challenges. Demuxing methods have thus far primarily focused
on the computational modeling of chromosomes. Along this line,
‘‘structural demuxing’’ approaches have consisted of generating
chromosomal conformations such that the reconstructed contact
maps coincide as much as possible with the input contact maps
and, when possible, such that their statistical properties coincide
as much as possible with other measurements of chromosome
structuring (e.g., 3D-FISH).

The goal of this article is two-fold. First, we provide an overview
of structural demuxing methods. Second, we propose a novel
method that is rooted in the matrix analysis of contact maps, that
is, without referring to any explicit chromosome conformation.
Using this framework, we show that structural heterogeneities
Fig. 1. Schematic representation of restraint-based (RB) framework. In RB modeling, ex
involves satisfying distances that correspond to input contact frequencies. For that purpo
inverse power law (see text), and are used to constrain the modeling. Several conformers
solution of the contact map as a population of conformations [20,21]. These conformers
the experimental data to adjust the modeling parameters.
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ranging from 100 kb to tens of Mb must be considered when
describing the structure of human chromosomes. As a discussion,
we present both technical and experimental challenges related to
our novel demuxing method.

2. Structural demultiplexing approaches

In 3C-related methods, the number of contacts between any
two bins in a population of cells is estimated by using a DNA liga-
tion protocol that is combined with sequencing technology [1,2].
Accordingly, a contact between bins i and j (Fig. 1) is detectable
if and only if i and j are sufficiently close in space to be
cross-linked by formaldehyde. In this case, raw interaction data
corresponds to the number of sequence reads that map both i
and j. These read numbers are then normalized to mitigate biases
that originate mostly from restriction enzyme cutting, GC content
and sequence uniqueness [31] (see [32] for a recent review of nor-
malization procedures). The resulting contact frequencies are pro-
portional to the fraction of cells in which the bins are spatially
close, with a coefficient of proportionality that is identical, in the-
ory, for all pairs of bins.

As we review below, two classes of structural approaches have
been developed to demux these contact maps. Both methods are
aimed at generating an ensemble of spatial conformations of the
chromosomes, whose statistical properties are compatible with
input contact maps. Restrained-based (RB) approaches rely primarily
on an implicit relationship between the contact frequencies and
spatial distances between bins (Fig. 1). They are aimed at
reconstructing the conformations by satisfying as many distance
constraints as possible. Multiple solutions arise from the
perimental contact maps are explicitly used during an optimization procedure that
se, experimental frequencies are converted to target distances, frequently using an
can then be extracted from the optimization procedure to provide a demultiplexing
can then be used to reconstruct contact maps, which can further be compared with
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Fig. 2. Schematic representation of the thermodynamic-based (TB) framework. In TB modeling, a multitude of conformers are generated using a polymer model of the
chromosomes with fixed parameters. Provided a distance below which two loci are considered to be in contact, contact pairs can be identified for every conformation, and the
resulting statistics provides a reconstructed contact map. This contact map can then be compared with the input contact map, and parameters can be iteratively adjusted to
eventually obtain a contact map that is as similar as possible to the input contact map [22–24].
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impossibility of satisfying all pairwise distances using a single con-
formation and from the degeneracy of possible optimal solutions.
In thermodynamic-based (TB) approaches, thermodynamic laws
are used to simulate an ensemble of conformations given a prede-
fined set of parameters of a polymer model (Fig. 2). The presence of
different conformations is the natural consequence of entropy
maximization (thermodynamic systems tend to explore as many
conformations as possible) that is nevertheless constrained by
the energy costs associated with each conformation, with a balance
controlled by the physiological temperature. TB modeling has thus
been described as ‘‘direct’’ modeling, whereas RB approaches have
been described as ‘‘inverse’’ modeling [33] because conformations
are deduced from experimental data ‘‘only’’ [34].

2.1. Restraint-based (RB) approaches

Data-driven RB approaches (Fig. 1) focus on translating data
into structural features that may later be used to explain specific
observations of the function of the modeled genomic domain or
genome. For that purpose, chromatin is represented using a
beads-on-a-string model. The position of the beads is modified to
seek the minimum of a cost function, which can always be written
as

Etot ¼ Epoly þ Edata

Epoly is a cost function that penalizes deviations from the
beads-on-a-string model. It favors the connectivity of neighboring
beads and penalizes bead interpenetration. Edata is the dominant
contribution in RB approaches and determines the agreement
between the candidate conformation and the data, e.g., HiC contact
maps. A number of functional forms are used for Edata, and the most
popular ones are harmonic or truncated harmonic potentials. Next,
because HiC provides contact frequencies, it is necessary for RT
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approaches to convert them into distances to be able to generate
conformations. Most methods use an empirical relationship, which
was experimentally confirmed on a limited range of distances [35]:

f ij /
1
da

ij

a > 0

where fij is the observed contact frequency, dij is the target distance
between loci i and j, and a is an exponent that is often set to 1.
Optimization algorithms range from conjugate gradients to combi-
nations of Brownian motion and simulated annealing.

The conformations resulting from RB approaches have been
used to demux input interaction matrices into a set of differenti-
ated conformational states. Two main types of frameworks have
been proposed to date: (i) a posteriori frameworks, where 3D con-
formations are structurally compared to identify the most likely
ones states, and (ii) a priori frameworks, where the search for solu-
tions follows a certain probability distribution that is informed by
the input matrices. Both methods are aimed at identifying differen-
tiated conformational states that agree with 3C-based experi-
ments, as we now explain in more detail.

2.1.1. A posteriori approaches
The first application of RB approaches in an attempt to demux

HiC contact maps involved studying the structural variability of
the resulting conformations of the a-globin genomic domain [36].
Hierarchical clustering of the conformations that resulted from
the RB optimization procedure then revealed that the structural
diversity was much lower in the inactive form of the a-globin
domain than in the active form, which revealed that a larger com-
plexity was inherited from the interaction matrix of the active form
compared with the inactive form. Most importantly, the set of con-
formations revealed that the contact map obtained for the active
form could only be explained by the existence of several different
omosome capture conformation data. FEBS Lett. (2015), http://dx.doi.org/
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states [36]; this is in contrast, for instance, to what is often expected
in the problem of protein folding. Similar approaches based on a
clustering of conformations that optimize a cost function have since
then been investigated. For instance, Rousseau et al. used a Monte
Carlo sampling strategy together with a hierarchical clustering
method to model the conformational states of the HoxA gene clus-
ter [37]. Similarly, Ay et al. reconstructed the Plasmodium falci-
parum genome by clustering 100 conformations that were
obtained using a similar optimization procedure [38].

2.1.2. A priori approaches
In a posteriori approaches, 3D conformations are structurally

compared to identify the most likely conformational states. In con-
trast, a priori frameworks follow a certain probability distribution
that is informed by the input matrices. Using a Bayesian model
for structural variability, the authors of ‘‘BACH-Mix’’ proposed
two types of contact map demuxing [39]. Both types begin with
a common step, called BACH, which is an RB-based approach for
which the functional form of Edata is justified using Bayesian
inference. Instead of repeating this step a number of times, as in
the a priori approaches, the optimization is performed once to yield
what is referred to as the consensus structure. The second step
differs depending on whether one seeks to assess the continuous
variability of a given structure or whether another structurally
unrelated conformation is to be found. The former choice is called
BACH-Mix because the assessment of variability relies on a Poisson
mixture model. The latter consists of iteratively running BACH on
residual HiC matrices, where contacts from the previous consensus
structure are removed.

A more ‘‘population-based’’ demuxing RB approach relies on
exploiting the fact that contact frequencies result from the super-
position of a large number of different conformations [40,20]. Here,
the computation consists of a unique simulation, which simultane-
ously generates a large number of plausible conformations. In this
simulation, the cost function Etot is a function of a large number of
conformers, which are all optimized at the same time. During the
simulation, the cost function enforces contacts between two loci
in only a subset of all conformers. Using this approach, contact
maps obtained in yeast [20] and in humans [40] have been
demuxed by creating an ensemble of structures whose diversity
mimicked that of the cells used to perform the experiments.

2.2. Thermodynamics-based (TB) approaches

2.2.1. Using polymer models for generating chromosomal
conformations

In TB approaches, in vivo chromosomes are modeled as single
polymer chains that include at least three fundamental features:
(i) the chains can bend more or less easily, depending on their per-
sistence length, (ii) the chains cannot overlap due to the physical
exclusion properties of chromatin, and (iii) the chains are confined
to a volume such that the resulting DNA density is similar to that of
nuclei in vivo. If necessary, properties (i) and (ii) can be made more
complex by further considering heterogeneous properties along the
chains. Interactions between specific sites or between random sites
can also be considered to mimic the presence of bridging complexes
or the effect of condensation forces. In all cases, the parameters are
fixed, and the contact maps are calculated by simulating the folding
properties of the chains according to thermodynamic laws. To this
end, both realistic Brownian like dynamics and unrealistic
Monte-Carlo dynamics [41] that allow for the speeding up of the
sampling of conformation space are used to generate conforma-
tions. Provided a distance below which two loci are considered to
be in contact, contact pairs are then identified for every conforma-
tion, and the resulting statistics provides the contact map (Fig. 2).
Please cite this article in press as: Junier, I., et al. On the demultiplexing of chr
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2.2.2. Reproducing TAD formation and the decay of contact frequencies
as a function of the genomic distance separating chromosomal loci

In the spirit of the RB approach proposed by Alber and
co-workers [20,40], TB approaches consist of generating a multi-
tude of conformations. These conformations can then be used to
compute statistical properties, such as the mean and standard
deviation of distances between certain loci, and can then be com-
pared with the experimental measurements (using for instance
3D-FISH). In contrast to the RB approaches, though, the hypothesis
and parameters that are used to conceive an appropriate polymer
model are as instructive as the conformations that are generated.

The first genome-wide contact map of the human genome was
‘‘demuxed’’ using a simple model of homogeneous polymers in
which all loci behaved in the same way [35]. The observed law of
contact frequencies as a function of the distance s that separates
two loci, P(s) � s�a with a � 1, was then explained as the result
of a fractal organization of the polymer chains – such fractal orga-
nization corresponds to the long-living metastable states that
emerge during the condensation of homogeneous polymers into
globules [42] due, for instance, to confinement. More recent anal-
yses of contact maps, together with more complex polymer model-
ing, instead suggest that specific interactions between loci are
needed to both reproduce TADs [43,44] and explain the various
laws that can be found for P(s) with, in particular, an exponent a
that varies between chromosomes [43]. In addition, attractive
interactions between loci seem to be necessary to quantitatively
reproduce the statistics of distance properties between loci,
which can be measured using in situ fluorescent visualization
techniques [45,43,24,46].

2.2.3. Devising predictive models
In addition to the possibility of designing specific models that

are aimed at matching specific situations [22–24], TB approaches
offer the possibility of devising predictive computational models
[47,24]. In this regard, the recent work of Giorgetti and
co-workers [24] provides an inspiring example of the potentiality
of these frameworks. This work reports a bead-on-a-string
polymer modeling of the human chromosome that is used to inves-
tigate the functional impact of TAD formation within the
X-inactivation center. In the model, beads are able to interact
according to some potential whenever their relative distance is
below a certain threshold. Most importantly, in contrast to most
modeling works of this type, no parameter was pre-defined, except
the coarse-graining scale (3 kb). Instead, all parameters were
adjusted using an optimization procedure coming from the field
of protein folding [48], which involved progressively adapting the
parameters and periodically simulating the thermodynamic prop-
erties of the corresponding model such that the model converges
to the desired contact map. Using this approach, several
remarkable results have been found. For instance, a 32-nm diame-
ter emerges as the optimal size of the beads, which supports the
relevance of an effective ca. 30 nm ‘‘chromatin fiber’’ for the
X-inactivation center during interphase. Next, a typical 80 nm
range was found for the contact interaction between loci, which
supports the idea that interactions between specific loci are medi-
ated by large protein complexes (with CTCF and cohesin among the
main determinants). Remarkably, the polymer model was predic-
tive in the sense that the deletion of a crucial site, such as a CTCF
binding site, had similar effects both in vivo and in silico.

2.2.4. The meaning of optimal model parameters
TB approaches are not only useful for providing insights into the

three-dimensional organization of chromosomes, but they also
raise important questions regarding the physical meaning of the
parameters that are used for a proper demuxing of contact maps.
omosome capture conformation data. FEBS Lett. (2015), http://dx.doi.org/
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Referring back to the study by Giorgetti and co-workers [24], both
the optimal diameter of the effective fiber and the range of interac-
tions are consistent with current knowledge of chromatin and
chromosomes. Next, both attractive and repulsing interactions
appear to be required to recapitulate experimental contact maps.
Large attracting energies are compatible with a bridging mecha-
nism that is induced by large protein complexes [49], which is con-
sistent with the CTCF enrichment of the strongest interacting sites
[24]; non-specific (weak) interacting energies may instead indicate
a global interaction network between domains with similar epige-
nomic profiles [44]. The rationale for repulsive interactions is less
clear. They might, for instance, indicate a volume exclusion effect
that results from the presence of large complexes that are involved
in other specific interactions. If this were the case, it would suggest
that TB approaches might provide a bona fide framework for cap-
turing not only the properties of chromosome folding but also
the presence of associated macromolecular complexes.

3. A matrix-based demultiplexing approach

As shown in Figs. 1 and 2, experimental contact maps are often
made of overlapping interaction blocks that are larger than TADs,
which indicates that although TADs may constitute a relevant
decomposition of contact maps, other decompositions can be con-
templated a priori. In particular, contact maps such as that shown
in Fig. 3 call for the presence of overlapping interaction domains
that are larger than TADs and occur at specific frequencies. In this
context, our goal here is to present a matrix analysis that can be
used to estimate these frequencies.

3.1. A decomposition into statistical association domains (SIDs)

We call ‘‘statistical interaction domains’’ (SIDs) all of the
domains that can be defined on the same basis as TADs but where
the borders, though they are identical to those used to define TADs,
do not have to be consecutive along the chromosome (Fig. 3). SIDs
are thus larger than TADs; they can actually be smaller if we fur-
ther consider sub-TAD borders instead of TAD borders [50,51].
Most importantly, SIDs can overlap with a large SID that can con-
tain several smaller SIDs (Fig. 3 right panel).

Using SIDs as a basis for demuxing contact maps, we aim to
estimate their frequency of occurrence in a cell population by
exploiting a linear relationship that exists, under certain approxi-
mations, between these frequencies and the counts in every tile
of the contact map (Fig. 4). To this end, let fI be the occurrence fre-

quency of SID I and let~f ¼ ðf 1; . . . ; f MÞ be the corresponding vector
Fig. 3. Evidence of the presence of overlapping interaction domains in HiC contact m
chromosome 4 in T47D cells. It was obtained using NcoI as the restriction enzyme, wit
smoothed using a Gaussian filter with a 12 kb smoothing window. The resulting conta
which are indicated on the right panel using dashed boxes.
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of all frequencies – we consider an ensemble of M SIDs formed

from a set of m borders ~b ¼ ðb1; . . . ; bmÞ, so that M = m(m � 1)/2.
A SID being defined by a pair of borders, we further sort these
SIDs and their frequency according to the following order of pairs
of borders: (b1, b2), . . ., (b1, bm), (b2, b3), . . ., (b2, bm), . . .(bm�1, bm).

Next, let~t ¼ ðt1; . . . ; tMÞ be a vector such that tJ is equal to the
sum of contact frequencies in the tile J of the contact map (see left
panel in Fig. 4A). A tile is defined here by a pair (bi, bj) of borders
such that (bi, bj) indicates the matrix position of the upper left tile
corner and (bi+1, bj+1) the position of the lower right corner; for
instance, in Fig. 4A, the tiles 1, 2 and 3 are defined by the pairs
(b1, b1), (b2, b1) and (b2, b2). In this context, one can easily verify
that there are as many tiles as SIDs, namely, M = m(m � 1)/2.

By sorting the tiles according to the following order of border
pairs, (b1, b1), . . ., (bm�1, b1), (b2, b2), . . .(bm�1, b2), . . .(bm�1, bm�1),
and supposing that overlapping SIDs are exclusive, which indicates
that a given cell cannot simultaneously display a ‘‘SID within a
SID’’, one can write the following multiplexing relationship that
links tiles and SIDs together:

~t ¼ M �~f ð1Þ

Here, the entries mJI of the matrix M indicate the contribution of

SID I to tile J, such that we have tJ ¼
PJ¼M

I¼1 mJIf I . More precisely, mJI

corresponds to the number of contacts in tile J that are provided by
SID I each time this SID is formed (Fig. 4A). In particular, mJI = 0 if
SID I does not overlap with tile J, as is the case for SID 3 and tile
1 in Fig. 4A.

The possibility of writing this multiplexing relationship relies
on the tacit assumption that interactions within a SID are diluted
throughout the SID and that they occur according to the same con-
tact law p(s) (see below). In this case, the contribution mJI of SID I to
tile J is given by

mJI ¼
1
LI
�
X

ða;bÞ2J

pIðsabÞ; ð2Þ

where for every pair (a, b) of loci in tile J, sab indicates their genomic
distance along DNA and pI(s) is the expected contact frequency
between the loci in SID I as a function of their genomic distance.
The larger the SID is, the smaller mJI, whereas the larger the tile
is, the larger mJI, with a greatest value of mJI = 1 when the SID and
the tile coincide.

Note that for a given SID I, the contact law pI(s) reflects the nat-
ure of the interactions between the loci within the SID. We further
suppose, here, that the functional form of pI(s) is the same for all
SIDs I. It is then important to realize that this contact law is
aps. The input contact map (left panel) corresponds to a 17-Mb-long region of
h a 20 kb resolution [25]. The initial raw map was normalized using ICE [26] and

ct map clearly shows the presence of several overlapping domains of interactions,

omosome capture conformation data. FEBS Lett. (2015), http://dx.doi.org/
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Fig. 4. A matrix-based demultiplexing approach. (A) Schematic representation of a contact map decomposition into the superimposition of statistical interaction domains
(SIDs). Three SIDs, here on the right, occur with frequencies f1, f2 and f3. They are formed from the combination of all pairs of borders (b1, b1), (b2, b1) and (b2, b2) that can be
identified in the input contact map (orange points). SID combination results in a mosaic contact map made of tiles (corresponding here to t1, t2 and t3), as it is often observed
experimentally (see, e.g., Fig. 3). In this context and as indicated by the matrix relationship on the left, every sum t1, t2 and t3 of the contact frequencies in the tiles can be
written as a linear combination of the contact frequencies obtained from the SIDs (Eq. (3) in the text) – to this end, a normalized contact map for each SID is considered. In this
linear relationship, the contribution of SID I to tile J is provided by Eq. (2), which in the case of a uniform contact probability is equal to the ratio between the tile area and the
SID area (it is equal to 0 if these do not coincide). Inverting the relationship allows the occurrence frequency of SIDs to be determined from the tile counts (demuxing
relationship on the right). (B) Application to a stylized dataset. The dataset was produced by the superimposition of 6 SIDs corresponding to 4 borders (pink points) and
occurring with different frequencies. We additionally consider a noisy process to test the robustness of our method (see text for details). Right panel: reconstructed
occurrence frequencies obtained from the demuxing relationship are in good agreement with input frequencies – frequencies were normalized by the maximum frequency.
(C) Application to experimental data. By applying this demuxing approach to the data in Fig. 3, we obtain the occurrence frequencies of 91 SIDs corresponding to 14 borders
(white points on contact map). Here, we indicate at the bottom of the map the relative occurrence frequencies of the 13 SIDs that can be formed using the first border. Large
SIDs of more than 10 Mb can be as frequent as small ones, and in the case of two close borders, our method is capable of discriminating the presence of a ‘‘false positive’’ (red
circle).
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different from the contact frequency P(s) that has been recently
discussed in the literature (see above). Indeed, P(s) corresponds
to a contact frequency that is averaged over all genomic loci and over
a cell population [35]. In contrast, pI(s) corresponds to the contact
law that is expected within a given genomic domain (SID I here), once
the contact map has been demuxed. pI(s) thus cannot be deduced
using an averaging procedure over the contact map; it is an
unknown function that must be determined self-consistently (see
Section 4 for further details).

By inverting Eq. (1), we obtain a demuxing equation that allows

computing SID frequencies (~f ) from tile counts (~t). Namely, denot-
ing the demuxing matrix D = M�1, we have

~f ¼ D �~tð¼ M�1 �~tÞ ð3Þ

This demuxing equation shows that under the assumptions that

overlapping SIDs are exclusive, there is a unique set~f of frequen-
cies that correspond to (i) the tiles of the matrix and (ii) the contact
frequency law pI(s). In other words, by performing a simple count
analysis of the contact frequency in the tiles and considering sim-
ple assumptions on the form of pI(s) (see below), one can easily
obtain SID frequencies.

3.2. Validation of the method: synthetic data

To test the validity of our approach, we apply it to the analysis
of a well-controlled synthetic dataset (Fig. 4B). To this end, we con-
sider a stylized contact map that is formed by the occurrence of 6
different SIDs, which correspond to 4 borders (Fig. 4B), with fre-

quencies ~f ¼ ð0:2;0:15;0:05;0:2;0;0:4Þ. We also consider that
interactions between loci within a given SID are all equivalent such
Please cite this article in press as: Junier, I., et al. On the demultiplexing of chr
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that for a SID I with frequency fI, an interaction between two loci
occurs with the frequency fI/LI.

To address the robustness of our method, we further consider
that the values of contact frequencies are drawn according to a
random process. This random process aims to mimic the presence,
in real experiments, of experimental artifacts or structural hetero-
geneities within SIDs. Specifically, for every contact in SID I, we
consider that the original contributing frequency fI/LI is strongly
distorted by an additional noise such that the measured value is
equal to maxf0; ð1þ gÞf I=LIg, where g is a random variable that
takes its values with uniform distribution in [�10, 10].

For this example, as a solution, we naturally consider an equal
distribution of interactions within a SID such that we have
pI(s) = 1/LI. In this context, denoting SJ as the sum of the contact fre-
quencies in the tile J, we obtain mJI ¼ SJ=L2

I (the contribution of SID
I to tile J is here simply equal to the ratio of their surfaces). As
shown in the rightmost panel of Fig. 4B, Eq. (3) then leads to a good
reconstruction of SID frequencies.

3.3. Experimental data: from TADs to SIDs

We now apply our methodology to the analysis of contact maps
in T47D cells, for which HiC data were produced using HindIII and
NcoI restriction enzymes at a resolution of 20 kb [25] and were
normalized using the ICE procedure [26] by removing in particular
the contribution from the diagonal [26]. We analyze more particu-
larly a region of chromosome 4 that displays a well-defined super-
imposition of SIDs (Fig. 4C).

From this contact map, we first identify possible borders. To this
end, we use a directional index [9] and identify the location where
this index strongly varies from a positive value to a negative value.
omosome capture conformation data. FEBS Lett. (2015), http://dx.doi.org/
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We eventually obtain 14 plausible borders (white points on the
contact map of Fig. 4C). From these borders, 91 SIDs (and tiles)
can be defined, for which we can compute their frequency using
Eqs. (2) and (3). To this end, just as in the case of synthetic data,
we assume for simplicity that pair interactions within a given
SID are equally distributed, thus implying mJI ¼ SJ=L2

I . This
approximation is equivalent to assume that a SID is an equilibrated
polymer globule, with a polymer that has a small persistence
length – note that this is a plausible scenario given that the persis-
tence length of eukaryotic chromosomes may actually be very
small, that is <30 nm [52,53] and that SID-like patterns are consis-
tent with an equilibrated polymer where loci interact according to
their epigenomic profile [44]; note also that the SIDs of Fig. 4C sug-
gest a uniform distribution of interactions inside them rather than
frequencies that decay with genomic distances (see also the high
resolution maps of [3]). We finally stipulate that the obtained fre-
quencies should all be positive – negative values occur here
because of the sensitivity of small frequencies to noise. To this
end, for each solution with a negative value, we set the frequency
to zero and re-compute the solution using this constraint.

In this context, our analysis reveals that the formation of large
SIDs can be as frequent as the formation of small SIDs. As an exam-
ple, we indicate in Fig. 4C the frequency of occurrence of all of the
SIDs that can be formed with the first border; 10-Mb-long SIDs are
as frequent as 1-Mb-long SIDs. In addition, we observe that the fre-
quency of SIDs is not a smooth function of their size, which corrob-
orates that specificity plays a crucial role in the structuring of
eukaryotic chromosomes.
4. Discussion and experimental considerations

To date, two generic structural methods have been developed to
identify and quantify the multiple structures that are responsible
for the contact maps obtained in 3C-based experiments. On the
one hand, restraint-based (RB) approaches originate from the field
of structural biology and rely on the satisfaction of distance
restraints. On the other hand, thermodynamics-based (TB)
approaches originate from the field of polymer physics and rely
on a physical modeling of chromosome structuring.

Both approaches have advantages and drawbacks. RT methods
can quickly provide information regarding the typical structuring
of chromosomes. In addition, they do not assume any type of a pri-
ori regarding the underlying polymer models. They are thus well
poised to handle the heterogeneity properties of chromatin
in vivo. The possibility of properly quantifying the structural vari-
ability of chromosomes nevertheless remains an important chal-
lenge [21].

TB approaches provide a bona fide, likely realistic, description of
chromosome structuring, which naturally includes the notion of
structural variability. Importantly, they can be used to predict
the impact of chromosome modification on the relative positioning
of genes and their cis-regulatory sequences [47,24]. Their
application for the multi-scale organization of a full eukaryotic
chromosome remains an important challenge because of the
time-consuming simulations and the intrinsic difficulty of
predefining parameters for the polymer models.

4.1. A promising matrix-based framework with reasonable technical
challenges

In this ‘‘structural’’ context, we have proposed a demuxing
methodology based on a matrix analysis of contact maps that does
not use explicit 3D structural information. Our goal was to provide
a framework that is as simple as possible and allows for a quanti-
tative analysis of heterogeneity properties of contact domains
Please cite this article in press as: Junier, I., et al. On the demultiplexing of chr
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within chromosomes. This framework relies on the observation
that contact maps resemble mosaics more than block diagonal
matrices, with multiple domains that superimpose over a wide
range of scales. In this context, we have extended the notion of
topological associated domains (TADs) by considering the possibil-
ity of a superimposition of multiple interaction domains, called
‘‘statistical interaction domains’’ (SIDs), and we have presented a
simple framework to compute their frequency in a cell population.

From a biological point of view, our preliminary results show
that approximately 10-Mb-long domains can be as frequent as
small (6 1 Mb) domains with frequencies that do not appear to
be a simple function of the size of the SIDs. This raises the question
of the physical origin of these SIDs. In the spirit of the scenario
recently proposed by Jost et al. [44], SIDs might, for instance, cor-
respond to different chromosomal conformations that result from
a multi-stable behavior of chromosomes. Multi-stability would
stem from the copolymer-like nature of chromosomes [44], which
itself would result from the presence of a finite number of epige-
nomic domains [54,55,3] that are distributed throughout the gen-
ome and follow an intricate pattern. In the same spirit, SIDs might
correspond to different outcomes (corresponding to different cells)
of a polymer model that includes such self-attracting domains, but
with the formation of loops that would stabilize a specific SID early
on during the cell cycle. Such a looping-induced trapping effect
could be set, for instance, during the mitotic phase, when the chro-
mosomes are highly compacted. This would be consistent with a
crucial structuring role played by cohesins and CTCF proteins
[4,5]. This would also explain the apparent independence of the
frequency of SIDs with respect to their size. In all cases, our frame-
work should be useful for estimating the corresponding parame-
ters of the TB models, both for the interaction energy between
epigenomic profiles and for the site-specific energies that are
related to the formation of loops, as these should be directly
related to the SID frequencies.

From an operational point of view, having a normalized matrix
in hand that provides an unbiased frequency of contacts between
loci [31,26,56], let us recall here that our methodology relies on
four pillars:

(a) The identification of borders using, e.g., directionality
indexes [9].

(b) The assumption that contiguous domains can be defined on
the same basis as TADs, or sub-TADs, but where the borders,
though they are identical to those used to define
TADs/sub-TADs, do not have to be consecutive along the
chromosome.

(c) The assumption that overlapping SIDs are exclusive, which
indicates that a given cell cannot simultaneously display a
‘‘SID within a SID’’.

(d) The choice of a generic law p(s) for the decay, within SIDs, of
the contact frequency as a function of the genomic distance
separating loci.

The proper identification of borders (a) is not as crucial as it
may be for defining TADs or sub-TADs. Indeed, as shown in
Fig. 4C, the prediction of alternative ‘‘false positive’’ borders results
in a frequency of occurrence that is negligible (red circle in bottom
curve of Fig. 4C). In this regard, high-resolution maps [13,3] are
expected to shed more light on the mechanism of SID formations.

Next, while the exclusive hypothesis (c) is a natural assumption
that can be tested experimentally, the assumption that contiguous
domains can be defined throughout the genome (b) requires further
treatment. Indeed, in mammals, HiC interaction maps have revealed
a ubiquitous two-compartment organization [35,3], which indi-
cates that genomic domains belonging to different compartments
poorly mix together. Importantly, this two-compartment pattern
omosome capture conformation data. FEBS Lett. (2015), http://dx.doi.org/
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is not compatible with the formation of SIDs along the genome; a
SID that includes two domains that belong to different compart-
ments would not verify the assumption that the interactions
between loci of the SID are evenly distributed. A naïve application
of our methodology to the whole genome thus leads to inconsisten-
cies in the resulting frequencies, with the presence of large negative
values. One possible way to solve this problem is to analyze com-
partments separately.

Finally, the choice of the decay law p(s) (d) is a very interesting
issue. It raises the question of the optimal law that should be con-
sidered to provide a reconstruction of the full matrix that is as sim-
ilar to the contact maps as possible. Specifically, once the SID
frequencies have been obtained, one can ‘‘reconstruct’’ the contact
frequencies under the null hypothesis that SIDs occur with fre-

quencies ~f and that the decay law within SIDs is given by p(s).
The values thus obtained can be compared to the original matrix,
and a specific law p(s) that maximizes the match can be searched
for. This can be particularly useful to develop null models from
which architectural elements can be determined [57].
4.2. Experimental considerations

Several major experimental challenges akin to our matrix-based
demultiplexing of 3C related data need to be addressed. In partic-
ular, it is crucial to determine whether different interaction domains
exist within a cell, or within a cell population, and to quantify their
frequency of occurrence. It is also important to understand the
functional impact of every interaction domain as well as the func-
tional impact of having several of these interaction domains,
knowing that many of them cannot occur at the same time.

A first possibility would be to confront our frequency predic-
tions to single-cell HiC analysis [30]. The resolution achieved thus
far with these techniques is not yet sufficient to obtain a quantita-
tive assessment of domain frequencies. This stems from the low
yield of recovery that these techniques can achieve and from the
3C principle itself, which allows only the detection of two events
of ligation per hemi-site of restriction in a ‘‘frozen’’ conformation
of the chromosome.

Another possibility would be to use fluorescent in situ
hybridization (FISH) to analyze the relative position of different
genomic sequences by microscopy. This technique has already
been used to corroborate the presence of two compartments [35]
and TADs [8], to characterize the statistical properties of distances
between several loci [45,24,46] and to provide insights into the dif-
ferent organizations of a given domain within a cell/allele popula-
tion [24]. In addition, recent advances in probe labeling and
imaging have allowed high-resolution images to be obtained
[58]. However, divergent conclusions are still obtained between
FISH and 3C-related techniques, particularly when reaching
sub-TAD resolution [59]. Moreover, whereas increasing the num-
ber of fluorescent labels could facilitate the interpretation, the pos-
sibilities of multi-channel imaging remain limited, particularly for
high-resolution microscopy [60]. The development of novel power-
ful labeling methods [61] in combination with high-resolution
microscopy [62,63] should hopefully help solve these issues.

While FISH methods allow for single cell analysis, they also rely
on cell fixation. This implies that they cannot be used to answer
questions regarding the stability of SIDs. In addition, although
the visualization of specific loci at high resolution in time-lapse
experiments remains challenging, the development of new label-
ing methods [64], particularly with the use of dedicated
CRISPR-Cas9 systems [65], offers the possibility to follow the
motion of genomic domains and should therefore permit the anal-
ysis of the stability of SIDs in living cells. CRISPR-Cas9 technology
[66,67] also opens the way for a systematic manipulation of
Please cite this article in press as: Junier, I., et al. On the demultiplexing of chr
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chromosome structural determinants. This should be crucial to
pinpoint the mechanisms that underlie the specificity of border
association.
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