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Chromosomes are large polymer molecules composed of nucleotides. In some species, such as
humans, this polymer can sum up to meters long and still be properly folded within the nuclear
space of few microns in size. The exact mechanisms of how the meters long DNA is folded into
the nucleus, as well as how the regulatory machinery can access it, is to a large extend still a mys-
tery. However, and thanks to newly developed molecular, genomic and computational approaches
based on the Chromosome Conformation Capture (3C) technology, we are now obtaining insight
on how genomes are spatially organized. Here we review a new family of computational approaches
that aim at using 3C-based data to obtain spatial restraints for modeling genomes and genomic
domains.
� 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Genomes are often compared to libraries where the genetic
information is stored in the form of books and text represents
the linear sequence of the genome. Unfortunately, that linear
(1D) representation omits the utterly complex three-dimensional
(3D) organization of the genome. Indeed, the physical support of
the genome (i.e., the books, the shelves, the corridors and the
library building in our metaphor) may be as important as the func-
tional elements it encodes [1]. It is now known that the dynamic
structure of the complex gene networks in a genome regulates
the orchestration of fundamental biological processes such as
development [2], cell differentiation [3,4] or response to stimuli
[5], among others. Moreover, most of such complex mechanisms
are also among the most conserved features of our genomes
[6,7]. Therefore, addressing the 3D structure of a genome may pro-
vide insights into fundamental questions like the C-value paradox
[8] or the regulatory divergence between closely related species
[9].
In the past decade, with the introduction and development of
Chromosome Conformation Capture (3C) technologies (e.g., 3C
[10], 4C [11], 5C [12], Hi-C [13], in situ-Hi-C [7], TCC [14], T2C
[15] or Capture-C [16,17], which are here referred as 3C-based
technologies), it has been possible to get insight into how the gen-
ome folds by interrogating physical interactions within the gen-
ome. Importantly, the combination of these 3C-based
technologies with advanced imaging [18] has helped reducing
the resolution gap in genome structure [19]. It is now known that
the genome organizes into chromosome territories [20], which in
turn are spaced into two compartment types [13] composed of
finer units called Topologically Associating Domains or TADs
[6,21,22]. Alongside these advances, the evidence that genome
structure is tightly associated with its function was being rein-
forced by the comparison with chromatin epigenetic states
[7,23]. However, two limitations are blurring the full picture of
the genome organization. First, some of the emerging genomic fea-
tures change depending on the scale at which we study the gen-
ome. For example, TADs are structural units that were shown to
be robustly detectable over a large range of genomic resolutions.
Yet, their existence is challenged when the genome is interrogated
at finer scales [7]. Second, 3C-based experiments are usually car-
ried out with tens of millions of cells, and thus are
population-based measures superimposing millions of partial

http://crossmark.crossref.org/dialog/?doi=10.1016/j.febslet.2015.05.012&domain=pdf
http://dx.doi.org/10.1016/j.febslet.2015.05.012
mailto:mmarti@pcb.ub.cat
http://dx.doi.org/10.1016/j.febslet.2015.05.012
http://www.FEBSLetters.org


2988 F. Serra et al. / FEBS Letters 589 (2015) 2987–2995
snapshots of interacting chromatin fragments. All together, this
indicates that the analysis of 3C-based interaction matrices
requires rigorous statistical treatment that both, preserves the gen-
uine data and removes inherent biases that can lead to misconcep-
tions [24,25]. For instance, and due to the assumption that
observed interactions between loci pairs are independent, para-
metric test on the co-localization of triplets of loci in
genome-wide Hi-C matrices lead to the false discovery of signifi-
cant interactions [26,27]. Providing a consolidated framework for
3D interpretation (i.e., chromatin modeling) of 3C-based interac-
tion matrices could help to circumvent these issues and character-
ize the principles of chromatin 3D folding [28,29].

Chromatin modeling is performed using two main complemen-
tary strategies [19]. The first, known as restraint-based (RB) mod-
eling, interprets the 3C-based data as a set of spatial restraints to
build a 3D model of the chromatin fiber by satisfying the input
restraints. The second, called thermodynamics-based (TB)
modeling, applies polymer physics principles of the chromatin
fiber to identify plausible spatial arrangements of the chromatin
fiber. For example, TB approaches have been implemented to inter-
pret the decay of interaction frequencies with the genomic dis-
tance [30], the formation of domains of active and inactive
chromatin [31], epigenetic features like chromatin colors [32],
chromosome territories [33–35] and co-expression data [36]. TB
modeling is reviewed in separate articles in this issue.

This review will focus on RB modeling, which in contrast to TB
modeling is a more recent addition to the genome structure deter-
mination field. RB modeling can be broadly classified into two
main categories depending on how the restraints are implemented.
The first category uses analytical approaches to directly transform
an interaction matrix into a 3D object [37,38]. These approaches
assume that the interaction matrix represents a single consensus
structure. They are, therefore, more suitable for single-cell
3C-based studies [39]. The second category defines a set of
restraints from the observed interaction data, which are then
Fig. 1. The four stages of the integrative modeling cycle [63]. Those include data collect
specific steps that apply to the restraint-based modeling of genomes and genomic dom
satisfied using either Monte Carlo sampling [14,40–44] or
Bayesian [45–48] approaches. In contrast to the analytical method-
ologies, these optimization-based methods are usually used to
generate thousands of possible conformations of the target chro-
matin region. This second category can further be divided into
(a) approaches where simulations are independent of each other
resulting in a population of models, which is expected to represent
the variability of chromatin conformations, and (b)
population-based strategies whose restraints take into account a
given number of representative models simultaneously. Most of
these methods have already been successfully applied to describe
a large number of biological features of the chromatin fiber. For
example: the presence of compartments and their tendency to
aggregate by type [45], the identification of signatures of chro-
matin conformations specific to each cell type (which correspond
to the segregation of active and inactive chromatin [49]), the iden-
tification of chromatin globules in the a-globin domain of the
human genome [50,51], the ellipsoidal organization of the
Caulobacter crescentus chromosome [52], the overall genomic orga-
nization of the yeast [53], the human [14] and the Plasmodium gen-
ome [54], or the spatial organization of the X inactivation center in
the human genome [40].

Through this review we will overview all the steps from the
acquisition of 3C-based interaction data to the reconstruction of
3D models of chromatin (Fig. 1). This walkthrough will help us to
assess the methodological choices made by today’s research
groups. We will finally discuss the importance of conventions in
the context of a rising demand for data sharing and model
visualization.

2. Data generation

3C-based experiments allow measuring the frequency at which
pairs of chromatin regions physically interact in the 3D space. This
frequency is proportional to the propensity for two loci to be
ion, data representation, model building and model analysis. The flow chart shows
ains.
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cross-linked by formaldehyde [55]. In a typical 3C-based experi-
ment, the chromatin of tens of millions of cells are cross-linked
and then fragmented by digestion with a restriction enzyme.
These cross-linked fragments are then ligated to form hybrid
DNA molecules containing parts of the DNA from each side of the
captured interaction. The various 3C-based methods differ, mainly,
in the processes used to capture and detect the hybrid DNA mole-
cules after ligation. In 3C experiments, ligation products are
detected by PCR using locus specific primers. 4C uses inverse PCR
to generate genome wide interaction profiles for single loci. 5C
combines 3C with hybrid capture approaches by annealing and
ligating oligonucleotides in a multiplex setting. Hi-C was the first
unbiased and genome-wide adaptation of 3C. This method includes
a step to introduce biotinylated nucleotides at digested sites,
which facilitate the isolation of ligation products and increase sub-
sequent sequencing efficacy. Three main variants of this protocol
have been described so far. Each differs in the conditions in which
the ligation step is performed: (1) in extremely diluted conditions
(dilution Hi-C [13]), (2) on a solid phase support (Tethered
Conformation Capture [14]), or (3) inside the nucleus
(in situ-Hi-C [7]). Finally, Capture-C and T2C combines oligonu-
cleotide capture technology with 3C and high-throughput
sequencing [15–17]. For all the 3C-based technologies, the output
of the experiment is an interaction matrix that contains the fre-
quency of interaction between pairs of chromatin loci. Despite
their contribution to the field, 3C-based technologies have two lim-
itations. First, the experiments result in an interaction matrix rep-
resenting an average picture of the conformational states that
chromatin may adopt in each of the millions of cells used in the
experiment. Second, current protocols can capture only about
2.5% of all possible interactions occurring in a cell [39,56]. An
attempt in addressing the first point was recently accomplished
with Single-Cell Hi-C maps [39]. However, the map produced for
a single cell still suffers from the second limitation.

Besides 3C-based technologies, light and electron microscopy
are also providing direct observations of the structural organiza-
tion of genomes [57,58]. These experiments have been previously
used to validate aspects of the models obtained from 3C-based
experiments. Although light microscopy is subjected to the diffrac-
tion limit, which makes objects closer than 200 nm difficult to sep-
arate, there are new techniques that make it possible to reach
resolutions down to 10–20 nm [59]. These sub-diffraction tech-
niques are based on sampling observations by varying the excita-
tion light source. Despite the many advances in high-resolution
light microscopy, the folding and the compaction level of the chro-
matin fiber are still hardly distinguishable using microscopy. The
resolution limit of electron microscopy, however, is below the scale
of the chromatin fiber and would therefore make such a direct
observation possible. Unfortunately, electron microscopy is very
damaging, and offers no possibility of observation in living cells.
Nevertheless, electron microscopy has been used to study the
structure of the chromatin fiber at the nucleosome level to charac-
terize the folding properties of the chromatin fiber [60] or to reveal
the exact nucleosome positioning inside a segment of chromatin
fiber [61]. Electron microscopy has also been used in the context
of 3C experiments to characterize the underlying mechanisms of
the 3C protocol [62].

Currently, in the context of modeling, light microscopy has been
used to validate 3D models built using 3C-based data [5,50].
However, the use of integrative approaches for modeling (such as
the Integrative Modeling Platform [63]) makes it possible to use
data from several independent sources to build robust models with
counterbalanced experimental biases. Such input data could
include observations from microscopy, or general knowledge, such
as the nucleus size [14,41,54]. Other types of restraints that may be
integrated in the future include epigenetic knowledge such as
positioning of lamina associating domains [64] or mechanical
properties of chromosomes [65].
3. Data processing

3C-based experiments, in particular Hi-C, result in hundreds of
millions of paired-end reads, whose typical length is about one
hundred base pairs. After sequencing, these reads are filtered to
remove experimental biases [66]. Such filtering consists of two
main steps. First, it removes reads for which one or both ends were
not uniquely mapped to the reference genome. It has been previ-
ously proposed that most of the single-end mapped reads would
essentially belong to centromeric or telomeric regions and thus
could be informative during 3D modeling [25]. Second, the filtering
removes reads in which both ends are mapped into the same
restriction enzyme fragment. These reads are classified into
un-ligated fragments (dangling-ends, DE) or self-circularized liga-
tion products (self-circles, SC). In both cases, the reads are dis-
carded based on the assumption that (i) the probability of
mapping homologous regions is negligible, (ii) the distribution of
DE and SC is likely uniform along the genome and thus
non-informative for the normalization of the data, and (iii) local
features of the chromatin structure will not affect the relative pro-
portions of DE or SC. Typically, after the filtering process, between
40% and 80% of the sequenced reads are removed. However, these
discarded reads could be recycled in the context of data quality
control. For example, it has been proposed that the estimation of
the amount of interactions between mitochondrial DNA and geno-
mic DNA can assess the specificity of the ligation step in 3C-based
experiments [38].

Once these expected experimental biases are filtered out, a
more ‘‘fine-grained’’ correction of the data is required to normalize
the interaction frequencies. This additional filtering, called normal-
ization, aims at removing biases that have not a clear experimental
origin but arise from non-homogeneity of the genome. One of the
most elegant implementations of the normalization step is based
on a probabilistic non-parametric method of effective bias removal
[24]. Despite its elegant implementation, it has been replaced in
practice by more straightforward and fast approaches such as the
iterative correction and eigenvector decomposition (ICE) [25].
Indeed, the ICE method has been extensively used for normalizing
3C-based data in the context of 3D modeling [14,37,41,47]. Yet an
alternative normalization method has been recently proposed,
which estimates the impact of the biases using the number of
restriction enzyme cuts, the GC content and the uniqueness of
the mapping of each read on a given genomic bin [45]. Despite
their differences, all the normalization approaches aim at identify-
ing and reducing the experimental biases that could have an effect
on the probability of capturing an interaction between two geno-
mic loci. It is important to note that this is a field of interest that
is still evolving and new approaches are likely to appear in the near
future.
4. Data quality assessment

Data quality assessment in 3C-based experiments relies on few
statistical measures of the interaction matrix with the main objec-
tive of assessing whether the sequencing depth was enough to
sample the interactions in all the cells in the experiment. As a rule
of thumb, it has been recommended that 90% of the cells in an
interaction matrix should contain non-zero values [13], or that
80% of the loci have at least 1000 contacts when the number of
input reads is relatively high [7]. Once the resolution of the data
has been set (i.e., the matrix has been binned to the size at which
the previous rules are fulfilled), other indicators can be used to
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evaluate the matrix quality. For instance, the proportion of intra-
versus inter-chromosomal contacts is expected to oscillate
between 40% and 60% [14,66]. Furthermore, it has been observed
that, in eukaryotic cells, the decay of the interaction frequency
with the genomic distance, when averaged over the sample, fol-
lows a slope of around �1.0 for interphase chromosomes
[13,28,66]. However, it is important to note that this slope can vary
during the cell cycle of the organism [67] and between organisms.

In the specific context of modeling, assessing whether a matrix
is suitable for 3D reconstruction of the genome or a genomic region
is of primary importance and is still debated. The Consensus Index
[37] can be used to assess a priori the quality of the interaction
matrix for modeling. The Consensus Index measures how far a
given matrix is from satisfying all triangular inequalities.
Triangular inequalities occur when the distance between two
points is higher then the sum of the distances of these two points
to a third one, and their satisfaction is especially important in the
context of non-population based modeling strategies [37,38]. More
recently, the Matrix Modeling Potential score, combining statistical
properties of the interaction matrices, has been used to assess the
potential of the interaction matrix for restraint-based 3D modeling
[68].

5. Three-dimensional (3D) model reconstruction

Genomic 3D reconstruction from 2D interaction maps consists
of two main steps: (i) transforming the observed interaction data
into a set of Euclidian distances or spatial contacts and (ii) finding
a 3D conformation in Cartesian space that satisfies the imposed
distances or contacts. In theory, these two steps can be achieved
by classic multidimensional scaling (MDS), which has been previ-
ously used in protein structure determination [69,70]. However,
and in contrast to protein structure determination, genome recon-
struction based on MDS approaches has intrinsic limitations. For
example, 3C-based experiments contain significant amounts of
noise as well as structural variability. This variability is due to
the fact that they are performed over tens of millions of cells,
and because the chromatin fiber is very flexible and can adopt mul-
tiple conformations. All together, the resulting experimental
3C-based matrices contain many triangular inequalities, which
can only be satisfied through alternative optimization-based 3D
reconstructions. In this section, we discuss and classify different
methods to solve the 3D reconstruction problem (Table 1); we
describe the different 3D reconstruction methods by the way they
represent chromatin, how the independent solutions are scored
and how the solutions are found.

5.1. Representation

The first important choice for 3D modeling of chromatin is the
way the chromatin fiber would be represented as a physical object
(polymer) of consecutive particles (monomers). Although in princi-
ple different shapes can be used for a single particle [71], most of
the modeling strategies use either point particles
[37,38,45,47,49] or spheres of a given radius [14,40,41,43,44,48].
Usually, the genomic size of each of these segments is decided dur-
ing the 3C-based data processing as previously discussed, and the
final model is a homo-polymer where each particle has the same
size (i.e., binned interaction matrices). However, depending on
the experimental data or their analysis, the model can be also rep-
resented by a hetero-polymer with particles of varying size. For
example, a 5C experiment results in interaction matrices in which
the bins map onto the restriction fragments left after digestion,
which have different sizes. As a consequence, the modeling usually
involves a polymer where particle radii are proportional to the
amount of DNA in the fragment [72]. Even when the input data
are equally binned matrices, hetero-polymers can still been used
for modeling. For instance, the entire human genome has been rep-
resented with 428 particles of varying size, where each particle
was obtained by clustering a binned interaction matrix based on
its cross-correlation [14]. Having particles of varying radii there-
fore allows adapting the models to the resolution of the data.

5.2. Scoring

The next step in 3D modeling of genome and genomic domains
is to devise a scoring function that will be optimized to yield the
Cartesian coordinates of all particles in the model. The scoring
function is thus used during sampling to identify, within a set of
possible conformations, those that best satisfy the input data. It
is important to note that scoring is not needed when no optimiza-
tion is performed [37,38]. In this review we define the generic scor-
ing function as:

S ¼ U3C þ UBiol þ UPhys

where U3C accounts for the restraints inferred from the input
3C-based data, UBiol scores restraints from other experimental
observations independent from 3C-based data, and UPhys scores
restraints based on general polymer physics properties. The final
goal of the sampling is to find a conformation of all particles that
minimizes the value of S, that is, where the imposed restraints are
minimally violated. Next, we describe in more detail each of the
terms of this generic scoring function.

Restraints imposed by the 3C-based data U3Cð Þ are inferred
using an inverse relationship with the frequency of interaction
between two particles in the model (that is, between two bins or
restriction fragments in the genome). In generic terms, it can be
expressed as:

Dij /
1
Fij

� �a

where Dij is the spatial distance between particle i and particle j, Fij

is the normalized interaction frequency measured in the 3C-based
experiment, and a an exponent parameter that, depending on the
method, is either fixed, estimated or empirically optimized. The a
parameter takes values close to 1 when it is fixed prior to modeling,
because it matches the characteristic exponent of the crumpled or
fractal globule model [13,30,73]. This model is valid for distances
in the range of 0.7–10 Mb. Nonetheless, a may vary for other poly-
mer models like, for instance, the equilibrium model where the
nominal value is 0.67 [35]. Indeed, several studies point out that
a may vary depending on many aspects of the experiment, includ-
ing cell synchronization [66], clades [47] or chromatin state [44].
When a is optimized, the conversion of interaction frequencies into
distances relies on several assumptions that can arguably bias the
modeling process as well. The most relevant approximations are
the folding of the DNA into a 30 nm fiber, whose existence in vivo
is still controversial [74], and the level of chromatin compaction,
which can vary from 6 to 11 nucleosomes per 11 nm of chromatin
[61,75–78]. An elegant way to circumvent the conversion of interac-
tion frequencies into distances is to compare directly the observed
interaction frequencies to the simulated contacts of the modeled
chromatin structure [14,40]. The drawback of this method is that
it is, a priori, scale less, but the final size/occupancy can be still
recovered a posteriori using nucleus size or chromatin density.

Restraints imposed by other biological data or knowledge UBiolð Þ
rely on direct observations of the cells used for the experiment. For
example, the nucleus/cell size and shape [14,41,43,52] or the rela-
tive positioning of the nucleolus [41] could be used to confine the
model to a given physical space. Other biological restraints can rely



Table 1
Summary of different modeling strategies. Fij is the observed interaction frequency between two particles i and j, Dij is the target distance usually inferred from Fij and rij is the distance computed on the models. N is the total number of
particles.

Method ⁄available
online

Representation Scoring Sampling Models

U3C UBiol UPhys

Fij ! Dij conversion Functional form

ChromSDE⁄ [37] Points
Dij ¼

ð 1
Fij
Þa ifFij > 0
1 if Fij ¼ 0

(
a is optimized

P
i;jjDij<1ð Þ

ðr2
ij�D2

ij Þ
Dij
� k
P
ði;jÞr

2
ij where k is

set to 0.01

N/A N/A Deterministic
semidefinite
programming to find the
coordinates

Consensus

ShRec3D⁄ [38] Points

Dij ¼
1
F 0ij

� �a

if F 0ij > 0

N2P
ði;jÞF

0
ij

if F 0ij ¼ 0

8>><
>>: F0ij is the original Fij corrected to

satisfy all triangular inequalities with the shortest path
reconstruction

N/A N/A N/A Deterministic
transformations of Dij

into coordinates

Consensus

TADbit⁄ [43] Spheres
Dij /

aFij þ b if Fij < c0 or Fij > c
SiþSj

2 if ji� jj ¼ 1

(
a and b are estimated

from the max and the min Fij , from the optimized max
distance and from the resolution. c0 < c are optimized too. si

is the radius of particle i

P
ði;jÞkijðrij � DijÞ2 where kij ¼ 5 if

ji� jj ¼ 1 or proportional to Fij

otherwise

Yes Uexcl and Ubond have
harmonic forms

Monte Carlo (MC)
sampling with
Simulated annealing
and Metropolis scheme

Resampling

BACH⁄ [45] Points Dij /
Bi Bj

Fa
ij

. The biases Bi and Bj and a are optimized bijD
1=a
ij þ cij logðDijÞ where bij and cij are

optimized parameters
No No Sequential importance

and Gibbs sampling
with hybrid MC and
adaptive rejection

Population

Giorgetti et al. [40] Spheres Particles interact with pair-wise well potentials of depths Bij and contact radius a, which is larger than a
hard-core radius and smaller than a maximum contact radius. The parameters are optimized over all
the population of models

No N/A MC sampling with
metropolis scheme

Population

Duan et al. [41] Spheres
F ji�jj ¼

PN�ji�jj
k¼0

Fðk;kþji�jjÞ
N�ji�jj is the average of Fij at genomic distance

ji� jj expressed in kb. Dij ¼ Fji�jj � 7:7� ji� jj assuming that
a 1 kb maps onto 7.7 nm

P
ði;jÞðrij � DijÞ2 Yes Uexcl and Ubond have

harmonic forms
Interior-point gradient-
based method

Resampling

MCMC5C⁄ [49] Points Dij / 1
Fa

ij
where is optimized

P
ði;jÞðFij � r�1=a

ij Þ
2

N/A N/A MC sampling with
Markov chain based
algorithm

Resampling

PASTIS⁄ [47] Points Dij / 1
Fa

ij
where a is optimized bijD

1=a
ij þ cij logðDijÞ where bij and cij are

optimized parameters
No No Interior point and

isotonic regression
algorithms

Resampling

Meluzzi and Arya [48] Spheres
P
ði;jÞÞkijr2

ij where kij are adjusted such that the contact probabilities computed on the models match the

Fij

No Uexcl is a pure
repulsive LJ potential.
Ubond and Ubend have
harmonic forms

Brownian dynamics Resampling

AutoChrom3D⁄ [44] Points
Dij /

aFij þ b if Fmin < Fij < Fc
a0Fij þ b0 if Fc < Fij < Fmax

�
where Fmin (Fmax) are

the min(max) of Fij . The parameters ða;bÞ, ða0;b0Þ and Fc are
found using the nuclear size, the resolution and the decay of
Fij with ji� jj

P
ði;jÞ
ðrij�DijÞ2

D2
ij

Yes N/A Non-linear constrained Consensus

Kalhor et al. [14] Spheres Dij ¼ Rcontact to enforce the pair contact, if the normalized
contact frequency Fij is higher than 0.25. Otherwise the
contact is not enforced

P
models

P
ði;jÞkijðrij � DijÞ2 where kij is

different for pairs of particles, on
different chromosomes, on the same
chromosome, or connected

Yes Uexcl and Ubond have
harmonic forms

Conjugate gradients
sampling with
Simulated annealing
scheme

Population

⁄ These methods are publicly available.
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on previous knowledge, like the tendency of a specific region (e.g.,
centromeres) to aggregate in the nuclear space or the tethering of
specific genomic regions to nuclear or cellular landmarks [41,54].

Finally, restraints can also be based on general polymer physics
UPhys
� �

, to ensure for chain connectivity (neighbor restraints), to
avoid or limit overlapping of the particles (excluded volume) or
to account for bending rigidity. Accordingly, physical restraints
are grouped into three major categories: (i) chromatin connectivity
restraints or resistance to stretching Ubondð Þ, (ii) excluded volume
restraints forbidding two particles to occupy the same space
Uexclð Þ, and (iii) bending force applied to consecutive beads
Ubendð Þ. The first and second parameters aim at maintaining the

connectivity of the chain as well as respecting particle occupancies.
The bending rigidity term Ubendð Þ is relevant at genomic separa-
tions up to 1–2 chromatin persistence lengths and should be
applied only if it is coherent with the 3C-based experiment resolu-
tion. It has been proposed that the persistence length of chromatin
fiber ranges from 170 to 220 nm [79] and spans about 30–35 kb
[80]. Therefore, applying the bending energy contribution makes
sense for models at resolution not larger than about 50 kb. For fur-
ther discussion on this point we refer the reader to other articles of
this special FEBS letter.

5.3. Sampling

The sampling process consists in finding one or many (ensem-
ble) optimal solutions that minimize the previously described scor-
ing function. For that purpose, several optimization strategies can
be employed. The first strategy assumes that a single consensus
(average) model can satisfy all imposed restraints. This strategy
neglects the structural variability inherent to the 3C-based exper-
iment output. Under this category, we find modeling strategies
that analytically identify a single consensus solution [37,38,44]
as well as modeling strategies that require optimization or sam-
pling [47]. Despite the conceptual simplicity and algorithmic effi-
ciency of analytical approaches, which are computationally very
fast, the likely usability and accuracy of the resulting models is
dependent on the quality of the input data, and in particular, on
the amount of structural variability present in the input matrix.
The second type of sampling strategy implies that the input matrix
has not been obtained from a single structure but rather an ensem-
ble of conformations. To identify them, those strategies sample the
conformational space thousands of times (resampling) starting
from a different random configuration. They thus obtain an ensem-
ble of solutions from which each model similarly satisfies the all
input restraints [41,43,48,49]. Finally, the third strategy tries to
account for the structural variability of the experimental data by
optimizing in parallel a given number of models (population), each
accounting for a portion of the observed interactions in the input
matrix [14,40,45]. This last strategy is, in principle, closer to the
experimental sampling of the 3C-based experiment. However it
is also computationally very demanding and relies on the opti-
mization of a number of parameters proportional to the number
of fitted models.

6. Assessing the quality of the models

3C-based experimental data used to model chromatin are sub-
jected to structural variability and experimental/genomic biases.
Additionally, no consensus/systematic quality checks have been
established for the many 3C-based flavors. Therefore, being able
to assess the quality of the resulting 3D models is essential. Next,
we briefly describe a series of tests that can help assessing the
accuracy of the models obtained from 3C-based experiments.
Those range from computational bootstrapping of the data during
modeling to direct observation of the modeled chromatin fiber by
orthogonal experimental approaches.

First, 3D models can be checked for consistency by varying the
amount of data used during modeling. This consists in bootstrap-
ping over the entire set of 3C-based data and building series of
3D models. The resulting models from each independent search
are then checked for their consistency. Such consistency measures
have been previously used in other fields of integrative modeling
[81]. This can also be achieved by repeating the 3D modeling at dif-
ferent resolutions [47]. Alternatively, one can also cross-validate
the modeling for consistency using different 3C-based datasets
obtained with different restriction enzymes or from biologi-
cal/technical replicas of the experiment [5,45]. Second, additional
experimental data not taken into account for modeling can be used
to indirectly validate the 3D conformation of the resulting models.
For example, epigenetic marks have been previously used to vali-
date the structure of the a-globin genomic domain in human
[50] as well as the response of TADs to progesterone treatment
[5]. It is important to stress that the biological knowledge included
in the pool of restraints used for modeling (UBiol, see previous sec-
tion) cannot be used for validation purposes. Finally, the most con-
vincing assessment of the accuracy of the 3D models is the direct
observation of the chromatin fiber through confocal microscopy
[19,22]. However, this verification is also subjected to the struc-
tural variability of the chromatin fiber and limited by its resolution.

7. Obtaining insights from the models

As briefly discussed in the introduction, statistical inference of
chromatin structural features suffers from either low resolution,
as in the case of direct observation by microscopy, or inconsistent
models, as in the case of 3C-based experiments. Furthermore, the
analysis of the 3C-based interaction matrices is usually limited to
a number of features, like identifying loops/co-localization [7,27],
TADs [6,22] or compartments [13]. By reconstructing a 3D object
that best satisfies the input interaction matrix other chromatin fea-
tures may be accessible [43]. For example, one can evaluate chro-
matin density/compaction (the number of nucleotides per
nanometer of chromatin fiber); consistency of the generated mod-
els (how variable the obtained conformations after modeling are);
accessibility of the chromatin fiber (how accessible is the model to
an object of a given size), or differential analysis of two populations
of models to contrast changes in conformation. Finally, 3D recon-
structed models have been also previously used for
de-multiplexing the input matrix into a limited number of plausi-
ble conformational states. Unfortunately, most of the proposed
chromatin measures from the 3D models cannot, at the present
time, be experimentally validated. Therefore, it is important to
assess their consistency using additional biological data or boot-
strapping the input data (see previous section).

8. Visualizing the models

3C-based techniques unveil the spatial nature of chromatin for
which a limited number of available genome browsers, such as
EpiGenome [82] or Juicebox [7], can assist its analysis. These brow-
sers display matrices aligned with classic genomic tracks, which
allows inferring mechanisms but requires the experienced
researcher to create a mental image of the folding. However, recon-
structing 3D models using 3C-based experiments result in sets of
Cartesian coordinates for which none of the popular genomic
browser is ready now days. These spatial datasets can be viewed
using tools that have been previously developed for protein struc-
ture visualization such as Chimera [83]. More recently, the
Genome3D software was developed to visualize 3D models of
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genomes and genomic domains with a special attention to the
multi-scale property of the data [84]. However, there is still the
need for a browser that allows the user to visualize 3D models
alongside genome-wide datasets. Examples of browsers from other
fields clearly show the utility of integrating these disparate data
types, e.g., MulteeSum for gene expression [85] or Aquaria for pro-
teins [86]. Key to advancing the development of these types of
tools is the creation of standard formats for interchange of genomic
spatial datasets. These could be within existing frameworks such
as the PDB-X (http://mmcif.wwpdb.org/docs/faqs/pdbx-mmcif-
faq-general.html) or by establishing new criteria to respond to
the particular conditions brought by broad-scale,
multiple-resolution, data resolution [87]. Above all, visualization
of genomic structures and mechanisms brings not only technical
challenges, but also requires an evolving grammar to describe
and explore our emerging understanding of genome folding.

9. Future perspective

During the recent years, a plethora of new methods have
emerged that make use of Chromosome Conformation Capture
experimental data to model 3D structures. Here we have briefly
introduced the main concepts behind this new family of 3D recon-
struction methods, which will likely rapidly evolve in the coming
years. In our opinion, the 3D genomics community should take
advantage of this to address the likely challenges ahead. First,
experimental datasets obtained by 3C-based approaches are of
increasing resolution (now a days �1 Kb for the human genome
maps [7]) and thus validating, storing and disseminating such large
datasets is a challenge. Second, obtaining and integrating diverse
datasets of experimental data from orthogonal approaches (i.e.,
those beyond imaging and 3C-based experiments) is of most
importance to generate more accurate 3D models of genomes
and genomic domains. Third, it is also important to merge
physics-based modeling with current restraint-based modeling.
Forth, we will also need to properly store and disseminate the
resulting 3D models from the diverse sets of data. And fifth, visual-
izing the stored 3D models, as well as mapping the wealth of avail-
able genomic data into them, is essential for obtaining biological
insight.
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