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Abstract

The sequence of a genome is insufficient to understand all genomic processes carried out in

the cell nucleus. To achieve this, the knowledge of its three-dimensional architecture is nec-

essary. Advances in genomic technologies and the development of new analytical methods,

such as Chromosome Conformation Capture (3C) and its derivatives, provide unprece-

dented insights in the spatial organization of genomes. Here we present TADbit, a computa-

tional framework to analyze and model the chromatin fiber in three dimensions. Our

package takes as input the sequencing reads of 3C-based experiments and performs the

following main tasks: (i) pre-process the reads, (ii) map the reads to a reference genome,

(iii) filter and normalize the interaction data, (iv) analyze the resulting interaction matrices,

(v) build 3D models of selected genomic domains, and (vi) analyze the resulting models to

characterize their structural properties. To illustrate the use of TADbit, we automatically

modeled 50 genomic domains from the fly genome revealing differential structural features

of the previously defined chromatin colors, establishing a link between the conformation of

the genome and the local chromatin composition. TADbit provides three-dimensional mod-

els built from 3C-based experiments, which are ready for visualization and for characterizing

their relation to gene expression and epigenetic states. TADbit is an open-source Python

library available for download from https://github.com/3DGenomes/tadbit.

This is a PLOS Computational Biology Software paper.

Introduction

Metazoan genomes are organized within the cell nucleus. At the highest level, chromosomes

occupy characteristic nuclear areas or “chromosome territories”, separated by inter-chromatin

compartments [1]. Underneath, chromosomes have additional levels of arrangements and
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organize themselves into the A and B compartments [2], which in turn are composed of Topo-

logically Associating Domains (TADs), defined as regions of the DNA with a high frequency

of self-interactions [3–5]. Determining the three-dimensional (3D) organization of such geno-

mic domains is essential for characterizing how genes and their regulatory elements arrange in

space to carry out their functions [6]. Chromosome Conformation Capture (3C) [7] and its

derived methods (here referred to as 3C-based methods) are now widely used to elucidate the

spatial arrangement of genomes [8]. Although the frequency of interactions between loci can

be used as a proxy for their spatial proximity, 3C-based contact maps do not easily convey all

the information about the spatial organization of a chromosome. This information, however,

can be inferred using computational methods [9]. Here we present TADbit, a Python library

for the analysis and 3D modeling of 3C-based data. TADbit takes as input the sequencing

reads of 3C-based experiments and performs the following main tasks: (i) pre-process the

reads, (ii) map the reads to a reference genome, (iii) filter and normalize the interaction data,

(iv) analyze the resulting interaction matrices, (v) build 3D models of selected genomic do-

mains, and (vi) analyze the resulting models to characterize their structural properties (Fig 1).

TADbit builds on existing partial implementations of methods for 3D genomic reconstruction

[10–20]. As a validation of the model-building module of TADbit, a systematic analysis of its

limitations has shown that 3D reconstruction of genomes based on 3C-based data can produce

accurate 3D models [21].

TADbit has been already shown to provide biological insights [22–24]. Here, we introduce

a new application of TADbit for the modeling and analysis of 50 genomic domains of the Dro-
sophila melanogaster genome. It was shown that the Drosophila genome consists of five distinct

chromatin types determined by mapping 53 broadly selected chromatin proteins and four key

histone modifications [25]. The chromatin types were labeled with colors and comprise “blue”

chromatin, enriched in Polycomb group proteins and H3K27 methylation, “green” chromatin,

Fig 1. TADbit flowchart. Main functions of the TADbit library from FASTQ files to 3D model analysis. TADbit

accepts many input data types such as FASTQ files, interaction matrices and 3D models. A series of python

functions in TADbit (Supplementary Text) allow for the full analysis of the interaction data, interaction

matrices as well as derived 3D models.

https://doi.org/10.1371/journal.pcbi.1005665.g001
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bound by HP1 and located at peri-centromeric regions, “yellow” and “red” chromatin, har-

boring distinct classes of active genes, and “black” chromatin, covering more than 40% of the

Drosophila genome and characterized by low occupancy of most chromatin markers. More

recently, genome-wide 3C-based interaction maps in Drosophila revealed that TAD bound-

aries are gene-dense, highly bound by transcription factors and insulator proteins and corre-

spond to transcribed regions [5, 26]. Moreover, it was shown that the active red and yellow

chromatin types preferentially locate at TAD borders while the others preferentially locate

inside TADs. This work highlighted the existence of interplay between the structural organiza-

tion of genomic domains and their chromatin composition. Similar relationships have also

been observed in other organisms, including mouse and human [27–30].

To further characterize the structural properties of the Drosophila chromatin types, we have

used TADbit on available Hi-C data. By building 3D models of genomic domains covering more

than 50 Mb of the Drosophila genome, we show that the five previously described chromatin col-

ors are characterized by distinct structural properties. Black chromatin is a compact, dense and

closed chromatin fiber. In comparison, the heterochromatic types blue and green are more open

and accessible. Finally, the yellow and red types feature a loose and open chromatin, potentially

accessible to proteins and transcription factors responsible for regulating resident genes.

Design and implementation

TADbit has been implemented as a Python library to deal with all steps to analyze, model and

explore 3C-based data. With TADbit the user can map FASTQ files to obtain raw interaction

binned matrices (Hi-C like matrices), normalize and correct interaction matrices, identify and

compare Topologically Associating Domains (TADs), build 3D models from the interaction

matrices, and finally, extract structural properties from the models. Next, we describe in more

details each of the main independent tasks that can be executed with TADbit:

FASTQ quality check

The TADbit pipeline starts by performing a quality control on the raw data in FASTQ format.

This quality check is similar to the tests performed by the FastQC program [31] with adaptions

for Hi-C datasets (S1 Fig).

Iterative mapping

TADbit implements an iterative mapping strategy that is a slightly modified version of the origi-

nal ICE method developed for the HiClib library [32]. The minimal differences with the original

ICE method are the mapper used (TADbit uses GEM [33]) and a more flexible way to define

the position of the iterative mapping windows, which can now be fully defined by the user.

Fragment based filtering

The filtering strategy implemented in TADbit builds on previously described protocols [32] to

correct all the computationally detectable experimental biases/errors. After mapping, TADbit

can filter the reads depending on ten criteria (S2 Fig), which can be applied individually or as a

set of filters.

Interaction matrix cleaning and normalization

Once filtered, the read-pairs are binned at a user-specified resolution (bin size) depending on

the average density per cell required by the analysis to be performed. However, a minimum

amount of counts per bin is usually required for the normalization of the data [32]. To

Automatic analysis and 3D-modelling of Hi-C data using TADbit
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determine the threshold amount of interactions for masking columns, TADbit proceeds in two

steps. First, the columns with zero counts are removed. Second, a polynomial is fitted to the

empirical distribution of the total amount of interactions per column, and the first mode of this

distribution is used to define the exclusion threshold value below which columns will be

removed. After the column removal, the remaining bins are further normalized to remove local

genomic biases (e.g., to correct for the genomic regions with higher mappability and/or PCR

amplification). The normalization procedure implemented in TADbit is a modification of the

ICE balancing method implemented in the HiClib library [32]. The modification in TADbit

consists simply in truncating the balancing process of the ICE normalization after an undefined

number of iterations. In TADbit, and with default parameters, the ICE normalization stops

when a maximum of 10% of variability between the sum of interactions in a given bin and the

average over the genomic matrix is reached (this percentage of variability can be user-defined).

Comparison of interaction matrices

Once normalized, the Hi-C contact matrices can be compared to estimate their degree of simi-

larity. For this purpose, TADbit implements plotting functions (S1 Text) and two comparison

scores: (i) a Spearman rank correlation between bins in two matrices at increasing genomic

distances (Fig 2C) and (ii) a Pearson correlation between the first eigenvectors of each matrix

(Fig 2D). Although both measures aim at identifying whether two matrices are similar or not,

they have different properties. The first one is sensitive to the matrix resolution and decays as

the genomic distance of the compared bins increases. The second one provides a more global

comparison of the matrices and aims at identifying whether the internal correlations in the

matrix (detected by its principal eigenvectors) are similar between the compared matrices.

Genome segmentation into Topologically Associating Domains (TADs)

TADbit analyzes the contact distribution along the genome and subsequently segments it into

its constitutive TADs, with each TAD border corresponding to a vertical slice of the Hi-C

interaction matrix. TADs can be computed on the interaction matrix from a single experiment

or from the matrix resulting from the merge of different experiments. To calculate the position

of borders between TADs along a chromosome, TADbit employs a breakpoint detection algo-

rithm [22] that returns the optimal segmentation of the chromosome under BIC-penalized

likelihood (S2 Text). The algorithm in TADbit for segmenting the genome into TADs among

others have been recently assessed [34].

Alignment of TAD boundaries

TAD borders are conserved across different cell types and even across species, indicating that

topological domains may play an important role in the organization of chromatin in metazoan

genomes [3]. To assess whether TAD borders are conserved throughout different experiments,

we implemented a multiple-experiment border alignment algorithm. Starting from different

border definitions of the same genomic region, TADbit aligns each TAD to a consensus TAD

list, either using the classic Needleman-Wunsch algorithm [35] or using a method based on

reciprocal closest boundaries.

Three-dimensional (3D) modeling of genomic domains

In TADbit, the three-dimensional (3D) models of selected genomic domains are generated by

transforming the input 3C-based interaction maps into a set of spatial restraints that are later

satisfied using the Integrative Modeling Platform (IMP) [36], as previously described [12].

Automatic analysis and 3D-modelling of Hi-C data using TADbit
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Fig 2. Hi-C interaction maps at 100 kb resolution for the entire Drosophila genome. (a) Raw, filtered and normalized genome-wide interaction maps for

the BR dataset. Only after the normalization of the data, the enriched interaction between centromere regions of the Drosophila chromosomes can be

observed. (b) Normalized maps for the TR1 and TR2 datasets. (c) Comparison of the normalized Hi-C maps between the three datasets at 100 kb resolution.

The Spearman correlation was computed between off-diagonal regions as a function of their genomic distance. (d) Matrices of Pearson correlation

coefficients of main eigenvectors from the three Hi-C datasets (that is, BR, TR1 and TR2). The data shows the expected high correlation of the top three

eigenvectors [32]. (e) Genomic coverage of the mapped reads per chromosome from the SUM dataset. (f) Hi-C normalized interaction matrix at 100 kb

Automatic analysis and 3D-modelling of Hi-C data using TADbit
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Structural clustering of the resulting 3D models

To assess the structural similarity of the generated models, TADbit first structurally aligns

them using a pair-wise rigid-body superposition that minimizes the Root Mean Squared Devi-

ation (RMSD) between the superimposed conformations [37]. Then, a matrix with an all-

against-all similarity score (S3 Text) is input in the Markov Cluster Algorithm (MCL) program

[38] for generating unsupervised sets of clusters of structurally related models.

Structural analysis of the resulting 3D models

In this work, we have showed how TADbit could be used to model the 3D architecture of chro-

matin. However, we have implemented a detailed description of how to use each function

implemented in TADbit and a series of structural analysis in TADbit to be applied on the gener-

ated 3D models (see online documentation and tutorials http://3dgenomes.github.io/TADbit)

and outputs several measures to describe the architecture of the model.

Output and visualization of 3D models

TADbit includes a simple three-dimensional model viewer using matplotlib [39], it is designed

to be compatible with other visualizing tools, including TADkit (http://www.3DGenomes.org/

TADkit).

Results

Chromatin interaction maps of the Drosophila melanogaster genome

The TADbit pipeline starts from raw data (i.e. reads generated from a 3C-based experiment).

We downloaded SRA files from the NCBI Gene Expression Omnibus under accession number

GSE38468 [26], and converted them to FASTQ files using the SRA Toolkit [39]. The dataset

contained three separate Hi-C experiments [2] performed on Drosophila Kc167 cells using the

restriction endonuclease HindIII, consisting of one biological replicate (SRR398921) and two

technical replicates (SRR398318 and SRR398920), labeled here as “BR”, “TR1” and “TR2”.

They comprised about 194, 67 and 112 million paired-end reads, respectively (Table 1). A

quality check of the first million reads in each of the FASTQ file showed that the average

PHRED scores [40] were higher than 25 across each of the 2x50 bp paired-end reads, which is

indicative of good quality. Moreover, TADbit assessed that more than 95% of the reads had

undergone digestion during the Hi-C experiment and only ~2% of the reads contained dan-

gling ends sensu stricto (reads starting with a digested restriction site, S2 Fig). Next, the paired-

end reads were aligned in TADbit to the Drosophila reference genome (dm3) using the GEM

mapper [33] with a previously proposed iterative mapping strategy [32]. With this strategy,

67.0% to 77.8% of the original reads could be uniquely mapped (Table 1). After discarding

those with only one mapped end, the number of mapped pairs diminished (50.2% to 63.5% of

the original reads). These numbers were similar to those reported in the original experiments

[26]. After mapping, the reads were further filtered as previously described [32], resulting in

about 48, 24, and 41 million valid pairs (or interactions) for the BR, TR1 and TR2 experiments,

respectively (Table 1). Finally, the filtered interaction maps were normalized using the iterative

correction and eigenvector decomposition (ICE) procedure [32], also implemented in TADbit

(Fig 2A). The resulting interaction matrices were highly correlated (Fig 2B, 2C and 2D), which

resolution for the SUM dataset. The three main eigenvectors of the normalized interaction matrix mark the position of centromeres (E1), chromosomes (E2),

and chromosome arms (E3). TADbit automatically generated all the plots in the figure.

https://doi.org/10.1371/journal.pcbi.1005665.g002
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prompted us to merge the input reads into a single dataset of more than 372 million reads. The

new dataset, herein referred to as “SUM”, was also automatically filtered and normalized by

TADbit (Fig 2E and 2F). The interaction map from the SUM dataset shows all the previously

described features of the 3D organization of the Drosophila genome, including the chromo-

some arm territories, the clustering of centromeres and the infrequent interactions between

telomeres.

The Drosophila genome is partitioned into TADs of different robustness

Next, we generated 10 kb resolution interaction maps of the Drosophila genome to which we

applied a TAD boundary detection algorithm implemented in TADbit (Design and Imple-

mentation and S2 Text). This algorithm uses a change-point detection approach inspired from

methods used to identify copy number variations in CGH experiments [41]. Briefly, we use

Poisson regression to find the most likely segmentation of the chromosome in m TADs and

choose the value of m associated with the optimal Bayesian Information Criterion. In addition

to the optimality of the solution, the main advantage of the new algorithm is the assignment of

a robustness score to each TAD boundary (Design and Implementation and S2 Text). TADbit

identified a total of 689 TADs with an average length of 162.8 kb (ranging from 20 kb to 1.5

Mb), representing larger TADs than previously reported [26]. Given the hierarchical organiza-

tion of the genome [8], we set out to assess whether the difference was due to the identification

of new borders or to the merging of the identified TADs. We downloaded the interaction

matrices and the TAD borders as defined by Hou et al. [26] (here referred to as the original

definition) and compared them to the borders obtained by running TADbit on these interac-

tion matrices (Fig 3A, 3B and 3C). To this end we used the TADbit module to align multiple

TAD boundaries from several experiments (Design and Implementation and Fig 3D). Overall,

81% of the borders defined by TADbit align within 20 kb of an original border when using the

TADbit definition as reference (Fig 3E). The number decreases to 67% of the borders when

using the original definition as a reference. By forcing TADbit to identify the same number of

borders as the original definition (1,110 borders), the agreement increases to 74% within 20

kb. For comparison, the agreement of the TADbit border definitions between the three inde-

pendent Hi-C experiments (BR, TR1 and TR2) is about 90%. The degree of similarity between

the original and the TADbit definitions points to a variation of the algorithm sensitivity more

than to discrepancies (see Fig 3D for instance). Moreover, the borders present only in the

TADbit definition usually have a weak strength. Indeed, the agreement increases to 94% by

comparing borders of 6 or higher strength as defined by TADbit. In summary, our results

using TADbit confirm the previously described TAD level partitioning of the Drosophila
genome and refine it with a confidence score. Such strength score could later be used to char-

acterize the hierarchical organization of the genome in TADs or as an indicator of the confi-

dence in the prediction (S3 Fig).

Automatic modeling of 50 genomic regions of the Drosophila genome

Next, we used TADbit to model the 3D structure of 50 selected genomic regions of about 1 Mb

each (S1 Table). It is important to note that there is not an optimal size for modeling a chroma-

tin region. The optimal size depends on the experimental design, the underlying biological

question and the computational power. The 50 regions were selected based on their chromatin

colors composition [25]. The selection included the top ten regions of the genome most en-

riched in each of the five defined chromatin colors. Given the non-homogenous distribution

of chromatin colors in the Drosophila genome, where the genome is composed of large stret-

ches of black chromatin interspersed by shorter domains of blue, yellow and red chromatin
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(green chromatin is an exception, as it is mainly found in peri-centromeric regions and on

chromosome 4), finding continuous 1 Mb stretches of chromatin for the blue, yellow and red

colors was not always possible (Fig 4A). For instance, the highest red coverage in a 1 Mb region

of the genome was only 22%. For yellow and blue, the maximum coverage was 48% and 52%,

respectively, whereas for black and green chromatin types the maximum coverage was 98%

and 100%, respectively.

All the selected genomic domains yielded a Matrix Modeling Potential (MMP) score [21]

ranging from 0.85 to 0.96, which is predictive of high accuracy models (S1 Table). To model

the 3D structure of the 50 regions, we used as input the Hi-C interaction matrix where each 10

kb bin was represented as a spherical particle in the model. All the particles were restrained in

space based solely on their measured interactions, chain connectivity and excluded volume.

The size of the spherical particles representing 10 kb was defined by the relationship

0.01nm/bp assuming the canonical 30 nm fiber [42]. However, this relationship can be modi-

fied or optimized using the “scale” parameter in TADbit [12]. We modeled the chromatin as a

homopolymer, assuming that the space occupied by each 10 kb piece of chromatin is constant.

This strategy is necessary because of two reasons. First, the amount of free parameters needed

Fig 3. TAD border detection and comparison with the results from Hou et al. [26]. (a) Hi-C normalized interaction matrix at 10 kb resolution for the first

4.5 Mb of chromosome 2L in the Drosophila genome. Interactions matrix and TAD borders were obtained from published data [26]. (b) Hi-C normalized

interaction matrix from the same genomic region and resolution as in panel a. The interaction counts are as previously published [26] but the TAD borders

are those defined by TADbit. (c) Hi-C normalized interaction matrix from the same genomic region and resolution as in panel a. Interaction data and TAD

borders are both generated by TADbit. (d) TAD border alignments between the three differently processed experimental data: borders defined in Hou et al.

[26] (Hou-2012, top graph), borders defined by TADbit using the Hou-2012 matrix (mid graph), and borders and matrix determined by TADbit (bottom

graph). Dark and light grey arches indicate TADs with higher and lower than expected intra-TAD interactions, respectively. TAD borders are indicated with a

black arrow for the Hou-2012 defined borders and by color arrows for the TADbit identified borders. TADbit border robustness (from 1 to 10) is identified by a

color gradient from blue to red. (e) Comparison of the agreement between the aligned TAD borders in the three datasets. As a reference, the horizontal grey

line indicates a ±20 kb (2 bins) agreement between the biological replica (BR) and the first technical replicate (TR1) as determined by TADbit. The plots in

panels a to d were automatically generated by TADbit.

https://doi.org/10.1371/journal.pcbi.1005665.g003
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to optimize the size of each particle independently is intractable statistically and computation-

ally. And, second, we cannot define categories of particles using information about their epige-

netic state (with for example smaller heterochromatic particles), because the information

about epigenetic states of the chromatin is later used to assess the quality of the 3D models.

The conversion from interactions to distances was previously published [12]. Briefly,

TADbit considers an inverse relationship between spatial distances and the corresponding

Fig 4. TADbit 3D models and structural properties. (a) Genomic coordinates, chromatin color proportions, 3D models and structural clustering for the five

regions with highest coverage for each color in the Drosophila genome. The ensemble of models for cluster number 1 (the most populated cluster) for each

color is represented by its centroid as a solid tube colored by its particle colors. The ensemble around the centroid is simulated by a transparent surface

covering a Gaussian smooth surface 150 nm away from the centroid. Figures of 3D models were produced by Chimera [47]. The structural clustering of the

2,000 models produced per region were aligned with TADbit and clustered by structural similarity. Most modeled regions segregate into two large clusters

corresponding to mirror images of each other. (b) Comparison of the input interaction Hi-C matrix to a contact map from the 2,000 built models per region,

with Spearman correlation coefficient. (c) Structural properties by particle are shown for accessibility (percentage), density (bp per nanometer), interactions

(number), and angle (degree). The background of the plot represents the color assigned to each of the particles in the models. TADbit automatically

generated all plots.

https://doi.org/10.1371/journal.pcbi.1005665.g004
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frequencies of interactions. Given this assumption, TADbit transforms the frequencies of

interactions into spatial restraints differently for consecutive and non-consecutive particles.

Two consecutive particles are spatially restrained according to their occupancy, which corre-

sponds to the sum of their radii. Non-consecutive particles are restrained based on empirically

identified parameters that define a set of restraints, their distances and the forces applied to

them. TADbit empirically identifies three optimal parameters using a grid search where a lim-

ited number of models are built for each set of parameters. The three parameters are: the prox-

imal distance between two non-interacting particles, a lower bound cut-off to define particles

that do not interact frequently and an upper bound cut-off defining particles that do interact

frequently. Finally, the modeling parameters are optimized by maximizing the correlation

between the contact map of the models and the input Hi-C interaction matrix (Design and

Implementation and S1 Table).

All the 50 modeling exercises resulted in high correlations between the contact maps and

the Hi-C interaction matrices, ranging from 0.83 to 0.93 (Fig 4B and S1 Table). Altogether, the

modeled regions covered a total of 51.8 Mb of the Drosophila genome, forming the largest

dataset of genomic regions modeled at 10 kb resolution (S4 Fig).

Structural properties of the Drosophila chromatin colors

The generated models were automatically analyzed by TADbit to further characterize their

structural properties. In particular, among the set of descriptive measures available in TADbit,

we calculated four main structural properties for each particle (genomic bin) in the models.

Those included: (i) accessibility, measuring how accessible from the outside a particle is; (ii)

density, measuring the local compactness of the chromatin fiber; (iii) interactions, counting the

number of particles within a given spatial distance from a selected particle; and (iv) angle, mea-

suring the angle formed by a particle and its two immediate neighbor particles. To assess

whether the different occupancy of proteins and chromatin modifications defining the five col-

ors of chromatin had an influence on the 3D structure of the genome, we assigned to each par-

ticle one of the five chromatin colors if at least 50% of the 10 kb region was covered by this

chromatin type [25]. Particles with non-homogenous colors were assigned to the undefined

“white” color. These four measures provided an overview of the structural properties of each

color in a particle-based manner. Models with decreasing amount of black, blue and green par-

ticles resulted in less compact and regular structures compared to those enriched in blue or

black particles (Fig 4C). For example, the top black region (98% black, 1% red and 1% white)

had low accessibility throughout, combined with a relatively high density (interestingly, the

lowest density for that region corresponds to the only red particle), high number of interac-

tions and closed angle between particles (Fig 4C last column).

Overall, the chromatin colors resulted in distinct structural properties (Fig 5A). For exam-

ple, black chromatin was the least accessible (median accessibility 26.5%), compared to green

and blue (median accessibilities 34.4% and 34.3%, respectively) and to yellow and red (median

accessibilities 46.5% and 51.6%, respectively). Black chromatin also featured the highest den-

sity in our models (median 212 bp/nm). This was slightly more than blue (207 bp/nm) and

substantially more than green, yellow and red (182 bp/nm, 180 bp/nm, and 179 bp/nm, re-

spectively). The chromatin type with most interactions was green (median 48.7 interacting

particles within 250 nm) followed by black (45.3), yellow (43.7), blue (41.9), and red (37.9)

chromatin. Finally, yellow and red chromatin featured the most extended fibers (median abso-

lute angles 94.6˚ and 89.7˚, respectively), compared to blue (85.3˚), green (82.6˚) and black

(80.3˚). Taken together, the 3D models generated by TADbit indicate that the chromatin types

of Drosophila have intrinsic and distinctive structural properties.
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Fig 5. Structural properties of the five described chromatin colors. (a) Distribution of each of the four structural properties (that is,

accessibility, density, interactions, and angle) grouped by chromatin colors (including the undefined “white” color for particles of non-

homogeneous coloring). Statistical significance of the differences as computed by Tukey’s ‘Honest Significant Difference’ test (*: p < 0.01, ***:

p < 0.001, ns: non-significant). (b) Schematic representation of the structural properties of the five colors for the Drosophila chromatin.

https://doi.org/10.1371/journal.pcbi.1005665.g005
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It has been shown that the five types of Drosophila chromatin not only differ in protein

composition but also in biochemical properties, transcriptional activity, histone modifications,

replication timing, and DNA binding factors targeting [25]. They also differ in the sequence

properties and the functions of the embedded genes. Now we demonstrate that the chromatin

types also have specific and distinctive structural features (Fig 5B). Importantly, these results

shed light on the nature of the elusive black chromatin. Most chromatin markers are depleted

in this environment, including those responsible for active repression of transcription. It is

thus unclear how genes are maintained silent and why transcription factors do not bind to

their consensus sequence in black chromatin. Our results suggest that part of the answer is

that black chromatin is very compact and inaccessible to external factors. The high curvature

of black chromatin fibers in the models suggests that those regions are intrinsically ordered or

that they are compressed. The enrichment of the linker histone H1 in black chromatin may

account for all these properties. The previous conception of heterochromatin was closer to

green (HP1-bound) or blue (Polycomb-bound) chromatin types. Interestingly, both of them

are more accessible than black chromatin, yet green chromatin has a higher number of interac-

tions. This indicates that green chromatin, compared to black chromatin, is a more open but

irregular structure where specific interactions are more plausible within a distance cut-off. In

contrast, the closed and regular organization of black chromatin results in fewer likely unspe-

cific interactions per particle. This may somehow be related to the observation that the expres-

sion of some genes translocated to HP1-bound regions tends to fluctuate, a phenomenon

known as position effect variegation [43]. We speculate that genes caught in this chromatin

environment may be trapped in the local entanglement and physically locked away from their

enhancers. Both yellow and red chromatin exhibit the most different structural features com-

pared with black chromatin. Their 3D models are open and accessible, which is consistent

with the fact that those regions are mostly transcribed and bound by many transcription fac-

tors. However, the overall protein occupancy in red chromatin is substantially higher than in

yellow chromatin, yet their overall structural properties are relatively similar. This suggests

that the extraordinary occupancy observed in red chromatin is not necessarily rooted in its

conformational properties, but rather in mechanisms that operate at a finer scale. Additional

studies will be needed to further investigate the molecular mechanisms associated to the struc-

tural properties of the chromatin types. However, our 3D models, as well as their correlation

with the epigenetic features, are a firm basis for future investigation on chromatin occupancy

by proteins and it spatial organization.

Availability and future directions

Here we introduced TADbit to comprehensively address all the necessary steps from FASTQ

files to the full analysis of 3D models. Currently, TADbit is the only computational pipeline to

cover all relevant steps [44], including: (i) read quality control and design of the mapping strat-

egy; (ii) mapping of reads to the reference genome; (iii) interaction map filtering and normali-

zation; (iv) interaction matrix analysis, including matrix comparison, TAD detection and

TAD alignment; (v) 3D modelling of genomes and genomic domains; and (vi) 3D model anal-

ysis. Recently, several publications have emerged comparing available tools, including TADbit,

for a partial list of these steps. For example, reads mapping and contacts filtering [44–46] or

TAD detection [34, 44]. Unfortunately, 3D modelling assessment is practically impossible

given the lack of a golden set of genomes of known structure. However, initial theoretical

assessments with toy models are being produced [21]. A complete list of the computational

functions implemented in TADbit is provided in the Supplementary Material (S1 Text), each

of which is more deeply described in the TADbit online documentation (http://3dgenomes.
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github.io/TADbit) together with complete tutorials covering each step from sequencing data

to 3D model analysis. Next, we will further expand the TADbit functionality with additional

modules for meta-matrix analysis, loop detection, matrix comparison, and additional features

needed to fully analyze 3C based datasets.

Supporting information

S1 Fig. FASTQ quality control plots generated using the quality_plot function in TADbit.

(a) Quality plots for the BR dataset. Top plot shows the PHRED score (blue line) and number

of “N” positions (black line) as a function of the sequence position in the reads. Bottom plot

shows the number of undigested sites (red), dangling ends (yellow) and re-ligated sites (blue)

as a function of the nucleotide position in the reads. (b) TR1 dataset. (c) TR2 dataset. (d) SUM

dataset. Panels b, c, and d show the same data as described in panel a.

(PDF)

S2 Fig. Schematic representation of all applied filters in TADbit to remove 3C-based arti-

facts in the mapped reads. The filters include dangling-ends, self-circles, errors, random

breaks, too short, too large, over-represented or duplicated reads. The exact definition of each

of the filters can be found in the “online methods” section of the manuscript.

(PDF)

S3 Fig. Percentage of borders of a given robustness score. Data for borders aligning within

10 kb (a) or exactly in the same bin (b). The plot on the left of the panels assesses the global

sensitivity of TADbit predictions by comparing it with TAD borders “original definition” (see

main text). The plot on the right assesses the sensitivity of TADbit prediction to experimental

replicates. The plots show the border agreements (in percentage) as a function of the TADbit

border strength.

(PDF)

S4 Fig. 3D models of selected domains in the Drosophila genome. Superimposed 3D struc-

tures for selected models in cluster #1 for each of the 50 modeled domains. Models are colored

by their particle chromatin type as previously defined [25]. They can be directly visualized

using TADkit by visiting the Web site http://www.3DGenomes.org/datasets/serra_etal.

(PDF)

S1 Table. Selected 50 regions of the Drosophila melanogaster genome for modeling. Col-

umns in the table correspond to: Chromosome, starting coordinate, end coordinate, size of the

region (in Mb), index number of the first bin (10Kb bins), index number of the last bin, size of

the region (in bins), fraction of the different colors (white, red, yellow, green, blue and black),

MMP score [21] of the interaction matrix, correlation coefficient of the contact map of the

final models and the initial interaction matrix, TADbit parameters for the modeling (includ-

ing, scale, lower distance, lower cut-off, upper cut-off, and distance cut-off). Description of the

parameters can be found in the main text.

(PDF)

S1 Text. TADbit classes and functions. Description of all functions and classes available in

TADbit.

(PDF)

S2 Text. TAD border detection from interaction matrices. Outline of the TAD detection

algorithm implemented in TADbit.

(PDF)
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S3 Text. Structural similarity score for model clustering. Description of the similarity mea-

sure comparing two models generated with TADbit.

(PDF)

S4 Text. Serra et al 2015 dataset. Description of the Serra et al 2015 dataset to reproduce the

data in this article.

(PDF)
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