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Somatic cell reprogramming into PSCs is a widely studied model 
for dissecting how TFs regulate gene expression programs and 
shape cell identity1,2. Chromosomal architecture has recently 

been shown to be cell-type specific and to be critical for transcrip-
tional regulation3–5, but its importance in cell-fate decisions remains 
poorly understood.

Two major levels of topological organization have been identified 
in the genome6–8. The first level segregates the genome, at the mega-
base scale, into two subnuclear compartments: the A compartment, 
which corresponds to active chromatin typically associated with a 
more central nuclear position, and the B compartment, which repre-
sents inactive chromatin enriched at the nuclear periphery/lamina9–14. 
Compartmentalization is consistent among individual cells and is a 
potential driver of genome folding15. A second submegabase level con-
sists of topologically associated domains (TADs)16–18 and chromatin 
loops11, which restrict or facilitate interactions between gene-regula-
tory elements19,20. Importantly, modifying chromatin architecture can 
lead to gene expression changes19,21–24. Moreover, de novo establish-
ment of TAD structure during zygotic genome activation has been 
shown to be independent of ongoing transcription, thus demonstrat-
ing that chromatin architecture is not simply a consequence of tran-
scription25–27. Genome topology could therefore be instructive for gene 
regulation28,29, but whether this relationship reflects a general principle 
that occurs on a genome-wide scale in space and time is unknown.

Mechanistic studies with mammalian cell reprogramming sys-
tems have been hampered by the typically small percentage of 

responding cells1,30. To overcome this shortcoming, we have recently 
developed a highly efficient and synchronous reprogramming sys-
tem based on the transient expression of the TF C/EBPα  before 
induction of the Yamanaka TFs OCT4, SOX2, KLF4 and MYC 
(OSKM)31,32. The OSKM TFs activate the endogenous core pluripo-
tency TFs sequentially in the order of Pou5f1 (also known as Oct4), 
Nanog and Sox2, thus suggesting that locus-specific barriers dictate 
gene activation kinetics33–35. Here, we studied how C/EBPα  and 
OSKM affect genome topology, the epigenome and gene expres-
sion during reprogramming. We found that the TFs bind hotspots 
of topological reorganization at both the compartment and TAD 
levels. Dynamic reorganization of genome topology frequently pre-
ceded gene expression changes at all levels and provided an explana-
tion for the sequential activation of core pluripotency genes during 
reprogramming. Together, our observations indicate that genome 
topology has an instructive role in implementing transcriptional 
programs relevant to cell-fate decisions in mammals.

Results
Transcription factors prime the epigenome for reprogramming. 
We exposed mouse bone marrow–derived pre-B cells to the myeloid 
TF C/EBPα  to generate cells denoted Bα  cells. Subsequent activation 
of OSKM has been found to induce reprogramming of nearly 100% of 
Bα  cells into PSC-like cells within 4–8 d (refs 31,32). To obtain a high-
resolution map of changes in gene expression and chromatin struc-
ture, we examined six different reprogramming stages (B, Bα , D2,  
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D4, D6 and D8) and PSCs (Fig. 1a). We profiled the transcriptome 
through RNA-seq, profiled active chromatin deposition though 
dimethyl histone H3 K4 (H3K4me2) ChIP–seq using tagmentation 
(ChIPmentation)36 and profiled chromatin accessibility through 
assay for transposase-accessible chromatin with high-throughput 

sequencing (ATAC–seq)37 (Supplementary Fig.  1). Expression of 
half of all genes was significantly affected (false discovery rate (FDR)  
< 0.01) between any two time points, starting with the rapid silencing 
of the core B cell program initiated by C/EBPα . Pluripotency genes 
were then activated sequentially, with the core pluripotency factors 
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Fig. 1 | Dynamics of the transcriptome and epigenome during reprogramming. a, Schematic overview of the reprogramming system. C/EBPα -ER in  
B cells translocates into the nucleus after β -estradiol (β -est.) treatment. After β -estradiol washout, Oct4, Sox2, Klf4 and Myc (OSKM) were induced by 
doxycycline (Doxy.). b, Box plots of gene expression dynamics (normalized counts) of a set of core B cell (‘somatic’, n =  25) and PSC (‘pluripotency’, 
n =  25) identity genes. All box plots depict the first and third quartiles as the lower and upper bounds of the box, with a thicker band inside the box 
showing the median value and whiskers representing 1.5×  the interquartile range. c, Average gene expression kinetics of Oct4, Nanog and Sox2 during 
reprogramming (n =  2, relative to the levels in PSCs). Inset showing that Nanog expression first appears at D4. d, PCA of gene expression dynamics 
(n =  16,332 genes) during reprogramming. Red arrow, hypothetical trajectory. e, Representative examples of chromatin opening (measured by ATAC–seq) 
and H3K4me2 deposition (measured by ChIPmentation) at gene-regulatory elements controlling B cell (Ebf1) or pluripotency (Zfp42 and Nanog) genes. 
f, PCA of H3K4me2 dynamics during reprogramming (n =  26,351 100-kb genomic bins). Red arrow, hypothetical trajectory. g, Box plots of dynamics of 
H3K4me2 deposition (top) and chromatin accessibility (bottom) at OCT4-binding sites outside (n =  31,869) and inside (n =  821) PSC SEs. h, Expression 
dynamics of genes associated with an SE in PSCs (mean values shown; n =  328 genes). Error bars, 95% confidence intervals (*P <  0.01; **P <  0.001 versus 
B cells, unpaired two-tailed t test). i, Fraction of H3K4me2-positive OCT4-binding sites in PSC SEs (n =  821) during reprogramming; table shows a Gene 
Ontology (GO) analysis for SE genes (n =  212) associated with early OCT4 recruitment. Results shown are based on two independent reprogramming 
experiments; additional information in Methods.
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Oct4, Nanog and Sox2 being activated at D2, D4 and D6, respectively 
(Fig. 1b,c). RT–PCR measurements of primary Nanog and Sox2 tran-
scription confirmed their activation timing (Supplementary Fig. 1e).

Principal component analysis (PCA) revealed a trajectory along 
which B cells acquired a PSC gene expression program (Fig.  1d). 
Epigenome remodeling showed similar dynamics, with an early loss 
of chromatin accessibility at gene-regulatory elements controlling 
the B cell program induced by C/EBPα  and the subsequent estab-
lishment of active and open chromatin at pluripotency genes by 
OSKM (Fig. 1e and Supplementary Fig. 1). OSKM induction led to a 
genome-wide expansion of active chromatin marked by H3K4me2, 
a mark known to be deposited at both primed and active gene-regu-
latory elements38 (Supplementary Fig. 1f). The H3K4me2 landscape, 
compared with that of gene expression, more rapidly converged on 
a pluripotent state, thus suggesting that OSKM TFs prime regula-
tory elements for subsequent gene activation (Fig. 1f). Many regions 
bound by OCT4 in PSCs39 had already acquired H3K4me2 at D2, 
and chromatin opening occurred progressively at OCT4-binding 
sites (Fig. 1g and Supplementary Fig. 1g–i). 37% of OCT4-binding 
sites in predicted PSC superenhancer (SE) elements39 were already 
H3K4me2 positive by D2, whereas activation of most associated 
genes (assigned on the basis of in situ Hi-C data; additional infor-
mation in Supplementary Methods) occurred 2 d later (Fig. 1i–h). 
These early targeted SEs were linked to genes involved in embryo 
development (for example, Oct4, Nanog and Klf9) and metabolism 
(for example, Upp1 and Uck2), a gene signature strongly associated 
with four- to eight-cell-stage embryos (Fig. 1i).

Chromatin state, genome topology and transcription are dynam-
ically linked. We used in situ Hi-C11 to map 3D genome organiza-
tion during cell reprogramming at high resolution and determined 
genome segmentation into A and B compartments (Supplementary 
Table  1). Quantitative changes in A–B-compartment association 
(on the basis of the PC1 values of a PCA on the Hi-C correlation 
matrix) during reprogramming were cumulative, widespread and 
highly reproducible (Pearson R > 0.97) (Fig. 2a,b and Supplementary 
Fig.  2a,b). Although the overall proportions assigned to A and B 
compartments (40% A to 60% B) remained unchanged throughout 
reprogramming, compartmentalization strength (as measured by 
the average contact enrichment within and between compartments) 
was dynamically altered (Supplementary Fig. 2c,d). OSKM induc-
tion initially (D2–D4) strengthened A–B compartment segregation, 
which was followed by substantial loss of compartmentalization 
due to reduced contact frequencies within the B compartment and 
increased intercompartment contacts.

Switching of loci between the A and B compartments was fre-
quent, with 20% of the genome changing compartment at any time 
point during reprogramming. B-to-A and A-to-B switching each 
occurred in 10% of the genome, and 35% of these regions were 
involved in multiple switching events (Supplementary Fig.  2e). 
PCA highlighted a reprogramming trajectory of genome com-
partmentalization highly similar to that seen for the transcriptome 
(Fig.  2c and Supplementary Fig.  2f). Genes that stably switched 
compartment after reprogramming tended to change expression 
accordingly and were enriched in lineage-specific functions: A-to-
B-switching genes were associated with immune-system processes, 
whereas B-to-A-switching genes were enriched in early develop-
mental functions (Supplementary Fig. 2g,h). Compartment switch-
ing typically occurred in regions with low PC1 values at the edges 
of A- or B-compartment domains. At any time point, regions that 
switched also displayed the most substantial PC1 changes, thus sug-
gesting that loci with a less pronounced compartment association 
are more likely to change their compartment status (Fig.  2d and 
Supplementary Fig. 2i–k).

Our dataset allowed us to monitor genome architecture and to 
study its interplay with chromatin state and gene expression changes 

over time. The core transcriptional network that defines B cell iden-
tity40 resided primarily (88%) in the A compartment (for example, 
Ebf1, Pax5 and Foxo1), of which 32% switched to B (Supplementary 
Table 2 and Supplementary Fig. 3a). Both switching and nonswitch-
ing genes were rapidly silenced, but switching genes were repressed 
to a larger extent. In contrast, 40% of core pluripotency genes41 ini-
tially resided in the B compartment, of which 90% switched to A 
(Supplementary Table 2 and Supplementary Fig. 3b). Pluripotency 
genes already in the A compartment were activated early (D2–D4, 
for example, Oct4), whereas genes that underwent B-to-A switch-
ing were activated late (D6, for example, Sox2) (Fig.  2e). We next 
divided all genes that changed expression between endpoints (log2 
fold change > 0.5) into stable (nonswitching) and compartment-
switching groups. Again, downregulated genes that changed com-
partment from A to B (21%) were silenced to a greater extent than 
were nonswitching genes in A (Supplementary Fig.  3c). Likewise, 
upregulated genes that switched from B to A (16%) were upregu-
lated more substantially than genes already residing in A, albeit 
with slower kinetics. Interestingly, quantitative changes in com-
partment association occurred before transcriptional upregulation 
(Supplementary Fig. 3d). To further explore whether compartment 
switching can precede transcriptional changes, we examined four 
clusters of genes (n =  5,467 genes) stably upregulated at early, inter-
mediate or late time points (Supplementary Fig. 3e). Nearly one-third 
of the genes (n =  175/548) that switched from B to A in these clusters 
did so before being upregulated (Fig. 2f and Supplementary Fig. 3f). 
Moreover, genes associated with predicted PSC SEs showed a sub-
stantial increase in A-compartment association at D2 before tran-
scriptional upregulation at D4 (Supplementary Fig. 3g and Fig. 1h).

We performed k-means clustering on the PC1 values of the 20% 
of the genome (n =  8,218 genes) that switched compartment during 
reprogramming, identifying 20 clusters with a wide range of switching 
dynamics that included nonlinear and abortive trajectories (Fig. 2g). 
Eight of the 20 clusters displayed concomitant changes in compart-
mentalization and gene expression (R > 0.9; Fig. 2h). The remainder, 
although generally also showing strong correlations between gene 
expression and PC1 (average R =  0.86; range, 0.56–0.97), consisted of 
clusters with at least one time point at which this correlation was lost 
(Fig. 2h). Genes in these clusters were enriched in metabolic and secre-
tory functions as well as developmental processes (Supplementary 
Fig. 4a,b). Strikingly, 9 of the 20 clusters showed changes in subnu-
clear-compartment status preceding changes in transcriptional out-
put, involving over half of the genes that switched compartment (for 
example, cluster 2.I; Fig.  2h,j). Compartment  modification lagged 
behind changes in gene expression in only a single cluster, and 2 of 
the 20 clusters displayed both preceding and lagging relationships. 
We furthermore observed a very strong overall correlation between 
chromatin state dynamics (gain or loss of H3K4me2) and genome 
compartmentalization (average R =  0.95; range, 0.93–0.98), with con-
comitant changes in H3K4me2 levels and gene expression occurring 
in 13 of the 20 clusters. However, in 7 of the 20 clusters, H3K4me2 
dynamics preceded PC1 changes (Fig.  2i), thus implicating chro-
matin state as a driver of subnuclear compartmentalization. The 
extended Nanog locus provides a prime example of modifications 
to compartmentalization and chromatin state preceding transcrip-
tional changes. It includes a region encompassing Gdf3, Dppa3 and 
the –45 kb Nanog SE39,42, which had already switched from B to A in 
Bα  cells. OSKM induction strengthened A-compartment association 
of the entire locus, activated Gdf3 expression and primed the Nanog 
and Dppa3 regulatory elements (H3K4me2+ATAC+) at D2 for subse-
quent gene activation at D4–D6 (Fig. 2k).

These data showed that genome compartmentalization and 
chromatin state are dynamically reorganized during cell-fate con-
version and are tightly coupled to global changes in gene expression. 
In addition, a substantial number of genes are subject to changes in 
compartmentalization before expression alterations.
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Genome partitioning into TADs is largely stable. We next used 
chromosome-wide insulation potential to identify TAD borders 
and define TADs43, detecting ~2,800–3,400 borders per time point. 
Border calls were highly reproducible between biological rep-
licates (Jaccard index > 0.8) and enriched in binding sites for the 
transcriptional repressor CTCF and transcription start sites17,44 
(Supplementary Fig. 5). Borders not called in both biological rep-
licates were excluded from all subsequent analyses. Partitioning of 
the genome into TADs was largely stable during reprogramming, 
because most TAD borders (> 75%) were detected at all stages. 
Nevertheless, 18% of the 3,100 TAD borders were stably acquired 
(n =  431) or lost (n =  124) during reprogramming, thus resulting 
in a net increase in the number of borders and a decrease in the 
average TAD size from 891 kb to 741 kb (Supplementary Fig. 5). 
Unexpectedly, no correlation was found between the stable gain 
or loss of TAD borders (referred to hereafter as qualitative TAD-
border changes) and CTCF binding. In fact, newly acquired TAD 
borders were relatively depleted in CTCF binding, and CTCF 
enrichment levels did not significantly change during reprogram-
ming at borders gained or lost (Fig. 3a). However, we did observe 
specific regions where qualitative TAD changes clearly correlated 
with CTCF binding, for example, at the Sox2 locus, where acqui-
sition of a new border and chromatin-loop formation (described 
below) was paralleled by a substantial gain in CTCF-binding sites 
(Supplementary Fig. 5g).

The gain or loss of TAD borders did not correlate with overall 
increased or decreased local gene expression, respectively, thus 
suggesting that changes in the level of transcription per se are not 
a main driver of TAD border dynamics (Supplementary Fig.  5h). 
Gene expression changes during reprogramming at dynamic border 
regions were highly context dependent, and there was no apparent 
correlation between border gain or loss and the direction of tran-
scriptional change (Supplementary Fig. 5i). Moreover, these border 
regions rarely switched compartment (3–9% versus 17% for all bor-
ders). Interestingly, at borders that showed transcriptional changes 
(> 0.5 log2 change between endpoints) gene expression was often not 
significantly altered until after TAD borders were newly acquired or 
lost (Fig. 3b and Supplementary Fig. 5j).

Quantitative changes in TAD border strength occur early in 
reprogramming. Local chromatin insulation by TAD borders 
can also be approached quantitatively by calculating an insulation 
strength score (‘I score’; R2 > 0.87 between biological replicates) for 
each border43,45 (Fig. 3c). Compared with qualitative border changes 
(i.e., a gain or loss of border detection), quantitative changes in 
TAD insulation were more abundant: half of all borders showed a > 
20% difference in I score between the first three and last three time 
points of reprogramming (Fig.  3d; green, red and blue clusters). 
Stably acquired or lost borders often had lower average I scores than 
did invariant TAD borders (Supplementary Fig.  6a). CTCF occu-
pancy correlated with I scores, and metaborder plots confirmed that 
the I-score dynamics reflected actual contact maps (Supplementary 
Fig.  6b,c). PCA of I-score kinetics showed a reprogramming tra-
jectory grossly resembling the transcriptome, PC1 and H3K4me2 
trajectories determined earlier (Supplementary Fig. 6d).

Border regions contained a large number of genes with cell-type-
specific functions (for example, ‘immune system’ and ‘develop-
mental biology’), in addition to the expected housekeeping genes17 
(Supplementary Fig. 6e,f). Pluripotency genes, including Nanog and 
Sox2, were often found at or near border regions. Both of these loci 
showed rapid I-score changes that preceded their transcriptional 
activation (Fig. 3e–g). In B and Bα  cells, Nanog was separated from 
Dppa3 by a strong border in a region containing the –45 kb Nanog 
SE and Gdf3 (Figs. 3e and 2k), which probably interfered with the 
reported spatial clustering of these genes and enhancers in PSCs46. 
I scores were considerably lower at D2 after OSKM induction 

(Fig. 3g), a process facilitating the interactions between genes and 
their enhancers required for subsequent transcriptional activation 
(D4–D6). Furthermore, both Hi-C-derived virtual chromosome 
conformation capture on chip (4C) data obtained at 5-kb resolution 
and conventional 4C–seq analyses showed higher (cross-)border 
contact frequencies of the Nanog promoter as early as D2 (Fig. 3h 
and Supplementary Fig. 7a). Within the Sox2 TAD, a new internal 
border and several chromatin loops appeared between the Bα  and 
D4 stages, before Sox2 activation at D6. High-resolution virtual 4C 
analysis showed that early border emergence progressively skewed 
interactions of Sox2 toward its key downstream SE47,48, thus result-
ing in the formation of an insulated Sox2-SE subdomain at D6 that is 
likely to be critical for Sox2 activation (Fig. 3i,j and Supplementary 
Fig. 7b).

To further understand the relationship between I-score changes 
and local gene expression, we analyzed transcriptional changes at 
the 184 most dynamic borders regions that increased in insulation 
strength (> 75% change in I score). Gene expression was altered at 
many of these borders (n =  88, > 0.5 log2 change between endpoints) 
during reprogramming, and again there was no clear bias for acti-
vation or repression. At 49% of these borders (n =  43/88) I scores 
increased before transcriptional changes (Fig. 3k), whereas for the 
remaining borders, a mix of concomitant (n =  15), lagging (n =  15) 
and more complex (n =  15) kinetics was observed. Likewise, I-score 
changes also preceded modulation of chromatin state and subnu-
clear compartmentalization (Supplementary Fig.  7). Thus, altered 
insulation strength at TAD borders is an early reprogramming event 
often preceding transcriptome rewiring.

Topological plasticity increases late in reprogramming. TADs dif-
fer in their propensity to form contacts with other TADs49,50. To quan-
tify this ‘connectivity’ within a given TAD, we computed a domain 
score (D score) defined by the ratio of intra-TAD interactions over 
all cis interactions49 (Fig. 4a). Whereas the I score measures a bor-
der’s ability to prevent interactions between two neighboring TADs, 
the D score quantifies a TAD’s tendency to self-interact. D scores 
positively correlated with gene expression and A-compartment 
association (Supplementary Fig. 8), as previously noted49,50. The cor-
relations among D scores, gene expression and compartment asso-
ciation seen at early time points progressively weakened after D4 
(Supplementary Fig. 8a,b). Whereas TADs explained a greater pro-
portion of expression variability than linear neighborhoods when 
we estimated the overall effects of TAD structure on gene expres-
sion (Supplementary Information), this proportion progressively 
decreased during reprogramming (Supplementary Fig. 8c). Together 
with the observed decrease in overall A- compartment segregation 
(Supplementary Fig. 2d), and in line with the previously reported 
decreased organization of inactive chromatin in PSCs51, these data 
suggested that at the topological level cells gradually acquire a plastic  
state characteristic of the pluripotent genome52.

Altered TAD connectivity frequently precedes transcriptional 
changes. PCA of D-score kinetics identified a reprogramming trajec-
tory for TAD connectivity similar to those for compartmentalization, 
transcription, active chromatin and I score (Fig. 4b and Supplementary 
Fig.  8d). k-means clustering showed that 79% of TADs exhibited 
D-score changes (i.e., > 20% change between endpoints) (Fig.  4c). 
The D-score kinetics correlated closely with compartmentalization 
(PC1) changes (R > 0.84; Supplementary Fig.  8e). TADs with the 
most dynamic connectivity pattern frequently switched compartment 
and contained genes enriched in immune-cell and stem-cell-related 
functions (Supplementary Fig. 8f,g). These TADs were highly biased 
in their compartment association: 88% of TADs that showed a rapid 
increase in D scores initially localized to the B compartment, whereas 
83% of the TADs with substantially lower D scores initially resided in 
the A compartment (Supplementary Fig. 8f).
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To assess the correlation between TAD connectivity and gene 
expression, we compared D scores with intra-TAD gene expression 
kinetics for the 16 dynamic D-score clusters (Fig. 4c). In 9 of 16 clus-
ters, D-score changes coincided with alterations in gene expression 
(Fig. 4d), particularly for TADs that showed both higher D scores and 
intra-TAD expression (R =  0.78). However, 7 of 16 clusters showed 
D-score changes preceding transcriptional changes, and no clusters 
showed the opposite pattern (Fig. 4d). Thus, changes in TAD con-
nectivity frequently precede intra-TAD transcriptional modulation.

X-chromosome reactivation evokes TAD reorganization. 
X-chromosome reactivation in PSCs is a classic model for studying  

the relationship between chromosome structure and gene expres-
sion53. The B cells used were derived from female mice carrying 
one inactive X chromosome, thus allowing us to study this process 
within our dataset. Whereas the average TAD connectivity for each 
time point remained similar on autosomes, X-chromosome TADs 
displayed substantial gains in D scores after D4 (Fig. 4e). We rea-
soned that the observed chromosome-wide D-score increase might 
have been caused by a reactivation of the largely TAD-devoid 
inactive X chromosome11,54–56. Indeed, after D4, TAD structures 
were fully reestablished, and key regulators of X reactivation were  
activated (Zfp42, Prdm14 and Tsix), whereas X-chromosome repres-
sors (Xist and Jpx) were downregulated (Fig. 4f,g).
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Cell-type-specific changes in chromatin loops. Chromatin loops 
appear as foci in high-resolution Hi-C maps and represent par-
ticularly strong interactions between two distant regions11. We 
visualized chromatin-loop dynamics during reprogramming by 

performing metaloop analyses at 5-kb resolution of a previously 
identified set of loops in primary B cells and PSCs49. Similarly to the 
TADs that they often demarcate11, chromatin loops generally behave 
as remarkably stable topological structures during reprogramming  
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(Supplementary Fig. 9a). However, cell-type-specific loops, repre-
senting a minor fraction of all loops (13% for B cells, 5% for PSCs49), 
showed a dynamic behavior: B cell–specific loops lost interaction 
strength, whereas PSC-specific loops were established de novo from 
D4 onward (Fig. 5a). Intriguingly, the nature of these somatic and 
pluripotent cell-type-specific loops appeared to be different: PSC-
specific loops were larger than B cell–specific loops and localized 
mostly to the B compartment (whereas virtually all B cell–specific 
loops localized to A); contained fewer genes that showed lower 
average gene expression levels; and were less enriched in cell-type-
specific genes (Fig. 5b,c and Supplementary Fig. 9b). However, in 
both cases, the presence of a loop positively correlated with gene 
expression changes, thus indicating that both the formation and loss 
of cell-type-specific loops are dynamically linked to gene regulation 
(Fig. 5d).

Transcription factors drive topological genome reorganiza-
tion. We investigated the effects of C/EBPα  and OSKM on genome 
topology. Approximately 5% of the genome switched compartment 
during the C/EBPα -induced B-to-Bα  transition, and 5% switched 
compartment during the OSKM-induced Bα -to-D2 transition. Of 
these early switching regions, only 29% (B to Bα ) and 36% (Bα  to 
D2) represented stable switches (Supplementary Fig. 10a). C/EBPα  
had a largely repressive effect (66% A-to-B switches, for example, 
Ebf1), whereas OSKM TFs operated predominantly as activators 
(70% B-to-A switches, for example, Klf9) (Fig. 5e and Supplementary 
Fig. 10a). Both C/EBPα  and OSKM evoked A-to-B switching and 
transcriptional silencing of B cell–related loci. At D2, OSKM induced 
B-to-A switching and activation of known target genes of pluripo-
tency factors involved in developmental processes (Supplementary 
Fig.  10b). However, genes undergoing stable B-to-A switching in 
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A compartment in B cells and TAD border strength is unaltered. In contrast, Nanog activation is preceded by B-to-A compartment switching of its nearby 
SE as well as a decrease in TAD border strength that facilitates Nanog–SE interaction. Sox2 activation is preceded by the formation of a new TAD border 
through chromatin-loop formation that progressively insulates the gene and its SE into a smaller subdomain. The complete 1.6-Mb Sox2 region switches 
from the B to the A compartment, in a manner concomitant with activation of the gene at D6.
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Bα  cells were upregulated only after OSKM activation; many of 
these genes have been implicated in early embryonic development  
(for example, Dppa3; Supplementary Fig.  10c). Globally, C/EBPα  
binding was strongly enriched in the previously identified A-to-
B-switching clusters and depleted in B-to-A-switching clusters 
(Fig.  5f). In contrast, OCT4 and KLF4 binding (as inferred from 
ATAC–seq data) was concentrated in B-to-A-switching regions 
(Fig. 5f and Supplementary Fig. 10d). This biased genomic distri-
bution was already apparent at D2 and was stably maintained or 
reinforced. Hereby, early-switching clusters (D2–D4) were rap-
idly targeted by OCT4 and KLF4, whereas late-switching clusters 
(D6-PSCs) became more gradually enriched (Fig. 5g).

We next examined TF action at TAD borders. OCT4-target 
sites within ~30% of all border regions were already accessible at 
D2 (Supplementary Fig. 10e). OCT4 and KLF4 recruitment to the 
most dynamic borders at D2, as compared with borders bound at 
later time points, correlated with accelerated I-score gains (Fig. 5h 
and Supplementary Fig.  10f). I scores of C/EBPα -bound borders 
increased more rapidly only after OSKM activation at D2 (Fig. 5h), 
and OCT4 enrichment was significantly higher at borders previ-
ously bound by C/EBPα  (Supplementary Fig. 10g), thus suggesting 
that C/EBPα  primes border regions for subsequent OSKM-induced 
topological changes. In agreement with this possibility, OCT4, 
KLF4 and C/EBPα  were frequently recruited to the same dynamic 
borders early in reprogramming (Supplementary Fig. 10h).

Because TF-bound sites cluster over large distances14,51,57,58, we 
sought to address the dynamics of such 3D cross-talk during repro-
gramming by measuring inter-TAD spatial connectivity between 
TF-bound genomic sites at 5-kb resolution (within a 2- to 10-Mb 
window, a procedure analogous to paired-end spatial chromatin 
analysis (PE-SCAn)51). We observed strong interactions between 
EBF1- or PU.1-binding sites in B cells, in agreement with their func-
tion as key B cell regulators (Fig. 6a). These interaction networks 
largely disappeared for EBF1 in Bα  and for PU.1 in D4 cells. Spatial 
clustering of C/EBPα  targets was already present in B cells (Fig. 6a), 
thus indicating that C/EBPα  exploits existing 3D interaction hubs, 
such as those formed by PU.1. Alongside interaction hubs medi-
ated by hematopoietic TFs, OCT4-binding sites clustered from D2 
onward, thus establishing 3D cross-talk among PSC-specific regula-
tory elements and showing that interaction hubs mediated by lin-
eage-specific and pluripotency TFs can coexist (Fig. 6a). Moreover, 
NANOG-targeted regions formed interaction hubs as early as D2, 
before the gene became expressed at D4 (Fig. 6a), thereby suggesting 
that late pluripotency factors ‘hitchhike’ onto an OSKM-mediated 
interaction hub and consequently lock in PSC fate.

In summary, binding of C/EBPα  and OSKM correlates with 
accelerated topological remodeling of compartmentalization and 
TAD insulation. In addition, computing inter-TAD 3D cross-talk 
among TF targets enabled us to visualize the stage-specific forma-
tion and disassembly of TF interaction hubs during reprogramming.

Discussion
Our analysis of somatic cell reprogramming (summarized in 
Supplementary Fig.  10i) showed that the overall dynamics of 
genome topology, chromatin state and gene expression is closely 
linked. Nevertheless, this linkage often occurs in a nonsynchronous 
manner: changes in subnuclear compartmentalization, TAD con-
nectivity and TAD-border insulation strength frequently precede 
transcriptional changes, and the reverse situation occurs only at 
low frequencies. We propose that transcription factors induce suc-
cessive changes in chromatin state and genome architecture and 
consequently enable gene-regulatory rewiring during cell repro-
gramming (Fig. 6b). Genome topology as an instructive force that 
facilitates transcriptional changes may represent a general principle 
for cell-fate decisions.

Our findings also provide an explanation for the sequential 
activation of the genes encoding the pluripotency factors OCT4, 
NANOG and SOX2 in spite of the cells’ continuous exposure to the 
Yamanaka factors (Fig. 6c). The embedding of Oct4 and its enhanc-
ers within an A-compartment domain, surrounded by genes highly 
expressed in B cells, may explain its almost immediate activation by 
OSKM without detectable topological alterations. In contrast, the 
late activation of Nanog and Sox2 is preceded and accompanied by 
substantial changes in compartmentalization and TAD structure, 
thus indicating that the removal of topological barriers creates new 
opportunities for gene regulation. That active chromatin dynamics 
often anticipates changes in subnuclear compartmentalization sug-
gests that it plays a major role in mediating switching between the 
active A and the inactive B compartments (Fig.  6b), a possibility 
supported by imaging and local chromatin conformation analy-
ses59,60. Given the strong correlation between compartmentalization 
and DNA-replication timing61, it will be of interest to attempt cou-
pling changes in replication timing with the dynamics of genome 
topology and gene regulation. A preliminary analysis suggested 
that replication timing in the starting cell state is not a strong pre-
dictor of ordered A–B-compartment switching (Supplementary 
Fig. 11). Perturbation experiments aimed at demonstrating causal-
ity between specific topological changes and their effects on repro-
gramming represent the next frontier in dissecting the relationships 
among genome form, genome function and cell fate.

Previous studies have defined TADs as stable topological struc-
tures with little cell-type specificity17,50. At a qualitative level (i.e., 
present or not present), we indeed found that  only a minor por-
tion of TAD borders were altered during reprogramming. However, 
there were notable exceptions (for example, de novo border estab-
lishment near Sox2), thus cautioning against using TAD definitions 
from unrelated cell types for interpreting gene-regulatory processes. 
However, quantitative aspects of TADs, namely their connectivity 
and insulation potential, are subject to substantial changes during 
reprogramming and therefore are more cell-type specific in nature.

How do TFs drive 3D genomic changes? C/EBPα  and OCT4 are 
selectively enriched in different regions destined to switch compart-
ment. Here, TFs can act by inducing the subnuclear repositioning 
of specific loci62, for example by initiating modification of local 
chromatin states. In addition, the TFs rapidly induce insulation-
strength changes at the most dynamic TAD borders, independently 
of major changes in compartmentalization or chromatin state. 
Separate modes of action for TFs at these two topological levels 
seem plausible, because compartmentalization and TAD organi-
zation have been suggested to depend on distinct mechanisms63,64. 
Mechanistically, intrinsic abilities (for example, via TF dimeriza-
tion24) or interactions with canonical architectural proteins65–67 
could allow TFs to modify genome topology. Here, inter-TAD hubs 
of TF target regions may contribute to topological reorganization by 
TFs, possibly through exploiting architecture previously established 
by other factors. As early targets (Fig. 1), SE regions may provide 
key platforms for TFs to achieve topological genome remodeling68. 
The ability of lineage-instructive regulators to alter genome topol-
ogy raises the possibility that, in addition to their classical role as 
transcriptional regulators, they may possess unappreciated architec-
tural functions at distinct topological layers.

URLs. FastQC quality-control tool, http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/; Picard tool; http://broadinstitute.
github.io/picard/; MACS2 tool, https://github.com/taoliu/MACS/.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-017-0030-7.
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Methods
Mice. We crossed ‘reprogrammable mice’ containing a doxycycline-inducible 
OSKM cassette and the tetracycline transactivator69 with an Oct4-GFP reporter 
strain70, as previously described31,32. B cells were isolated from 8- to 16-week-old 
female mice (n =  6 mice per biological replicate). Mice were housed in standard 
cages under 12-h light–dark cycles and fed ad libitum with a standard chow 
diet. All experiments were approved by the Ethics Committee of the Barcelona 
Biomedical Research Park (PRBB) and performed according to Spanish and 
European legislation.

Cell culture and somatic cell reprogramming. Mouse embryonic stem cells 
(E14TG2a) and short-term-induced PSCs were cultured on gelatinized plates 
or mitomycin C–inactivated mouse embryonic fibroblasts (MEFs) in N2B27 
medium (50% DMEM-F12, 50% Neurobasal medium, N2 (100× ), B27 (50× )) 
supplemented with small-molecule inhibitors PD (1 μ M PD0325901) and CHIR 
(3 μ M CHIR99021), as well as LIF (10 ng ml−1). Reprogramming of primary B cells 
isolated from the bone marrow of reprogrammable/Oct4-GFP mice was performed 
as previously described32. Two independent biological-replicate reprogramming 
experiments were used for data generation. Briefly, pre-B cells were infected with 
C/EBPα ER-hCD4 retrovirus, plated at 500 cells cm−2 in gelatinized 12-well plates 
on mitomycin C–inactivated MEF feeders in RPMI medium. C/EBPα  was activated 
by the addition of 100 nM β -estradiol (E2) for 18 h. After E2 washout, the cultures 
were switched to N2B27 medium supplemented with IL-4 (10 ng ml−1), IL-7  
(10 ng ml−1) and IL-15 (2 ng ml−1). OSKM was activated by the addition of 2 μ g ml−1  
of doxycycline. Harvesting was done at the indicated time points by trypsinization 
followed by a 20 min preplating step to remove feeder cells. All cell lines were 
routinely tested for mycoplasma contamination.

RNA isolation, quantitative RT–PCR and RNA-seq. RNA was extracted with a 
miRNeasy mini kit (Qiagen) and quantified with a NanoDrop spectrophotometer. 
cDNA was produced with a High Capacity RNA-to-cDNA kit (Applied 
Biosystems) and was used for qRT–PCR analysis in triplicate reactions with 
SYBR Green QPCR Master Mix (Applied Biosystems). Primers are available upon 
request. Libraries were prepared with an Illumina TruSeq Stranded mRNA Library 
Preparation Kit, and paired-end sequencing (2 ×  125 bp) was performed on an 
Illumina HiSeq2500 instrument.

Assay for transposase-accessible chromatin with high throughput sequencing 
(ATAC–seq). ATAC–seq was performed as previously described32. 100,000 cells 
were washed once with 100 μ l PBS and resuspended in 50 μ l lysis buffer (10 mM 
Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2 and 0.2% IGEPAL CA-630). Cells 
were centrifuged for 10 min at 500g (4 °C), supernatant was removed, and  
nuclei were resuspended in 50 μ l transposition reaction mix (25 μ l TD buffer,  
2.5 μ l Tn5 transposase and 22.5 μ l nuclease-free water) and incubated at 37 °C for  
45 min. DNA was isolated with a MinElute DNA Purification Kit (Qiagen). Library 
amplification was performed by PCR with two sequential reactions (eight then five 
cycles). Library quality was checked on a Bioanalyzer and was followed by paired-
end sequencing (2 ×  75 bp) on an Illumina HiSeq2500 instrument.

Chromatin immunoprecipitation followed by high-throughput sequencing 
(ChIP–seq). ChIP–seq using tagmentation (ChIPmentation) was performed as 
previously described36 with 100,000 cross-linked cells and1 μ l of anti-H3K4me2 
(Abcam, ab32356) per IP. Tagmentation of immobilized H3K4me2-enriched 
chromatin was performed for 2 min at 37 °C in 25 μ l transposition reaction 
mix (12.5 μ l TD buffer, 1.0 μ l Tn5 transposase and 11.5 μ l nuclease-free water). 
Library amplification was performed as described for ATAC–seq. Library quality 
was checked on a Bioanalyzer, and sequencing (1 ×  75 bp) was performed on 
an Illumina NextSeq500 instrument. Conventional ChIP–seq was performed 
as previously described71 with 300,000 cross-linked cells and 5 μ l of anti-CTCF 
(Millipore, 07-729). Libraries were prepared with an Illumina TruSeq ChIP Library 
Preparation Kit and sequenced (1 ×  50 bp) on an Illumina HiSeq2500 instrument.

Chromosome conformation capture followed by high-throughput sequencing 
(4C–seq). 4C–seq was performed as described previously72,73. Briefly, 0.5 million 
to 1 million cross-linked nuclei were digested with Csp6I, then ligated under dilute 
conditions. After de-cross-linking and DNA purification, samples were digested 
overnight with DpnII and were again ligated under dilute conditions. Column-
purified DNA was directly used as input for inverse PCR with primers (available 
upon request) with Illumina adaptor sequences as overhangs, and several reactions 
were pooled, purified and sequenced (1 ×  75 bp) on an Illumina HiSeq2500 
instrument.

Gene Ontology (GO) analysis. GO analyses were performed with the Molecular 
Signatures Database (MSigDB)74 for gene lists or GREAT75 for peak lists. Only 
statistically significant (FDR < 0.01) terms and pathways were used.

In situ Hi-C library preparation. In situ Hi-C was performed as previously 
described11 with the following modifications: (i) two million cells were used  
as starting material; (ii) chromatin was initially digested with 100 U MboI  

(New England BioLabs) for 2 h, and then another 100 U (2 h incubation) and a final  
100 U were added before overnight incubation; (iii) before fill-in with bio-dATP, 
nuclei were pelleted and resuspended in fresh 1×  NEB2 buffer; (iv) ligation was 
performed overnight at 24 °C with 10,000 cohesive end units per reaction;  
(v) de-cross-linked and purified DNA was sonicated to an average size of 300–400 bp  
with a Bioruptor Pico (Diagenode; seven cycles of 20 s on and 60 s off); (vi) DNA 
fragment-size selection was performed only after final library amplification; (vii)  
library preparation was performed with an NEBNext DNA Library Prep Kit  
(New England BioLabs) with 3 μ l NEBNext adaptor in the ligation step;  
(viii) libraries were amplified for 8–12 cycles with Herculase II Fusion DNA 
Polymerase (Agilent) and were purified/size-selected with Agencourt AMPure 
XP beads (> 200 bp). Hi-C library quality was assessed through ClaI digestion and 
low-coverage sequencing on an Illumina NextSeq500 instrument, after which every 
technical replicate (n =  2) of each biological replicate (n =  2) was sequenced at high 
coverage on an Illumina HiSeq2500 instrument. Data from technical replicates 
were pooled for downstream analysis. We sequenced > 18 billion reads in total to 
obtain 0.78–1.21 billion valid interactions per time point per biological replicate 
(dataset statistics in Supplementary Table 1).

Gene expression analysis of RNA-seq data. Reads were mapped with 
STAR76 (-outFilterMultimapNmax 1 -outFilterMismatchNmax 999 
-outFilterMismatchNoverLmax 0.06 -sjdbOverhang 100 --outFilterType 
BySJout -alignSJoverhangMin 8 -alignSJDBoverhangMin 1 -alignIntronMin 
20 -alignIntronMax 1000000 -alignMatesGapMax 1000000) and the Ensembl 
mouse genome annotation (GRCm38.78). Gene expression was quantified with 
STAR (--quantMode GeneCounts). Sample scaling and statistical analysis were 
performed with the R package DESeq2 (ref. 77) (R 3.1.0 and Bioconductor 3.0), 
and vsd counts were used for further analysis unless stated otherwise. Standard 
RPKM values were used as an absolute measure of gene expression. Genes whose 
expression changed significantly at any time point were identified with the 
nbinomLRT test (FDR < 0.01) and a greater than twofold change between at least 
two time points (average of two biological replicates, vsd values). Clustering was 
performed with the R package Mfuzz (2.26.0).

Chromatin accessibility analysis of ATAC–seq data. Reads were mapped to the 
UCSC mouse genome build (mm10) in Bowtie2 (ref. 78) with standard settings. 
Reads mapping to multiple locations in the genome were removed in SAMtools79; 
PCR duplicates were filtered in Picard. Bam files were parsed to HOMER80 for 
downstream analyses and browser visualization. Peaks in ATAC–seq signals 
were identified with findPeaks (-region -localSize 50000 -size 250 -minDist 500 
-fragLength 0, FDR < 0.001).

ChIPmentation/ChIP–seq data analysis. Reads were mapped and filtered 
as described for ATAC–seq. H3K4me2-enriched regions were identified with 
HOMER findpeaks (findPeaks -region -size 1000 -minDist 2500, by using a mock 
IgG experiment as background signal). H3K4me2 coverage per 100-kb genomic 
bin was computed in BEDTools81 and normalized for differences in sequencing 
depth (normalized coverage =  coverage/(number of unique mapped reads in 
dataset/1 ×  106)). CTCF peaks were identified in MACS2 (ref. 82) with callpeak–
nolambda–nomodel -g mm--extsize 100 -q 0.01.

4C–seq data analysis. The sequence of the 4C–seq reading primer was trimmed 
from the 5′  of reads with the demultiplex.py script from the R package fourCseq83 
(allowing four mismatches). Reads in which this sequence could not be found were 
discarded. Reads were mapped in STAR and processed with fourCseq to filter out 
reads not located at the end of a valid fragment and to count reads per fragment. 
Signal tracks were made after smoothing of RPKM counts per fragment with a 
running mean over three fragments.

In situ Hi-C data processing and normalization. We processed Hi-C data 
by using an in-house pipeline based on TADbit84. First, the quality of the 
reads was checked with FastQC to discard problematic samples and detect 
systematic artifacts. Trimmomatic85 with the recommended parameters for 
paired-end reads was used to remove adaptor sequences and poor-quality reads 
(ILLUMINACLIP:TruSeq3-PE.fa:2:30:12:1:true; LEADING:3; TRAILING:3; 
MAXINFO:targetLength:0.999; and MINLEN:36).

For mapping, a fragment-based strategy implemented in TADbit was used, 
which was similar to previously published protocols86. Briefly, each side of the 
sequenced read was mapped in full length to the reference genome (mm10, Dec 
2011 GRCm38). After this step, if a read was not uniquely mapped, we assumed 
that the read was chimeric, owing to ligation of several DNA fragments. We 
next searched for ligation sites, discarding those reads in which no ligation site 
was found. The remaining reads were split as often as ligation sites were found. 
Individual split read fragments were then mapped independently. These steps were 
repeated for each read in the input FASTQ files. Multiple fragments from a single 
uniquely mapped read resulted in a number of contacts identical to the number 
of possible pairs between the fragments. For example, if a single read was mapped 
through three fragments, a total of three contacts (all-versus-all) was represented 
in the final contact matrix. We used the TADbit filtering module to remove 
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noninformative contacts and to create contact matrices. The different categories of 
filtered reads applied were:

1. Self-circle: reads coming from a single restriction enzyme (RE) fragment and 
pointing to the outside.

2. Dangling end: reads coming from a single RE fragment and pointing to the 
inside.

3. Error: reads coming from a single RE fragment and pointing in the same 
direction.

4. Extra dangling end: reads coming from different RE fragments but that  
were sufficiently close and point to the inside; the distance threshold used was  
left to 500 bp (default), which was between percentiles 95 and 99 of average 
fragment lengths.

5. Duplicated: the combination of the start positions and directions of the reads 
was repeated, thus suggesting a PCR artifact; this filter removed only extra copies 
of the original pair.

6. Random breaks: the start position of one of the reads was too far from 
RE cutting site, possibly because of noncanonical enzymatic activity or random 
physical breaks; the threshold was set to 750 bp (default), > percentile 99.9.

From the resulting contact matrices, low-quality bins (those presenting low 
contact numbers) were removed, as implemented in TADbit’s ‘filter_columns’ 
routine. A single round of ICE normalization87, also known as ‘vanilla’ 
normalization11, was performed. That is, each cell in the Hi-C matrix was divided 
by the product of the interactions in its columns and the interactions in its row. 
Finally, all matrices were corrected to achieve an average content of one interaction 
per cell.

Identification of subnuclear compartments and topologically associated 
domains (TADs). To segment the genome into A/B compartments, normalized 
Hi-C matrices at 100-kb resolution were corrected for decay as previously 
described, by grouping diagonals when the signal-to-noise ratio was below 0.05 
(ref. 11). Corrected matrices were then split into chromosomal matrices and 
transformed into correlation matrices by using the Pearson product-moment 
correlation. The first component of a PCA (PC1) on each of these matrices 
was used as a quantitative measure of compartmentalization, and H3K4me2 
ChIPmentation data were used to assign negative and positive PC1 categories 
to the correct compartments. If necessary, the sign of the PC1 (which was 
randomly assigned) was inverted so that positive PC1 values corresponded to 
A-compartment regions, and negative values corresponded to the B compartment.

Normalized contact matrices at 50-kb resolution were used to define TADs, 
through a previously described method with default parameters43,54. First, for 
each bin, an insulation index was obtained on the basis of the number of contacts 
between bins on each side of a given bin. Differences in the insulation index 
between both sides of the bin were computed, and borders were called, searching 
for minima within the insulation index. The insulation score of each border was 
determined as previously described43, by using the difference in the delta vector 
between the local maximum to the left and the local minimum to the right of the 
boundary bin. This procedure resulted in a set of borders for each time point and 
replicate. To obtain a set of consensus borders along the time course, we proceeded 
in two steps: (i) merging borders of replicates and overlapping merged borders 
(that is, for each pair of replicates, we expanded the borders one bin on each side 
and kept only those borders present in both replicates as merged borders) and 
(ii) further expanding two extra bins (100 kb) on each side and determining the 
overlap to obtain a consensus set of borders common to any pair of time points.

Domain scores were obtained by averaging cells over parts of the Hi-C matrix. 
In nature, this metric is sensitive to outlier cells with many counts and is fairly 
insensitive to missing data. For this analysis (and for the metaloop analysis below), 
we thus used a more stringent strategy to remove low-coverage bins by fitting a 
logistic function to the distribution of the sum of interactions in each bin:

=
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where f is the logistic function optimized by the variables a, b and c. N is the number 
of bins in the matrix, and x is the number of interactions in a given bin. This fit was 
implemented by weighting bins with higher values of interactions, as we considered 
bins with lower count artifacts. We set the weight function as being dependent on 
the bin index, in the context of bins sorted by their sum of interactions:
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with i representing the index of the bin and W representing the weight applied to 
the fitting. After the logistic function was fitted, we used it to define a threshold. 
We removed bins with fewer counts than x when f(x) was equal to zero. The 
resulting filtered matrices were ICE normalized (1 round, described above). Finally, 
domain scores were calculated with matrices binned at 50 kb by dividing the sum of 
intra-TAD contacts by the sum of all contacts involving the TAD.

Expression variability explained by TADs. To estimate expression variability, 
we fitted a hierarchical regression model per gene expression values for each time 

point, including three levels of organization: the gene itself, the local neighborhood 
(the 50-kb TSS bin) and the TAD. We used the variance associated with each 
level and the total variance of the model to assess the proportion of variability 
explained by each factor. To test whether topology played a role beyond the linear 
proximity of genes, we repeated the estimation, replacing actual TADs by a fixed 
segmentation of the genome in domains with the same size as the average TAD 
(i.e., ‘fake TADs’ constructed by placing a border at fixed distances corresponding 
to the average size of TADs). Model estimation was performed with the lme4 R 
package.

Inter- and intracompartment strength measurements. We followed a previously 
reported strategy to measure overall interaction strengths within and between A 
and B compartments63. Briefly, we based our analysis on the 100-kb bins showing 
the most extreme PC1 values, discretizing them by percentiles and taking the 
bottom 20% as the B compartment and the top 20% as the A compartment. We 
classified each bin in the genome according to PC1 percentiles and gathered 
contacts between each category, computing the log2 enrichment over the expected 
counts by distance decay. Finally, we summarized each type of interaction (A–A, 
B–B and A–B/B–A) by taking the median values of the log2 contact enrichment.

Meta-analysis of borders, loops and interactions among TF-binding sites. To 
assess whether particular parts of the Hi-C interaction matrices had common 
structural features, we performed meta-analyses by merging individual submatrices 
into an average metamatrix in a manner similar to a previously published 
method51. Three types of meta-analysis were performed. First, we studied TAD 
border dynamics at 50-kb resolution by extracting interaction counts 1.25 Mb 
up- and downstream of the TAD border. Extracted matrices were averaged for 
each group of clustered TAD borders, including those whose insulation scores 
increased, decreased or did not change during reprogramming. Second, using 5-kb 
resolution contact maps, we investigated the dynamics of a previously identified set 
of chromatin loops in primary B cells and PSCs49 by extracting interaction counts 
50 kb up- and downstream of loop-anchor regions. Metaloop matrices were then 
calculated by averaging individually subtracted loop matrices into a single one per 
group. Third, we studied whether two regions bound by a given TF were likely to 
find each other more frequently than expected within a genomic distance ranging 
from 2 to 10 Mb. All submatrices at 5-kb resolution between pairs of TF-binding 
sites and 50 kb up- and downstream of a TF peak were extracted and averaged 
into a single metamatrix. For OCT4, NANOG and SOX2 meta-analyses, we used 
those TF-binding sites that overlapped with an ATAC–seq peak (described above) 
at the D2 stage. All meta-analyses were performed with the observed/expected 
Hi-C matrices, which were filtered, ICE normalized and corrected for decay. For 
visualization proposes, the resulting meta-analysis matrices were smoothed with a 
Gaussian filter of sigma =  1.

Virtual 4C analysis (v4C) and promoter–superenhancer linking. For the 
generation of v4C profiles, we first chose a bait region (for example, Sox2) and 
(optionally) a window size around the bait (with the final viewpoint window 
centered on the bait). We then extracted the observed Hi-C matrix at 5-kb 
resolution for that specific region. Rows overlapping the bait were divided into 
subsets, after which we summed all bait rows to obtain the number of observed 
contacts per bin (column). Aiming to reduce noise, we performed a moving-
average smoothing (5 bins) to obtain v4C profiles. Count numbers per bin 
were normalized for differences in sequencing depth between time points. For 
visualization purposes, we removed all data overlapping the bait extended with one 
bin per side.

We took advantage of this approach to link promoters to SEs. For each SE,  
we set a window of 2 Mb around the SE bait and extracted the corresponding 
Hi-C matrix at 5-kb resolution, removing low-count and/or low-mappability bins. 
Using the full interchromosomal matrix, we computed an expected Hi-C matrix, 
averaging all pairs of loci at the same distance per chromosome. After merging 
the two replicates, we generated virtual 4C profiles for each SE with the observed 
and corresponding expected number of counts. These profiles allowed us to rank 
nearby promoters according to their contact enrichment (observed/expected), 
designating the two highest-ranking genes as putative SE targets. Using this 
method, we detected a larger number of genes associated with the superenhancer 
subset (372 versus the 210 assigned by GREAT), which included half of the genes 
identified with GREAT. The GO analyses and gene expression analyses  
on the GREAT gene set or this extended target gene set were similar, although  
the Hi-C-based gene set showed stronger enrichment in GO terms associated  
with embryonic development. Analyses on the Hi-C-based gene set were  
used in Fig. 1.

Integration of B cell replication-timing data. We partitioned the genome into 
100-Kb bins, labeling the compartment (A, B or 0) for each time point and 
biological replicate. Then we identified the bins with more than one compartment 
type (i.e., switching bins). For each bin, the residence time in A or B was the 
number of consecutive time points in A or B before a switch. The results presented 
are the grand sum per compartment, residence time and biological replicate over 
all switching bins.
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Statistics and reproducibility. In situ Hi-C data throughout the paper were 
generated by analysis of two independent B-to-iPS replicate reprogramming 
experiments. Representative data are shown only if results were similar for both 
independent biological-replicate experiments. All box plots depict the first and 
third quartiles as the lower and upper bounds of the box, with a thicker band inside 
the box showing the median value and whiskers representing 1.5×  the interquartile 
range. Wilcoxon rank-sum tests were performed with the wilcox.test() function in 
R in a two-sided manner. t tests were performed with the t.test() function in R in 
an unpaired and two-sided fashion with (n – 2) degrees of freedom.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Data availability. All data generated have been deposited in the Gene Expression 
Omnibus (GEO) database under accession code GSE96611. Accession codes of 
published datasets used in this study are as follows: CTCF ChIP–seq in pre-B cells, 
Sequence Read Archive SRR397837 (ref. 88); CTCF ChIP–seq in induced PSCs, 
GEO GSE76478 (ref. 49); OCT4 and NANOG ChIP–seq in PSCs, GEO GSE44286 
(ref. 39); KLF4 ChIP–seq in PSCs, GEO GSE11431 (ref. 89); C/EBPα  and PU.1 ChIP–
seq in Bα  cells, GEO GSE71215 (ref. 32); EBF1 V5-ChIP–seq in pro-B cells, GEO 
GSE53595 (ref. 90). CH12 Repli-chip data were obtained from ENCODE Biosample 
ENCBS789HDO.
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    Experimental design
1.   Sample size

Describe how sample size was determined. No statistical methods were used to determine sample sizes.

2.   Data exclusions

Describe any data exclusions. TAD borders not called in both independent biological replicates were excluded in 
all subsequent analyses. All read and bin filtering strategies used for Hi-C data 
analysis are described in detail in the Online Methods.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

No attempts to reproduce results failed.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Randomization is not relevant to this study because no comparisons between 
experimental groups were made.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Blinding was not relevant to this study because all metrics were derived 
from absolute quantitative methods without human subjectivity. 

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

STAR (Dobin et al., 2013) 
DESeq2 (Love et al., 2014) 
Bowtie2 (Langmead and Salzberg, 2012) 
SAMtools (Li et al., 2009) 
Picard (http://broadinstitute.github.io/picard) 
HOMER (Heinz et al., 2010) 
TADbit (Serra et al., 2017) 
fourCseq (Klein et al., 2015) 
GREAT (McLean et al., 2010) 
BEDTools (Quinlan and Hall, 2010) 
FastQC (http://www.bioinformatics.babraham.ac.uk /projects/fastqc/) 
Trimmomatic (Bolger et al., 2014) 
Mfuzz R package (2.26.0) 
fourCseq R package (Klein et al. 2015) 
MACS2 (Zhang et al. 2008) 
MSigDB (Liberzon et al. 2011) 
ICE (Imakaev et al. 2012) 
wilcox.test() R function 
t.test() R function

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

No unique materials were used.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

anti-H3K4Me2: Abcam, ab32356 (validated in Egelhofer et al. Nat Struct Mol Biol 
2011, see http://compbio.med.harvard.edu/antibodies/)  
anti-CTCF: Millipore, 07-729 (validated by ENCODE, see https://
www.encodeproject.org/antibody-characterizations/890eca82-62f8-406c-868a-
c94a5a3d748e/@@download/attachment/
human_CTCF_07-729_validation_Snyder.pdf)

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. The EG14TG2a embryonic stem cell line was obtained from ATCC (CRL-1821).

b.  Describe the method of cell line authentication used. The cell line was purchased as a validated cell line from ATCC. Sequencing data was 
compared to published data with the cell line to verify identity.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

Cell line was tested for mycoplasma contamination upon receipt and periodically 
(once a month) thereafter.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used.
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

We used a previously described (Di Stefano et al. Nature Cell Biology 2016) cross 
between reprogrammable mice (Carey et al. Nature Methods 2010) and Oct4-GFP 
reporter mice (Boiani et al. Genes & Development 2002). Mice were kept on a 
C57BL/6 background and housed in standard cages under 12h light–dark cycles 
and fed ad libitum (standard chow). Developing B cells were obtained from bone 
marrow of female mice (8-16 weeks old) for reprogramming experiments in vitro.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

Study did not involve human research participants.
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