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SUMMARY

Cohesin exists in two variants carrying either STAG/
SA1 or SA2. Here we have addressed their specific
contributions to the unique spatial organization of
the mouse embryonic stem cell genome, which
ensures super-enhancer-dependent transcription
of pluripotency factors and repression of lineage-
specification genes within Polycomb domains. We
find that cohesin-SA2 facilitates Polycomb domain
compaction through Polycomb repressing complex
1 (PRC1) recruitment and promotes the establish-
ment of long-range interaction networks between
distant Polycomb-bound promoters that are impor-
tant for gene repression. Cohesin-SA1, in contrast,
disrupts these networks, while preserving topologi-
cally associating domain (TAD) borders. The diverse
effects of both complexes on genome topology may
reflect two modes of action of cohesin. One, likely
involving loop extrusion, establishes overall genome
arrangement in TADs together with CTCF and pre-
vents excessive segregation of same-class compart-
ment regions. The other is required for organization of
local transcriptional hubs such as Polycombdomains
and super-enhancers, which define cell identity.
INTRODUCTION

The genome is spatially organized at different levels ranging from

packing DNA into nucleosomes to the segregation of entire chro-

mosomes within the interphase nucleus in the so-called chromo-

somal territories (Rowley and Corces, 2018). At an intermediate

scale of kilobases to megabases, chromatin loops formed be-
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tween gene promoters and their distal enhancers are often

confined within topologically associating domains or TADs

(Dixon et al., 2012; Nora et al., 2012; Rao et al., 2014). Most

TADs are demarcated by cohesin and CTCF binding and are

largely conserved among cell types, while intra-TAD contacts,

often mediated by cohesin together with transcriptional regula-

tors, contribute to define tissue-specific transcriptional pro-

grams (Bonev et al., 2017; Dixon et al., 2015; Phillips-Cremins

et al., 2013). A distinct level of organization results from the

spatial segregation of active and repressed chromatin to form

the A and B compartments, respectively (Lieberman-Aiden

et al., 2009). We previously showed that the two cohesin variants

present in somatic vertebrate cells, in which either SA1 or SA2 is

bound to the three core subunits Smc1a, Smc3, and Rad21,

have specialized roles in chromatin organization (Kojic et al.,

2018). Both variants are present at cohesin-CTCF sites, while

cohesin-SA2 is predominant at tissue-specific cohesin sites

lacking CTCF that are enriched in active enhancers. Cohesin-

SA1 is more relevant for TAD demarcation, while cohesin-SA2

mediates local chromatin contacts.

Mouse embryonic stem cells (mESCs) provide a powerful

experimental system to address the functional relevance of

genome organization and assess the differential contributions

of the two cohesin variants. Maintenance of stem cell properties

requires a careful balance between self-renewal and differentia-

tion, which is achieved by active transcription of pluripotency

genes and repression of lineage specification genes. Regulation

of ESC identity genes depends on super-enhancers, domains

ranging from 1 to 30 kb that are densely occupied by the master

transcription factors Oct4, Sox2, and Nanog, histone acetyl-

transferases such as p300/CBP, Mediator complex, and RNA

polymerase II (Hnisz et al., 2013; Whyte et al., 2013). Cohesin

and its loader Nipbl are also found at these elements (Dowen

et al., 2014; Kagey et al., 2010). Genes encoding lineage-speci-

fying developmental regulators are featured by the presence of

bivalent chromatin at their promoters as well as Polycomb
s).
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repressive complex 1 (PRC1) occupancy (Di Croce and Helin,

2013). This chromatin presents histonemodifications associated

with both activation (H3K4me3) and repression (H3K27me3) that

are deposited by the Trithorax MLL2/COMPASS and Polycomb

repressive complex 2 (PRC2), respectively (Piunti and Shilatifard,

2016). Bivalent chromatin has been proposed to maintain devel-

opmental genes in a poised transcriptional state, repressed but

ready to be rapidly activated (Azuara et al., 2006; Bernstein et al.,

2006; Mas et al., 2018).

Recent evidences from chromosome conformation and su-

per-resolution microscopy analyses have revealed that genes

and gene clusters occupied by PRC1 in mESCs define a new

class of self-interacting domains of compacted chromatin that

is different from TADs. The formation of these domains, Poly-

comb domains hereafter, requires PRC1, and conversely, loss

of PRC1 upon differentiation leads to their decompaction. They

are usually smaller than TADs, and their boundaries correlate

with PRC1 occupancy rather than CTCF. It has been proposed

that compaction within each Polycomb domain may contribute

to repression by creating a local chromatin environment that is

not compatible with enhancer activation (Boettiger et al., 2016;

Kundu et al., 2017). In addition to the compaction observed

within each domain, Polycomb domains establish very long

range interactions that are particularly strong between the four

Hox gene clusters encoding homeotic transcription factors

(Joshi et al., 2015). The Hox clusters serve as three-dimensional

(3D) nucleation points for other PRC1-bound genes. The result-

ing spatial network is a major constraint on the genome organi-

zation of mESCs that contributes to maintain gene silencing

(Schoenfelder et al., 2015) and is conserved in distant species

such as Drosophila (Bantignies et al., 2011).

The long-range interactions between Hox clusters are estab-

lished during the ground state to primed pluripotency transition.

Cells cultured in the presence of MEK and GSK3 inhibitors (2i)

resemble those in the mouse inner cell mass. They have little

bivalent chromatin, and low expression of lineage specification

genes is likely achieved through RNA polymerase II promoter-

proximal pausing instead of Polycomb-mediated repression

(Marks et al., 2012; Ying et al., 2008). Upon withdrawal of the

inhibitors, Nanog protein levels decrease, DNA methylation

increases, and bivalent chromatin is found at the promoters of

lineage specification genes, which are occupied also by PRC1,

similar to what happens in postimplantation embryos (Habibi

et al., 2013; Leitch et al., 2013; Seisenberger et al., 2012; Smith

et al., 2012). These mESCs (serum grown) are epigenetically

more restricted and can be viewed as developmentally primed

compared with 2i-grown mESCs.

In this study, we have addressed the contribution of the two

cohesin variants to the particular architecture of mESCs using

Hi-C analyses. We have found that cohesin-SA1 plays a funda-

mental role at the boundaries of TADs, including those contain-

ing super-enhancers and Polycomb domains. Importantly, the

action of cohesin-SA1 disrupts the long-range interactions that

establish the spatial network of Polycomb-repressed genes. In

contrast, cohesin-SA2 favors PRC1 recruitment and promotes

the local compaction of these Polycomb domains. Thus, in addi-

tion to the previously observed differential contribution of the two

cohesin variants to genome organization in TADs, here we find
that they also have distinct roles in the establishment of Poly-

comb-dependent chromatin contacts.

RESULTS

Cohesin-SA2 Is Enriched at Polycomb Repressed
Regions and Super-enhancers
Aiming to characterize the specific roles of cohesin variants in

the chromatin architecture responsible for ESC identity, we first

analyzed their genome-wide distribution in mESCs grown in

serum by chromatin immunoprecipitation followed by deep

sequencing (ChIP-seq) with antibodies against SA1, SA2, and

Smc1a (Figure 1A). Reads were aligned to the reference genome

(mm9), and peaks were called using the MACS2 algorithm with a

false discovery rate (FDR) < 0.05. Consistent with our previous

data in human primary cells, two major populations of cohesin

binding sites could be identified, ‘‘common’’ (38,480) and

‘‘SA2-only’’ (8,855) cohesin positions. Common cohesin posi-

tions were featured by similar read density for both SA1 and

SA2 and overlap with CTCF. In SA2-only positions, SA2 was

the predominant variant and CTCFwas barely detectable. Cohe-

sin subunit Smc1a was present in all cohesin positions, as

expected. Assignment to functional regions defined by chro-

matin states specific for mESCs revealed striking differences

between the two categories of cohesin positions (Figure 1B).

Common cohesin sites are enriched in insulators, consistent

with the well-known role of cohesin and CTCF in TAD organiza-

tion. In contrast, most of the SA2-only positions are present in

gene promoters either in the active or in the poised state. A

more detailed analysis of histone modifications and chromatin

binding factors that define functional genomic regions in mESCs

led us to distinguish two subpopulations of SA2-only positions.

One overlaps with Polycomb-repressed regions featured by

the presence of PRC1 component Ring1B, PRC2 component

Suz12, and H3K27me3 and does not contain Mediator or the

cohesin loader Nipbl (Figure 1A, top). The other overlaps with

H3K27ac, a mark of active enhancers and promoters, as well

as with Mediator and Nipbl (Figure 1A, middle). Of special

relevance within this population are positions occupied by the

pluripotency transcription factors Oct4, Sox2, and Nanog (OSN

in Figure 1A), which correspond to super-enhancers. Indeed,

we could observe an enrichment of SA2 over SA1 signals along

the 231 super-enhancers defined in mESCs (Figure 1C). These

data provide evidence of the specific association of cohesin-

SA2 with Polycomb-repressed domains and super-enhancers.

Cohesin-SA2 Facilitates the Establishment of
Polycomb-Repressed Regions in mESCs
We next asked whether cohesin-SA2 is required for the estab-

lishment or maintenance of Polycomb-repressed regions. First,

we compared mESCs grown in 2i and serum, because it has

been shown that bivalent chromatin and PRC1 occupancy

around lineage specification genes increases notably upon

replacement of 2i by serum. We found that the establishment

of Polycomb domains is accompanied by a clear increase in

the RNA and protein levels of SA2 (Figure 2A), as well as in

the presence of this cohesin variant around the transcription

start sites (TSSs) of bivalent genes (Figure 2B; Figure S1). To
Cell Reports 27, 3500–3510, June 18, 2019 3501



Figure 1. Cohesin-SA2 Is Enriched at Polycomb-Repressed Regions and Super-enhancers

(A) ChIP-seq read distribution for the chromatin components indicated around common and cohesin-SA2-only positions within a 5 kb window in serum-grown

mESCs. OSN, Oct4, Sox2, Nanog. SA2-only positions were divided into two categories that cluster according to their relative enrichment in Polycomb-repressed

(2,002 peaks) or active enhancers and promoters chromatin marks (6,853 peaks). The SA2-only positions within super-enhancers (SEs) are indicated with a

bracket. Color bars below heatmaps indicate ChIP-seq read number. Datasets used are summarized in Table S1.

(B) Pie charts showing the distribution of cohesin positions in chromatin states defined in mESCs.

(C) SA1 and SA2 enrichment along the 231 SEs defined in mESCs (Whyte et al., 2013). Med1 and Nipbl enrichments are also shown.
further address the functional significance of this correlation,

we knocked down the two cohesin variants in serum-grown

mESCs by small interfering RNA (siRNA). Efficient depletion

of SA1 or SA2 did not alter cell cycle progression and had

no impact on either the total or chromatin-bound levels of

H3K27me3, Suz12 (PRC2), or Ring1B (PRC1) (Figure 2C). How-

ever, quantitative ChIP-seq analysis revealed a 2-fold reduction

in Ring1B occupancy in SA2-knockdown cells, whereas Suz12

levels remained unaltered (Figures 2D and 2E). Taken together,

these results indicate that cohesin-SA2 facilitates the estab-
3502 Cell Reports 27, 3500–3510, June 18, 2019
lishment and/or maintenance of Polycomb-repressed domains

in mESCs.

Cohesin Variants Contribute Distinctly to the Genome
Architecture in mESCs
To examine the specific roles of cohesin variants in genome ar-

chitecture, we performed Hi-C experiments in 2i-grown and in

serum-grown mESCs that were depleted from SA1 or SA2 or

mock depleted as control. Overall genome organization defined

by the number and distribution of TADs and identity of active (A)



Figure 2. Cohesin-SA2 Facilitates the Establishment of Polycomb-Repressed Regions in mESCs

(A) Comparison of protein (left) and mRNA levels (right) of SA1, SA2, and Nanog in mESCs growing in 2i and serum conditions. Tubulin, loading control for

immunoblot. For qRT-PCR (right), data represent mean and SD from three independent experiments. LowDnmt3b expression is a feature of mESCs cultured in 2i

(Leitch et al., 2013).

(B) Distribution of SA1, SA2, and PRC2 protein Ezh2 assayed by ChIP-seq around bivalent gene promoters defined by Mas et al. (2018) in mESCs grown in the

indicated conditions. Data for Ezh2 are from Marks et al. (2012).

(C) Cell cycle profiles of mock-depleted (control) and SA1- or SA2-depleted mESCs (top). The presence of cohesin and Polycomb proteins on chromatin after

downregulation of SA1 or SA2 was assessed by chromatin fractionation. T, total cell extract; Cyt, cytosol; N, nuclear soluble; Chr, chromatin.

(D) Read density plots (top) and read heatmap (bottom) comparing the distribution of Suz12 and Ring1B around the 2,002 SA2-only positions containing

Polycomb, described in Figure 1A, in mock-depleted (control), SA1-depleted (siSA1), and SA2-depleted (siSA2) cells.

(E) UCSC Genome Browser image of the HoxB and HoxC loci showing ChIP-seq read distribution for SA1 and SA2 in mESCs as well as for Ring1B in control and

SA1- or SA2-depleted cells.
and repressive (B) compartments was largely preserved among

all four conditions (Figures 3A and 3B). This agrees with previous

data showing a similar distribution of promoter-enhancer and

enhancer-enhancer contacts assayed by CHi-C between 2i

and serum-grown mESCs (Joshi et al., 2015) as well as with

our previous Hi-C analysis of human cells deficient for each

cohesin variant (Kojic et al., 2018). Differential genomic interac-

tions observed between SA1- or SA2-depleted cells and the

control condition were also consistent with our previous results

in human cells: whereas loss of SA2 increased mid-range con-

tacts, loss of SA1 increased very long-range interactions (Fig-

ure 3C; Figure S2). Differential interaction matrices comparing

mESCs grown in 2i and serum conditions were strikingly similar

to those comparing siSA2 and control cells, further supporting

an important contribution of cohesin-SA2 to the establishment
of genomic features characteristic of the more differentiated or

developmentally primed state of serum-grown mESCs.

Loop strength of long-range (>500 kb) cohesin loops, most

likely encompassing whole TADs or subTADs, was decreased

after SA1 depletion (Figure 3D; Figure S3A). As control, CTCF

depletion abrogated completely the formation of these loops

(Nora et al., 2017). Likewise, a meta-analysis of contacts be-

tween borders of TADs (separated by at least 500 kb) showed

a reduction in contact frequency after SA1 depletion (Figure 3E;

Figure S3B). In addition, contact frequency was higher in SA2-

depleted cells as well as in 2i-grown cells, in which cohesin-

SA2 levels at these borders was lower. Thus, even though both

cohesin variants contribute to TAD organization together with

CTCF, the contribution of cohesin-SA1 is clearly more relevant.

Moreover, lower levels of cohesin-SA2 facilitate the task of
Cell Reports 27, 3500–3510, June 18, 2019 3503



Figure 3. Cohesin Variants Make Different Contributions to Genome Architecture in mESCs

(A) Vanilla-normalized Hi-C matrices for chromosome 17 at 100 kb resolution in mESCs treated as indicated. All analyses in this figure use data merged from two

replicates.

(B) Scatterplot of eigenvectors (EVs) of the intrachromosomal interaction matrices indicated in the axis. Numbers within the plot show the percentage of bins that

changed compartment. The first eigenvector for chromosome 17 at 100 kb resolution is shown below the plots. Blue and red signals correspond to B and A

compartments, respectively.

(C) Matrices showing increased (red) and decreased (blue) interactions in chromosome 17 when comparing siSA1 (top), siSA2 (middle), or 2i-growing cells with

serum-growing mock-depleted (control) cells. Similar results were obtained in the analysis of individual replicates and additional chromosomes (Figure S2).

(D) Three-dimensional interaction meta-plots showing contact strength in long (>500 kb) cohesin-mediated loops previously defined by Hi-ChIP (Mumbach et al.,

2016) in the different conditions. For comparison, the effect of CTCF depletion was also analyzed using data previously generated in mESCs carrying auxin-

inducible degron (AID)-CTCF (Nora et al., 2017).

(E) Meta-analysis of loop strength as in (D) but using borders of high-resolution TADs defined by Bonev et al. (2017). Replicates were also analyzed separately

(Figure S3).
cohesin-SA1 at TAD borders. Immunoprecipitation experiments

reveal a higher affinity of cohesin-SA2 for cohesin unloading fac-

tor Wapl (Figure 4). Given the importance of Wapl in cohesin

behavior (Haarhuis et al., 2017; Wutz et al., 2017), this difference

likely contributes to the functional specificities of the two cohesin

variants described above.
3504 Cell Reports 27, 3500–3510, June 18, 2019
Opposite Roles of the Two Cohesin Variants in the
Architecture of Polycomb-Repressed Regions
We next focused on the architecture of super-enhancers and

Polycomb domains. A meta-analysis centered in super-en-

hancers detected the appearance of a cloud of short-range inter-

actions, very close to the diagonal, in the transition from the 2i to



Figure 4. Preferential Interaction of Cohesin Dissociating Factor

Wapl with Cohesin-SA2

Immunoprecipitation experiments from mESC extracts with non-immune IgG,

anti-SA1, or anti-SA2 showing the preferential interaction of cohesin-SA2 with

Wapl by immunoblot (left) and mass spectrometry (MS) counts (right). FT,

flowthrough; IP, immunoprecipitate. See also Table S2.
the serum-grown mESCs (Figure 5A). A second cloud of long-

range interactions, related with the overall structure of super-en-

hancers within TADs or subTADs (Dowen et al., 2014), is present

in both pluripotency states. Depletion of SA1 specifically disrup-

ted these longer range interactions without affecting those closer

to the diagonal. SA2 depletion had the opposite effect, reducing

short-range interactions that likely correspond to enhancer-pro-

moter contacts.

A meta-analysis of genomic interactions emanating from

Ring1B positions at Polycomb domains also revealed different

consequences upon downregulation of cohesin-SA1 and cohe-

sin-SA2 (Figure 5B). Consistent with lower SA2 and Polycomb

occupancy, the number of interactions detected was reduced

in 2i-grown compared with serum-grown cells. Depletion of co-

hesin-SA1 specifically abrogated interactions with distant

genomic elements (>50 kb away), whereas local interactions,

which likely reflect the compaction of Polycomb domains (Kundu

et al., 2017), were preserved and even enhanced under this con-

dition. In contrast, SA2 depletion decreased both distant and

local interactions, possibly because of the reduction in PRC1

occupancy.

PRC1 complex is required not only for local compaction of

Polycomb domains but also to engage inter-chromosomal in-

teractions between Hox clusters. This ‘‘Hox spatial network’’

is essential for cell fate specification during early mouse em-

bryonic development (Schoenfelder et al., 2015). The meta-

plots of genomic interactions identified between any promoter

of the HoxB locus and promoters from other Hox loci exposed

again opposite contributions of the two cohesin variants (Fig-

ure 5C, top). SA1 depletion strengthened those contacts, prob-

ably for the same reason that elimination of cohesin increases

interactions of same-class compartments, in this case loci

marked by bivalent chromatin. In contrast, SA2 depletion

reduced them, further confirming a role of SA2 in preserving

the aggregation of Polycomb domains. Similar results were

observed with the HoxC locus (Figure 5C, bottom). As ex-

pected, these interactions were not observed in 2i-grown

mESCs.

Taken together, our results show that both for Polycomb

domains and super-enhancers, cohesin-SA2 mediates local,

short-range interactions, whereas cohesin-SA1 plays a more

important role in defining the borders of these domains and pre-
venting excessive compartmentalization of same-class chro-

matin regions, including Polycomb-repressed regions.

Distinct Transcriptional Changes in theAbsence of Each
Cohesin Variant
Consistent with their specific contributions to genome organiza-

tion, the transcriptional changes associated with the downregu-

lation of each cohesin variant, assayed by RNA sequencing

(RNA-seq), were very different (Figure 6A; Tables S3 and S4).

SA2 depletion resulted in statistically significant changes

(FDR < 0.05) in a smaller number of genes compared with SA1

depletion (915 versus 3,990). Genome-wide, most of the tran-

scriptional changes observed are small and of similar magni-

tude for both up and downregulated genes (Figure 6B). Gene

Ontology (GO) analysis showed the enrichment of pathways

related to stem cell maintenance and cardiac differentiation in

siSA2 downregulated and upregulated genes, respectively (Fig-

ure 6C, categories a and b). It also showed a very significant

enrichment of GO terms related to basic cellular functions such

as RNA processing or metabolism specifically after depletion

of SA1 (Figure 6C, category c). Opposite changes in transcription

were observed in 171 genes (Figure 6A, left, asterisks). More-

over, gene set enrichment analyses (GSEA) revealed a number

of pathways deregulated in the opposite direction by depletion

of either variant (12 of the 26 GSEA pathways deregulated by

SA2 depletion; FEWER p < 0.05; Figure 6D; Table S5). Among

the pathways significantly enriched in the absence of SA2, we

found some associated with cancer, in particular chronic

myeloid leukemia, as well as cardiac defects (Figure S4). This

is interesting in view of the prevalence of SA2 loss of function

in myeloid leukemias (Kon et al., 2013; Thota et al., 2014) and

also with our recent observation of heart developmental abnor-

malities in mouse embryos lacking SA2 (unpublished data).

In agreement with the observed effects in 3D chromatin

organization, expression levels of genes repressed by Poly-

comb were overall increased, while the expression of genes

regulated by super-enhancers was significantly decreased in

SA2-knockdown cells (Figure 6E). Changes in selected genes

in both categories were validated by qRT-PCR (Figure 6F).

We next asked about the relative position of the SA1-deregu-

lated genes within their TADs. This analysis revealed a clear

tendency of upregulated genes to be closer to TAD borders,

whereas downregulated genes were preferentially located at

the TAD interior (Figure 6G). Consistent with the observation

that TAD borders are enriched in housekeeping genes (Dixon

et al., 2012), the siSA1-upregulated gene subset contained

many housekeeping genes (Figure 6H). It is possible that the

presence of cohesin-SA1 at TAD borders keeps the transcrip-

tion of nearby genes in check by preventing excessive

compartmentalization. In addition, weaker TAD borders in the

absence of SA1 may increase promiscuity of enhancers and

negatively affect the expression of genes located toward the

TAD interior whose expression depends on those enhancers.

Taken together, our results provide further evidence of the

importance of cohesin to fine-tune gene expression through

its impact on genome organization. Moreover, they also indi-

cate that the two cohesin variants affect these processes in

different, even opposite ways.
Cell Reports 27, 3500–3510, June 18, 2019 3505



Figure 5. Different Roles of Cohesin Vari-

ants in the Local Architecture of Polycomb

Domains and Super-enhancers

(A and B) Meta-plots represent all the interactions

identified by Hi-C analyses of cells growing in the

indicated conditions in (A) 231 super-enhancers

and (B) Ring1B positions that are located within

Polycomb-repressed domains.

(C) Meta-plots showing genomic interactions

identified between promoters within the HoxB

(upper panels) or HoxC (lower panels) loci and any

promoter from other Hox loci. Plots are centered at

TSS. In all cases, each bin corresponds to 5 kb.
DISCUSSION

Understanding the principles that govern genome organization

and the consequences of this organization for gene expression

is currently the subject of very active research. Two independent

folding principles have been described, one giving rise to TADs,

which depends on cohesin and CTCF, and another based on the

interaction between regions of similar gene activity and epige-

netic features, visualized as compartments (Dixon et al., 2012;

Lieberman-Aiden et al., 2009; Schwarzer et al., 2017). Impor-

tantly, although depletion of either cohesin or CTCF affects

TADs, only depletion of cohesin affects also compartments

and results in enhanced segregation of active and inactive re-

gions (Nora et al., 2017; Rao et al., 2017; Schwarzer et al.,

2017; Wutz et al., 2017). The potential competition between

active loop extrusion by cohesin and compartmental segrega-

tion has been recapitulated in polymer simulations (Nuebler

et al., 2018). The co-existence of two variants of the cohesin

complex in all somatic cells raises the question of their specific

contributions to genome folding (Kojic et al., 2018; Remeseiro

et al., 2012). This is particularly relevant because mutations in

SA2 encoding gene, STAG2, are frequent in several tumor types,
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including bladder cancer, Ewing sar-

coma, and myeloid malignancies (De Ko-

ninck and Losada, 2016).

We have addressed this question by

combining ChIP-seq and Hi-C analyses

in mESCs. We find that cohesin-SA1 is

more relevant for definition of TAD borders

together with CTCF but also to coun-

teract compartmentalization. The latter is

reflected in the plaid pattern of increased

interactions inHi-Cmatrices of SA1versus

mock-depleted cells. The interaction be-

tween Hox regions located in different

chromosomes is also clearly increased in

the absence of SA1. We speculate that a

similar mechanism underlies the role of

cohesin-SA1 in counteracting compart-

mentalization and interactions between

Hox cluster genes. Excessive aggrega-

tion of same-class chromatin regions

likely restricts the plasticity required for

quick transcriptional responses elicited
by developmental cues, stress, or other environmental signals

(Cuartero et al., 2018).

In striking contrast to these functions of cohesin-SA1, cohe-

sin-SA2 facilitates local, short-range interactions within super-

enhancers and Polycomb regions. Moreover, we here show

that its presence correlates with higher recruitment or stability

on chromatin of the PRC1 complex. On one hand, establishment

of Polycomb domains in the transition from naive to primed

ESCs, recapitulated here by changing culture conditions from

2i to serum, coincides with an increase in overall cohesin-SA2

levels and with its deposition at Polycomb regions. On the other

hand, downregulation of SA2 limits the presence of PRC1 in

these regions and results in their decreased compaction as

well as reduced interchromosomal interactions. As a conse-

quence, the expression levels of Polycomb-repressed genes

increase. The mechanisms of Polycomb targeting remain poorly

understood (Blackledge et al., 2015). Our results point to an

important role for cohesin in the establishment and/or mainte-

nance of Polycomb-repressed domains in mammalian cells but

also to restrict their aggregation.

Both cohesin-SA1 and cohesin-SA2 can be found at CTCF-

bound sites, and we have previously shown using human



Figure 6. Distinct Effects of Cohesin Variants on Transcription

(A) Heatmaps showing differentially expressed genes in the indicated conditions (two independent replicates). Eight different clusters of genes were revealed

according to their response to SA1 or SA2 depletion (a–h). Numbers on the left indicate the number of genes in each cluster. See also Tables S3 and S4.

(B) Boxplots showing changes in expression for upregulated and downregulated genes in serum-growing mESCs depleted from SA1 or SA2 compared with

control. Boxes in (B) and (E) represent interquartile range (IQR); the midline represents the median; whiskers are 1.5 3 IQR; and individual points are outliers.

(C) Some of themost significantly enriched GO terms in each cluster defined in (A) are shown. p values were calculated with a Fisher’s exact test and corrected by

FDR (< 0.05).

(D) Venn diagram showing the overlap between the KEGG pathways obtained by GSEA of genes deregulated after SA1 or SA2 depletion. See also Table S5.

(E) Boxplots comparing changes in expression after SA1 or SA2 depletion for Polycomb-repressed (left) and super-enhancer-dependent (right) genes. Polycomb-

repressed genes (n = 1,008) were defined as those having Ring1B at their promoter and fragments per kilobase of transcript per million mapped reads (FPKM) < 1

in the control condition. Super-enhancer-dependent genes (n = 278) were those defined by Novo et al. (2018). Statistical significance was calculated using a

Wilcoxon signed rank test.

(F) Changes in expression of some Polycomb-repressed and super-enhancer-dependent genes were assessed using qRTPCR and normalized to levels of the

housekeeping gene GAPDH. Data are mean and SD from at least three independent experiments. A Student’s t test was used to assess statistical significance.

(G) Plot showing the relative distribution of genes deregulated only in the siSA1 condition (up or down) as well as the 4,781mouse housekeeping genes defined by

Li et al. (2017) along TADs in mESCs. Black line represents the distribution of genes not affected by SA1 depletion.

(H) Histogram showing the observed and expected distribution of the housekeeping genes among the eight groups of cohesin regulated genes defined in (A).

Statistical significance was assessed using a Fisher’s exact test.
mammary epithelial cells that this localization is independent of

the presence of the other variant (Kojic et al., 2018). Cohesin-

SA2 is sufficient for TAD formation in the absence of SA1,

because TADs can still be detected in the siSA1 condition in

both human and mouse cells. However, loop strength is signifi-

cantly reduced. In contrast, we observe an increase in TAD

border strength after depletion of SA2, which suggests that

cohesin-SA2 hinders TAD formation when the two variants are

present. It is possible that they compete for the loader Nipbl,
which appears to be limiting in the cell (Remeseiro et al., 2013;

Rhodes et al., 2017). We speculate that cohesin-SA1 stops at

CTCF sites more frequently or for longer time than cohesin-

SA2. One reason for this behavior could be the lower affinity of

cohesin-SA1 for cohesin unloading factor Wapl (Kojic et al.,

2018, and this study). This could also result in cohesin-SA1

sliding away from its loading site for longer time, thus contrib-

uting more to counteract compartmentalization, as observed in

Wapl-depleted cells (Haarhuis et al., 2017; Wutz et al., 2017).
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In addition to its more dynamic exchange on chromatin favor-

ing a closer localization to its loading sites at active enhancers

and promoters, where Nipbl is usually found, cohesin-SA2 may

get trapped at super-enhancers and Polycomb regions through

protein-protein interactions with Mediator and PRC1 compo-

nents. Although so far we have been unable to detect these inter-

actions in coimmunoprecipitation experiments with endogenous

proteins, cohesin has been previously shown to interact with

Mediator in mESCs (Kagey et al., 2010) and with PRC1 in

Drosophila embryos (Str€ubbe et al., 2011). Recent reports

suggest that transcription factors and coactivators present at

super-enhancers such as Brd4 or Med1 form phase-separated

condensates through multivalent interactions of their disordered

regions that promote active transcription (Hnisz et al., 2017; Plys

and Kingston, 2018). Examples of liquid phase-driven repression

have also been described for heterochromatin (Strom et al.,

2017) and for Polycomb regions (Tatavosian et al., 2019). The

C-terminal region of SA2 consists of a disordered region. Thus,

cohesin-SA2 could be trapped in these condensates and even

contribute to their formation.

Taken together, our data reveal a division of labor of the two

cohesin variants in the genomic architecture of mESCs. Cohe-

sin-SA1 is crucial to preserve the integrity of TAD boundaries

and to interfere with excessive segregation of same-class com-

partments, including interactions between Polycomb domains.

Cohesin-SA2 has a prominent role in the organization of local

structures such as super-enhancers and Polycomb domains,

which, through transcriptional activation and repression of plu-

ripotency and lineage specification genes, respectively, define

stem cell identity.
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ana

Losada (alosada@cnio.es)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

R1 129 is a male mESC line of 129/Sv background. mESCs were grown in DMEM containing 10% fetal calf serum in the presence of

LIF either with (2i-grown) or without (serum-grown) MEK and GSK3 inhibitors (1 mM PD0325901, 3 mM CHIR99021). In both cases,

plates were coated with 0.1% gelatin and no feeder cells were present.

METHOD DETAILS

siRNA transfection
Cells were transfected with 50 nM siRNAs (or mock-transfected as control) using Dharmafect reagent 1. Transfection efficiency was

estimated by immunoblotting 48 h after transfection and typically reached more than 90% downregulation. To ensure that cell cycle

was unaffected by the transfections, FACS analysis for DNA content was performed using Propidium Iodide staining, according to

standard procedures. Flow cytometry was performed using the FACS Canto II (Becton Dickinson) and data were analyzed using

FlowJo software (version 9.3.1).

Chromatin fractionation, Immunoblotting and Immunoprecipitation
To analyze protein levels in total cell extracts, cells were collected by trypsinization, counted, washed once in cold PBS, resuspended

in SDS-PAGE loading buffer at 107 cells/ml, sonicated and boiled. Equal volumes were separated by SDS-PAGE and analyzed by

immunoblotting. Chromatin fractionation was performed as described (Méndez and Stillman, 2000) and fractions were run on

SDS gels. For immunoprecipitation, extracts were prepared by lysis on ice for 30 min in TBS supplemented with 0.5% NP-40,

0.5mM DTT, 0.1mM PMSF and 1X complete protease inhibitor cocktail (Roche) followed by sonication. NaCl was added to 0.3M

and the extract rotated for 30 min at 4�C. After centrifugation, the soluble fraction was recovered, diluted to bring the extract

back to 0.1M NaCl and 10% glycerol was added. Affinity purified, rabbit polyclonal antibodies against SA1, SA2 and IgG (as control)

were cross-linked to protein A Pureproteomemagnetic beads (Millipore) at 1 mg/ml. Extracts were rotated overnight at 4�Cwith anti-

body-beads (1 mL of extract to 50 mL beads). The beads were washed 8 times with 0.5 mL buffer containing 10 mM K-HEPES pH 8,

0.1 M KCl, 2 mM MgCl2, 0.1 mM CaCl2, 5 mM EGTA, 0.05% NP40. At least 2 washes contained 0.1% NP40 and in 2 washes KCl

concentration was increased to 0.3M. A fraction equivalent to 2.5 mL of beads was resuspended in SDS-PAGE loading buffer, boiled

and analyzed by immunoblotting. The rest of the beads were processed for proteomic analyses (2 technical replicates) as described

(Kojic et al., 2018).

ChIP sequencing and analysis
4x107 cells growing at 70% of confluence were washed with PBS, trypsinized, resuspended in 20 mL of growing media and cross-

linked with 1% formaldehyde for 15 minutes at RT. After quenching with 0.125 M Glycine, fixed cells were washed twice with PBS

containing 1 mM PMSF and protease inhibitors, pelleted and lysed in lysis buffer (1%SDS, 10mM EDTA, 50mM Tris-HCl pH 8.1) at

2x107 cells/ml. 107 cells equivalent to 40-50 mg of chromatin were used per immunoprecipitation reaction with 25 mg of antibody.

Sonication was performed with a Covaris system (shearing time 20 min, 20% duty cycle, intensity 6, 200 cycles per burst and

30 s per cycle) in a minimum volume of 2 ml. For calibrated ChIP–seq in siC-, siSA1- and siSA2-treated cells, 5%–10% of chromatin

from humanmammary epithelial cells (HMEC) was added to the mouse chromatin before addition of the antibody. From 6 to 15 ng of

immunoprecipitated chromatin (as quantitated by fluorometry) were electrophoresed on an agarose gel and independent sample-

specific fractions of 100–200 bp were taken. Adaptor-ligated library was completed by limited-cycle PCR with Illumina PE primers

(10-12 cycles). DNA libraries were applied to an Illumina flow cell for cluster generation and sequenced on the Illumina HiSeq2500.

Image analysis was performed with Illumina Real Time Analysis software (RTA1.8). Details on the number of useful reads obtained in

each experiment are given in Table S1.

Alignment of sequences to the reference mouse genome (mm9, February 2009) was performed using ‘Bowtie20 (version 2.3.3.1)

under default settings (Langmead and Salzberg, 2012). Duplicates were removed using Picardtools (version 2.13.2) and peak calling

was carried out using MACS2 (version 2.1.1.20160309) after setting the qvalue (FDR) to 0.05 and using the ‘–extsize’ argument

with the values obtained in the ‘macs2 predictd’ step (Zhang et al., 2008). ‘‘Common’’ and ‘‘SA2-only’’ positions were defined using

BEDtools (version 2.27.1), with a minimum of 1-nt overlap as follows: ‘‘SA2-only’’ positions were those in which SA2 peaks did not

overlap with SA1, while the rest of positions were defined as ‘‘common.’’

For analysis of calibrated ChIP–seq, profiles for each antibody were normalized by coverage and thenmultiplied by the occupancy

ratio (OR) = (WhIPm)/(WmIPh), where Wm and IPm are the number of reads mapped to the mouse genome from input (W) and

immunoprecipitated (IP) fractions, and Wh and IPh are reads mapped to the human genome from the input and IP fractions used

for calibrating (Hu et al., 2015). In the conditions where calibrated ChIP-seq was not performed, normalization was done by coverage.
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Mean read-density profiles and read-density heatmaps for different chromatin-binding proteins were generatedwith deepTools 2.5.4

(Ramı́rez et al., 2016). To analyze the distribution of different proteins along super-enhancers the parameter ‘scale-regions’ from

deepTools was used to scale all the super-enhancers to their median size (�8600 bp). The bin size was set to 100 nt and extended

5 kb downstream and upstream. Enrichment of cohesin positions at chromatin states defined by Juan et al. (2016) was used the

‘intersect’ function from BEDtools utilities (version 2.27.1) with a minimum of 1nt overlap and ensuring that each position is assigned

to only one chromatin state.

Hi-C analysis
Hi-Cwas performed as described (Rao et al., 2014) usingMboI enzyme. Libraries from two different experiments were generated and

sequenced per condition (> 200 million reads each, see Table S7). Data were processed using TADbit (Serra et al., 2017) for read

quality control, readmapping, interaction detection, interaction filtering, andmatrix normalization. After a FastQC protocol to discard

artifacts, the remaining reads were mapped to the reference mouse genome (mm10) using a fragment-based strategy in TADbit,

which resulted in �60% of uniquely mapped reads. After discarding non-informative contacts -including self-circles, dangling-

ends, errors, random breaks or duplicates - the final interaction matrices contained 264–317 million valid interactions per experi-

mental condition (Table S7) that were used to generate genome-wide interaction maps at 100 kb and 50 kb to segment the genome

into the so-called A–B compartments and TADs, and to produce differential interaction maps .

TADs were identified by using 50-kb resolution vanilla-normalized and decay-corrected matrices as input to the TAD detection

algorithm implemented in TADbit (Figure 3A; Table S8). A–B compartments were detected by calculating the first component of a

principal-component analysis (PCA) of chromosome-wide matrices and assigning A compartments to the genomic bin with positive

PCA1 values and high GC content (Figure 3B). Conversely, B compartments were assigned to the genomic bin with negative PCA1

values and lowGC content. Rawmatrices normalized by coverage (i.e., all four experiments were scaled to have the same number of

final valid interactions) at 100-kb resolution were used for studying differential Hi-C interactions between serum and 2i, siSA1 or siSA2

conditions (Figure 3C).

For the metaplots (Figures 3D, 3E, 5A, and 5B), we extracted windows at 5kb/20kb of resolution centered in different sets of

positions, as indicated in the Figure Legends, and scaled them by coverage using the factors previously obtained in the analysis

of differential interactions. The final results are the sum of all those matrices for each condition and dataset. For metaplots in

Figure 3D, we looked at 1,234 interactions > 500 kb previously defined in mESCs by HiChIP using Smc1a antibody (Mumbach

et al., 2016) whereas in Figure 3E we selected 1,478 TADs > 500 kb from the analysis by Bonev et al. (2017). For the triangular

metaplots in Figures 5A and 5B, matrices were further normalized by the distance to the diagonal. To do this, we extracted the

mean of interactions by distance using the added matrices from the four conditions for each type of position (Polycomb and

super-enhancers).

Quantitative RT-PCR and RNA-sequencing
Total RNA was extracted using the RNeasy Mini Kit (QIAGEN) and cDNAs were prepared according to the manufacturer’s instruc-

tions using the Superscript II reverse transcriptase (Invitrogen). qRT-PCR analysis was performed using the SYBRGreen PCRMaster

Mix and an ABI Prism� 7900HT instrument (Applied Biosystems�). Primers (Table S6) were designed using OligoPerfect DesignerTM

(Invitrogen) and reactions were performed in triplicate. Quantifications were normalized to endogenous GAPDH, using the DDCt

method.

For RNA-seq libraries, RNA was extracted as described and treated with DNaseI (Ambion). polyA+RNA was purified with the

DynabeadsmRNApurification kit (Invitrogen), randomly fragmented and converted to double stranded cDNA and processed through

subsequent enzymatic treatments of end-repair, dA-tailing, and ligation to adapters as in Illumina’s ‘‘TruSeq RNA Sample Prepara-

tionGuide’’ (Part # 15008136 Rev. A). Adaptor-ligated library was completed by limited-cycle PCRwith Illumina PE primers (8 cycles).

The resulting purified cDNA library was applied to an Illumina flow cell for cluster generation (TruSeq cluster generation kit v5) and

sequenced on the Genome Analyzer IIx with SBS TruSeq v5 reagents by following manufacturer’s protocols. Three biological

replicates each were sequenced for control and siSA1 treated cells, two replicates for siSA2.

Fastq files with 51-nt single-end sequenced reads were quality-checked with FastQC (S. Andrews, http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/) and aligned to the mouse genome (mm9) with Nextpresso (Graña et al., 2018) executing

TopHat-2.0.0 using Bowtie 0.12.7 and Samtools 0.1.16 allowing twomismatches and fivemulti-hits. Transcript assembly, estimation

of their abundances and differential expression were calculated with Cufflinks 1.3.0 using the mouse genome annotation dataset

NCBIM37/mm9 from Ensembl. To account for multiple-hypothesis testing, the estimated significance level (P value) was adjusted

using Benjamini–Hochberg FDR correction. We consider significant those changes with FDR < 0.05 and use these dataset to

generate the heatmaps in Figure 6A. In these heatmaps, color intensities correspond to the relative expression levels for each

gene among conditions, normalized using the mean and standard deviation. Gene Ontology (GO) Enrichment Analysis for the eight

clusters defined in those heatmaps (Figure 6C) was performed using Panther (Mi et al., 2013). GSEAPreranked was used to perform a

gene set enrichment analysis (Subramanian et al., 2007). We used the RNA-seq gene list ranked by statistic, setting ‘gene set’ as the

permutation method, and we ran it with 1,000 permutations. Results are presented in Table S5.

To assess the relative distribution along TADs of the genes deregulated after SA1 depletion (Figure 6G), each TAD (defined in the

control condition at 50-kb resolution) was divided in 100 uniform bins, and density of upregulated or downregulated genes was
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obtained for each bin. Since TADs are symmetrical, bins equidistant to the center were considered equal. Next, we calculated the

log2 of the mean of the gene densities in each bin divided by total mean. The random genes were those present in the same

TADS but not affected by the depletion of SA1.

QUANTIFICATION AND STATISTICAL ANALYSIS

To identify binding sites of cohesin-SA1 and cohesin-SA2 in serum-grown mESCs a single ChIP-seq replicate was performed for

SA1, SA2 and Smc1a. Two independent ChIP-seq replicates were analyzed for SA1 and SA2 in 2i-grown mESCs cells, and one

of the replicates was sequenced twice. ChIP-seq for Suz12 and Ring1B in serum-grown mESCs transfected with siRNAs to deplete

SA1 or SA2 was carried out in two independent biological replicates per condition. For RNA-seq, three biological replicates each

were sequenced for control and siSA1 treated cells, and two replicates for siSA2. For Hi-C, libraries from two different experiments

were generated and sequenced per condition (2i, control, siSA1 and siSA2).

In qRT-PCR analyses, data represent mean and s.d. from three independent experiments, each performed in triplicate. A Student’s

t test was used to assess statistical significance. For RNA-seq analyses, the estimated significance level (P value) was adjusted using

Benjamini–Hochberg FDR correction in order to account for multiple-hypothesis testing. Changes with FDR < 0.05 were considered

significant and used to generate the heatmaps in Figure 6A. For the Gene Ontology (GO) Enrichment Analysis in Figure 6C, P value

was calculated with Fisher’s exact test corrected by FDR (< 0.05). In boxplots showing expression changes in Polycomb- and

SE-regulated genes after SA1 or SA2 depletion (Figure 6E), statistical significance was calculated with a Wilcoxon signed-rank

test. In Figure 6H, a Fisher’s exact test was used.

DATA AND CODE AVAILABILITY

ChIP-seq, RNA-seq, and Hi-C data from this study have been deposited in the GEO database (GSE126659).
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Figure S1 (Related to Figure 2) 

(A) Venn diagrams showing overlap between SA1 and SA2 binding sites defined in 
mESCs growing under 2i and serum conditions. The transition between 2i and serum 
state involves an important increase in the number of cohesin SA2 positions. (B) Read 
heat maps showing SA1 and SA2 distribution in mESCs growing under 2i and serum 
conditions around the cohesin positions defined in Figure 1A. 

 



 

 

 

 
 

Figure S2 (Related to Figure 3C) 

Matrices showing differential interactions in chromosome 17 (top) and chromosome 15 
(bottom) when comparing mESCs growing in 2i, SA1 depleted or SA2 depleted cells 
growing in serum to mock depleted cells (control) also growing in serum. Independent 
matrices for each of two biological replicates as well as the merge are shown. 

 

  



 

 
 

Figure S3 (Related to Figure 3D,E) 

Meta-plots of 3D interactions showing contact strength in the cohesin mediated loops 
defined by Hi-ChIP (A) or in high resolution TADs (B) in two biological replicates analyzed 
independently. The corresponding plots using the merge of the two replicates are shown 
in Figure 3 (D) and (E), respectively. 

 

  



 

 
 

Figure S4 (Related to Figure 6) 

Enrichment plots for genes in KEGG pathways that are upregulated in mESCs upon SA2 
depletion (NES>0) and downregulated upon SA1 depletion (NES<0). Statistical 
significant threshold was established by FEWER p-value<0.05. 
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