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ABSTRACT (150 WORDS aprox)  
 

High-throughput Chromosome Conformation Capture (3C) has provided a 

comprehensive overview of the genome architecture. Hi-C, a derivative of 3C, 

has become a reference technique to study the 3D chromatin structure and its 

relationship with gene activity and the functional state of the cell. However, 

several aspects of the analysis and the interpretation of Hi-C data remain a 

challenge and may hide a potential yet to be unveiled.  

 

In this thesis, we explore the structural landscape of multiple chromatin 

features. We developed an integrative approach combining in situ Hi-C data 

with nine additional omic layers and revealed a new dynamic and 

transitional state of genome enriched in poised and polycomb-repressed 

chromatin. This novel intermediate compartment plays an important role in 

the modulation of the genome during B cells fate decision and upon 

neoplastic transformation, specifically in chronic lymphocytic leukemia 

(CLL) or mantle cell lymphoma (MCL) patients.  

 

We also developed TADpole, a computational tool designed to characterize 

the entire hierarchy of topologically-associated domains (TADs) using Hi-C 

interaction matrices. We demonstrated its technical and biological 

robustness, and its capacity to reveal topological differences in high-

resolution capture Hi-C experiments.   
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RESUMEN 
 

En años recientes, el desarrollo de métodos experimentales basados en 

Chromosome Conformation Capture (3C) nos han permitido tener una visión más 

detallada y global de como el genoma se pliega en el núcleo celular. En 

particular, los experimentos Hi-C, derivados de 3C, se han convertido en el 

método estándar de analizar la arquitectura genómica, así como su relación 

con la actividad funcional de la célula. La generación de nuevos datos Hi-C 

ha derivado en una serie de retos de como analizar y interpretar los 

resultados que nos permitan extraer todo el potencial de los experimentos. 

 

En esta tesis, hemos explorado como se pliega el genoma analizando 

experimentos Hi-C conjuntamente con datos múltiples de cromatina. Hemos 

desarrollado un análisis integrativo combinando datos de in situ Hi-C con 

nueva capas epigenéticas de las mismas muestras celulares. Nuestros análisis 

han relevado la existencia de un nuevo compartimiento genómico 

caracterizado por su dinámica y capacidad de transición entre estados. Este 

nuevo compartimiento intermedio, enriquecido en cromatina reprimida por 

Polycomb, juega un papel importante en la modulación del genoma durante 

la diferenciación en líneas de paciente de células B derivadas en neoplasias, 

en particular de leucemia linfocítica crónica (CLL) o de linfomas indolentes 

y de células del manto (MCL). 

En esta tesis, además, hemos desarrollado un nuevo método de detección de 

dominios de genoma (TADs). El método, llamado TADpole, toma como 

entrada mapas de interacciones de Hi-C. El nuevo método se ha demostrado 

muy robusto a tanto los datos como en las replicas de experimentos además 

de ser útil en el estudio de diferencias topológicas usando experimentos de 

alta resolución de Capture Hi-C.  
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PREFACE 
 

The cell is the fundamental unit of an organism. For instance, approximately 

3.72 × 1013 cells conform the average human being (100 times more than the 

stars counted in the Milky Way) clustering into more than 200 different cell 

types (1). Each of our cells contains around 3 billion DNA base pairs (bp) 

organized in 23 pairs of chromosomes (22 autosomes and 2 sexual 

chromosomes). Each base pair is about 0.34 nanometer long, therefore each 

diploid cell contains approximately 2 meters of DNA folded up and 

packaged around specific proteins, forming a complex fiber called chromatin, 

in a nucleus of few micrometers in size. This high compaction of the DNA 

fiber is folded up to higher-order structures, allowing to maximize the DNA 

compaction, ensuring an accurate segregation during DNA replication and 

cell division, while remaining sufficiently accessible for multiples DNA-

binding proteins, such as transcription factors, polymerases, nucleases or 

histones marks that have been reported to play a fundamental role in the 

genome maintenance and gene regulation.  

 

Thanks to the complementary efforts of the microscopy and molecular 

biology techniques (especially chromosome conformation capture (3C) 

technologies), it has been possible to unravel that the DNA folding, as well 

as promoting a dimensionality-reduction of the fiber, plays a prominent role 

in the cell function. Increasing evidence indicates that genome architecture 

regulates gene transcription with implications on cell-fate decisions, 

development, and disease occurrences such as congenital abnormalities and 

neoplastic transformations.  

 

This thesis is composed of multiple chapters. In the introduction, we review 

how the genome is folded in the nucleus following a hierarchical organization 

and how this folding has a direct impact on the transcription regulation 



 

 ix 

across genomic scales.  The core of the thesis, in chapters 1 and 2, presents 

the results obtained in the two main publications of the candidate. In chapter 

1, we present an integrative multi-omics approach that allowed us to study 

the dynamics of genome architecture and chromatin function during human 

B cell differentiation and neoplastic transformation. In chapter 2, a new 

bioinformatics tool, called TADpole, is proposed to annotate the underlying 

hierarchical organization of chromatin. Finally, a conclusion is added to 

highlight the main contributions of this thesis.
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OBJECTIVES 
 

The global objective of this thesis is to explore in detail how the chromatin 

is organized inside the nucleus, specifically at the level of compartments and 

topologically associated domains (TADs), and assess the biological relevance 

of this chromatin organization during cell differentiation and upon 

neoplastic transformation. To achieve this main goal, two main projects were 

accomplished: 

 

1. An exhaustive study of the modulation of chromatin structure 

during B cell differentiation and upon neoplastic transformation 

applying an integrative multi-omics approach. 

 

2. Development of a computational tool designed to identify and 

analyze the entire hierarchy of topologically associated domains 

(TADs) in intra-chromosomal interaction matrices. 
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INTRODUCTION  

The molecular structure of the DNA 
From the University of Cambridge to the King College London, five 

scientists; Maurice Wilkins, Rosalind Franklin with Raymond Gosling (2), 

James Watson and Francis Crick (3), laid the foundations to determine the 

structure of the human DNA double-helix. 

One by one, 3 billion of recurring structural blocks, known as nucleotides, 

are precisely hooked and stabilized to write the DNA book, the human 

genetic instructions. Each nucleotide is composed by a single phosphate 

group, a pentose sugar and a nitrogenous base. The phosphate group and the 

pentose are the same for all nucleotides and form the sugar-phosphate 

backbone of the DNA molecule. Additionally, there are two basic types of 

nitrogenous bases, purines (adenine(A) and guanine(G)) and pyrimidines 

(cytosine (C) and thymine (T)). The base pairing (adenine always pairs with 

thymine, and cytosine with guanine) forms each “rung of the DNA ladder” 

maintained by hydrogen bonds (Figure 1). Each side of the ladder is known 

as a strand, and two sister strands, normally called positive and negative, are 

twisted around a common axis to form a double-helical structure oriented in 

an antiparallel sense. As a consequence of the base pair geometry, two 

grooves, called minor of 12Å and major of 22Å, arise with unequal size in 

the extension of the polymer. These grooves are potentially binding sites to 

accommodate DNA binding proteins involved, among many other cellular 

processes, in the replication and transcription.  
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Figure 1: The structure of the DNA. (A) Schematic representation of the DNA 
double helix. The four covalent linked building blocks (A, T, G, C) form the 
polynucleotide DNA strand. The DNA molecule is formed by two antiparallel 
strands stabilized by hydrogen bonds established by base-pairing. One turn of the 
helix spans 3.4 nm (10.5 bp). (B) The alternative distribution of the sugar and 
phosphates residues together with the bases projected inward the DNA core promotes 
the creation of the minor (12Å) and the major (22Å) grooves. The latter constitutes 
an accessible chemical environment to accommodate multiples binding molecules. 
Adapted from (4). 

 

In 2003, after 13 years of work involving a great international effort, the first 

reference sequence of the human genome was published (5-7). At this point 

and with the subsequent improvements of the reference, the challenge has 

been to endow functionality to the sequences embedded in the genome. 

Interestingly, around 99% of the genome does not code for proteins, and for 

many years this huge portion of the genome was considered as DNA junk or 

garbage DNA. Over the years, numerous studies determined how non-coding 

regions in the human genome can harbor many functionally significant 

elements, and, as a consequence, play an important role in the regulation and 

maintenance of the genome (8). 
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The first level of DNA folding: Chromatin 
Each diploid human cell contains about 2 meters of DNA distributed over 23 

pairs of chromosomes that have to fit into a ~10 micrometers cellular nucleus. 

As if the DNA was a thread, it has to be wrapped around specific protein 

complexes called nucleosomes to acquire a certain degree of compaction that 

led it to pack inside the nucleus. The X-ray structure of the nucleosome 

determined by Luger in 1997 (9) allowed seeing at near-atomic resolution 

(2.8 Å) how the core components of the nucleosome are assembled and how 

the 145-147 base pairs (bp) of a linear polymer of eukaryotic DNA are 

wrapped around it. 

The structural organization of the nucleosome was determined by DNA 

digestion with specific enzymes called deoxyribonucleases (DNases). 

Particularly, micrococcal nuclease (one type of DNase) was used to break 

down the DNA by cutting between nucleosomes, making possible to 

determine that each nucleosome mainly consists of a structured core and an 

unstructured tail domain. The structured nucleosome core is made up of eight 

positively charged proteins called histones, which are known as a histone 

octamer. Each histone octamer is composed of two copies of each histone 

protein H2A, H2B, H3, and H4 stabilized by the union of the linker histone 

H1 (Figure 3). The latest binds to the DNA entry/exit sites on the surface 

of the nucleosomal core and stabilize the chromatin into a higher-order 

structure known as chromatosome (10, 11). The terminal portion of the 

nucleosome (composed of 15-30 basic residues) are disordered tails that 

extend outwards from the core, becoming an exposed surface for potential 

interactions and post-translational modifications (PTM). These type of 

epigenetic modifications are chemical alterations of the DNA and histones 

that act as switches implicated in the regulation of gene expression that do 

not produce changes in the DNA sequence (12).  



 4 

The classical assumption that nucleosomes are static units is being changed 

toward dynamics and instructive participants in all chromosomal processes 

as transcription, replication, DNA repair, etc… (13). Composition 

alteration, covalent modifications, and translational reposition are the three 

main dynamic properties that categorize the nucleosomes, conforming an 

epigenetic diversity known as the “nucleosome landscape” (14). Firstly, the 

composition alteration promotes changes in the canonical nucleosomes’ 

configuration forming a nucleosome variant. Examples of histone variants 

as H2A.Z and H3.3 have been demonstrated to play an important role in 

chromatin structure and gene regulation, associated to a repressive or active 

state of gene transcription, respectively (15, 16). Secondly, the nucleosome 

tails, and also the histone core, undergo PTMs that change their interaction 

with DNA and convert them in potential targets for nuclear proteins. 

Methylation, acetylation, phosphorylation, and ubiquitination are some of 

the large repertoires of PTMs that can modulate chromatin structure and 

transcriptional activity (17). In general, these histone modifications are 

catalyzed by different enzymes including histone methyltransferases, histone 

acetyltransferases, histone deacetylases, and kinases that are responsible to 

add or remove specific covalent modifications leading to activation and 

repression of transcription, depending on the nature and the position of the 

PTM (18, 19). All these dynamic modifications conform a collection of 

combinatorial or sequential signals constituting the so-called “histone code”, 

and their effects on gene transcription can be broadly categorized into active 

and repressive marks (Figure 2). For example, histone H3 trimethylated on 

lysine 4 (H3K4me3) has been associated to active promoters near 

transcription start sites (TSS) while histone H3 trimethylated on lysine 9 

(H3K9me3) and lysine 27 (H3K27me3) usually are associated with silent 

and poised promoters, respectively, with a general downregulation of nearby 

genes (20). Describing the histone code is crucial to understanding how the 

functional associations of the covalent histone modifications affect gene 
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expression and their impact in chromatin folding (21). Finally, apart from 

the histone proteins, other non-histone proteins, such as high mobility group 

nucleosome-binding proteins, can establish a direct nucleosome-protein 

interaction that regulate chromatin structure either locally or globally (22).  

 

Figure 2: The histone code divided into active and repressive markers. DNA is 
wrapped around the histone cores, whose tails are composed by different amino acids 
susceptible to be covalently modified. Active marks are represented on the left part 
of the figure while the repressive mars are located on the right. The common 
nomenclature of the modifications is the name of the histone, the type and position 
of the amino-acid and the type and number of modification(s). Lysine (K), arginine 
(R), serine (S), and threonine (T). Adapted from (23) 

 

Most genomic DNA is occupied by nucleosomes in a not randomly distributed 

manner. In fact, many functional regions (promoters, enhancers, and others) 

are depleted in nucleosomes and some regions are largely nucleosome-free 

(24). The dynamic nature of nucleosome position has a direct influence in 

the gene regulation. The ATP-dependent nucleosome remodeling complexes 

such as SWI/SNF or ISWI regulate the access to DNA sequences promoting 

the mobilization or rejection of nucleosomes (25). 
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Nucleosomes, considered as the “genome’s guardian” provide not just the 

structural support and the requirements to compact the DNA, but also play 

a crucial role in the control of cell fate and maintaining the integrity of the 

genome (26). Nucleosome wrapping shortens the chromatin fiber about 

sevenfold from the naked DNA becoming the first determinant of the DNA 

accessibility. All these nucleosomal arrays constitute the primary beads-on-a-

string 10 nm chromatin fiber. The consequence folding of this chromatin fiber 

establishes new high-order chromatin structures to culminate with the mitotic 

chromosome (Figure 3) 

 
Figure 3: Hierarchical overview of the chromatin structure.  Two copies of the 
four histone proteins (H2A-H2B, H3-H4) conform the nucleosome core particle 
(NPC) around which 145-147 bp of DNA are wrapped. Nucleosomes display a 
dynamic nature in terms of composition and conformation. Post-translational 
modifications (PTMs) and histone-variant composition alter the structure of the 
nucleosome and, consequently, its interaction properties. A linker histone H1 
interacts with NPC and the linker DNA to facilitate the folding in non-periodic, 
irregular high-order structures (such as nucleosomes clutches) to further culminate 
with the largest structural assembly within the nucleus: the chromosomes territories 
(CTs). Adapted from (26). 
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30-nm chromatin fiber in vitro vs in vivo 
When the chromatin structure is studied isolated in an in vitro system, outside 

the nuclear envelope, it apparently folds around a central axis with a uniform 

fiber-like conformation of 30 nm diameter. This structural model proposed 

by Finch and Flug in 1976 (27), assumed that the nucleosomes are 

distributed consecutively next to each other in a solenoidal one-start-helix. 

At this point, the fiber of 30 nm was categorized as the basic structural unit 

of the chromatin. Over time, modifications of this first model emerged, such 

as zigzag model, which proposed a zigzag arrangement of nucleosomes along 

the chromatin fiber but always considering a stable and periodic structure of 

chromatin at 30 nm (28). 

However, thanks to the advances in the imaging field, it seems that the 

chromatin tends to be organized in a non-uniform manner with less 

regularity folded structures in vivo systems (29). Cryogenic electron microscopy 

(Cryo-EM) and cryo-electron tomography (Cryo-ET) studies applied in 

multiples species have the potential to observe the cell close-to-the native 

structure (30, 31). These studies suggested that the nucleosome fiber does not 

undergo 30 nm folding, highlighting the existence of a disordered and 

interdigitated state of compactness. Recently, using stochastic optical 

reconstruction microscopy (STORM), it was possible to visualize at high 

resolution (~20 nm) that the nucleosomes are distributed in discrete 

heterogeneous domains, called “nucleosomes clutches” in the interphase 

nuclei of mammalian cells (32). Interestingly, large clutches with high 

nucleosome compaction were associated to heterochromatin regions with an 

increase of H1, whereas the small clutches with a low-density of nucleosomes 

were associated to active regions (32). Moreover, other techniques such as 

ChromEMT (a combination of EM tomography and targeted labeling) 

determined that the chromatin is a disordered granular 5 to 24 nm diameter 

curvilinear chains packed with many nucleosome rearrangements and 

structural conformations (33).  
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The previous results indicate that the 10 nm fiber follows a non-periodicity 

and irregular folding with less physical constraints that increase the 

dynamism and accessibility of the DNA. Moreover, the level of chromatin 

compaction has a direct impact on the degree of DNA exposure to damage-

inducing factors and repair pathways (34) and could determine how the 

cellular machinery accesses genes and consequently its transcription.  

 

How chromosomes are organized in the nucleus? 
Chromosome Territories. 
Since the 19th century, thanks to the microscopy techniques, many relevant 

features of the chromatin organization are known. Carl Rabl (35) and later 

Boveri (36), between 1902 and 1904, proposed that the DNA, from the 

animal interphase chromosomes, is organized in a defined volume, forming 

discrete entities called chromosome territories (CTs) inside the nucleus. 

Boveri, in particular, suggested that chromosomes retain its individuality 

during the interphase but with a certain possibility to overlap with its 

neighbors’ regions.  

 

During the 1950s to 1970s, the first electron microscopy images started to 

describe a different organization of the chromosomes in the interphase 

nucleus. This model, which resembles a bowl of spaghetti, considered that the 

DNA fiber (10-30 nm in diameter) is randomly entangled in the nucleus with 

a high degree of intermingling. In light of this situation, many scientists tried 

to demonstrate one of the two proposed models. Among them, two brothers, 

Thomas and Christoph Cremer did the first indirect evidence of the existence 

of CTs using laser-UV-micro irradiation experiments (37). The hypothesis 

of this experiment was based on the fact that DNA-damage distribution and 

the affected area depend on how chromosomes are arranged in the nucleus 

with two possible scenarios based on the hypothetical organization of the 
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chromosomes (Figure 4A). The Cremer brothers experiment clearly showed 

that micro irradiation in a specific part of the nucleus only damaged segments 

of the affected CT and its neighboring chromosome territories, without 

massive damage expansion throughout the rest of the genome (Figure 4B). 

 

 
Figure 4: Chromosome territory models (A) The outline of the two possible models 
that would explain the distribution of the chromatin fiber in the interphase nuclei. 
It also indicates what the predicted result would be after a micro-irradiation process. 
(B) Three subsets of hamster chromosomes after irradiation. The damage affected 
mainly chromosome 1 and 2 without a significant expansion through the rest of the 
chromosomes. Adapted from (38). 

 

Few years later, using DNA fluorescence in situ hybridization (FISH) and 

its subsequent improvements as 3D FISH (39) or cryo-FISH (40) it was 

possible to directly visualize CTs in interphase cells (fixed or lived) of many 

higher eukaryotes, demonstrating that chromosomes preferably occupy 

specific non-random areas in the nucleus (40). 

However, the precise compaction nature of the chromosomes remained a 

mystery due to the limited resolution and throughput of these approaches. 

The discovery of nuclear ligation assay (41) inspired the generation of 

chromosome conformation capture (3C) technology that was fundamental to 

overcome the imaging limitations and thus disentangle the genome topology 

at high resolution. These techniques were the first molecular methods that 
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could detect the physical interaction of DNA segments that are close in the 

nuclear 3D space. The common experimental steps of these methodologies 

are the following: (i) a cell population is cross-linked by treatment with 

formaldehyde to promote the covalent bonds between DNA fragments, (ii) 

isolation and digestion of the chromatin using specific restriction enzyme (it 

will affect the size of the final fragments and thus the maximal resolution of 

the experiment) leaving 5' overhangs, (iii) proximity ligation of the 

restriction fragments, (iv) reverse crosslink and DNA purification and (v) 

interrogation of the proximity ligation fragments by PCR or sequencing 

technologies which reflect the interaction frequency between pairs of genomic 

loci that are close in the 3D space (42, 43) (Figure 5A). 

The original 3C method, which allows to determine interactions between one 

pair of loci(that is, “one-to-one”), evolved in the development of multiple 3C-

based techniques: circularized chromosome conformation capture (4C, “one-

to-all”) (44), chromosome conformation capture carbon copy (5C, “many-to-

many”) (45), and high-throughput 3C (Hi-C, “all-to-all”) (46) among 

others (Figure 5B-C). Specific to Hi-C, additional experimental steps are 

added compared to the rest of the 3C-based methods. After DNA digestion, 

the resulting overhangs are filled with biotinylated-nucleotides. Next, the 

DNA is shearing and then purified using a biotin pull-down experiment that 

uses streptavidin beads to ensure capture only the biotinylated DNA 

junctions for high-through sequencing and subsequent computational 

analysis. The basic data analysis of a Hi-C experiment involves mainly 5 

aspects: (i) read mapping, paired-end reads have to be aligned to the reference 

genome, (ii) read filtering, non-informative/error fragments (such as un-

ligated, self-ligated, PCR artefacts,… etc.) have to be removed to keep only 

valid pairs, (iii) building the contact matrix, the genome is divided into non-

overlapping bins where each bin contains the number of the read pairs that 

have interactions (the bin size of the Hi-C map is also referred to as 

“resolution”), (iv) bin filtered with low interactions counts and (v) matrix 
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normalization, two main strategies exist to normalize the Hi-C data: 

explicit methods, that assume that all the biases that affect the data are 

known such as GC content, mappability, frequency restriction sites and 

implicit or balancing methods, that assume equal visibility for all bins. Once 

normalization is completed, a contact heatmap can be generated and inferred 

proximity information of the entire genome (43, 47).  

Hi-C opened the way to interrogate all the genomic interaction pairs in an 

unbiased genome-wide fashion, which corroborated the existence of CTs. 

Indeed, a clear preference was detected for the interactions that occur between 

pairs of loci that come from the same chromosomes (cis or intra-chromosome 

interactions) compared to those established between different chromosomes 

(trans or inter-chromosome interactions) (46). The cis interactions can be 

between pairs of loci apart several kilobases (between promoters and 

terminators) up to tens of kilobases or even megabases away to allow the 

interactions between promoters and enhancers (48).  
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Figure 5: Experimental common basis of the 3C-based methods. (A) These 
methods involve cross-linking cells with formaldehyde to promote covalent bonds 
between DNA fragments that are physically close in the nuclear 3D space, followed 
by DNA digestion with a specific restriction enzyme and subsequent proximity 
ligation of the fragments. These chromatin complexes are purified and analyzed 
(using PCR or high through sequencing). (B) Variations of 3C technique. 4C (one 
locus with the rest of the genome) and 5C (all-vs-all in specific genomic regions). 
After the read preprocessing, a domainogram can be created depicting interaction 
intensities across the viewpoint(s) to the rest. (C) Unbiased interaction across the 
entire genome (Hi-C). After read preprocessing and correction bias (read 
mappability, GC content, number of restriction sites), a normalized matrix (M) is 
created containing interaction frequency values in each cell Mij. From it, multiples 
structural chromatin features can be annotated. Adapted from (49, 50) 

 
The chromosome territories appear like subnuclear environments that 

extend into neighboring domains creating intermingling areas. These “areas 

of contact” between chromosome territories provide a chance to establish 

potentially functional interactions between different chromosomes, a 
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phenomenon that has been termed “chromosome kissing”, “chromosome 

intermingling” and more recently “non-homologous chromosomal contacts” 

(NHCCs) (40, 51-53). Indeed, around 46% of each chromosome intermingles 

with other chromosomes, highlighting two important features of the 

chromatin, mobility and plasticity (Figure 6A). At low resolution, one of the 

most well-known and largest phenomena of NHCCs become visible, the 

formation of the nucleolus (53). In human nuclei, the inter-chromosomal and 

nucleolar associated of five acrocentric chromosomes (13, 14, 15, 21 and 22) 

which bear the nuclear organizing regions (NOR) behaves the formation of 

this large sub-nuclear conserved domain (54). At higher resolution, NHCCs 

have been determined between specific enhancers and target genes. For 

example, a well-known functional significance of an inter-chromosomal 

association was characterized between a promoter region of the IFN-gamma 

gene on chromosome 10 and the regulatory regions of the Th2 cytokine locus 

on chromosome 11. This association favors the creation of a "poised 

chromatin hub" that enhances the expression of both Th1 and Th2 cytokines 

at naive CD4(+) T cells (55).  

The CT localization follows a non-random radial distribution in the nucleus, 

which is determined by the position of a target chromosome or gene relative 

to the center of the nucleus and appears to be evolutionarily conserved (56). 

Interestingly, several factors have been proposed to participate in the 

organization of the CTs in the nuclear space, such as the chromosome size, 

replication timing, gene density and transcriptional activity (57, 58). The 

radial position of the chromosomes correlated with the length of their 

sequence; the longest chromosomes are preferably located in the peripheral 

part of the nucleus while the shortest tend to be localized more internally. 

CTs near the nuclear envelope and perinucleolar space are mainly associated 

with a decrease of gene expression and often these transcriptionally repressed 

genes are attached to the nuclear lamina (59). In contrast, gene-rich 

chromosomes (such as human chromosomes 16, 17, 19 and 22) tend to be 
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concentrated in a central position in the nucleus (60) (Figure 6B). One of 

the clearest examples, between the implication of the peripheral location with 

the loss of expression, is the inactivation and maintenance of chromosome X 

silencing in female mammals (61). Additionally, several examples have been 

reflected how the relative position of a gene in the nucleus have a link with 

their functional state: for example, IgH and IgK loci are preferentially 

located at the nuclear periphery in hematopoietic progenitor cells, however in 

pro-B-nuclei appear in the central part of the nucleus, suggesting an 

association between nuclear positioning and transcriptional regulation 

during lymphocyte development (62).  

However, the CT location follows a probabilistic pattern, despite to exist a 

preferred average position of the chromosomes inside the nucleus, the 

location in individual cells and tissues show a great variability (38). For 

example, it has been determined that the chromosome 5 is located 

preferentially toward the nucleus center in liver cells and lymphocytes 

compared to the more peripheral position that acquires in lung cells (63) 

(Figure 6C). A recent study, combining direct imaging and transcription 

information at single-cell level (seqFISH), revealed that nascent site of RNA 

synthesis tends to be localized at the surface of the CT with a high variable 

distribution among individual cells promoting inter-chromosomal contacts. 

These active regions are not dynamically positioned according to the 

immediate transcriptional activity of the single cell (64).  

There are several well-documented examples where gene nuclear positioning 

correlate with its expression, however the actual position of a gene is not 

essential for its normal function. Rather, this positioning can be a result of a 

clustering of co-regulated genes with similar expression patterns that 

contribute to their proper expression and regulation (38). 
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Figure 6: Main features of chromosome territories. (A) Top. Schematic 
representation of the individual chromosomes territories that highlight their 
potential to establish contact regions. Bottom. Intermingling area between 
chromosome 5 and 7 in human lymphocytes detected by fluorescence microscopy. 
Adapted from (40). (B) Radial distribution of the CT respect to the nucleus. The 
chromosome size and the gene expression are factors that inversely correlated with 
the position of CT inside the nucleus. (C) Left. The probabilistic pattern of CT 
distribution. Every dot is the location of the IgH locus in different cells. Adapted 
from (38). Right. FISH of chromosome 5 (green) in the liver (located at the nuclear 
core) and lung cell (located at the nuclear periphery) nuclei. DNA counterstaining 
with DAPI is in blue. Adapted from (63). 

 
Chromosomal arrangements can also change during states of differentiation 

(65), spermatogenesis (66), DNA damage response (67) and in response to 

changes in cellular homeostasis (as, for instance, serum-starved cells or softer 

extracellular matrices) (68). Specifically, during these unstable situations, 

CTs can restore their original positions within minutes to hours depending 

on the cell type and the context-specific response (68). The altered positions 

of the CTs have also been described in diseases and neoplasms 

transformation. The aberrant nuclear position of CT (chromosome 

translocations or chromosome content imbalance) has the potential to either 

promote the CT displacement where the translocation has occurred (69) or, 
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as in the case of aneuploidies, that the chromosome affected alters or re-locate 

another CTs of its usual nuclear position (70). 

 

Nuclear Neighborhoods  
As the precise position of a gene in the nucleus is not enough to determine its 

activity, alternative mechanisms that have a direct or indirect effect on gene 

regulation have been studied. Among them, the existence of two kinds of 

nuclear neighborhoods have proposed: (i) those that are associated with 

transcriptional repression, such as internal nuclear membrane/nuclear 

lamina, and (ii) those are associated with transcriptional activation such as 

the surroundings of nuclear pore complex (NPC), and many nuclear bodies 

(as nuclear speckles, Cajal bodies or promyelocytic leukemia bodies among 

others) (71).  

The eukaryotic nucleus is a confined cellular organelle surrounded by a lipid 

bilayer membrane known as a nuclear membrane or nuclear envelope (NE). 

The NE consists of two parts: the outer nuclear membrane (ONM) and inner 

nuclear membrane (INM) that are populated by nuclear envelope 

transmembrane proteins, which associate with the lamin-binding proteins on 

the INM face to form the nuclear lamina (NL) (72). The NL, composed by 

a fibrous multi-protein network, can bind many proteins, including 

chromatin components such as heterochromatin protein 1 (HP1) and 

histones (72). Using DNA Adenine Methyltransferase Identification 

(DamID) technology, it has been possible to discover that chromatin 

establishes a molecular contact with the NL through lamina-associated 

domains (LADs) (73). These LADs, which vary in size from 100 kilobases 

(Kb) to 10 megabases (Mb), bear several similarities with the 

heterochromatin. It (i) harbors silent or low expression genes, (ii) overlaps 

with late replication timing regions, (iii) has a low density of genes and a large 

one of gene desserts, (iv) is depleted in RNA polymerase II (PolII) and 
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H3K4me2, and (v) enriched in H3K9me2 and H3K27me3 (74). In fact, 

H3K27me3 is enriched at the outer membrane (ONM), possibly to prevent 

the spreading of the active chromatin into same LADs (75). However, recent 

findings suggested that LADs are not necessarily restricted to the nuclear 

periphery, having the possibility to harbor either heterochromatin and 

euchromatin domains which contain active genes and regulatory elements 

(76, 77) (Figure 7A). In this line, the visualization of the LAD dynamics in 

single-cells during the cell cycle demonstrated a step-wise organization with 

a clear modulation of its aggregation state and its localization in the nucleus. 

Interestingly, during mitosis, many interactions are measured between LADs 

and non-LADs regions, and gradually, these inter-regional interactions are 

reduced during early G1 while the intra-LADs interactions increased (77) 

(Figure 7B). 

The borders of LADs are often enriched in active promoters, CpG islands 

and CTCF proteins, demarcating the structural limits between the repressed 

LADs domains and the neighborhoods active regions (74, 77). Some LADs 

are cell-types specific, while others appear largely conserved in size and 

position (constitutive LADs). However, a highly orchestrated reorganization 

of NL interaction has been detected upon progressive cell differentiation (78). 

In fact, some studies have shown an increased expression of targeted genes 

when they move away from the lamina. However, the expression of many 

other genes is not reduced upon similar experimental manipulations, 

bringing out that nuclear periphery is compatible with transcription (72, 79). 
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Figure 7: Organization of LADs. (A) Schematic view of the possible locations (from 
peripheral to nuclear interior) of the LADs inside the nucleus. Adapted from (76) 
(B) Structural molecular dynamics through mitosis (M) to G1. Three chromosome 
cartoons show the modulation in the location and the aggregation of LADs (colored 
by magenta) and non-LAD (colored by cyan) during the cell cycle. Adapted from 
(77). 

 

Whereas there is a clear association of NL to heterochromatin, the nuclear 

pore complex (NPC) have been linked with active genes and euchromatin 

(80). The NPC (that break the continuity of the NE) that has been 

extensively characterized as nucleo-cytoplasmic molecule exchange, also play 

important transport-independent roles in the cell, including gene expression, 

chromatin organization or maintenance of genome integrity. (81). The role 

of NPCs in transcriptional regulation has been continuously rebound 

between positive (active NPC-associated compartment) or negative 

(repressive lamina-associated) modulation of gene expression (82). Another 

important observation suggested dynamic functional clusters of active RNA 

polymerase II forming nuclear transcription factories within the nuclear 

space in the living and fixed cells (83). These active genes tend to localize on 

the edge of their corresponding CTs (84). Many of co-regulated genes show 

relocation in a single transcription factory (“gene kissing”) (85). For 
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example, Hbb and Hba globin genes in mouse erythroid cells, preferentially 

associate with hundreds of other transcriptional partners in transcription 

factories to coordinate and increase its transcription in a regulatory landscape 

(86). 

 

 
Figure 8: Nuclear neighborhood. The cartoon represents the mammalian nuclear 
landscape in interphase. The nucleus is physically separated from the cytoplasm 
thanks to the nuclear membrane (NL). The NL is interrupted by the nuclear pore 
complex that, besides to control nuclear transport, it has been linked to the 
regulation of gene activity. Under the inner nuclear membrane (INM), the nuclear 
lamina (NL) appears as a mechanical support and contributes to chromatin 
organization. Within the nucleus, individual chromosomes (represented as colored 
threads) occupied limited and non-random regions known as CT. Besides them, the 
nuclear landscape harbors a wide variety of dynamic nuclear bodies including 
nucleolus, Cajal bodies, nuclear speckles, paraspeckles, Polycomb bodies, etc…, 
which have an important role in modulation of numerous nuclear processes. Adapted 
from (87). 
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The non-random distribution of the CT together with its nuclear 

neighborhood, besides contributing to the structural organization of the 

genome, help in coordinated gene regulation, encouraging the functional 

compartmentalization of the genome (38). In the next section, we discuss 

further levels of segregation of the genome within the CT with functional 

reverberations.   

Compartmentalization at Mb-based scale of the chromatin. 
About ~8,4 million paired reads were enough to build the first human 

genome-wide interaction map using Hi-C technique (46). At low resolution 

(1 Mb), two main important aspects were retrieved. First, the enrichment of 

intra-chromosome interactions compared to inter-chromosome interactions 

(reflecting the chromosome territories) and, second, the power-low decrease 

of the intra-chromosomal interaction frequency as a function of the genomic 

distance that points to a set of possible polymer models describing the large-

scale chromatin organization (88-90) 

By focusing on individual chromosomes, it is possible to see that distinct sets 

of chromosomal regions, known as compartments, tend to interact 

preferentially with each other more than expected for a random polymer 

conformation. To elucidate this level of organization, sequential 

mathematical transformations of the Hi-C contact matrix (M) are applied 

(46): (i) a normalization strategy (91), to remove the inherent biases of the 

experiment producing the normalized matrix (Mnorm), (ii) a Pearson 

correlation, computed between the rows and the columns of the Mnorm, and 

(iii) a principal component analysis (PCA), that clearly and visually 

highlights the transitions between these compartments (46). The signature of 

the compartments is a checkerboard pattern that reflects the preference to 

keep close loci that present the same interaction profile, epigenomic status 

and genomic content while separating them from those that have opposite 
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features; manifesting a functional segregation of the genome into, at least, 

two compartments (92).  

Normally the first eigenvector (EV1) of the PCA describes the division of the 

chromosome into different compartments that show similar interaction 

behaviors. Regions that present a similar pattern of active chromatin marks 

(such as H3K36me3 or H3K4me3), DNAseI hypersensitivity, transcription 

activity, enrichment of RNA polymerase II, early replication domains, high 

GC content, and high gene density have similar EV1 values and are 

categorized as A compartments. By contrast, regions enriched in inactive 

chromatin marks (such as H3K9me2 or H3K9me3), lamina-associated 

domains, late replication domains, and present low gene density tend to have 

the opposite sign of EV1 values and are annotated as B compartments (46, 

93) (Figure 10B). On this basis, the A and B spatial segregated 

compartments were associated with the euchromatin (“active” or “open” 

chromatin) and heterochromatin (“repressed” or “closed” chromatin), 

respectively.  

However, the signal of H3K9me3 and H3K27me3 does not perfectly 

delineate with the bimodal compartmentalization of the genome, suggesting 

a different gene regulation mechanism of these two histone marks (93). In 

fact, analyzing the local A/B compartment composition in Arabidopsis 

genome, high levels of H3K27me3 were determined in both A and B 

compartments. This suggests that H3K27me3, a hallmark of the Polycomb 

Group (PcG) proteins, essential during cell development due to its ability to 

modulate the chromatin repressing targeted genes, can also be involved in the 

local chromatin organization (94). Indeed, 3C-based experiments have 

demonstrated the capacity of PcG to form discrete self-interaction domains 

with uniform close-range interactions that, thanks to their permissive 

regulatory topology, can influence in the condition and maintenance of the 

silenced state of the cell (95, 96). In fact, the folding and the chromatin 
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properties of Polycomb-bound chromatin appear to be unique compared with 

the other compartments with a certain degree of variability between cells. 

Using 3D-STORM in 46 different epigenetic domains allowed to define three 

major epigenetic states in Drosophila cells: (i) active state (enriched in 

H3K4me2 or H3K79me3), (ii) inactive state (depleted of PcG proteins and 

transcriptional activators), and (iii) Polycomb-repressed state (enriched in 

H3K27me3 or PcG proteins) (97). The latter presents an individual compact 

structure with a high degree of intermingling within itself and a clear 

tendency to spatially exclude neighboring domains (97). In this line, the 

capacity of PcG complex to polymerase and establish multivalent interactions 

suggests its potential ability to form permissive micro-compartments (98, 99) 

(Figure 9). 

 
Figure 9: Chromatin identities. Chromosomes occupy specific non-random 
territories in the nucleus and inside them, other degree of compartmentalization can 
be distinguished. Transcriptionally and open chromatin compartments are spatially 
segregated from other two more repressive compartments that are formed by 
constitutive heterochromatin, a transcriptionally inert compartment, and Polycomb 
compartment, categorized by repressed/intermediate dynamic state. Adapted from 
(98). 

 

High-resolution Hi-C studies in humans and mice, also revealed that there 

are not just two opposite chromatin segregation compartments, but there is a 
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continuous state of several compartments that can capture better the 

complexity of the genome interaction landscape (100). Other study revealed 

a finer cluster of chromatin structure in three specific compartments: one GC-

rich and transcriptionally active loci and the other two characterized by low 

genomic activity and low GC content, distinguished by its relative distance 

from the centromere, (i) centromere-proximal and (ii) centromere-distal 

domains (49). At high resolution (25kb), other divisions of the chromatin 

compartmentalization were proposed including six (sub)compartments (A1, 

A2, B1, B2, B3, B4) (101). (Sub)compartments A1 and A2 were related to 

highly gene dense regions decorating with active histone marks, B1 and 

B2/B3 were associated with facultative and constitutive heterochromatin 

respectively and B4 was categorized as a special manually annotated 

(sub)compartment only present on human chromosome 19, that is enriched 

in the KRAB-ZNF superfamily genes (101) (Figure 10A). Recently, A1 and 

A2 (sub)compartments were correlated with transcription hot zones, where 

A1 was associated with the periphery of nuclear speckles and A2 was located 

to intermediate distance from nuclear speckles. Additionally, B1 was 

correlated with intermingled regions enriched in polycomb-silenced regions 

while B2 and B3 were linked to LADs (102).  

Analyzing these alternative chromatin subdivisions, it seems that as we 

increase the resolution of the Hi-C data, the number of the compartments 

categories increases, identifying even more distinct patterns at finer 

resolutions (103, 104). For instance, in the Drosophila genome, finer 

(sub)compartments were annotated at 10kb of resolution (104). If these new 

subdivisions are related to the presence of new biological features or if just 

the ability to define new boundaries at high resolutions remains to be 

determined (103). 
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Figure 10: Compartmentalization of the genome. (A) Cartoon of a checkerboard 
pattern in a Hi-C map. At the bottom, examples of alternative 
(sub)compartmentalization of the genome are shown: (i) classical A (red) and B 
(blue) segmentation from Lieberman-Aiden, (ii) high-activity cluster (red), low 
activity centromere-proximal clusters (green) and low-activity centromere-distal 
clusters (blue) proposed by Yaffe and Tanay and (iii) A1 (green), A2 (aquamarine), 
B1 (red), B2 (yellow), B3 (gray), B4 (violet) determined by Rao. (B) Mapping the 
spatial segregation of genome features in 3D chromatin model from IMR90 human 
cell line. The degree of compartmentalization is shown in the core of the figure. The 
red color represents enrichment in the case of DNase I hypersensitive sites (DNase 
I), RNA polymerase II (RNAP II), active gene expression (RNA-seq) and 
H3K4me3, and deficiency of lamina-associated domain (LAD) and early replication 
timing. A degree of compartmentalization was computed in IMR90 cells showing 
how the positive values were located in the interior of compartment A whereas low 
negative values were located in the inner part of the B compartments with a clear 
separation by compartments boundaries with intermediate values between them. 
Adapted from (93). 

 

The existence of the chromatin compartmentalization was questioned as an 

experimental Hi-C effect of the average population cell or as if its existence 

were a transient or simple consequence of shared genomic features (72). 

However, imaging of numerous genomic regions suggested a spatial 

arrangement in a polarized manner of the genome along individual 

chromosomes (105). Interestingly, these compartments are shown as physical 

structures that in single-cells appear as individual, distinct entities or as 

entangled structures with a certain variability from cell to cell (106).  

In general, the high correlation between the compartment assignment of the 

genome with the previous biochemical features, highlighted the role of 

chromatin structure as the emerging regulator of gene expression and the 
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possible diffusor of the transcription factors to a certain part of the chromatin 

(93). 

 

How dynamic are the genome compartments? 
The organization of genomic compartments is highly dynamic. Numerous 

studies have shown a great modulation of the chromatin compartments in 

terms of number, type, and size during cell fate decision. For example, about 

36% of the active or inactive chromosomal compartments switched during 

human embryonic stem cell differentiation correlating in several cases with 

changes in the gene expression (107). A minor percentage has been reported 

during human cardiogenesis, were about 19% of the genome changes either 

from A to B compartments or vice versa. The transition toward more active 

compartments is coincident with an increase in gene expression and DNA 

accessibility whereas the transition toward inactive compartments does not 

necessarily associate with the genomic functional state of the cells (108). 

During reprogramming of somatic cells into pluripotent cells, changes in 

subnuclear compartmentalization follow a similar trajectory of the 

transcriptome, suggesting that changes in the nuclear topology frequently 

precedes the transcription changes (109).  

The compartmentalization of the genome is often perturbed upon variation 

in the homeostasis cell environment (such as hormone-induced or 

hyperosmotic stress) (110, 111) and also during neoplastic transformation 

and diseases. Interestingly, around 12% of all the compartments determined 

in mammary epithelial cells (at 250kb of resolution) presented a clear 

transition to the opposite compartment in the breast cancer cell with a higher 

increment of open compartmentalization (112). Another study determined 

32% of compartmental changes between normal cultured B cells (GM12878) 

with multiple myeloma cell lines (RPMI-8226 and U266) associated with and 

up- or down-regulation of gene expression (113).  
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Overall, the nuclear architecture of the genome is highly dynamic and can 

respond upon environmental perturbations generating a rapid response, 

while retaining its capacity to restore its initial state (110, 111). Their global 

and local rearrangements during cell differentiation and upon neoplastic 

transformation and diseases generally produce a change in gene expression 

determining a close correlation between structure and function. 

 

Topological-associated domains. 
At the tens of kilobase resolution, Hi-C and 5-C experiments revealed the 

existence of sub-megabase blocks of dense chromatin interactions. These 

chromatin domains were termed as topologically associating domains 

(TADs) and were first described by two main features: (i) a high preference 

of physical intra-TAD interactions in comparison with inter-TAD 

interactions and (ii) a non-continuous contact frequency with an abrupt 

transition between topological domains characterized by a significant 

reduction of interactions and by enrichment of barrier elements (114, 115) 

(Figure 11). On this basis, TADs bring linear distal cis-regulatory elements, 

such as promoters and enhancers, into a 3D proximity in the nucleus, 

whereas barrier elements act as insulators to avoid interactions (116). 

Structurally, they appear as globular units formed by looping structures, 

isolated from the rest in the 3D space even if there are adjacent along the 

genome (72). Functionally, TADs have been considered as “genomic 

regulons” to allow spatially proximity of the genes that work in a 

coordinated fashion (117). TADs have been extensively described in many 

species as Drosophila melanogaster, Mus musculus, and Homo sapiens, multiple cell 

types and even at individual cells, suggesting evolutionary conserved domains 

and an inherent principle of chromatin folding (115, 118, 119).  
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Figure 11: Hierarchical organization of the chromatin at different levels of 
resolution. (A) Low-resolution Hi-C map showing the checkerboard pattern 
segmenting the genome into A (red) and B (blue) mega-sized compartment. (B) 
Definition of topologically associating domains (TADs) at 40/50kb of resolution. 
TADs contain smaller sub-TADs characterized by an increase of interaction 
frequencies. Some of them are confined by a specific architectural proteins called 
CTCF. (C) CTCF loop definition, characterized by a strong dark peak on the Hi-
C map. Its formation is due to the result of a looping structure establishes between 
DNA sequences that recruit two convergent CTCF motives and their partner cohesin 
complex. Adapted from (120). 

 

TAD boundaries are largely invariant over many cell divisions, across cell-

types and evolution (115). However, since the TAD detection is sensitive to 

the resolution of the Hi-C matrix and the method used to annotate it, their 

biological importance and even their existence have been extensively debated 

(98). The ability to detect them as individually privileged self-interaction 

structures and the duplication/deletion of TAD boundaries associated with 
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gene misexpression and developments defects are some arguments that 

encourage the existence of TADs (98). Alternative methods such as i3C 

(intrinsic 3C-based method without crosslink)(121), genome architecture 

mapping (GAM) a ligation-free method using ultrathin cryosections of the 

nucleus (122) and multiplexed super-resolution imaging methods (123) have 

reported the existence of TAD-like structures from the population-based 

experiments to single-cell data (Figure 12). 

 

Figure 12: Alternatives methods that support the existence of the TADs at 
different size-scales. (A) Hypothetical Hi-C interaction map highlighting the 
presence of several hierarchical levels of domains separated by sharp boundaries. 
Adapted from (124). (B) Genome architecture mapping (GAM) identifies TADs 
previously detected using Hi-C data. Adapted from (122) (C) Top. Spatial distance 
matrices from two individual IMR90 cells of the chr21. The genomic regions mark 
in multiples colors represent sub-TADs observed in a population-based experiment. 
Bottom. 3D STORM images corresponding to the top cells highlighting the different 
(sub)domains. Adapted from (123). 

 
Despite the debate on the existence of TADs, dozens of computational 

methods have been developed to computationally annotated them (125). 

Four main computational categories can be distinguished based on their 

mathematical approach: (i) linear scores associated with each bin, (ii) 

statistical models based on the interaction distributions, (iii) clustering 

approaches applied to the contact matrices and (iv) graph theory building 

dense TADs (sub)networks (125). From them, two main organizations can 

be retrieved either disjointed and unrelated TADs or overlaid/nested TADs 

with shared content. Indeed, thanks to the increased resolution of Hi-C 
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maps, numerous experimental and theoretical studies proposed that TADs, 

far from being simple plain triangles close to the diagonal, are organized in 

nested hierarchical levels, where smaller TADs are part of larger ones, 

showing a wide range of sizes. In mammalian cells, concepts such as 

“metaTADs” (126) or “sub-TADs” (127) have been used to define the 

different sizes and scales that can be used to annotate TADs. “Meta-TAD” 

is used to define a superior hierarchy of domains-within-domains that are 

modulated during cell differentiation (126) while “sub-TAD” is used to 

emphasize how and where the cis-regulatory elements establish physical 

interactions that contribute to gene regulation (127).  

TADs are separated by boundaries enriched in multiples factors that could 

contribute to their formation. Such factors associate with active promoters, 

gene bodies, housekeeping genes, transcriptional start sites (TSS), Alu SINE 

elements and specific chromatin architectural proteins, such cohesion and 

CCCTC-binding factor (CTCF) factor in vertebrates.  Specifically, CTCF 

and cohesin are considered master regulators of chromatin architecture (128). 

CTCF, an 11-zinc-finger DNA-binding domain, with the ring shape multi-

subunit complex of cohesin, composed of SMC1, SMC3, Rad21, and SA1/2, 

have been considered as key components of the TAD for its implication of 

boundary formation and its maintenance. Depletion of CTCF promotes a 

massive change in TAD topology that loses its structure but does not seem to 

affect the segregation of the genome at the level of compartments (129). 

Super-resolution experiments have been shown that after cohesin depletion, 

the single-cell TAD-like structures persist, suggesting that cohesin is not 

essential for the maintenance and initial establishment of these structures. 

However, after this depletion, the preferential positioning of the boundaries 

to CTCF is abolished, highlighting the dependence on cohesin-CTCF 

interaction (123).  



 30 

Changes in the extent of TAD insulation have been reported from a modest 

effect on gene expression to dramatic consequences in gene regulation, which 

can contribute to developmental defects or even cancer as the oncogene 

activation in IDH mutant gliomas (130, 131). From this clear discrepancy, 

a recent experiment leading by Despang in 2019 (116) suggested that TADs 

are formed by a redundant system of CTCF sites, the insulation between 

TADs is not required for developmental gene regulation and the 

inversion/insertion of boundary elements (redirection of TADs 

substructures) can induce gene misexpression and diseases. 

 

Chromatin Loops. 
Improvements in the original Hi-C protocol as well as deeper sequencing 

have allowed to increase the number of informative reads up to 5 billion, 

which has resulted in interaction matrices at a few kilobases of resolution. In 

this type of matrices, small contact domains (smaller than previously 

described TADs) were found interacting preferentially over the rest of 

domain creating strong spots in the contact map, called "peaks" or 

"chromatin loops" (101). These loops have a great variability, in terms of 

length and duration time (can be divided into temporal loops created 

dynamically and strong loops more conserved during cell cycle) (132). 

Around 10,000 peaks or loops have been detected in human genome-wide 

matrix at 5-kb of resolution, and they present very interesting properties: (i) 

most loops are short-range (<2Mb), (ii) often conserved across cell types and 

between human and mouse, (iii) many of them promote the association 

between promoters and enhancers with a clear influence in the gene activity, 

(iv) often demarcate TADs domain, (v) not present overlapping degree, and 

(vi) 86% of the anchor loops are closely associated with CTCF (90% of the 

cases in convergent orientation) and cohesin (101). 
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How dynamic are TADs and loops? 

Given that the Hi-C technique provides a single static snapshot of the 

chromatin organization by averaging the conformation of millions of cells, 

many authors highlight its main limitation as its inability to study its 

dynamics and cellular heterogeneity. However, thanks to the decrease in 

sequencing costs, more refined 3C-based time-resolved experiments have been 

done to monitor chromatin dynamics over time. TADs and loop modulation 

have been extensively described during cell reprogramming (109), cell 

differentiation (133), after environments perturbations (117) or during the 

cell cycle (134). All these data have the potential to be integrated, using 

restraint-based modeling and molecular dynamics approaches, to study at 

high resolution how the chromatin conformation has been adapted during 

cell fate conversion (135).  

Nowadays, high-throughput DNA sequencing technology allows us to 

reliably measure many genomic features at the level of single-cell, including 

RNA-seq, ATAC-seq, and Hi-C for 3D genome architecture (136, 137). 

Single-cell Hi-C together with DNA-FISH experiments have revealed an 

extensive cell-to-cell variability at multiple structural levels of chromatin, 

which provides the opportunity to explore the complex underlying functional 

aspects that are occurring in the cell. Despite this structural stochasticity, it 

has been determined how the general chromatin structure is probabilistically 

linked with genome activity patterns. In fact, biochemical and single-

molecule imaging studies (involving CTCF and cohesin complex) suggest 

that TADs and chromatin loops are dynamic structures that continuously 

form and fall apart through the cell cycle (138). 

Loop extrusion model and phase separation.  
The characterization of the different topological levels of chromatin entails a 

question about how they originate, and which are the molecular and 

biophysical mechanisms that allow their formation. One of the main 
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advances in this topic was the determination and assessment of how TADs 

and loops are formed. The model that currently is supported by the scientist 

community proposes that TADs and loops are formed via loop extrusion 

model carried out by the cohesin complex. This model operates in four main 

steps, (i) the extrusion cohesin complex is formed by two subunits that attach 

to the intact DNA forming a small loop (ii) the two subunits slide along DNA 

in opposite directions making the loop larger (iii) the extrusion cohesin 

complex halts when it finds a specific motif, CTCF motif, that acts as 

extrusion barriers and (iv) two pairs of CTCF in convergence orientation 

promote the stop of growing looping and the formation of loop domain (90) 

(Figure 13). The loops generated by this mechanism are unknotted, 

promoting fast and easy access to the genetic information just stretched them 

out and the correct segregation of the chromosomes avoiding possibly 

detrimental entanglements between them.  

 

Figure 13: The loop extrusion model. The model proposes that TADs are formed 
when cis-acting loop-extruding factors (such as cohesin) bind to DNA and form 
progressively large loops until boundary elements (such as CTCF) are attached in a 
convergent orientation and stop the growth of the loop. Adapted from Nik Spencer 
illustration for Nature (139). 
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Nevertheless, much less is known about the mechanism that promotes the 

segregation of chromatin into compartments. A phase-separation model has 

been proposed to explain how interactions between compartments of the same 

type (A to A or B to B) can generate attractive forces between them while 

establishing a repulsion force with the compartments of the opposite type, 

contributing to the physical segregation of the genome (140). However, these 

attractions can also be the result of the association of the domains with sub-

nuclear bodies to form liquid-liquid phase separation. Recently a new variant 

of Hi-C, called liquid chromatin Hi-C, suggest that the 

compartmentalization (that can occur when a particular domain present at 

least 10kb in length) is mainly promoted by the stable heterochromatin 

interactions while associations between open regions (close to the nuclear 

speckles) and polycomb-bound regions present highly dynamism (141). 

Compartmentalization, therefore, appears to be the default mechanism of 3D 

genome folding, whereas loop extrusion establishes insulated genomic 

regions that are resistant to further compartmentalization (142) (Figure 14). 

 

Figure 14: Loop extrusion model and phase separation. (A) 
Compartmentalization model that induces phase-separation as a consequence of the 
attractive forces between regulatory elements creating 3D hubs in the nucleus. (B) 
Chromatin loop formation resulted from the loop-extrusion model where cohesin 
engages the chromatin to start the extrusion until it stops at an extrusion barrier 
(CTCF). Adapted from (142) 
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In conclusion, all these data suggest that chromatin follows a hierarchical 

organization that implies a large degree of chromatin structure organization 

with functional regulation implications. Chromosomes are organized non-

randomly in chromosomes territories inside the interphase nucleus with a 

high frequency of contact inside them in comparison to contacts between them 

(but with a certain degree of intermingling). At intrachromosomal level, 

segregation of the genome can be compartmentalized in relation to their 

functional state. Inside compartments, functional, structural and 

evolutionary conserved units, called TADs, promote the physical interactions 

between regulatory elements via loops that necessary for the proper cell 

function (Figure 15). 

 

Figure 15: Hierarchical nature of the chromatin architecture determined by Hi-
C experiments. (A) Chromosome territories. (B) Intrachromosomal interactions. 
(C) Segregation of the chromatin in (sub)compartments (D) Topological associated 
domains (E) Looping structures. Adapted from (132)  
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CHAPTER 1 

Dynamics of genome architecture and chromatin 
function during human B cell differentiation and 
neoplastic transformation 
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Abstract 
We integrate in situ Hi-C and nine additional omic layers to define and 

biologically characterize the three-dimensional (3D) genome architecture 

across normal B cell differentiation and in patient samples from two distinct 

B cell tumors. Beyond conventional active (A) and inactive (B) 

compartments, we identify a highly-dynamic intermediate compartment 

enriched in poised and polycomb-repressed chromatin. During B cell 

development, 28% of the compartments change and mostly involve the 

intermediate compartment. The transition from naive to germinal center B 

cells is associated with widespread chromatin activation, which reverts into 

the naive state upon further maturation into memory B cells. The analysis of 

neoplastic B cells points both to entity-specific alterations in chromosome 

organization, which entails large chromatin blocks containing key disease-

specific genes. This study indicates that 3D genome interactions are 

extensively modulated during normal B cell differentiation and that the 

genome of B cell neoplasms acquires a tumor-specific 3D genome architecture. 

  

Introduction 
Over the last decades, our understanding of higher-order chromosome 

organization in the eukaryotic interphase nucleus and its regulation of cell 
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state, function, specification and fate has profoundly increased (Rowley and 

Corces, 2018; Szalaj and Plewczynski, 2018).  

Chromatin conformation capture techniques have been used to elucidate the 

genome compartmentalization (Dekker et al., 2002; Denker and de Laat, 

2016). It is widely accepted that the genome is segregated into two large 

compartments, named A-type and B-type (Lieberman-Aiden et al., 2009), 

which undergo widespread remodeling during cell differentiation (Andrey 

and Mundlos, 2017; Dixon et al., 2015; Peric-Hupkes et al., 2010; 

Stadhouders et al., 2018; Szalaj and Plewczynski, 2018).  These 

compartments have been associated with different GC content, DNAseI 

hypersensitivity, gene density, gene expression, replication time, and 

chromatin marks (Lieberman-Aiden et al., 2009; Ryba et al., 2010). 

Alternative subdivisions of genome compartmentalization have been 

proposed, including three compartments (Yaffe and Tanay, 2011) or even 

five compartment subtypes with distinct genomic and epigenomic features 

(Rao et al., 2014). All of these studies highlight the role of genome three-

dimensional (3D) organization in the regulatory decisions associated with 

cell fate.  However, the majority of these studies have been performed using 

cell lines, animal models or cultured human cells (Dixon et al., 2015; Hu et 

al., 2018; Johanson et al., 2018; Schmitt et al., 2016; Stadhouders et al., 2018), 

and although few analyze sorted cells from healthy human individuals 

(Bunting et al., 2016; Javierre et al., 2016), there is limited information 

regarding 3D genome dynamics across the differentiation program of a single 

human cell lineage (Bunting et al., 2016).  

Normal human B cell differentiation is an ideal model to study the dynamic 

3D chromatin conformation during cell maturation, as these cells show 

different transcriptional features and biological behaviors, and can be 

accurately isolated due to their distinct surface phenotypes (Kurosaki et al., 

2010; Matthias and Rolink, 2005). Moreover, how the 3D genome is linked 

to cancer development using primary samples from patients is also widely 
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unknown (Li et al., 2018). In this context, several types of neoplasms can 

originate from B cells at distinct differentiation stages (Swerdlow et al., 

2017). Out of them, chronic lymphocytic leukemia (CLL) and mantle cell 

lymphoma (MCL) are derived from mature B cells and show a broad 

spectrum of partially overlapping biological features and clinical behaviors 

(Puente et al., 2018). Both diseases can be categorized according to the 

mutational status of the immunoglobulin heavy chain variable region 

(IGHV), a feature that seems to be related to the maturation stage of the 

cellular origin (Chiorazzi and Ferrarini, 2011). CLL cases lacking IGHV 

somatic hypermutation are derived from germinal center-independent B cells 

whereas CLL with mutated IGHV derive from germinal center-experienced 

B cells (Kipps et al., 2017). In CLL, this variable is strongly associated with 

the clinical features of the patients, with mutated IGHV (mCLL) cases 

correlating with good prognosis and those lacking IGHV mutation (uCLL) 

with poorer clinical outcome (Kipps et al., 2017). In MCL, although two 

groups based on the IGHV mutational status can be recognized and partially 

correlate with clinical behavior, other markers such as expression of the 

SOX11 oncogene are used to classify cases into clinically-aggressive 

conventional MCL (cMCL) and clinically-indolent non-nodal leukemic 

MCL (nnMCL) (Jares et al., 2012; Navarro et al., 2012; Puente et al., 2018; 

Royo et al., 2012).  

From an epigenomic perspective, previous reports have identified that B cell 

maturation and neoplastic transformation to CLL or MCL entails extensive 

modulation of the DNA methylome and histone modifications (Beekman et 

al., 2018a; Kulis et al., 2012, 2015; Oakes and Martin-Subero, 2018; Oakes 

et al., 2016; Queirós et al., 2016). However, whether such epigenetic changes 

are also linked to modulation of the higher-order chromosome organization 

is yet unknown (Johanson et al., 2019).  

Here, to decipher the 3D genome architecture of normal and neoplastic B 

cells, we generated in situ high-throughput chromosome conformation capture 



 

 41 

(Hi-C) maps of cell subpopulations spanning the B cell maturation program 

as well as of neoplastic cells from MCL and CLL patients. Next, we mined 

the data together with whole-genome maps of six different histone 

modifications, chromatin accessibility, DNA methylation, and gene 

expression obtained from the same human cell subpopulations and patient 

samples. This multi-omics approach allowed us to identify a widespread 

modulation of the chromosome organization during human B cell 

maturation and neoplastic transformation, including the presence of 

recurrent aberrations in the chromosome organization of regions containing 

deregulated disease-specific genes. 

 

Results 

Multi-omics analysis during human B cell differentiation 
We used in situ Hi-C to generate genome-wide chromosome conformation 

maps of normal human B cells across their maturation program. These 

included three biological replicates each of naive B cells (NBC), germinal 

center B cells (GCBC), memory B cells (MBC), and plasma cells (PC) 

(Figure 1A-1B and Table S1). From the same B cell subpopulations, we 

analyzed nine additional omics layers generated as part of the BLUEPRINT 

consortium (Adams et al., 2012; Beekman et al., 2018a). Specifically, we 

obtained data for chromatin immunoprecipitation with massively parallel 

sequencing (ChIP-seq) of six histone modifications with non-overlapping 

functions (H3K4me3, H3K4me1, H3K27ac, H3K36me3, H3K9me3, 

H3K27me3), transposase-accessible chromatin with high-throughput 

sequencing (ATAC-seq), whole genome bisulfite sequencing (WGBS), and 

gene expression (RNA-seq). 

We initially explored the intra- and inter-subpopulation variability and 

observed that the Hi-C replicas were concordant, as quantified measuring 
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and clustering the reproducibility score (RS) (Yan et al., 2017) (Figure 1C 

and Figure S1A). Furthermore, the comparison of samples suggests that the 

overall genome architecture of NBC is more similar to MBC, and clearly 

different from GCBC and PC, which belong to a different cluster (Figure 

1C). This finding was also reflected in the first component of the principal 

component analysis (PCA) of histone modifications, chromatin accessibility 

and gene expression (Figure 1D). In contrast to other omics marks, the first 

component of DNA methylation data resulted in a division of GCBC, MBC 

and PC separated from the NBC. These analyses suggest fundamental 

differences between chromatin-based epigenetic marks, including 

chromosome conformation data, and DNA methylation. In fact, changes in 

DNA methylation linearly accumulate throughout B cell maturation (Kulis 

et al., 2015; Oakes et al., 2016), which explains the clear differences between 

NBC and MBC in spite of their converging transcriptomes. 
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Figure 1. Multi-omics view of B cell differentiation and identification of an 
intermediate compartment. A - Schematic overview of mature B cell differentiation 
showing the four B cell subpopulations considered in this study. B - Sample 
description and in situ Hi-C sequencing experimental design for normal B cell 
differentiation subpopulations. NBC, naive B cells; GCBC, germinal center B cells; 
MBC, memory B cells and PC, plasma cells. C - Dendrogram of the reproducibility 
score of B cell subpopulation replicates for normalized Hi-C contact maps at 100Kb 
resolution. D - Unsupervised principal component analysis (PCA) for nine omics 
layers: chromatin immunoprecipitation followed by sequencing (ChIP-seq) of six 
histone marks (H3K4me3 n=46,184 genomic regions, H3K4me1 n=44,201 genomic 
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regions, H3K27ac n=72,222 genomic regions, H3K36me3 n=25,945 genomic 
regions, H3K9me3 n=40,704 genomic regions, and H3K27me3 n=20,994 genomic 
regions), chromatin accessibility measured by ATAC-seq (n=99,327 genomic 
regions), DNA methylation measured by whole-genome bisulfite sequencing 
(WGBS, n=15,089,887 CpGs) and gene expression measured by RNA-seq 
(n=57,376 transcripts). Three independent biological replicates of NBC, GCBC, PC, 
and MBC were studied for all omic layers, with the exception of ATAC-seq for which 
six biological replicates of MBC were used. E - Example on chromosome 12 (chr12) 
comparing the profile of three-dimensional (3D) data (in situ Hi-C), H3K4me1 
ChIP-seq signal, chromatin accessibility (ATAC-seq) and gene density. The red and 
blue rectangles highlight the features of A and B compartments, respectively.  F - 
Distribution of the first eigenvector of each B cell subpopulation (three replicates and 
merge). The relative abundance of A-type, B-type and intermediate (I)-type 
compartments per merged B cell subpopulations are indicated below each 
distribution. Compartment definition based on eigenvalue thresholds: A-type, 1 to 
0.43; I-type, 0.43 to -0.63; B-type, -0.63 to -1. G – Boxplots showing the association 
between the three compartments (A-type, I-type and B-type) and each of the nine 
additional omics layers under study. 
 

Polycomb-associated chromatin defines an intermediate 
and moldable 3D genome compartment 
To study the compartmentalization of the genome during B cell 

differentiation, we next merged all biological replicates per B cell 

subpopulation resulting in interaction Hi-C maps with around 300 million 

valid reads each. These Hi-C interaction maps were further segmented into 

positive and negative eigenvalues based on the eigenvector decomposition 

(Imakaev et al., 2012; Lieberman-Aiden et al., 2009), and regions were 

assigned to the A-type (active) and B-type (inactive) compartments using the 

association with histone modifications (Figure 1E and Figure S1B). A 

pairwise correlation of the first eigenvector of each B cell subpopulation 

showed that NBC and MBC on the one hand, and GCBC and PC on the 

other hand, have similar compartmentalization (Figure S1C), confirming 

previous results using the RS (Figure 1C). Unexpectedly, the H3K27me3 

histone mark, which is deposited by the polycomb repressive complex 

(Margueron and Reinberg, 2011), was neither correlated with positive nor 

with negative eigenvector coefficients (Figure S1B). We then speculated that, 

as H3K27me3 was not related with standard A or B compartments, this 
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histone mark may be linked to a different type of chromatin 

compartmentalization. In this context, a visual inspection of the first 

eigenvector distribution revealed a positive extreme, a negative extreme and 

a long intermediate valley (Figure 1F). Indeed, applying the Bayesian 

Information Criterion, we observed that a classification into three 

compartments was the best compromise between distribution fitting accuracy 

and minimum number of compartments (Figure S1D). Subsequently, we 

modelled the eigenvector distribution to establish the thresholds segmenting 

the data into an A-type, B-type and intermediate (I)-type compartments 

(Figure S1E-F). Analyzing these three compartments together with other 

omics layers revealed the expected association of A-type compartment with 

active chromatin, B-type compartment with H3K9me3, and a remarkably 

association between the I-type compartment and the presence of H3K27me3 

(Figure 1G). Indeed, a chromHMM-based chromatin state model specific for 

B cells (Beekman et al., 2018a; Ernst and Kellis, 2017) revealed that the 

regions associated with the I-type compartment were enriched for poised-

promoter and polycomb-repressed chromatin states (Figure 2A and Figure 

S2A). 

We next quantified the compartment interactions by computing the 

compartment score (C-score) as the ratio of intra-compartment interactions 

over the total chromosomal interactions per compartment (Figure S2B). 

Interestingly, the I-type compartment was associated with lower C-score than 

the A-type and B-type compartments (Figure S2C). We further explored this 

phenomenon by dividing the I-type compartment into two blocks 

differentiating positive (IA) and negative (IB) eigenvector components 

(Figure S2D). The analysis showed that the I-type compartment, regardless 

being IA or IB, was consistently having lower C-score than the A or B-type 

compartments. This finding further supports the existence of the I-type 

compartment as an independent chromatin structure different from A and B-

type compartments. Additionally, it suggests that the I-type compartment 
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tends to interact not only with itself but also with A and B-type 

compartments, and as such it may represent an interconnected space between 

the fully active and inactive compartments.  

To study the potential role of the I-type compartment during B cell 

differentiation, we selected poised promoters or polycomb repressed regions 

within this compartment in NBC and studied how they change in both 

compartment and chromatin state upon differentiation into GCBC (Figure 

2B). The majority of compartment transitions (69.1% of poised promoter 

and 73.0% of polycomb repressed) change into A-type compartment, a 

consistent fraction (21.9% and 21.1%) into B-type, and only a small fraction 

(9% and 5.9%) maintain their intermediate definition. This finding indicates 

that the regions with a most prominent I-type compartment character 

undergo a widespread structural modulation during NBC to GCBC 

differentiation step. Interestingly, transitions from I-type to A-type 

compartment (activation events) were paired with a reduction of poised 

promoters (56.7% loss) and polycomb repressed states (70.2% loss). These 

reductions were associated with an increase of A-related chromatin states 

(1.31- or 1.33-fold change coming from poised promoter or polycomb-

repressed, respectively) such as promoter, enhancer and transcription (Figure 

2B).  Conversely, poised promoters and polycomb-repressed regions 

associated with I-type compartments in NBC that changed into B 

compartments in GCBC (inactivation events) were related to an increase of 

B-related chromatin states (3.81 or 1.4-fold change coming from poised 

promoter or polycomb-repressed, respectively) such as heterochromatin 

characterized by H3K9me3 (Figure 2B).  

Altogether, these results point to the existence of an intermediate transitional 

compartment with biological significance, enriched in poised and polycomb-

repressed chromatin states, interconnected with A and B -type compartments, 

and amenable to rewire the pattern of interactions leading to active or 

inactive chromatin state transitions upon cell differentiation. 
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Changes in genome compartmentalization are reversible 
during B cell differentiation 
Mapping A, I and B-type compartments in NBC, GCBC, MBC and PC Hi-

C maps revealed that 28.1% of the genome dynamically changes compartment 

during B cell differentiation (Figure 2A and Figure S2A). B cell 

differentiation is not a linear process, NBC differentiate into GCBC, which 

then branch into long-lived MBC or antibody-producing PC. Thus, we 

studied the 3D genome compartment dynamics along these two main 

differentiation paths (NBC-GCBC-PC and NBC-GCBC-MBC). At each 

differentiation step, we classified the genome into three different dynamics: 

(i) compartments undergoing activation events (B-type to A-type, B-type to 

I-type, or I-type to A-type), (ii) compartments undergoing inactivation events 

(A-type to B-type, A-type to I-type, or I-type to B-type), and (iii) stable 

compartments (Figure 2C-D). The NBC-GCBC-MBC differentiation path 

suggests that the extensive remodeling taking place from NBC to GCBC is 

followed by an overall reversion of the compartmentalization in MBC, 

achieving a profile similar to NBC (Figure 2C). To assess the capacity of 

the genome to revert to a past 3D configuration, we analyzed the 

compartments in NBC as compared to those in PC and MBC. Indeed, we 

globally observed that 72.7% of the regions in MBC re-acquire the same 

compartment type as in NBC. This phenomenon was mostly related to 

compartments undergoing activation in GCBC, as 82.9% of them reverted to 

inactivation upon differentiation into MBC.  This finding is in line with solid 

evidence showing that NBC and MBC, in spite of representing markedly 

different maturation B cell stages, are phenotypically similar (Agirre et al., 

2019; Klein et al., 2003) (Figure 1D). In the case of PC, the compartment 

reversibility accounted only for 30.8% of the genome (Figure 2D). To 

determine whether this compartment reversibility was also accompanied by a 

functional change, we analyzed the chromatin state dynamics within the 

compartments becoming uniquely active in GCBC as compared to NBC, 
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MBC and PC (n=937) (Table S2). We observed that the transient 

compartment activation from NBC to GCBC is related to an increase of A-

related chromatin states (1.36-fold change). Conversely, the subsequent 3D 

genome inactivation upon differentiation into MBC and PC was related to 

an increase in B-related chromatin states (1.21- and 1.15-fold change, 

respectively) (Figure 2E left). Furthermore, those regions had a significant 

increase in chromatin accessibility and gene expression in GCBC as 

compared to NBC and MBC, but not in PC (Figure 2E right). These 

findings suggest that structural 3D reversibility in MBC is accompanied by a 

functional reversibility whereas PC partially maintains gene expression 

levels and chromatin accessibility similar to GCBC in spite of the 

compartment changes. Interestingly, in contrast to chromatin-based marks, 

DNA methylation was overall unrelated to compartment or chromatin state 

dynamics of the B cell differentiation (Figure 2E right).  
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Figure 2. Chromatin dynamics across B cell differentiation. A - Functional 
association of the conserved and dynamic compartments during B cell maturation 
using eleven chromatin states (normalized by sample and chromatin state). 
Conserved compartments were segmented into A-type, I-type and B-type 
compartments. The percentage of each conserved or dynamic compartment is 
indicated for all B cell subpopulations. ActProm-StrEnh1, Active Promoter-Strong 
Enhancer 1; WkProm, Weak Promoter; StrEnh2, Strong Enhancer 2; WkEnh, 
Weak Enhancer; TxnTrans, Transcription Transition; TxnElong, Transcription 
Elongation; WkTxn, Weak Transcription; PoisProm, Poised promoter; 
PolycombRepr, Polycomb repressed; Het;Repr, Heterochromatin;Repressed; 
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Het;LowSign, Heterochromatin;Low Signal. B - Intermediate compartment 
dynamics. Pie charts represent poised promoters (top, violet color) or polycomb-
repressed (bottom, light gray color) within the I-type compartment in NBC which 
shifts to A-type and B-type compartments in GCBC. The pie charts under GCBC 
represent the fraction that maintains the previous chromatin state (colored as 
previously defined) or changed chromatin states (not colored). Bar graphs represent 
the fold change between GCBC and NBC of each three groups of chromatin states 
(arranged by their relationship to the A-type, I-type and B-type compartments). 
Active Promoter, Weak Promoter, Strong Enhancer 1, Strong Enhancer 2, Weak 
Enhancer, Transcription Transition, Transcription Elongation, Weak 
Transcription were A-type compartment-related states. Heterochromatin/Repressed 
and Heterochromatin/Low signal were B-type compartment-related states. Poised 
Promoter or Polycomb repressed chromatin states were I-type compartment-related 
states. C/D -  Alluvial diagrams showing the compartment dynamics in the two 
branches of mature B cell differentiation: NBC-GCBC-MBC (C) and NBC-GCBC-
PC (D). Activation, in red, represents changes from compartment B-type to A-type, 
B-type to I-type and I-type to A-type. Inactivation, in blue, represents changes from 
A-type to B-type, A-type to I-type and I-type to B-type compartments. The non-
changed compartments are represented in gray. On the top, the bar plots between B 
cell subpopulations represent the total percentage of regions changing to active or 
inactive, and regions that conserve its previous compartment definition. E – Multi-
omics characterization of the 937 regions (of 100Kb resolution) gaining activity 
exclusively in GCBC. Left: Scheme of B cell differentiation and chromatin state 
dynamics, in which the barplots indicate the log2 fold change of active, intermediate 
or inactive -related chromatin state groups. Right: Boxplots of chromatin 
accessibility (ATAC-seq signal), DNA methylation (5-mC signal) and gene 
expression (RNA-seq signal) per B cell subpopulations compared using the 
Wilcoxon’s test. *p-value<0.05, **p-value<0.001, ***p-value<0.0001, ****p-
value<0.00001. F - Enrichment analysis of transcription factor binding motifs. Top: 
Schematic representation of the analytic strategy. Bottom: Binding motifs of MEF2 
and POU TF families are highly enriched in active and accessible loci in the GCBC 
specific regions gaining activity (n=171 independent genomic loci) versus the 
background (n=268 independent genomic loci). p-values were calculated using the 
AME-MEME suite. Out of the list of all enriched transcription factor binding motifs, 
we considered only those expressed in the three GCBC replicates. 
 

The 3D genome of GCBC undergoes extensive compartment 
activation  
Our analyses revealed that the NBC and GCBC transition was associated to 

a large structural reconfiguration of compartments involving 96.0% of all 

dynamic compartments (Figure 2A).  Interestingly, 61.5% of the changes 

between NBC and GCBC involved compartment activation (Figure 2C-D).  

As the germinal center reaction is known to be mediated by specific 

transcription factors (TFs) (De Silva and Klein, 2015; Song and Matthias, 
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2018) and those may be involved in shaping the spatial organization of the 

genome (Bunting et al., 2016; Johanson et al., 2018; Stadhouders et al., 

2018), we further explored the presence of TF binding motifs in the newly 

activated compartments. We identified significantly enriched motifs for 

MEF2 and POU families (Figure 2F and Table S3), which are essential 

TFs involved in germinal center formation (Brescia et al., 2018; Schubart et 

al., 2001; Wilker et al., 2008; Ying et al., 2013). Furthermore, the newly 

activated compartments hosted about 100 genes significantly upregulated in 

GCBC as compared to the rest of B cell subpopulations (FDR<0.05) (Table 

S4). Remarkably, among them was the Activation Induced Cytidine 

Deaminase (AICDA) gene, which is essential for class-switch recombination 

and somatic hypermutation in GCBC and is specifically expressed in GCBC 

(de Yébenes and Ramiro, 2006). Indeed, the AICDA locus was globally 

remodeled from an inactive state in NBC to a global chromatin activation in 

GCBC, which included an increase in the ratio of GCBC/NBC 3D 

interactions as well as increased levels of active chromatin states (that is, 

active promoter and enhancers as well as transcriptional elongation), open 

chromatin, and gene expression (Figure 3A-B). This analysis also revealed 

the presence of possible upstream and downstream AICDA-specific enhances 

that gain interactions with the gene promoter in GCBC (Figure 3B).  

Interestingly, this multilayer chromatin activation at the AICDA locus was 

reverted to the inactive ground state once GCBC differentiate into MBC or 

PC. 
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Figure 3. Chromatin organization at the AICDA locus. A - Normalized Hi-C 
contact map of the domain structure surrounding the AICDA gene in NBC. The log 
fold change interaction ratio between GCBC, MBC or PC as compared to NBC was 
computed. Below each interaction map, chromatin state tracks of three biological 
replicates per B cell subpopulation are shown. The coordinates of the represented 
region are chr12:8,550,000-9,050,000, GRCh38. B – Multi-layer epigenomic 
characterization of AICDA gene region (chr12:8,598,290-8,615,591, GRCh38) in 
four B cell subpopulations. Arc diagrams indicate the Hi-C significant interactions 
(continuous red lines involve the region of interest, while dashed red lines involve 
other regions of chromosome 12). Below them, we show compartment definition (red, 
compartment A-type: green, compartment I-type), chromatin states, chromatin 
accessibility (ATAC-seq, y-axis signal from 0 to 105) and gene expression (RNA-
seq, y-axis signal from 0 to 4 for the positive strand and from 0 to -0.1 for the negative 
strand). Tracks of Hi-C interactions and compartment definition are based on 
merged replicates whereas chromatin states, chromatin accessibility and gene 
expression tracks of each replicate is shown separately. The coordinates of the 
represented region are chr12:8,570,000-8,670,000, GRCh38. 
 

B cell neoplasms undergo disease-specific 3D genome 
reorganization 
Next, we analyzed whether the observed 3D genome organization during 

normal B cell differentiation is further altered upon neoplastic 

transformation. To address this, we performed in situ Hi-C in fully 

characterized tumor cells from patients with chronic lymphocytic leukemia 

(CLL, n=7) or mantle cell lymphoma (MCL, n=5).  Within each neoplasm, 
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we included cases of two subtypes, IGVH mutated (m, n=5) and unmutated 

(u, n=2) CLL as well as conventional (c, n=2) and non-nodal leukemic (nn, 

n=3) MCL (Figure 4A and Table S5). An initial unsupervised clustering of 

the RS from the entire Hi-C dataset indicated that CLL and MCL, similarly 

to the PCA from other omic layers generated from the same patient samples, 

clustered separately from each other and within a major cluster that included 

NBC and MBC (Figure 4B-C and Figure S3A). Interestingly, NBC and 

MBC have been described as potential cells of origin of these neoplasms 

(Puente et al., 2018). Furthermore, pairwise eigenvector correlation analysis 

of the cancer samples suggested that the 3D genome configuration of the two 

clinico-biological subtypes of CLL was rather homogeneous (Figure S3B-C). 

This was not the case for the two MCL subtypes, which were more 

heterogeneous (Figure S3D-E). 

The differential clustering of CLL and MCL samples hint into disease-

specific changes of their 3D genome organization (Figure 4B). To further 

detect those changes, we took the fraction of the genome with stable 

compartments during normal B cell differentiation and compared them to 

each lymphoid neoplasm. Qualitatively, we observed that roughly one 

quarter of the genome changes compartments in at least one CLL (23.8%) 

and at least one MCL sample (27.3%) as compared to normal B cells (Figure 

4D-E left). Using a more stringent quantitative approach, we aimed at 

detecting changes associated with CLL or MCL as whole, which revealed a 

total of 348 and 82 significant compartment changes (absolute difference in 

the eigenvalue>0.4 and FDR<0.05) in CLL and MCL, respectively. The 

larger number of regions changing compartments in CLL correlates with the 

results of the Hi-C based clustering (Figure 4B), which indicates that MCL 

is more similar to NBC/MBC than CLL. Moreover, the observed 

compartment changes tended towards inactivation in CLL (57.5%) (Figure 

4D middle) and towards activation in MCL (57.0%) (Figure 4E middle) 

compared to the normal B cells. These 3D genome organization changes were 
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associated with the expected changes in chromatin function. Inactivation at 

the 3D genome level in CLL was linked to a shift to poised promoter and 

polycomb-repressed chromatin states, and a significant loss of chromatin 

accessibility and gene expression (Figure 4D right). Activation at the 3D 

genome level in MCL was accompanied with an enrichment of active 

chromatin states and a significantly increase in chromatin accessibility and 

gene expression (Figure 4E right). Overall, these results point to the 

presence of recurrent and specific changes in the 3D genome organization in 

CLL and MCL, being the former more extensively altered than the latter. 

 

 

Figure 4. Characterization of the chromatin architecture of human B cell 
neoplasms. A - Sample description and in situ Hi-C experimental design in CLL and 
MCL cases. B - Dendrogram of the reproducibility score for normalized Hi-C contact 
maps at 100Kb for B cell subpopulations replicates and samples from B cell neoplasia 
patients. IGVH unmutated (u)CLL; IGVH mutated (m)CLL; conventional (c)MCL 
and non-nodal (nn)MCL. C - Unsupervised principal component analysis (PCA) for 
nine omic layers generated in the same patient samples as Hi-C: chromatin 
immunoprecipitation followed by sequencing (ChIP-seq) of six histone marks 
(H3K4me3 n=53,241 genomic regions, H3K4me1 n=54,653 genomic regions, 
H3K27Ac n=106,457 genomic regions, H3K36me3 n=50,530 genomic regions, 
H3K9me3 n=137,933 genomic regions, and H3K27me3 n=117,560 genomic 
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regions), chromatin accessibility measured by ATAC-seq (n=140,187 genomic 
regions), DNA methylation measured by whole-genome bisulfite sequencing 
(WGBS, n=14,088,025 CpGs) and gene expression measured by RNA-seq 
(n=57,376 transcripts). In addition to the normal B cell subpopulations explained 
in figure 1D, we studied 7 CLL patient samples (2 uCLL and 5 mCLL) and 5 MCL 
patient samples (2 cMCL and 3 nnMCL). D – Compartment changes upon CLL 
transformation. Left: First bar graph represents the percentage of conserved and 
dynamic compartments during normal B cell differentiation. Second bar graph shows 
the percentage of compartments stable and differential in CLL as compared to 
normal B cells. A total of 23.8% of the compartments change in at least one CLL 
sample. Middle: Heatmaps showing eigenvector coefficients of the 348 compartments 
significantly losing (n=200) or gaining activation (n=148) between all CLL samples 
and normal B cells. Right: Multi-omics characterization of the 200 regions losing 
activity in CLL. We show chromatin states, chromatin accessibility (ATAC-seq 
signal), DNA methylation (5-mC signal) and gene expression (RNA-seq signal) in 
CLL and normal B cells. Comparisons were performed using the Wilcoxon’s test. 
****p-value<0.00001. E – Compartment changes upon MCL transformation. Left: 
First bar graph represents the percentage of conserved and dynamic compartments in 
B cells. Second bar graph shows the percentage of conserved compartments between 
B cells and MCL, being 27.29% non-conserved compartment in MCL. Middle: 
Heatmaps showing eigenvector coefficients of significant dynamic compartments 
(n=82) between MCL and B cells. Regions were split in two groups (MCL activation, 
n=35 or inactivation, n=47) according to the structural modulation of the MCL 
compared to B cells. Right: Example of the MCL activation subset (mostly those B-
type compartments in B cells which significantly increase eigenvector coefficients in 
MCL) showing the chromatin states pattern, chromatin accessibility (ATAC-seq 
signal), DNA methylation (5-mC signal) and gene expression (RNA-seq signal). 
Comparisons were performed using the Wilcoxon’s test. *p-value<0.05, **p-
value<0.001, ***p-value<0.0001, ****p-value<0.00001. 
 

EBF1 downregulation in CLL is linked to extensive 3D 
genome reorganization 
To further characterize the compartmentalization of neoplastic B cells, we 

classified the changing compartments as common (between CLL and MCL) 

or entity-specific (either in CLL or MCL).  We detected 31 compartments 

commonly altered in both malignancies, revealing the existence of a core of 

regions that distinguish normal and neoplastic B cells (Figure 5A-B).  A 

targeted analysis of CLL and MCL revealed 89 CLL-specific (41 and 48 

inactivated and activated, respectively) and only 3 MCL-specific 

compartment changes (Figure 5C, Figure 6A and Figure S4A).  

Interestingly, the set of 41 compartments inactivated in CLL were 
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significantly enriched (p-value=0.0060) in downregulated genes (n=11) as 

compared to normal B cells and MCL samples, being the Early B cell Factor 

1 (EBF1) a remarkable example (Figure 5C-D and Table S6).  EBF1 

downregulation has been described to be a diagnostic marker in CLL 

(Navarro et al., 2017), and its low expression may lead to reduced levels of 

numerous B cell signaling factors contributing to the anergic signature of 

CLL cells (Mockridge et al., 2013; Muzio et al., 2008) and low susceptibility 

to host immunorecognition (Schultze et al., 1996; Seifert et al., 2012). To 

obtain insights into the mechanisms underlying EBF1 silencing in CLL, we 

analyzed in detail a 2Mb region hosting the gene, which also contains two 

nearby protein coding genes, RNF145 and UBLCP1, and a lncRNA, 

LINC02202. We observed that a large fraction of 3D interactions involving 

the EBF1 region in normal B cells were lost in CLL resulting in a change 

from A-type to I-type compartment and a sharp inactivation of the gene, as 

shown by the analysis of chromatin states (Figure 5E). Remarkably, in spite 

of the global reduction of 3D interactions, the two adjacent genes (RNF145 

and UBLCP1) were located in the only region (spanning 200Kb) that 

remained as A-type compartment in the entire 2Mb region, maintaining thus 

an active state. To obtain further insights into the EBF1 genome structure, 

we modeled its spatial organization in NBC and CLL by using the restraint-

based modeling approach implemented in TADbit (Baù and Marti-Renom, 

2012; Serra et al., 2017) (Figure 5F and Figure S4B-C). The EBF1 domain 

in CLL resulted in larger structural variability as compared with the models 

in NBC due to the depletion of interactions in neoplastic cells (Figure S4B). 

The 3D models revealed that the EBF1 gene is located in a topological 

domain, isolated from the rest of the region in NBC, hosting active enhancer 

elements (Figure 5F). Remarkably, the active enhancer elements together 

with the interactions are lost in CLL (Figure 5F), resulting in more collapsed 

conformations (Figure 5G). Overall, these analyses suggest that EBF1 
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silencing in CLL is linked to a compartment shift of a large genomic region 

leading to the abrogation of interactions and regulatory elements. 

 

 

Figure 5. EBF1 silencing in CLL is accompanied by structural changes 
affecting a 2Mb region. A - Venn diagram showing the significant number of 
dynamic compartments in CLL and MCL as compared to normal B cell 
differentiation and the regions shared between both B cell neoplasms (n=31). B - 
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Heatmaps showing eigenvector coefficients of compartments significantly losing or 
gaining activation between B cell neoplasms (MCL and CLL together) and B cells.  
C - Heatmap showing the eigenvector coefficients of the compartments losing 
activation specifically in CLL (n=41). Significantly downregulated genes 
(FDR<0.05) associated to each compartment are shown on the right of the heatmap 
(p-value=0.0038, calculated from the total number of genes picked on 48 random 
compartments per 10,000 times). D - FPKM values of all the CLL-specific 
significantly downregulated genes within compartments losing activation. *adjusted 
p-value<0.05, **adjusted p-value<0.005, ***adjusted p-value<0.0005. E - Map of 
the EBF1 regulatory landscape. Significant Hi-C interactions (p-value=0.001) and 
compartment type from merged NBC and a representative CLL sample, followed by 
chromatin state tracks from each NBC (n=3) and CLL (n=7). The coordinates of 
the represented region are chr5:158,000,000-160,000,000, GRCh38. F - Restraint-
based model at 5Kb resolution of the 2Mb region containing EBF1 (total 400 
particles, EBF1 locus localized from 139 to 220 particle). Data from merged NBC 
(top) and CLL (bottom) was used. Surface represents the ensemble of 1,000 models 
and is color-coded based on the compartment definition (A-type, B-type and I-type 
in red, blue and green, respectively). The top-scoring model is shown as trace, where 
protein-coding genes are colored in blue and long non-coding RNAs in yellow. 
Spheres represents enhancer regions. G - Violinplot of the convex hull volume 
involving the 81 particles from the EBF1 region. Comparison was performed using 
Wilcoxon’s test. ****p-value=0.00001. 
 

Our analysis also detected 48 regions that changed towards more active 

compartment exclusively in CLL (Figure 6A). As expected, these regions 

were significantly enriched in upregulated genes (p-value=0.0038) and 

harbored 9 genes with increased expression (Figure 6B and Table S7). As 

previously shown for regions gaining activity in GCBC (Figure 2E), we 

evaluated whether particular TFs were related to the CLL-specific increase in 

3D interactions. Indeed, we found an enrichment in TF binding motifs of the 

TCF (p-value=0.00004) and NFAT (p-value=0.00647) families, which have 

been described to be relevant for CLL pathogenesis (Beekman et al., 2018a; 

Gutierrez et al., 2010; Le Roy et al., 2012) (Figure 6C and Table S8). One 

of the nine upregulated genes in CLL-specific active compartments was KSR2, 

a gene whose upregulation has a strong diagnostic value in CLL (Navarro et 

al., 2017). Importantly, this gene contained several motifs for the TCF4 

transcription factor (Figure 6D), which itself is overexpressed in CLL as 

compared to normal B cells (Beekman et al., 2018a), suggesting in this 
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particular example that TCF4 overexpression may lead to aberrant binding 

to KSR2 regulatory elements and a global remodeling of its 3D interactions. 

 

Figure 6. Transcription factors associated to CLL-specific activated 
compartments. A - Heatmap showing the first eigenvector coefficients of the 
compartments gaining activation specifically in CLL (n=48). Significantly 
upregulated genes (FDR=0.05) associated to each compartment are shown on the 
right of the heatmap (p-value=0.006). B - FPKM values of all the CLL-specific 
significantly upregulated genes within compartments gaining activation.  *adjusted 
p-value<0.05, **adjusted p-value<0.005, ***adjusted p-value<0.0005. C - 
Enrichment analysis of transcription factor binding motifs. We show the most 
significant TF binding motifs enriched in active and accessible loci within the CLL-
specific regions gaining activity (n=25 independent genomic loci) versus the 
background (n=28 independent genomic loci). p-values were calculated using the 
AME-MEME suite. Out of the list of all enriched transcription factor binding motifs, 
we considered only those expressed in all CLL samples (n=7). D - Example of TCF4 
binding motifs at the KSR2 promoter region in CLL and NBC. We show the 
following tracks: H3K27ac, chromatin accessibility (ATAC-seq) and chromatin 
states of a representative NBC replicate and CLL sample. The coordinates of the 
represented region are chr12:117,856,977-117,975,164, GRCh38. 
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Increased 3D interactions across a 6.1Mb region including 
the SOX11 oncogene in aggressive MCL 
In addition to entity-specific 3D genome changes, our initial analyses also 

suggested that different clinico-biological subtypes may have a different 3D 

genome organization, especially in MCL (Figure 4B). To identify subtype 

differences within each B cell neoplasia, we selected regions with 

homogeneous compartments within each disease subtype and classified them 

as distinct if the difference between the Hi-C matrices cross-correlation 

eigenvalues was greater than 0.4. Applying this criterion, we defined 47 

compartment changes between uCLL and mCLL, and 673 compartment 

changes between nnMCL and cMCL (Figure 7A). This finding confirmed 

the previous analyses (Figure S3B-E), and indicated that the two MCL 

subtypes have a markedly different 3D genome organization. Two thirds of 

the compartments changing in the MCL subtypes (n=435, 64.6%) gained 

activity in the clinically aggressive cMCL, and one third gained activity in 

nnMCL. We then characterized the chromosomal distribution of these 

compartment shifts, which, surprisingly, was significantly biased towards 

specific chromosomes (Figure 7B). In particular, those regions gaining 3D 

interactions in aggressive cMCL were highly enriched in chromosome 2, being 

22.3% (n=97) of all 100Kb compartments located in that chromosome 

(Figure 7B). We next analyzed chromosome 2 of cMCL in detail and we 

observed a de novo gain of A-type and I-type compartments accumulated at 

band 2p25 as compared to both normal B cells and nnMCL (Figure 7C). 

The entire region of about 6.1Mb had a dramatic increase of interactions and 

active chromatin states in cMCL as compared to nnMCL (Figure 7D and 

Figure S5A). Most interestingly, this region contains SOX11, whose 

overexpression in cMCL represents the main molecular marker to 

differentiate these two MCL subtypes (Fernandez et al., 2010), and has been 

shown to play multiple oncogenic functions in cMCL pathogenesis (Balsas et 

al., 2017; Palomero et al., 2016; Vegliante et al., 2013).  However, as SOX11 
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is embedded into a large block of 6.1Mb gaining activation in cMCL, we 

wondered whether additional genes could also become upregulated as a 

consequence of the large-scale spatial organization of chromosomal band 

2p25. Indeed, mining the expression data from the 5 MCL cases studied 

herein as well as two additional published cohorts (Navarro et al., 2017; Scott 

et al., 2017), we observed that 13 (43%) of the 30 expressed genes within the 

6.1Mb region were over-expressed in cMCL as compared to nnMCL in at 

least one cohort (Figure 7D and Figure S5B-C), which may also contribute 

to cMCL pathogenesis and clinical aggressiveness.  

. 
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Figure 7. Long-range chromatin remodeling of a 6.1Mb involving SOX11 in 
cMCL  A - Heatmaps showing eigenvector coefficients of compartments significantly 
changing in cMCL versus nnMCL (n=673) and in uCLL versus mCLL (n=47). B - 
Left: Genome-wide distribution of compartments changing in MCL subtypes. The 
vertical orange lines point to the chromosome location of the regions. Right: Relative 
abundance of the compartments significantly gaining activity in cMCL or nnMCL as 
compared with a random probability. A gain in compartment activation was defined 
as an increase of eigenvector coefficient of at least 0.4. *p-value<0.05, **p-
value<0.005, ***p-value<0.0005. C - Heatmap showing eigenvector coefficients of 
the chromosome 2 compartments specifically gaining activation in cMCL (n=93). 
On the top of the heatmap, we show the 6.1Mb genomic block gaining activation in 
2p25. D - Top: Differentially expressed genes between cMCL and nnMCL in each of 
the three cohorts of transcriptional data of MCL patients. Bottom: Compartment 
type tracks on all the MCL samples under study. Eigenvalue subtraction between 
representative cMCL and nnMCL samples highlighting the 6.1Mb region gaining 
activity in the former. 
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Discussion 
We present a comprehensive analysis of the dynamic genome architecture 

reorganization during normal human B cell differentiation and upon 

neoplastic transformation into CLL and MCL. The integration of 3D 

genome data with nine additional omics layers including DNA methylation, 

chromatin accessibility, six histone modifications and gene expression, has 

allowed us to obtain new insights into 3D genome functional 

compartmentalization, cellular transitions across B cell differentiation and 

3D genome aberrations in neoplastic B cells. We initially explored the 

distribution of Hi-C eigenvector coefficients and identified that a 

categorization into three components seemed to be more appropriate than the 

well-established dichotomous separation of the genome into A and B 

compartments (Lieberman-Aiden et al., 2009).  Between the active (A) and 

repressed (B) compartments, we revealed the presence of an intermediate (I) 

component which contained more inter-compartment interactions than fully 

active or inactive chromatin, and is enriched in H3K27me3 located within 

poised promoters and polycomb-repressive chromatin states.  Thus, this I-

type compartment may represent a labile state of the high-order chromatin 

organization that may evolve either into active or inactive chromatin 

compartments. The existence of an intermediate compartment may be 

supported by several lines of published evidence. For example, during T cell 

commitment, a correlation between intermediate compartment scores with 

intermediate levels of gene expression was observed (Hu et al., 2018). 

Recently, using super-resolution imaging, it was found that some 

compartments could belong to active or inactive states depending on the 

observed cell (Nir et al., 2018), which could resemble an intermediate 

compartment in a population-based analysis such as Hi-C. Finally, these 

evidences are also in line with the observation that the polycomb repressive 

complex forms discrete subnuclear chromatin domains (Boettiger et al., 2016; 
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Kundu et al., 2017; Wani et al., 2016) that can be dynamically modulated 

during cell differentiation (Mas et al., 2018; Rada-Iglesias et al., 2018). 

The three compartments had extensive modulation during human B cell 

differentiation, a process whose 3D genome architecture has been previously 

studied in cell lines and primary mouse cells (Johanson et al., 2018; Kieffer-

Kwon et al., 2013; Lin et al., 2012; Martin et al., 2015; Mumbach et al., 2017; 

Stadhouders et al., 2018) or during the human germinal center reaction 

(Bunting et al., 2016). We observed that 28.1% of the genome is dynamically 

altered in particular B cell maturation transitions, a magnitude that is in 

line with compartment transitions observed during the differentiation of 

human embryonic stem cells into four cell lineages (Dixon et al., 2015) or 

the reprogramming of mouse somatic cells into induced pluripotent stem cells 

(Krijger et al., 2016; Stadhouders et al., 2018), but lower than an analysis of 

compartment transitions across 21 human cells and tissues, which reached 

60% of the genome (Schmitt et al., 2016). The compartment modulation 

linked to B cell maturation was mainly related to two phenomena, a large-

scale activation from NBC to GCBC and a reversion of the 3D genome 

organization of MBC back to the one observed in less mature NBC.  As the 

number of mid-range 3D interactions upon activation has been suggested to 

decrease (Le Dily et al., 2014), our result on the GCBC structural activation 

supports a previous study in which the chromatin structure of GCBC 

undergoes global de-compaction (Bunting et al., 2016). In this context, TFs 

have been described to act as the architects instructing structural changes in 

the genome (Natoli, 2010) and a recent report has described that TFs are 

able to drive topological genome reorganizations even before detectable 

changes in gene expression (Stadhouders et al., 2018). A detailed analysis of 

regions that become exclusively active in GCBC as compared to any other B 

cell subpopulation under study revealed an enrichment in TF binding motifs 

of MEF2 and POU families, which have been described to play a key role in 

the germinal center formation (Song and Matthias, 2018). In line with this 
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important role of TFs in activating chromatin in GCBC, we also identified 

that NFAT and TCF binding motifs are enriched in those compartments 

specifically activated in CLL, and these TFs have also been previously linked 

to de novo active regulatory elements in CLL and its pathobiology (Beekman 

et al., 2018a). All these results are concordant with studies in which lineage-

restricted transcription factors have been proposed to establish and maintain 

genome architecture of specific lineages (Heinz et al., 2010; Johanson et al., 

2018; Montefiori et al., 2016; Natoli, 2010). The outcome of the germinal 

center reaction are PC and MBC, which are phenotypically and functionally 

distinct subpopulations. GCBC and PC show an overall high level of 

conservation of their 3D genome organization, but the differentiation into 

MBC is related to extensive changes. Remarkably, we observed roughly three 

quarters of the changes in MBC compartments reverted back to the 

compartment profile observed in NBC. This reversibility of the higher-order 

chromatin structure is very much in line with the previously observed 

similarity of histone modifications, chromatin accessibility and gene 

expression profiles in NBC and MBC. In sharp contrast to this congruent 

behavior of chromatin-based traits, DNA methylation is rather different 

between NBC and MBC, as this mark follows an accumulative pattern 

during cell differentiation (Kulis et al., 2015; Shearstone et al., 2011) and can 

be used to faithfully track the lineage trajectory of the cells (Gaiti et al., 

2019). 

We describe that B cell neoplasms show tumor-specific changes in the 3D 

genome organization that can span over large DNA stretches and contain 

genes linked to their pathogenesis. Of particular interest was the observation 

of the structural activation of 6.1Mb affecting the entire chromosome band 

2p25.2 in aggressive cMCL, which contains the SOX11 oncogene, a 

biomarker whose expression defines this MCL subtype (Fernandez et al., 

2010) and plays key functional roles in its pathogenesis (Beekman et al., 

2018b). Although the SOX11 oncogene expression is related to the presence 
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of active histone modifications in the promoter region (Vegliante et al., 2011) 

and the establishment of novel 3D loops with a distant enhancer element 

(Queirós et al., 2016), our finding indicates that such looping is embedded 

into long-range alterations in the 3D genome structure. This change is not 

only linked to SOX11 overexpression, but seems to be related to the 

simultaneous overexpression of multiple genes within the target region. This 

phenomenon of long-range epigenetic changes has been observed at the DNA 

methylation level, as the hypermethylation over one chromosomal band of 

4Mb that has been linked to silencing of several genes in colorectal cancer 

(Frigola et al., 2006). Additionally, in prostate cancer, long-range chromatin 

activation or inactivation analyzed by histone modifications has been shown 

to target oncogenes, microRNAs and cancer biomarker genes (Bert et al., 

2013). The presence of large-range epigenetic remodeling in cancer 

(Achinger-Kawecka et al., 2016; Bert et al., 2013; Dallosso et al., 2009; 

Frigola et al., 2006; Hitchins et al., 2007; Novak et al., 2008; Rafique et al., 

2015; Seng et al., 2008; Stransky et al., 2006; Taberlay et al., 2016) shall 

support a more generalized use of genome-wide chromosome conformation 

capture techniques as part of the global characterization of primary human 

tumors. Beyond the identification of a concerted deregulation of multiple 

contiguous genes with a potential role in cancer biology, targeting long-range 

aberrations in the 3D genome structure may itself represent a therapeutic 

target. 

In conclusion, we provide an integrative and functional view of the 3D 

genome topology during human B cell differentiation and neoplastic 

transformation. Beyond revealing the presence of a novel compartment 

related to the polycomb-repressive complex, our analysis points to a highly 

dynamic 3D genome organization in normal B cells, including extensive 

activation from NBC to GCBC and a reversibility in MBC. In neoplastic 

cells from CLL and MCL, we identify disease and subtype-specific change in 

the 3D genome organization, which include large chromatin blocks 
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containing genes playing key roles in their pathogenesis and clinical 

behavior. 

. 
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and EGAS00001000327 (RNAseq). It is important to note here that the 

consent agreements signed by the participants in the BLUEPRINT project 

do not allow anonymous access to the raw data. If reviewers wish to access 

raw data, they will need to disclose their identity. To help reviewers to 

visualize the generated EBF1 models using TADkit and the multi omics 

data in a browser session we have created a website accompanying the 

manuscript: http://resources.idibaps.org/paper/dynamics-of-genome-

architecture-and-chromatin-function-during-human-b-cell-differentiation-

and-neoplastic-transformation, which can be anonymously accessed. 

 

Methods 

Isolation of B cell subpopulations for in situ Hi-C experiment 
Four B cell subpopulations spanning mature normal B cell differentiation 

were sorted for in situ Hi-C as previously described (Kulis et al., 2015). 

Briefly, peripheral blood B cell subpopulations i.e. naive B cells (NBC) and 

memory B cells (MBC) were obtained from buffy coats for healthy adult male 

donors from 56 to 61 years of age, obtained from Banc de Sang i Teixits 

(Catalunya, Spain). Germinal center B cells (GCBC) and plasma cells (PC) 

were isolated from tonsils of male children undergoing tonsillectomy (from 2 

to 12 years of age), obtained from the Clínica Universidad de Navarra 

(Pamplona, Spain). Samples were cross-linked before FACS sorting, to 

separate each of the B cell subpopulations, and afterwards were snap frozen 

and kept at -80°C. Three replicates per B cell subpopulation were processed 

and each replicate was derived from individual donors with the exception of 

plasma cells, for which two of the three replicates proceeded from the pool of 

four different donors. The use of the samples analyzed in the present study 

was approved by the ethics committee of the Hospital Clínic de Barcelona 

and Clínica Universidad de Navarra. 
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Patient Samples 
The samples from CLL (n=7) (Beekman et al., 2018a) and MCL (n=5) 

patients were obtained from cryopreserved mononuclear cells from the 

Hematopathology collection registered at the Biobank (Hospital Clínic-

IDIBAPS; R121004-094). All samples were >85% tumor content. Clinical 

and biological characteristics of the patients are shown in Table S5.  

The enrolled patients gave informed consent for scientific study following the 

ICGC guidelines and the ICGC Ethics and Policy committee (Consortium, 

2010). This study was approved by the clinical research ethics committee of 

the Hospital Clínic of Barcelona.  

 

In situ Hi-C  
In situ Hi-C was performed based on the previously described protocol (Rao 

et al., 2014). Two million of cross-linked cells per sample were used as 

starting material. Chromatin was digested adding 100U DpnII (New 

England BioLabs) on overnight incubation. After the fill-in with bio-dCTP 

(Life-Technologies, 19518-018), nuclei were centrifuged 5 minutes, 3000rpm 

at 4°C and ligation was performed for 4 hours at 16°C adding 2µl of 

2000U/µl T4 DNA ligase on total 1.2mL of ligation mix (120µl of 10X T4 

DNA ligase buffer; 100µl of 10% Triton X-100; 12µl of 10mg/ml BSA; 966µl 

of H20). Following ligation, nuclei were pelleted and resuspended with 400µl 

1X NEBuffer2 (New England BioLabs). Then, 10µl of RNAseA (10mg/ml) 

was added to the nuclei and incubated during 15 minutes at 37°C while 

shaking (300rpm), and after that 20µl of proteinakse K (10mg/mL) was 

added and incubated overnight at 65°C while shaking (600rpm). After 

reversion of the cross-link, DNA was purified by 

phenol/chloroform/isoamyl alcohol and DNA was precipitated by adding 

to the upper aqueous phase: 0.1X of 3M sodium acetate pH 5.2, 2.5X of pure 

ethanol and 50µg/ml glycogen. Samples were mixed and incubated 
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overnight at -80°C. Next, samples were centrifuged 30 minutes at 13,000rpm 

at 4°C and pellet was washed with 1mL of EtOH 70% followed by a 15 

minutes centrifugation at 13,000rpm at 4°C. The supernatant was discarded 

and the pellet air-dried for 5 minutes and resuspended in 130µl of 1X Tris 

buffer (10 mM TrisHCl, pH 8.0), which to be fully dissolved was incubated 

at 37°C for 15 minutes. Purified DNA was sonicated using Covaris S220, 

and then the final volume was adjusted to 300µl with 1X Tris buffer. 

Sonicated DNA was mixed with washed magnetic streptavidin T1 beads 

(total of 100µl 10mg/ml beads), split in two tubes (150µl each), and 

incubated for 30 minutes at room temperature (RT) under rotation. 

Subsequently, beads were separated on the magnet, the supernatant discarded 

and the DNA was washed with 400µl of BB 1X, twice. Sonicated DNA 

conjugated with beads was washed with 100µl of 1X T4 DNA ligase buffer, 

pooling the two tubes per condition. After that, beads were reclaimed in end-

repair mix. Once incubated during 30 minutes at RT the beads were washed 

twice with 400µl of BB 1X. Then, beads were washed with 100µl of 

NEBuffer2 and reclaimed in A-tailing mix, incubated during 30 minutes at 

37°C and washed twice with 400µl of BB 1X, followed by a wash in 100µl of 

1X T4 DNA ligase buffer. Afterwards, the beads were resuspended in 50µl of 

1X Quick ligation buffer, 2.5µl of Illumina adaptors and 4,000U of T4 DNA 

ligase and incubated during 15 minutes at RT. Then, beads were washed 

twice with 400µl BB 1X and resuspended in 30µl of 1X Tris buffer. In the 

end, libraries were amplified by eight cycle of PCR using 8.3µl of beads and 

pooling a total of 4 PCRs per sample. The PCR products were mixed by 

pipetting with an equal volume of AMPure XP beads and incubated at RT 

for 5 minutes. Beads were washed with 700µl of EtOH 70%, without mixing, 

twice, and left the EtOH evaporate at RT without over-drying the beads 

(aprox. 4 minutes). Finally, the beads were resuspended with 30µl 1X Tris 

buffer, incubated during 5 minutes and supernatant containing the purified 

library was transferred in a new tube and stored at -20°C. DNA was 
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quantified by Qubit dsDNA High Sensitivity Assay, the library profile was 

evaluated on the Bioanalayzer 2100 and the ligation was assessed. Libraries 

were sequenced on HiSeq 2500. Table S1 summarizes the number of reads 

sequenced and quality metrics for each B cell subpopulation replicate and B 

cell neoplasm. 

 

Hi-C data pre-processing, normalization and interaction 
calling 
The sequencing reads of Hi-C experiments were processed with TADbit 

(Serra et al., 2017). Briefly, sequencing reads were aligned to the reference 

genome (GRCh38) applying a fragment-based strategy; dependent on GEM 

mapper (Marco-Sola et al., 2012). The mapped reads were filtered to remove 

those resulting from unspecified ligations, errors or experimental artefacts. 

Specifically, we applied seven different filters using the default parameters in 

TADbit: self-circles, dangling ends, errors, extra dangling-ends, over-

represented, duplicated and random breaks (Serra et al., 2017). Hi-C data 

were normalized using the OneD correction (Vidal et al., 2018) at 100Kb of 

resolution to remove known experimental biases. The significant Hi-C 

interactions were called with the analyzeHiC function of the HOMER software 

suite (Heinz et al., 2010), binned at 10Kb of resolution and with the default 

p-value threshold of 0.001. 

 

Reproducibility of Hi-C replicas 
The agreement between Hi-C replicates was assessed using the 

reproducibility score (Yan et al., 2017). The RS is a measure of matrix 

similarity ranging between 0 (totally different matrices) and 1 (identical 

matrices). A genome-wide RS was defined for each experiment as the average 

RS between pairs of corresponding normalized chromosome matrix (Figure 

S1A, Figure S3B and S3D). Then, the matrix representing all the genome-
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wide RSs was analyzed using a hierarchical clustering algorithm with the 

Ward's agglomeration method using hclust function from R stats package. 

 

ChIP-seq and ATAC-seq data generation and processing 
ChIP-seq of the six different histone marks and ATAC-seq data were 

generated as described in (http://www.blueprint-

epigenome.eu/index.cfm?p=7BF8A4B6-F4FE-861A-

2AD57A08D63D0B58) (Beekman et al., 2018a). Briefly, fastq files of ChIP-

seq data were aligned to the GRCh38 reference genome using bwa 0.7.7 (Li 

and Durbin, 2009), PICARD (http://broadinstitute.github.io/picard/) 

and SAMTOOLS (Li et al., 2009), and wiggle plots were generated (using 

PhantomPeakQualTools R package) as described (http://dcc.blueprint-

epigenome.eu/#/md/methods). Peaks of the histone marks were called as 

described in http://dcc.blueprint-epigenome.eu/#/md/methods using 

MACS2 (version 2.0.10.20131216)  (Zhang et al., 2008) with input control. 

ATAC-seq fastq files were aligned to genome build GRCh38 using bwa 0.7.7 

(parameters: -q 5 –P -a 480) (Li and Durbin, 2009) and SAMTOOLS v1.3.1 

(default settings) (Li et al., 2009). BAM files were sorted and duplicates were 

masked using PICARD tools v2.8.1 with default settings 

(http://broadinstitute.github.io/picard/). Finally, low quality and 

duplicate reads were removed using SAMTOOLS v1.3.1 (parameters: -b -F 4 

-q 5,-b, -F 1024) (Li et al., 2009). ATAC-seq peaks were determined using 

MACS2 (version 2.1.1.20160309, parameters: -g hs q 0.05 -f BAM –nomodel 

- shift -96 extsize 200 - keep -dup all) without input (Zhang et al., 2008). 

For each mark a set of consensus peaks (chr1-22) present in the normal B 

cells (n=12 biologically independent samples for histone marks and n=15 

biologically independent samples for ATAC-seq) was generated by merging 

the locations of the separate peaks per individual sample. Also, a second set 

of consensus peaks was generated taking into account normal B cells, CLL 



 74 

(n=7 biologically independent samples) and MCL (n=5 biologically 

independent samples). For the histone marks, the number of reads per 

sample per consensus peak was calculated using the genomecov function of 

bedtools suite (Quinlan and Hall, 2010). For ATAC-seq, the number of 

insertions of the TN5 transposase per sample per consensus peaks was 

calculated determining the estimated insertion sites (shifting the start of the 

first mate 4bp downstream), followed by the genomecov function of bedtools 

suite (Quinlan and Hall, 2010). The number of consensus peaks for normal 

B cell samples were 46,184 (H3K4me3), 44,201 (H3K4me1), 72,222 

(H3K27ac), 25,945 (H3K36me3), 40,704 (H3K9me3), 20,994 (H3K27me3), 

99,327 (ATAC-seq), while the number of consensus peaks for normal B cells, 

CLL and MCL samples were 53,241 (H3K4me3), 54,653 (H3K4me1), 

106,457 (H3K27ac), 50,530 (H3K36me3), 137,933 (H3K9me3), 117,560 

(H3K27me3), 140,187 (ATAC-seq). Using DESeq2 R package (Love et al., 

2014), counts for all consensus peaks were transformed by means of the 

variance stabilizing transformation (VST) with blind dispersion estimation. 

Principal component analysis (PCAs) were generated with the prcomp 

function from the stats package in R using the VST values. 

 

RNA-seq data generation and processing 
Single-stranded RNA-seq data were generated as previously described (Ecker 

et al., 2017). Briefly, RNA was extracted using TRIZOL (Life Technologies) 

and libraries were prepared using TruSeq Stranded Total RNA kit with 

Ribo-Zero Gold (Illumina). Adapter-ligated libraries were amplified and 

sequenced using 100bp single-end reads. RNA-seq data of the 24 samples, 

some (n=19) mined from a previous study (Beekman et al., 2018a), were 

aligned to the reference human genome build GRCh38 (Table S5). Signal 

files were produced and gene quantifications (gencode 22, 60,483 genes) were 

calculated as described (http://dcc.blueprint-
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epigenome.eu/#/md/methods) using the GRAPE2 pipeline with STAR-

RSEM profile (adapted from the ENCODE Long RNA-Seq pipeline). The 

expected counts and fragments per kilobase million (FPKM) estimates were 

used for downstream analysis. The PCA of the RNA-seq data was generated 

with the prcomp function from the stats package in R in the 12 analyzed 

normal B cell samples or 24 analyzed normal and neoplastic B cell samples. 

 

WGBS data generation and processing 
WGBS was generated as previously described (Kulis et al., 2015). Mapping 

and determination of methylation estimates were performed as described 

(http://dcc.blueprint-epigenome.eu/#/md/methods) using GEM3.0. Per 

sample, only methylation estimates of CpGs with ten or more reads were used 

for downstream analysis. The principal component analysis (PCA) of the 

DNA methylation data was generated with the prcomp function from the stats 

package in R using methylation estimates of 15,089,887 CpGs (chr1-22) with 

available methylation estimates in all 12 analyzed normal B cell samples or 

14,088,025 CpGs (chr1-22) in all 24 analyzed normal and neoplastic B cell 

samples. 

 

Definition of sub-nuclear genome compartmentalization 
The segmentation of the genome into compartments was determined as 

previously described (Lieberman-Aiden et al., 2009). In short, normalized 

chromosome-wide interaction matrices at 100Kb resolution were transformed 

into Pearson correlation matrices. These correlation matrices were then used 

to perform PCA for which the first eigenvector (EV) normally delineates 

genome segregation. All EVs were visually inspected to ensure that the EV 

selected corresponded to genomic compartments (Lieberman-Aiden et al., 

2009). Since the sign of the EV is arbitrary, a rotation factor based on the 
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histone mark H3K4me1 signal and ATAC-seq signal were applied to 

correctly call the identity of the compartments. A Pearson correlation 

coefficient was computed between the EVs for each pair of merged B cell 

subpopulation (Figure S1C). Each merged sample was also correlated with 

its replica (Figure S1C). The multi-modal distribution of the EV coefficients 

from the B cells dataset was modelled as a Gaussian mixture with three 

components (k=3). To estimate the mixture distribution parameters, an 

Expectation Maximization algorithm using the normalmixEM function from 

the mixtools R package was applied (Benaglia et al., 2009).  

A Bayesian Information Criterion (BIC) was computed for the specified 

mixture models of clusters (from 1 to 10) using mclustBIC function from mclust 

package in R (Scrucca et al., 2016) (Figure S1D). Three underlying structures 

were defined; an alternative compartmentalization into A-type (with the 

most positive EV values), B-type (with the most negative EV values) and I-

type (an intermediate-valued region with a distinct distribution) 

compartments. Two intersection values (IV1, IV2) were defined at the 

intersection points between two components. The mean IV1 and IV2 values 

across all the B cell replicas (n=12) were then used as standard thresholds to 

categorize the data into the three different components (that is, A-type 

compartment was defined for EV values between +1.00 and +0.63, I-type 

compartment as of “Intermediate” was defined for EV values between +0.63 

and -0.43, and B-type compartment was defined for EV values between -0.43 

and -1.00) (Figure S1E).  

 

Characterizing compartment types in B cells by integrating 
nine omics layers 
Given a set of peaks as previous defined by Beekman et al., (Beekman et al., 

2018a) from nine different omic layers including six histone marks 

(H3K4me3, H3K4me1, H3K27ac, H3K36me3, H3K9me3, H3K27me3), 

gene accessibility (ATAC-seq), gene expression (RNA-seq) and DNA 
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methylation (WGBS), a bedmap function from BEDOPS software (Neph et 

al., 2012) was applied  to get the mean scoring peak over the 100Kb intervals 

genome-wide. Next, Pearson correlation coefficients were computed between 

the EV coefficients and the mean scoring value of each epigenetic mark at 

100Kb intervals (Figure S1B). Finally, the mean scoring values were 

normalized by the total sum of the values for each mark and grouped by the 

three defined genomic compartments (A, I, B-type; Figure 1G). A Wilcoxon 

test was used to compute the significance between all the possible pairwise 

comparisons of the signal distribution. 

 

Compartment Interaction Score (C-Score) 
The compartment score is defined as the ratio of contacts between regions 

within the same compartment (intra-compartment contacts) over the total 

chromosomal contacts per compartment (intra-compartment + inter-

compartment). To compute the compartment score, all the compartments that 

shared the same genomic segmentation were merged.  

 

Chromatin states enrichment by genomic compartments 
The genome was segmented into 12 different chromatin states at 200bp 

interval as previously described (Beekman et al., 2018a). The active 

promoter and strong enhancer1 were merged as a unique state, giving a total 

of 11 chromatin states.  The genome compartmentalization was next split 

into 4 groups; 3 conserved groups, in which the B cells samples shared A-type 

compartment (n=6,409), B-type compartment (n=6,267) or I-type 

compartment (n=5,467) and a dynamic group (n=7,099) of non-conserved 

compartmentalization among B cells subpopulation. Each group was 

correlated with the defined 11 chromatin states using foverlaps function from 

data.table R package. The frequency of each chromatin state (corrected by the 
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total frequency in the genome) was computed per each genomic compartment. 

The chromatin state score is thus the median frequency of the three replicas 

scaled by the columns and the rows using scale function from baseR package. 

 

 

Description of chromatin states in the intermediate (I)-type 
compartment 
200bp-windows containing poised promoter (n=547) or polycomb repressed 

(n=11,665) chromatin states were extracted from the NBC intermediate 

compartments (n=1,885). From those regions, two main sub-groups were 

distinguished according to the chromatin state shown in the next state of 

differentiation (GCBC): (1) those regions that maintained their chromatin 

state (poised promoter or polycomb repressed), and (2) those regions that 

changed their chromatin state; which were further classified into three 

categories: (i) I-related chromatin states (poised promoter or polycomb 

repressed), (ii) B-related chromatin states (repressive heterochromatin and 

low signal heterochromatin), (iii) A-related chromatin states (active 

promoter/strong enhancer1, weak promoter, strong enhancer2, transcription 

transition, transcription elongation and weak transcription). Finally, the 

fold-change of related chromatin states between GCBC and NBC was 

computed. 

 

Analysis of chromatin state dynamics upon B cell 
differentiation 
B cell differentiation axis was divided into two main branches: (i) NBC-

GCBC-PC, (ii) NBC-GCBC-MBC. Both branches presented a common step 

from NBC to GCBC and then a divergence step in PC or MBC. The 5,445 

common compartments from both branches were considered for the analysis. 
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The general modulation of chromatin structure was drawn using the alluvial 

function from alluvial R package. 

 

Transcription factor analyses 
From GCBC-specific 937 active compartments (B to A-type, n =18; B to I-

type, n=512 and I to A-type, n=407) were narrowed down to 171 peaks due 

to the following filtering steps: (i) only the 200bp-windows contain active 

promoter, strong enhancer1 and strong enhancer2 chromatin states were 

retained (n=1,907 regions). (ii) Regions where H3K27ac peaks were 

differentially enriched in GCBC replicates compared to the rest of normal B 

cell subpopulations (FDR<0.05) computed using DEseq2 R package (Love 

et al., 2014) were retained. (iii) Regions with a presence of ATAC-seq peaks 

in at least two GCBC replicates were retained (n=171 peaks). The 

background considered was the rest of the ATAC-seq peaks (n=268) 

presented at the 1,907 regions in at least two GCBC replicates. 

 

From CLL-specific 48 active compartments (in normal B cells defined as I-

type: n=28 and B-type: n=20), were narrowed down to 25 peaks due to the 

following filtering steps: (i) Regions where H3K27ac peaks were 

differentially enriched (FDR<0.05) comparing CLL from all normal B cells 

and MCL using DEseq2 package (Love et al., 2014), (ii) Regions where 

ATAC-seq peaks were presented in at least five CLL (n=25). The 

background considered was all the resting ATAC-seq peaks (n=28) on the 

48 compartments presented in at least five CLL.  

 

On both analysis, FASTA sequences of targeted regions (GCBC-specific 

regions and CLL-specific regions) were extracted using getfasta function from 

bedtools suite (Quinlan and Hall, 2010) using GRCh38 as reference assembly.  

An analysis of motif enrichment was done by the AME-MEME suite 
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(McLeay and Bailey, 2010) using non-redundant transcription factor (TF) 

binding profiles of Homo sapiens Jaspar 2018 database (Khan et al., 2018) as 

a reference motif database. The database contained a set of 537 DNA motifs. 

Maximum odd scores were used as a scoring method and one-tailed Wilcoxon 

rank-sum as motif enrichment test. Only TF genes that were expressed 

(FPKM median values>1) were included. 

 

TCF4 binding motif example from KSR2 gene 
A FASTA sequences of 25 ATAC-seq peaks detected in CLL-specific active 

compartments were extracted using GRCh38 as reference assembly. A search 

of individual motif occurrences analysis was done using AME-FIMO suite 

(Grant et al., 2011) library(BSgenome.Hsapiens.UCSC.hg38,masked) with 

a custom random model (letter frequencies: A, 0.262: C, 0.238: G, 0.238 and 

T, 0.262). A p-value<0.0001 was established as a threshold to determine 23 

significant motif occurrences where TCF4 binding motif (MA0830.1) was one 

of the top candidates. 

 

Log-ratio of normalized interactions in the AICDA regulatory landscape 

Normalized Hi-C maps were analyzed at 50Kb of resolution at the specific 

genomic region, chr12:8,550,000-9,050,000 (GRCh38), from the four B cell 

subpopulations. A logarithmic ratio of the contact maps was computed 

between NBC and GCBC and GCBC with PC and MBC. The result array 

was convolved with a 1-dimensional Gaussian filter of standard deviation 

(sigma) of 1.0 using and interpolated with a nearest-neighbor approach 

using scipyndimage Python package. 
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Statistical testing for detecting significant changed 
compartment regions 
Briefly, 100Kb regions that had at least one missing value among the 

compared samples were removed from the analysis. Then, two different 

groups were defined, case and control, according to the case-control pair 

analyzed. A T-test was computed to compare each case-control pair, and the 

resulting p-values were adjusted using the false discovery rate (FDR) 

(Benjamini and Hochberg, 1995). The regions with significantly different 

means and fold changes were selected based on two specific thresholds: a p-

adjustment value less than 0.05 and a fold change greater than 0.4. The 

results were then generated for a total of 4 different case-control pairs. 

(I) control: all regions conserved across all B cell samples without 

missing values in CLL (A-type, n=3,967, I-type, n=4,301 and 

B-type, n=5,226), case: all CLL regions non-conserved in B cell 

samples (n=3,217). The analysis resulted in 348 B cell_CLL 

significantly changed regions. 

(II)  control: all regions conserved across all B cell samples without 

missing values in MCL (A-type n=6,167, I-type n=5,299, B-type 

n=5,812), case: all MCL regions non-conserved in B cell samples 

(n=4,716). The analysis resulted in 82 B cell_MCL significantly 

changed regions. 

(III)  control: B cell-CLL significantly changed regions (n=348) - 

MCL-CLL overlapping (n=31) = B cell-CLL specific regions 

(n=317), case: MCL regions (A-type n=97, I-type n=154, B-type 

n=61; total n=312). The analysis resulted in 89 B cell_CLL-

specific regions. 

(IV)  control: B cell-MCL significantly changed regions (n=82) - 

MCL-CLL overlapping (n=31) = B cell-MCL specific regions 

(n=51), case: CLL regions (n=41). The analysis resulted in 3 B 

cell_MCL-specific regions. 
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Integrative 3D modelling of EBF1 and structural analysis 
Hi-C interactions matrices from the merging of three replicas of NBC and 

the seven cases of CLL were used to model chr5:158,000,000:160,000,000 

(GRCh38) at 5Kb of resolution. For NBC and CLL merged Hi-C interaction 

maps, a MMP score was calculated to assess the modeling potential of the 

region, resulting in 0.79 for NBC and 0.84 for CLL indicative of good quality 

Hi-C contact maps for accurate 3D reconstruction (Trussart et al., 2015). 

Next, this region was modelled using a restraint-based modelling approach 

as implemented in TADbit (Serra et al., 2017), where the experimental 

frequencies of interaction are transformed into a set of spatial restraints (Baù 

and Marti-Renom, 2012). Briefly, each 5Kb bin of the interaction Hi-C map 

was represented as a spherical particle in the model, which resulted in 400 

particles each of radius equal to 25nm. All the particles in the models were 

restrained in the space based on the frequency of the Hi-C contacts, the chain 

connectivity and the excluded volume. The TADbit optimal parameters 

(maxdist=-1.0; lowfreq=1.0; upfreq=200; and dcutoff=150) resulted in the 

best Spearman correlations of 0.61 (NBC) and 0.63 (CLL) between the Hi-

C interaction map and the models contact map. Next, a total of 5,000 models 

per cell type were generated, and the top 1,000 models that best satisfied the 

imposed restraints were retained for the analysis. To assess the structural 

similarities among the 3D models, the distance root-mean-square deviations 

(dRMSD) value was computed for all the possible pairs of top models (1,000 

in NBC and 1,000 in CLL) and a hierarchical clustering algorithm was 

applied on the resulting dRMSD matrix using ward.D method from stats 

package in R (Figure S4C). The convex hull volume spanned by the 81 

particles of the EBF1 gene (chr5:158,695,000-159,000,000, GRCh38) was 

computed in each model using the convexhull function from the scipy.spatial 

Python package (Figure 5G). 
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Differential Gene expression analyses 
Differentially expressed genes were defined using the DEseq2 R package 

(Love et al., 2014), nbinomWaldTest, on all the genes. Then, the genes present 

on the compartments of interest were selected and Benjamini y Hochberg 

(BH) test (FDR<0.05) was applied. In detail, expected counts were used on 

the following considered comparisons: (i) for GCBC-specific activate 

compartments, GCBC samples (n=3) versus the rest of normal B cells 

samples (NBC, PC, MBC; n=9); (ii) for CLL-specific active compartments, 

CLL samples (n=7) versus the rest of the samples (normal B cells and MCL, 

n=17); (iii) for CLL-specific inactive compartments, all normal B cells and 

MCL samples (total n=17) versus CLL samples (n=7) and (iv) for cMCL, 

cMCL (n=2) versus nnMCL (n=3) samples were studied. Then, the 

expression of the genes differentially expressed on each comparison of 

interest was assessed. Only genes that were expressed (FPKM median 

values>1) were included.  

The findOverlaps function from GenomicRanges R package (Lawrence et al., 

2013) was used to annotated genes that overlapped with these defined 

regions. One tailed Monte-Carlo method was applied to evaluate the 

significant number of differentially expressed genes in CLL-specific 

compartments (this process was randomly repeated 10,000 times).   

 

Defining de novo (in)active regions in sub-type specific 
neoplastic group 
MCL and CLL patient samples were grouped according to their biological 

and clinical characteristics. This classification resulted in two conventional 

(c) and three leukemic non-nodal (nn) MCL cases and two IGVH-

unmutated (u) and five IGVH-mutated (m) CLL cases.  
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First, the non-assigned neoplasia compartments were removed from the 

analysis. A sample homogenization was applied to reduce the intra-subtype 

variance; the samples that presented a difference of EV smaller than 0.4 were 

retained (91.29% in MCL, 87.1% CLL).  Next, to study the inter-subtype 

variance, the mean of the EV from each subtype of B cell malignancy was 

computed. Significant regions were determined if the difference between the 

two subtypes (cMCL vs nnMCL and uCLL vs mCLL) was equal or higher 

than 0.4, which resulted in 673 regions in MCL and 47 in CLL. MCL-subtype 

specific regions where split into two groups according to the value of its EV 

coefficient (n=435 region called cMCL gain, n=238 regions called nnMCL 

gain). The distribution and the frequency of the significantly changed regions 

were studied per chromosome and compared with the probability of finding 

them by chance in each chromosome. N-subsamples of 100Kb size were 

selected from the GRCh38 genome and their frequency was calculated per 

chromosome (this process was randomly repeated 10,000 times). One tailed 

Monte-Carlo method was applied to compute p-values. The findOverlaps 

function from GenomicRanges R package (Lawrence et al. 2013) was next used 

to annotate protein coding genes that overlapped with these defined regions. 

Differentially expressed genes among cMCL and nnMCL on chr2:2,700,000-

8,800,000 (GRCh38) was compute using Deseq2 (Love et al. 2014) (using a 

FDR<0.05). The expression analysis was validated on two independent 

published cohorts, i.e.: a series with 30 conventional and 24 leukemic non-

nodal mantle cell lymphoma (GEO GSE79196) from peripheral blood 

(Navarro et al., 2017) and a second series from the lymphoma/leukemia 

molecular profiling project (LLMPP) (GEO GSE93291) (Scott et al., 2017). 

The microarrays were normalized using the R frma (McCall et al., 2010) 

method and limma R package (Smyth, 2004) was used to identify 

differentially expressed genes with adjusted p-value<0.05. Standardized 

expression matrices were used to do the heatmaps using pheatmap R package. 

Gene differentially expressed on the identified cohort: [1] RNAseq from 
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BLUEPRINT data, [2] peripheral blood and [3] LLMPP. The magnitude 

of the compartmentalization change was calculated subtracting the EV of 

cMCL1 and nnMCL2. The karyotype and the chromosome 2 were designed 

using the karyoploteR library (Gel and Serra, 2017). 
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Extended Data Figure 1. A. Average genome-wide reproducibility score matrix of 
each B cell subpopulation replicates at 100Kb resolution. The reproducibility score 
ranging between 0 (totally different matrices) and 1 (identical matrices). B. Pearson 
correlation between the eigenvector coefficients, which defines 3D compartments per 
B cell subpopulation, with six histone marks, chromatin accessibility (ATAC-seq), 
gene expression (RNA-seq) and DNA methylation (WGBS). Positive values of the 
eigenvector show higher correlation with H3K4me1 (enhancer mark) and chromatin 
accessibility. C. Genome-wide scatterplots of coefficients from the first eigenvector 
showing the correlation between pairs of B cell subpopulations at 100Kb resolution. 
The squared correlation coefficient (R2) is indicated. D. Bayesian Information 
Criterion (BIC) plot for the equal (E) and unequal (V) variance model 
parameterization ranged from 1 to 10 clusters. E. Compartment definition model. 
The x-axis shows the distribution of the eigenvector coefficients and the y-axis 
indicates the density. The fitting model proposed is highlighted using solid black 
line. The red lines mark the intersection points (EV1 = -0.63 and EV2 = 0.43) used 
to distinguish the three different compartments (A-type, I-type, B-type). 
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Extended Data Figure 2. A. Functional validation of the conserved (A-type, I-type 
and B-type) and dynamic compartments in all B cell subpopulations replicates using 
eleven different chromatin states. The chromatin state score is normalized by sample 
and chromatin state. B. C-score. Method defined by the ratio of contacts between 
regions within the same compartment (intra-compartment contacts) over the total 
chromosomal contacts per compartments (intra- and inter-chromosomal 
interactions). C. C-score distributions on the three defined compartments A-type, I-
type and B-type. D. C-score distributions segmenting the I-type compartment onto 
positive (IA) or negative (IB) eigenvector coefficients. 
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Extended Data Figure 4. A. Average genome-wide reproducibility score matrix of 
each B cell subpopulation replicates and B cell neoplasia at 100Kb. The 
reproducibility score ranging between 0 (totally different matrices) and 1 (identical 
matrices). B/D. Genome-wide scatterplots of the first eigenvector showing the 
correlation between pairs of each B cell malignancy samples at 100Kb resolution. 
CLL (B). MCL (D). The squared correlation coefficient (R2) is indicated. C/E.  
Mean and standard deviation of the squared correlation coefficients calculated intra- 
or inter- each neoplasia subtype. CLL (C). MCL (E). 
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Extended Data Figure 5. A. Heatmap showing the eigenvector coefficients of the 
compartments losing (top) or gaining (bottom) activation specifically in MCL. B. 
Correlation between normalized Hi-C and modeled contact maps in EBF1 
regulatory landscape. Left: Contact map computed from the restrained-based model. 
Middle: Scatterplot of Hi-C normalized map versus modeled contact data with 
linear regression. Right: Normalized Hi-C data. Top: NBC. Bottom: CLL. The 
position of EBF1 is indicated in blue at the bottom of the matrix plots. C. Heatmap 
of the hierarchical clustering of the dRMSD values computed for all the possible pairs 
of generated models (1,000 in NBC and 1,000 in CLL). 
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Extended Data Figure 7. A. Bar graphs represent the fold change between cMCL 
and nnMCL of each three groups of chromatin states (arranged by their relationship 
to the A-type, I-type and B-type compartments). Active Promoter, Weak Promoter, 
Strong Enhancer 1, Strong Enhancer 2, Weak Enhancer, Transcription Transition, 
Transcription Elongation, Weak Transcription were A-type compartment-related 
states. Heterochromatin; Repressed and Heterochromatin; Low signal were B-type 
compartment-related states. Poised Promoter or Polycomb repressed chromatin states 
were I-type compartment-related states. B/C. Heatmaps of the differentially 
expressed gens between MCL samples classified as cMCL (light yellow) and nnMCL 
(dark yellow) subtypes. Peripheral blood (B) and LLMPP (C) cohorts. The VST 
values were normalized by genes.   
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Supplementary Tables 

Supplementary Table 1.  In situ Hi-C experimental quality metrics. 

Supplementary Table 2. GCBC specific 3D active compartments on a three-

column bed file format (chromosome, start position and end position). 

Supplementary Table 3. List of the identified enriched binding motifs 

expressed on GCBC. 

Supplementary Table 4. Genes differentially upregulated (FDR<0.05) in 

GCBC specific regions. The coordinates of the compartment or compartments 

each gene belongs to is indicated 

Supplementary Table 5.  Patient characteristics and general overview of the 

omic layers analyzed. 

Supplementary Table 6. Genes differentially expressed (FDR<0.05) at 

CLL-specific inactive compartments. The coordinates of the compartment or 

compartments each gene belongs to is indicated 

Supplementary Table 7. Genes differentially expressed (FDR<0.05) at 

CLL-specific active compartments. The coordinates of the compartment or 

compartments each gene belongs to is indicated 

Supplementary Table 8. List of the identified enriched binding motifs 

expressed on CLL-specific active compartments. 
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Abstract  
The rapid development of chromosome conformation capture (3C-based) 

techniques as well as super-resolution imaging together with bioinformatics 

analyses has been fundamental for unveiling that chromosomes are 

organized into the so-called topologically associating domains or TADs. 

While these TADs appear as nested patterns in the 3C-based interaction 

matrices, the vast majority of available computational methods are based on 

the hypothesis that TADs are individual and unrelated chromatin structures. 

Here we introduce TADpole, a computational tool designed to identify and 

analyze the entire hierarchy of TADs in intrachromosomal interaction 
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matrices. TADpole combines principal component analysis and constrained 

hierarchical clustering to provide an unsupervised set of significant partitions 

in a genomic region of interest. TADpole identification of domains is robust 

to the data resolution, normalization strategy, and sequencing depth. 

TADpole domain borders are enriched in CTCF and cohesin binding 

proteins, while the domains are enriched in either H3K36me3 or H3k27me3 

histone marks. We show TADpole usefulness by applying it to capture Hi-C 

experiments in wild-type and mutant mouse strains to pinpoint statistically 

significant differences in their topological structure.  

 

Introduction 
 The organization of the genome in the cell nucleus has been shown to play 

a prominent role in the function of the cell. Increasing evidence indicates that 

genome architecture regulates gene transcription (1,2) with implications on 

cell-fate decisions (3-5), development (6), and disease occurrences such as 

developmental abnormalities (7,8) and neoplastic transformations (9-11). 

 

The genome organization is characterized by complex and hierarchical 

layers (1). For example, fluorescence in-situ hybridization revealed that 

chromosomes are positioned in preferential areas of the nucleus called 

chromosome territories (12). This large-scale feature has been confirmed by 

high-throughput Chromosome Conformation Capture (Hi-C) experiments 

(13), that provided a genome-wide picture in which inter-chromosomal 

interactions are depleted relative to intra-chromosomal. Analysis of Hi-C 

data also revealed the segregation of the genome in multi-megabase 

compartments characterized by different GC-content, gene density, and 

chromatin marks (13-15). Microscopy approaches, in spite of considerable 

variability, have corroborated the spatial segregation of such compartments 

at the single cell level (16). At the sub-megabase level, Hi-C experiments also 
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revealed the presence, validated by microscopy approaches (17-19), of self-

interacting regions termed Topologically Associated Domains (TADs) 

(20,21). TADs are composed by dense chromatin interactions, which promote 

3D spatial proximity between genomic loci that are distal in the linear 

genome sequence. Since many of these interacting loci are cis-regulatory 

elements, TADs are usually considered as the structural functional units of 

the genome that define the regulatory landscape (22,23), and are conserved 

across cell types and species (20,24). Moreover, TADs boundaries are often 

demarcated by housekeeping genes, transcriptional start sites and specific 

chromatin insulators proteins, such as CTCF factor and cohesin complex 

(20,25). TADs appear to be further organized in a hierarchical fashion. For 

example, in mammalian cells, concepts such as "metaTADs" (26) or "sub-

TADs" (27) have been introduced. The former is used to define a superior 

hierarchy of domains within domains that are modulated during cell 

differentiation (26) while the latter to emphasize how and where the cis-

regulatory elements establish physical interactions that contribute to gene 

regulation (27). 

 

Several computational methods to identify and characterize TADs from 3C-

based interaction data have been reported (28,29). Based on different a priori 

assumptions on the TADs subdivision, these methods can be mainly 

classified as disjointed or overlapping. The former considers TADs as 

individual and unrelated structures with no possible mutual intersections 

(e.g. directionality index (DI) (20), insulation score (IS) (30), ClusterTAD 

(31), ICFinder (32)). 

The latter assume that TADs are overlapping and related structures with a 

shared content (e.g. Arrowhead (13,15), armatus (33), TADtree (34), 

3DNetMod (35)). However, only few algorithms (CaTCH (36), GMAP 

(37), matryoshka (38), and PSYCHIC (39)) can identify nested domains 
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where each domain contain other sub-domain profiling a hierarchical 

chromatin architecture. 

 

Here, we present TADpole, a bioinformatics tool to disentangle the full 

structural chromatin hierarchy that automatically determines an optimal 

division level. Notably, TADpole is robust both at technical and biological 

benchmarks based on a published study (29) and does not rely on mandatory 

parameters. We prove the effectiveness of TADpole to investigate the 

chromatin hierarchy in capture Hi-C data (cHi-C) (40) where the 

chromosome topology is altered with local genomic inversions that drive gene 

misexpression associated to congenital malformations in mouse (41). 

 

Material and Methods 

The TADpole pipeline 
TADpole consists in three main steps (Figure 1A): (i) pre-processing of the 

input Hi-C dataset, (ii) constrained hierarchical clustering optimization, and 

(iii) genome segmentation. TADpole has been implemented as an R package 

available at https://github.com/3DGenomes/TADpole. 
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Figure 1. General overview of TADpole tool. (A) Schematic view of TADpole 
algorithm. (1) TADpole input is an all-vs-all interaction matrix. The matrix is 
checked for symmetry, and low-quality columns (bad columns) are removed. Large 
matrices of entire chromosomes are optionally split at the centromere to create two 
smaller sub-matrices corresponding to the chromosomal arms. Next, denoising and 
dimensionality reduction steps take place by computing the corresponding Pearson’s 
correlation coefficient (PCC) matrix, and its principal component analysis (PCA). 
(2) Per each number of first PCs retained (from 2 to 200), the PC matrix is 
transformed into the corresponding Euclidean distance, that serves as input to 
perform the constrained hierarchical clustering. The range of possible clustering 
levels in the hierarchy is given by an upper bound according to a broken-stick model, 
and then the Calinski-Harabasz (CH) index is used to select the optimal partition. 
(3) As output, TADpole returns the number of first PCs retained to obtain the 
optimal set of TADs, the dendrogram with the significant hierarchical levels, the 
coordinates of the chromatin domains for each partition with the associated CH 
index, and the optimal number of clusters. (B) Example of TADpole tool applied to 
a 10Mb-region from a Hi-C matrix of human chr18 at 40kb resolution. The 
complete dendrogram (left) is cut using the broken-stick model to prune 
nonsignificant partitions. The first (4 clusters) and last (21 clusters) significant 
subdivisions are shown as light blue dashed lines. A selection of the corresponding 
partitions (right) is mapped on the analyses Hi-C matrix as light grey dashed lines. 
The optimal division in 16 clusters, identified by the highest Calinski-Harabasz 
(CH) index, is shown as a dark blue dashed line. 
 

(i) Preprocessing of the input dataset. TADpole is designed to process all-vs-all 

intrachromosomal interactions matrices representing an entire chromosome, 

or a continuous chromosome region. Input data are formatted as matrices 
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containing the interaction values in each cell ij. An optional filtering step can 

be applied to exclude columns with a low number of interactions, which are 

typically local biases (42). Specifically, the rows (and columns) that contain 

an empty cell at the main diagonal, or those whose cumulative interactions 

are below the first percentile (default) are excluded from the analysis. To 

enhance the signal-to-noise ratio, the interaction matrix is transformed into 

its Pearson correlation coefficient (PCC) matrix as in (13), and a principal 

component analysis (PCA) is performed using the prcomp function from the 

stats R package (R Core Team, 2013). Only the first NPC (by default, 200) 

principal components are retained, which are enough to extract more than 

85% of the variance in the test datasets (Supplementary Figure 1). To 

reduce memory usage and processing time, TADpole has the option to divide 

the interaction matrix by the centromere (considered to be the longest 

contiguous stretch of columns with no interactions in the Hi-C matrix) and 

process each chromosomal arm separately. This is particularly recommended 

when working with matrices of more than 15,000 bins. 

 
Supplementary Figure 1. Percentage of explained variance as a function of the 
number of retained principal components of for various datasets. (A) Each 
continuous line represents a different chromosome, and the vertical dashed lines 
mark the default maximum value of (200) first PCs retained in TADpole. (B) The 
Hi-C experimental datasets used characterized with five descriptors: cell type, 
restriction enzyme, the NCBI accession numbers, number of the valid reads retrieved 

Supplementary Figure 1
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after filtering using an in-house pipeline based on TADbit (50), and binning. The 
datasets from different NCBI entries are merged and the resulting matrices after 
filtering are binned using an equal bin-width of 40kb, but for Lieberman-Aiden 
dataset (13) in which bin-width is 1Mb. 
 

(ii) Constrained hierarchical clustering optimization. Per each value of NPC, the 

dimensionally-reduced matrix is transformed into a Euclidean distance 

matrix. This distance matrix is then partitioned into topological domains 

using a constrained hierarchical clustering procedure as implemented in the 

Constrained Incremental Sums of Squares clustering method (coniss) of the 

rioja R package (Juggins et al., 2017). This analysis explicitly assumes the 

following two priors: first, the genome is organized in a hierarchical manner, 

with higher-order structures containing lower-order ones, and second, every 

pair of contiguous genomic loci must either belong to the same self-interacting 

domain or to the immediately contiguous one. The constrained hierarchical 

clustering results in a tree-like description of the organization of the genome. 

Next, using the broken-stick model as implemented in the bstick function 

from the rioja R package (Juggins et al., 2017), the dendrogram is cut at the 

sensible maximum number of statistically significant clusters (max(ND)). 

Next, the Calinski-Harabasz (CH) index is computed per each of the 

obtained significant partitions using the calinhara function from the fpc R 

package (Henning C, 2018). The maximum CH is associated to the optimal 

chromatin subdivision, while all the other significant hierarchical levels 

correspond the ones with the optimal number of first NPC (Figure 1B). 

 

(iii) Genome Segmentation. TADpole generates four main descriptors that 

recapitulate the entire sets of results, namely: (i) the optimal number of 

principal components; (ii) the dendrogram cut at the maximum significant 

level; (iii) the start and end coordinates of the domains and the CH index per 

each significant level; (iv) and the optimal number of domains. All the 

TADpole output is organized in a comprehensive R object. 
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TADpole benchmark analysis 
Benchmark Hi-C dataset and scripts. A pre-existing benchmark dataset, that 

comprises Hi-C interaction matrices of the entire chromosome 6 in the 

human cell line GM12787, was used for the analysis (29). A total of 24 

different conditions were tested: (i) twelve matrices given by the combination 

of four different resolutions (10kb, 50kb, 100kb and 250kb) and three 

normalization strategies (raw, Iterative Correction and Eigenvector 

decomposition (ICE) (14) and parametric model of Local Genomic Feature 

(LGF) (43), and (ii) twelve matrices obtained by down-sampling the ICE 

interaction matrix at 50kb resolution (Figure 2A). The scripts for 

benchmarking were downloaded and used as released in the repository 

https://github.com/CSOgroup/TAD-benchmarking-scripts (29) (Data 

availability). The processed Hi-C dataset was shared by Zufferey and 

colleagues, this eliminated from the analysis possible biases associated with 

the use of different pipelines for Hi-C interaction data reconstruction (28). 

To compare on equal footing with the other 22 TAD callers analyzed using 

the same benchmark, only levels of division that comprise at least 10 

chromatin domains were taken into consideration for the analysis. Within 

these levels, the optimal partition was identified using the CH index as 

described before. 

 

The technical benchmark. TADpole optimal topological partitions were 

compared over different resolutions, normalization strategies, and 

sequencing depths as previously described (29). To compare the conservation 

of the TAD borders between two partitions, two different metrics were 

applied: 

 

1. The overlap score (29) was used to compare partitions across 

different resolutions. This is the percentage of overlapping borders, 

with one bin of tolerance. The statistical significance of each overlap 
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score was estimated by drawing 10,000 random partitions at the finer 

resolution (preserving the number of optimal clusters of the real 

case) and computing their overlap with the subdivision at the coarser 

resolution. The p-value of the real-case overlap was computed as the 

fraction of randomized partitions with larger overlap. 

2. The Measure of Concordance (MoC) (29), was used to compare 

partitions across different resolutions and normalization strategies. 

MoC ranges from 1 for a perfect match to 0 for poorly scoring 

comparisons. 

 

The biological benchmark. To test the biological relevance of the TADs identified 

by TADpole, the enrichment of main architectural proteins determined at 

TAD borders (CTCF, SMC3, and RAD21) and within TADs (H3K27me3, 

and H3K36me3) were studied. CTCF and cohesin sub-units, such as SMC3, 

and RAD21 have been shown, in fact, to be enriched at TAD borders (15,44) 

while H3K27me3 and H3K36me3 marks have been related to acting as a 

differentiator of TADs because topological domains are enriched in either 

one or the other, but not both (13,15,20,21). The ChIP-seq profiles were 

downloaded from ENCODE (45) (https://www.encodeproject.org/) 

(Supplementary Table 1). For each protein, a consensus profile was 

determined as the intersection of the peaks identified in each experiment 

using the multiIntersectBed function from the BEDTools suite (Quinlan and 

Hall, 2010). Similar to Zufferey et al. (29), the fold change enrichments of 

CTCF, RAD21 and SMC3 at TAD borders, and the H3k27me3/H3k36me3 

log10-ratio for a given partition were computed. 

 
Supplementary Table 1. Encode IDs of the Chip-seq experiments used in the 
biological benchmark analysis. 

Supplementary Table 1

Resolution
Raw

 Nº TADs
Raw

 Size (kb)
Raw

 Size(bins)
ICE

 Nº TADs
ICE

 Size (kb)
ICE

 Size (bins)
LGF

 Nº TADs
LGF

 Size (kb)
LGF

 Size (bins)

250kb 118 1425.85 5.7 116 1465.52 5.86 120 1402.08 5.61

100kb 193 868.91 8.68 193 879.79 8.79 193 884.46 88.45

50kb 217 772.35 15.45 205 814.39 16.29 208 805.77 16.12

10kb 535 313.01 31.3 494 338.7 33.87 510 328.29 32.83

Chromatin Marks Encode ID
CTCF ENCSR000DRZ, ENCSR000DKV, ENCSR000DZN, ENCSR000AKB
SMC3 ENCSR000DZP
RAD21 ENCSR000BMY, ENCSR000EAC

H3K36me3 ENCSR000DRW
H3K27me3 ENCSR000DRX

Supplementary Table 2
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Difference score between topological partitions (DiffT) 
The TADpole tool was next applied to two Capture Hi-C (cHi-C) datasets 

in embryonic day E11.5 mouse limb buds (41). Specifically, two homozygous 

strains were considered comprising the wild type (WT) and the so-called 

inversion1 (Inv1). The cHi-C interaction maps were downloaded from GEO 

(46) at the GSM3261968 and GSM3261969 entries for WT and Inv1, 

respectively. The region chr1:73.92-75.86 Mb was extracted and used for 

further analysis. 

 

To compare the WT and Inv1 partitions identified by TADpole at a fixed 

level of the hierarchy, we defined a difference topology score (DiffT). 

Specifically, the partitioned matrices were transformed into binary forms W 

for WT, and analogously V for Inv1, in which each entry wij (vij) is equal to 

1 if the bins i and j are in the same TAD and 0 otherwise. Then, DiffT is 

computed as the normalized (from 0 to 1) difference between the binarized 

matrices as a function of the bin index l as: 

	
where N is the size of the matrix. 

 

To test whether the identified partition in Inv1 is different from WT, at each 

level of the chromatin hierarchy, a statistical analysis was introduced. This 

analysis assesses the significance of DiffT at each bin of the matrix. A total 

of 10,000 random partitions of the region were simulated excluding the bad 

columns of the Inv1 matrix. The DiffT score was computed between 

simulated and WT partitions (DiffTsimulated-wt). At each bin, the fraction of 

DiffTsimulated-wt lower or equal to the DiffTInv1-wt score estimates the p-value. A 

p-value < 0.05 means that a significant difference is located from the bin 
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under consideration onwards. Hence, the bin with the minimum p-value 

marks the starting point of the genomic region where the most significant 

fraction of the DiffT score is located. 

Results 

TADpole benchmark analysis 
To quantitatively compare TADpole with other 22 TAD callers, we applied 

the multiple conditions test proposed in (29) on the same reference 

benchmark dataset (Figure 2A and Material and Methods). 

 

Technical benchmarking. We assessed various technical aspects of TADpole as 

well as the robustness of TADpole identified domains with respect to different 

resolutions, normalization strategies, and sequencing depths of the input 

matrix (Figure 2A). Firstly, we examined the number and the size (in 

kilobases and in bins) of the optimal domain partition of the ICE 

normalized maps at different resolutions (Figure 2B). We found that, as the 

resolution of the Hi-C interaction map decreased, both the numbers of TADs 

and the mean TAD size in bins decreased with a 4-fold reduction. TADpole 

followed a similar grow tendency (positive when the TADs are measure in 

kilobases and negative with the TADs are measured in bins) as the majority 

of the other TAD callers independently on the normalized strategy applied 

(Supplementary Table 2). We also inspected if TADpole identified robust 

boundaries that were conserved at different resolutions. To measure this 

conservation, we tested if a border detected in the ICE normalized Hi-C 

matrices at a certain resolution was conserved in the resolution immediately 

finer (Figure 2C). At the coarser resolutions, that is 250kb vs. 100kb, we 

found a high agreement (67%), that decreased only slightly to (59%) at 

intermediate ones (100 vs. 50kb). Interestingly, we found that even at the 

finer resolutions (50kb vs. 10kb), where the 48% of the borders were 
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conserved, this analysis was consistent with a statistically significant overlap 

(p-value<0.05). 

 
Supplementary Table 2. The total number of TADs and the corresponding average 
size detected in raw and normalized (by ICE and LGF) Hi-C matrices across 
different resolutions. 
 

Next, we used the Measure of Concordance (MoC) (Material and Methods) 

to estimate if the number and the position of the borders of chromatin 

domains identified by TADpole were affected by the matrix resolutions and 

by different normalization strategies. Interestingly, we found that the MoC 

over different matrix resolutions had values in the [0.45:0.82] range with an 

average MoC of 0.63, and ranked first when compared with the other 22 

TAD callers previously benchmarked (29). TADpole was also robust over 

different normalization strategies with an average MoC of 0.74, ranking 9th 

over the 22 TAD callers. Comparing the average of resolutions vs. 

normalizations MoC values of TADpole with the rest of TADcallers (Figure 

2D), we found that TADpole appeared in the top-right corner of the plot 

demonstrating its overall high robustness and confidence to identify optimal 

chromatin domains independently of the resolution or the normalization of 

the input Hi-C matrix. We also tested the TADpole propensity to identify 

consistent optimal chromatin domains independently of the sequencing depth 

(Figure 2E). We compared the partitions obtained by doing 12 different sub-

sampling of the ICE-normalized interaction matrix at 50kb with the full 

interaction matrix using the MoC. We found that TADpole partitions were 

clearly robust to down-sampling with a MoC score of 0.79 with just 0.1% of 

the total data. This feature classified TADpole as the top TAD caller with 

respect to the other 22 tools. 

Supplementary Table 1

Resolution
Raw

 Nº TADs
Raw

 Size (kb)
Raw

 Size(bins)
ICE

 Nº TADs
ICE

 Size (kb)
ICE

 Size (bins)
LGF

 Nº TADs
LGF

 Size (kb)
LGF

 Size (bins)

250kb 118 1425.85 5.7 116 1465.52 5.86 120 1402.08 5.61

100kb 193 868.91 8.68 193 879.79 8.79 193 884.46 88.45

50kb 217 772.35 15.45 205 814.39 16.29 208 805.77 16.12

10kb 535 313.01 31.3 494 338.7 33.87 510 328.29 32.83

Chromatin Marks Encode ID
CTCF ENCSR000DRZ, ENCSR000DKV, ENCSR000DZN, ENCSR000AKB
SMC3 ENCSR000DZP
RAD21 ENCSR000BMY, ENCSR000EAC

H3K36me3 ENCSR000DRW
H3K27me3 ENCSR000DRX

Supplementary Table 2
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Figure 2. Technical benchmark of TADpole tool. (A) Descriptions of the dataset 
used for the TADpole benchmark analysis of Zufferey et al. (29). The dataset 
includes the Hi-C interactions matrices for chromosome 6 in GM12878 cells 
organized in 24 different forms (Material and Methods). (B-E) Technical 
benchmark of TADpole optimal partition and comparison with 22 other TAD 
callers considered in (29). (B) Analysis of the number of TADs at different matrix 
binning and the TAD size in terms of kb and number of bins. (C) Fraction of 
conserved TADs boundaries at different resolutions in the entire chromosome 6. The 
scheme illustrates the analysis focusing on the region from 5 to 25Mb. (D) Average 
Measure of Concordance (MoC) values across normalizations vs the average MoC 
value across resolutions. The color scheme reflects the specific approach used in each 
TAD caller. (E) The MoC values over different down-sampling levels of the ICE-
normalized interaction matrix at 50kb. Panel B and D have been adapted from 
Figure 2C of Zufferey et al. (29) to include TADpole in the comparison of TAD 
callers. 
 

Biological benchmarking. With the lack of a gold standard to define TADs in Hi-

C interaction maps (28,29), we investigated the biological relevance of the 

domains identified by TADpole in terms of their association with biological 

features that have been shown to have an important role in the formation 

and maintenance of TADs. We found that the intensity profiles of the CTCF, 

RAD21, and SMC3 signals were peaked at TADpole chromatin borders 

(Figure 3A). To compare these results with the set of other TAD callers, we 

computed the fold change enrichments at the peak with respect to the 

flanking regions (Figure 3B).TADpole resulted in a fold change enrichment 
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around 1 for each of the three architectural proteins (1.18 in CTCF, 1.06 in 

RAD21 and 0.97 in SMC3, respectively), that was consistent with a 

significantly high peak at the border compared with the background (p-

value<10-5). In this analysis, TADpole ranked as the 6th TAD caller. 

Additionally, more than 40% of the tagged boundaries are enriched in one or 

more of these three architectural proteins being CTCF (42%) and SMC3 

(42%) the most abundant ones. Considering the enrichment at TADs 

boundaries, TADpole ranked 3rd within the set of 22 TAD examined callers 

(Figure 3C). To further study the enrichment of these biological features at 

domain borders, we performed an analysis of the fold change of CTCF, 

RAD21 and SMC3 in each of the chromosome arms. In all the identified 

levels, there was a positive fold-change with certain variability with the level 

of nested data, being CTCF in all the cases, the most enriched architectural 

protein in the border regions (Figure 3D). 

TADs are usually expected to be transcriptionally either active or inactive 

(15) with the TAD body enriched in active or inactive histone mark. To 

assess if the interior of TADpole detected partitions was indeed enriched in 

either active or inactive chromatin, we considered the signals of two marks 

H3K36me3 for transcriptional activity and H3K27me3 for repression, and 

measured the fraction of TADs where the Log10 of their 

ratio(H3K27me3/H3K36me3) was significantly high or low (FDR<0.1). 

Notably, we found that the majority (57%) of the TADpole identified TADs 

have a defined active or inactive state, locating TADpole within the top four 

TAD callers based on this criterion (Figure 3E). 
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Figure 3. Biological benchmark of TADpole tool. TADpole borders for the 
optimal level of the hierarchical partition and chromatin-organizer proteins. (A) The 
mean ChIP-seq signal profiles (5-kb intervals) in 1Mb region around the TADpole 
domains borders are shown for CTCF, RAD21 and SMC3. (B) The fold-change 
enrichment of CTCF, RAD21 and SMC3 at domain borders vs. background and (C) 
the percentage identified TADs boundaries tagged with CTCF, RAD21 and SMC3 
are shown as bar plots. (D) Cumulative fold-change of the enrichment in CTCF, 
RAD21 and SMC3 at domain borders vs. background for all the significant levels 
(minimum 10 partitions as in (29)) retrieved by the broken-stick model in the two 
chromosomes arms (p, q) of chromosome 6. (E) The fractions of TADs with 
significant log10 ratio between H3K36me3 and H3K27me3 (Material and 
Methods) in TADpole and the 22 TAD callers are represented as bar plots. Panels 
B, C and E have been adapted from Figure 5D, 5E, 5I of Ref. (29) reporting on the 
results of the other TAD callers. 

Applications to capture Hi-C datasets 
To show the effectiveness of TADpole, we applied our caller to cHi-C 

experiment of embryonic day E11.5 mouse cells (41). Kraft et al. investigated 

the pathogenic consequences of balanced chromosomal rearrangements in 

embryonic mouse limb buds, focusing on a 1.9Mb region in chr1 (chr1:73.92-

75.86 Mb) where a cluster of genomic regulators of Epha4 locus is located. The 

authors generated, together with the wild-type (WT), a total of 4 mutant 

strains, each inducing different inversions. We compared the WT strain with 

Figure 3
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the sole inversion producing a homozygous strain (here called Inv1), that is 

located between the telomeric site of Epha4 enhancer cluster and the 

promoters of Resp18 (breakpoint at chr1:75,275,966-75,898,706 Figure 4A). 

Analysis of the entire TADpole dendrogram revealed the existence of 19 and 

17 significant partition levels in WT and Inv1, respectively. The optimal ones 

were 11 for WT and 2 for Inv1. At a visual inspection, the maps in Figure 

4A show that the difference between the chromatin partitions increases with 

the partition level, and accumulates in the region of the inversion. 

 

To statistically quantify and localize the significant topological differences 

between the WT and Inv1 matrices, we computed their DiffT score profiles 

(Material and Methods and Figure 4B for the partition in 9 domains), at 

each level of the hierarchical partition. We found that the DiffT profiles 

sharply increased close to the point of the inversion (Figure 4C). Based on 

the p-value profiles (Figure 4D), we identified two regions where the 

minimum pvalues (one per partition level) accumulated. Notably, 70% of 

minimum p-values were located within a region, spanning 50kb, from the 

point where inversion was induced, suggesting that the significant topological 

changes between WT and Inv1 accumulated in the inverted region. 
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Figure 4. Characterization of topological difference in capture Hi-C datasets. 
(A) Capture Hi-C maps of chr1:73.92-75.86Mb region in wild-type (WT) and 
inversion 1 (Inv1) strains (41). In both matrices, TADpole significant partitions are 
shown as light gray dashed lines. The blue arrow indicates the centromeric 
breakpoint located at the promoter of Resp18 gene in Inv1. (B) DiffT score scheme 
for level 9. The upper triangle of the matrix shows the TADs borders identified by 
TADpole in WT and Inv1 matrices as red and blue continuous lines, respectively. 
The lower triangle of the matrix shows the conserved and non-conserved areas of the 
TADs in orange and gray, respectively. In the panels C and D, the Inv1 breakpoint 
is highlighted with a solid black line and only the significant levels (with at least a 
p-value < 0.05) are shown. (C) DiffT score profiles as a function of the matrix bins 
(Material and Methods). (D) P-value profiles per bin for automated detection of 
significant differences. In the lower panel, the bins associated with minimum p-
values per level are marked with empty dots. 
 

Discussion and conclusion 
In this work we introduced TADpole, a tool to identify hierarchical 

topological domains from all-vs-all intra-chromosomal interaction matrices. 

In line with previously introduced concepts such as metaTADs (26) and sub-

TADs (27), we propose that there is not a single meaningful subdivision of 

chromatin domains, but rather a set of hierarchical levels associated with 
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different genomic features. Notably, TADpole characterizes the entire 

hierarchy of TADs while assessing the significance at various levels of 

partition, paving the way for deepening our understanding of the nested 

topology and its biological role. Indeed, the principles behind this nested 

structure are not yet fully understood. Different levels of the hierarchy can be 

involved in the dynamical modulations of TADs upon perturbation, 

responding to or causing changes in gene regulation (3,22,47). Alternatively, 

these nested organization can rise as effect of the variability in the topological 

conformation observed in individual cells (48). However, we cannot exclude 

the possibility that this nested structure exists in single cells as multi-site 

interactions conformation acting together to establish robust gene regulation 

networks. All these evidences highlight the importance to have a tool like 

TADpole, that systematically characterizes the entire TAD architecture from 

all-vs-all intrachromosomal interaction matrices. 

 

Here, we compared TADpole’s performance with a set of other 22 TAD 

callers following the benchmark analysis performed by Zufferey et al. (29). 

TADpole identifies a number of TADs over different resolutions that is in 

agreement with other TAD callers (Figure 2B). The identified domains have 

an average size of 855kb, in agreement with the reported average TADs size 

in mammalian cells (~900-1000kb) (15). TADpole shows one of the largest 

consistencies over different normalization strategies (including also non-

normalized data), resolutions and sequencing depths (Figure 2D and 

Supplementary Table 2). These observations make TADpole potentially 

suitable for analyzing sparse datasets. TADpole has been shown to be 

technically robust. Indeed, the optimal TADpole chromatin partition borders 

present a high enrichment of architectural proteins such as CTCF, SMC3, 

and RAD21, and this enrichment is maintained, for certain partitions, over 

all the significant hierarchical levels (Figure 3D). The identified TADs are 

enriched in either active (H3K36me3) or inactive (H3K27me3) marks 
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(Figure 3E), suggesting a strong consistency between the structural 

definition of TADs and their biological characterization. A handful of 

algorithms for the detection of chromatin domains as nested TADs have been 

implemented (CaTCH (36), GMAP (37), matryoshka (38), and PSYCHIC 

(39)). However, the uniqueness of TADpole is its ability to provide multiple 

significant partitions and define the optimal one in an unsupervised manner 

by using the Broken-Stick model and the Calinski-Harabasz index criteria. 

Notably, in the benchmark analysis presented here (Figures 2 and 3), 

TADpole performs generally better than all the other nested TAD callers 

when considering the technical and biological benchmarking performed here. 

 

A possible advantage of TADpole over existing TAD callers is the pre-

processing data step. Indeed, the PCC transformation and the PCA 

application regularize the input matrix so that the specific normalization 

applied on the input and the sparsity of the data have little effect on 

identifying TADs. Previously, other architectural features of the chromatin 

have been already studied using PCA. The first principal component is 

widely used to identify the chromatin segregation into compartments (13). 

The second and the third PCs have been associated instead to intra-arm 

features mainly centromere-centromere and telomere-telomere interactions 

enrichment (14). Moreover, the first PCs have been used to assess the 

similarity between two interaction maps (14) as well as to quantify their 

reproducibility (49). Here we have demonstrated that there exists an optimal 

set of PCs capable of identifying the hierarchical structure of chromatin, 

extending the current application of PCA to characterize genome topology. 

 

We provide a proof of TADpole’s usability on a topologically complex region 

analyzing cHi-C data in both a wild-type strain and a mutant one carrying 

a genomic inversion (41) (Figure 4B). The use of TADpole in combination 

with the DiffT score is able to identify the inverted region as the one with the 
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highest difference in topological partitions, proving that this strategy can 

isolate bin-dependent and statistically significant topological dissimilarities. 

Overall, we prove that the DiffT score allows to evaluate a priori the location 

where the most significant topological differences between two hierarchical 

subdivisions are accumulated. 

 

In summary, TADpole combines straightforward bioinformatic analyses 

such as PCA and hierarchical clustering to study continuous nested 

hierarchical segmentation of an all-vs-all intra-chromosomal interactions 

matrix. Additionally, we demonstrated the technical and biological 

robustness of TADpole, and its usability in identifying topological difference 

in high-resolution capture Hi-C experiments. TADpole is released as a 

publicly-available, open-source and numerically-efficient R tool. As such, 

TADpole represents a comprehensive tool that fulfils the needs of the 

scientific community for an accurate TAD caller able to comprehensively 

study the interplay between the hierarchical chromatin topology and genomic 

function. 

Data availability  
The TADpole is freely available for download as an R package at 

https://github.com/3DGenomes/TADpole. The scripts for the technical 

and biological benchmarks were obtained from the repository 

https://github.com/CSOgroup/TADbenchmarking-scripts (28). 

Specifically, the script fig2_fig3_fig4_fig5_moc_calc.R was used for panels Figure 

2B to E, the script StructProt_EnrichBoundaries_script.R for panels Figure 3A to 

D, and the script HistMod_script.sh for panel in Figure 3E. Default 

parameters were applied. 
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DISCUSSION 

Dynamics of genome architecture and chromatin function 
during human B cell differentiation and neoplastic 
transformation 
The three-dimensional eukaryotic genome is organized in a hierarchical 

manner which is tightly linked with the functional and regulatory DNA 

processes. Hi-C, and its derivative techniques have opened the door to 

uncover the 3D genome organization within the nucleus at multiple scales of 

resolution. However, the high complexity of biological systems makes it 

necessary to integrate multiple layers of information, coming from high-

throughput technologies and imaging methods, to draw a comprehensive 

biological view of the interrelationship between the spatial organization of 

the chromatin and its role in the genomic functions.  

B cells are central in the humoral immune system and abnormal gene 

regulation in these cells can be associated with cancer development and is 

accompanied by a critical chromatin remodeling. In Chapter 1 of this Thesis, 

we present an integrative multi-omics approach combining in situ Hi-C data 

with nine additional layers of information (six histone modifications, 

chromatin accessibility, gene expression, and DNA methylation) to explore 

how the 3D genome is modulated during normal B cell differentiation and 

upon neoplastic transformation and its link with the functional state of the 

cell. 

Our Hi-C study on chromatin segregation into more transcriptionally active 

or repressed compartments suggested a general positive correlation between 

changes in the type of compartmentalization with gene expression, DNA 

accessibility and histone modification patterns. In fact, the active histone 

marks H3K4me3, H3K4me1, H3K27ac and H3K36me3 had a higher 

Pearson correlation with the first principal component (that usually defines 

genome segmentation) than the repressive marks H3K9me3 and 
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H3K27me3. In fact, it has been already suggested to use only active histone 

marks to annotate compartments(93), which reveals a differential 

relationship between active and repressive histone marks with the genome 

compartmentalization. Xie and colleagues {Xie, 2017, 0RyX} even propose a 

different regulatory mechanism for the repressive histone marks, especially 

for H3K27me3.  

Upon a closer examination of Hi-C data and specifically of the first 

eigenvector coefficients, we determined a multimodal distribution of 

continuous data with two extreme modes connected by a valley of 

intermediate values. The application of a global clustering using a Gaussian 

mixture model categorized the data into three compartments: A-type, B-type 

and a novel compartment, that we annotated as I-type, identified as an 

intermediate and transitional compartment with significant enrichment in 

two main chromatin states, poised promoter and polycomb-repressive 

chromatin. This new compartment definition better captures the complexity 

of the genome topology, yielding a better description of how the genome is 

modulated during cell fate decision. According to recent studies, polycomb-

bound chromatin segregated into central nuclear (sub)compartments that 

have a different 3D folding, compared to active or constitutive inactive 

chromatin (98). 4C-seq experiments during mouse embryonic stem cells 

differentiation showed how the polycomb-bound chromatin is switched 

between A and B compartments accompanied by a massive loss of intra and 

inter-interactions between polycomb-bond loci, which suggests transitional 

and dynamic features of this facultative heterochromatin (133). In fact, we 

show that this dynamic compartment can evolve either into active or inactive 

compartments, with high correlation with the gain of A-related chromatin 

states or B-related chromatin states respectively, highlighting the association 

between the modulation of the 3D genome together with the epigenomic 

properties of the chromatin. Our data confirm that the majority of the 

compartment conversions during normal B cell differentiation involve 
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transitioning to or from I-type compartments, and that abrupt transitions 

between extreme compartments, such as A-to-B or B-to-A) are minimal. In 

fact, during T cell differentiation, permissive chromatin microenvironments 

(with intermediate compartment scores) were detected inside repressed B 

compartments decorated with active histone marks, where they can propagate 

into neighboring regions and turn into active compartments (143). 

Interestingly, 1,218 genomic regions (determined at 20kb resolution) 

exhibited a compartment switch. In our study, around 28% of the entire 

genome presented a change in the compartmentalization (determined at 

100kb resolution) in at least one of the 4 analyzed B cell subpopulations. 

Large spatial plasticity of the genome (36% of switched compartments) was 

annotated by studying the human embryonic stem cell differentiation (107) 

(compartments determined at 40kb resolution). While another, much more 

extensive study (a compendium of 21 human cell and tissue types) 

determined that ~60% of the genome was dynamically compartmentalized 

between the samples studied (144) (compartments were determined at 1Mb 

resolution).   

Indeed, there is a large variability on the percentage of compartment changes 

in the genome upon cell fate decision and cell types. Taking into account the 

biological and technical biases associated to each experiment, and the 

statistical analyses applied, the resolution (the bin size of the Hi-C 

interaction matrix) used in each study could be a parameter affecting the 

results of downstream analyses. The resolution of the Hi-C matrix dictates 

the scale of the 3D organization observable from the data. There is not a 

standard method to determine which is the best resolution for annotating the 

compartments. The annotation of this sub-compartmentalization could be 

very useful to provide a finer 3D genome perspective concerning its spatial 

position in the nucleus and its influence on gene regulation. From this point 

of view, we have contributed to detect genome compartment differences that 

take place during cell differentiation and correlate them with the functional 
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events that are occurring in the cell, all thanks to the detailed annotation of 

A-type, I-type and B-type compartment. 

The main structural features that we detected during B cell differentiation 

were: (i) the great modulation to the active state of the NBC to the GCBC 

and (ii) the reversion of the compartment organization that suffers MBC to 

the organization profiled in a naive state, the NBC. The dramatic structural 

change of NBC to GCBC is consistent with the findings of another study 

(145) where the authors suggested a global decompaction of the germinal 

center related to a significant loss of inter-arm chromosomal interactions and 

de novo coordination of specific transcription factories (145). Analogously, we 

observed a global activation of the germinal center together with an increase 

of chromatin accessibility, all decorated in a I-type compartment 

environment. A transcription factor motif analysis in germinal-specific active 

regions showed an enrichment of two main transcription factor families, 

MEF2 and POU, that are functionally connected with developmental 

processes and linked with the formation to the germinal center (146). The 

germinal center response gives rise to two different cell types, MBC and PC, 

with divergent immune functions. Surprisingly, about 75% of the total 

detected compartment changes in MBC reverts into a naive B cells state. This 

change, or this structural memory, is also reflected in the content of the other 

analyzed multi-omics layers, where histone modifications, DNA 

accessibility, and gene expression follow the same general pattern either in 

NBC and in MBC. 

Extensive disorganization of the genome has been described during 

neoplastic transformation: genomic structural alterations, epigenomic 

remodeling, atypical gene expression, etc. There is also a high degree of 

variability between different cancer types (101, 147). In this context, using 

Hi-C in situ data, we have corroborated important structural and functional 

aspects that affect the neoplastic cells: (i) an overall spatial conservation of 

chromatin in normal B cells with CLL and MCL neoplastic samples (~70% 
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of the total genome), (ii) even with this high degree of conservation, a 

significant number of changed compartments were detected between cancer 

samples (MBC, CLL) with normal B-cell subpopulations but also between 

cancer subtypes, showing tumor-specific changes in the 3D genome, and (iii) 

the link between the changes in cancer genome and epigenome was correlated 

with a 3D chromatin reorganization of the cells (115, 146). Interestingly, the 

significant regions detected in CLL mainly progress towards an inactivation 

state, this observation is consistent with a recent study in which an enhanced 

heterochromatin organization in the neoplastic sample was suggested 

compared to normal NBC cells (146).  

Chromosome conformation capture techniques can be used, not only to 

characterize the global chromatin architecture, but also as a diagnostic tool 

to distinguish normal and cancerous cell types.  This idea is supported by the 

presence of blocks of compartment changes between normal and neoplastic 

samples, such as the 2Mb region on chromosome 5 associated with the 

silencing of EBF1 in CLL, and the entire 2p25.2 chromosome band that 

embedded SOX11. In fact, low levels of Early B-cell Factor 1 (EBF1), a key 

B-cell transcription factor, can result in reduced levels of B-cell signaling that 

may contribute to an anergic phenotype of CLL cells, granting it a potential 

diagnostic value (148). High levels of SOX11, an oncogene specific of clinical-

aggressive MCL, have been demonstrated to be highly sensitive molecular 

marker to classify the different entities of this kind of lymphoma (149). 

Hierarchical chromatin organization detected by TADpole 

While a standard mathematical procedure exists to segment the genome in 

(sub)compartments (46), the different ways to algorithmically detect the 

topologically associated domains are hugely diverse. Linear scores, graph 

theory models and clustering methods are some of the approaches that have 

been applied to determine TADs; each one with its weaknesses and strengths. 

The variable results from these multiple approaches point to the fact that 
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there is not a standard definition of what a TAD is, and this may potentially 

affect the conclusions of the scientific studies that are based on them (151). 

Basically, two main trends were observed among these different algorithms: 

TADs are defined as individual and disjoint domains, or TADs are 

considered a hierarchy of block-like structures. From the last observation, 

concepts such as “metaTADs” or “sub-TADs” emerged from the need to 

characterize the chromatin organization at different scales (126, 127). 

Instead, we propose that these subdivisions represent different levels of the 

spectrum of chromatin scales that bring us the possibility to extract more 

details about how the chromatin is organized at scales of a few kilobases. 

A recent review article, which compares a total of 22 TAD callers, stated that 

the limited concordance between the results was evidenced when the number 

and size of TADs were analyzed on multiple scales of resolution. This fact 

reflects an underlying hierarchical chromatin organization that can only be 

partially captured by a few hierarchical methods that generally have four 

main limitations: (i) low TAD consistency across replicate experiments, (ii) 

need for high-quality and high-resolution data, (iii) high computational time 

and (iv) retrieving of only a few levels of the complete hierarchy (125). These 

limitations require an improvement of the hierarchical methods so they can 

be widespread used. TADpole addresses these specific needs characterizing 

the entire hierarchical structure of TADs, providing a significance assessment 

of each level with great consistency in terms of resolution and sequencing 

depth, that has been validated by multiple biological, TAD-associated 

features. 

TADpole adopts a different strategy than the ones proposed by other TAD 

caller algorithms. Firstly, the vast majority of them use a local insulation 

score or the total global of interactions from the normalized Hi-C map to 

annotate TADs. Rather, we enhance the signal-to-noise ratio of the matrix 

by computing its Pearson correlation coefficients. To reduce the computation 
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time and increase the precision of the detection, a principal component 

analysis (PCA). In fact, we have demonstrated that there exists an optimal 

set of PCs capable of identifying the hierarchical structure of chromatin 

extending the current application of PCA to characterize genome topology. 

Secondly, while other methods can retrieve a hierarchical structure of the 

chromatin map, TADpole provides a sensible number of significant 

partitions and define one level as the optimal one in an unsupervised 

manner, using the broken-stick model and the Calinski-Harabasz index. 

Thirdly, the majority of tools have multiple parameters that have to be set 

or can be modified by the users, which can affect the results in ways that can 

be hard to anticipate. Instead, TADpole does not require mandatory 

parameters. Fourth, TADpole uses a standard tab-separated matrix format 

of the Hi-C data, where each cell contains the interaction value, avoiding 

potential incompatibilities with special input formats that other tools require. 

Finally, the computational requirements and facilities to install each 

program are factors that the user considers to use or not use a determined 

software. TADpole R package is an open-source tool with minimum 

dependencies that can be installed with ease across platforms and operating 

systems.  

From the technical benchmarking perspective, TADpole is robust to 

variation over normalization strategies (even with non-normalized data), 

resolution (tested between 250kb and 10kb) and sequencing depths. This 

suggests that TADpole is potentially suitable for sparse data, that is, for Hi-

C datasets at high resolution. From the biological benchmarking perspective, 

the TAD boundaries detected by TADpole show significant enrichment in 

the main architectural proteins (CTCF, SMC3, and RAD21) over all the 

significant hierarchical levels detected highlighting their role to act as 

chromatin barriers. The H3K36me3/H3K27me3 ratio established that 

TADpole can annotate separately (sub)domains that present a different 

chromatin state as a structural unit. However, it would be interesting to 
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expand the biological benchmark to other types of omic layers to study in 

detail the relationship of each level of the chromatin hierarchy with gene 

expression, DNA accessibility, DNA methylation, and also increase the pool 

of proteins and histone modifications previously analyzed. 

TADpole can also be used to interrogate a specific targeted Hi-C experiment 

(such as capture Hi-C) (152). This dataset comes from a mouse model 

comprising a series of inversions that induce gene misexpression and 

congenital malformations. We focus our study in a specific 1.9Mb region on 

chromosome 1 (chr1:73.92-75.86 Mb) where a cluster of genomic features of 

the Epha4 locus is located. We selected this study, and specifically this region 

because the annotation of TADs proved to be a challenge. The authors 

pointed out that this gene-dense region did not show a clear structure as it 

lacked defined chromatin boundaries. To tackle this problem, we used 

TADpole and, notably, found that (i) the region of interest indeed had a 

structure and we could determine it, (ii) there existed clear topological 

dissimilarities between the control and the case experiments and (iii) we were 

able to determine the location of the highest accumulation of topological 

differences between different hierarchical chromatin levels using a novel score 

called the DiffT. Overall, we proved that the combination of TADpole and 

the DiffT score can contribute to study chromatin organization in a 

hierarchical fashion and also assess the locations of the most significant 

topological differences between two specific hierarchical levels. 

Based on the above findings, we can generally conclude that an integrative 

approach is essential to shed light on the details of how the chromatin is 

hierarchically organized inside the nucleus and its potential link with the 

functional state of the cell. Combining high throughput technologies and 

imaging methods, together with robust bioinformatic tools, we could establish 

the basis to study the intrinsic and complex regulatory cellular network. 

Furthermore, the recent single-cell techniques have the potential to help us 
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characterize the cell-to-cell variability and detect the specific genetic and 

epigenetic status of the cell during cell fate decision, development, aging, 

disease, and neoplastic transformations.   
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CONCLUSIONS 
 

From chapter 2, we can specifically conclude: 

 

1. We developed a multi-omics approach combining Hi-C in situ data 

with nine additional layers (six histone modifications, DNA 

accessibility, gene expression, and DNA methylation) using B cell 

subpopulation samples and two types of neoplastic samples patients 

(MCL and CLL). 

2. We revealed the presence of a novel intermediate and dynamic 

compartment enriched in poised and polycomb-repressed chromatin, 

which is prone to change both in normal B cell differentiation and 

neoplastic transformation. 

3. One-third of the entire genome undergoes compartment changes 

during B cell differentiation. These changes are mostly related to two 

phenomena: a widespread chromatin activation from naive to 

germinal center B cells and the structural reversion of the memory B 

cells subpopulation into a state similar to that of naive B cells. 

4. Even with a high degree of conservation between normal and 

neoplastic cells, significant compartment switches were detected 

between them and also between cancer subtypes, with tumor-specific 

changes of the 3D genome linked to epigenetic changes. 

5. We identified large blocks of changed compartments harboring 

essential neoplasia-specific genes. These included: (i) the silencing of 

EBF1 gene in CLL, located in a 2Mb region on chromosome 5 and 

(ii) the overexpression of SOX11 oncogene in clinically-aggressive 

MCL in a 6.1Mb region on chromosome 2. Both genes present a 

highly sensitive potential to act as a molecular marker.  
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From chapter 3, we can specifically conclude: 

 

1. We developed TADpole that combines straightforward 

bioinformatics analyses such as PCA and constrained hierarchical 

clustering to study continuous nested hierarchical segmentation of an 

all-vs-all intra-chromosomal interactions matrix. 

2. TADpole results in one of the largest consistencies and robustness 

over different Hi-C normalization strategies, resolutions and 

sequencing depths.  

3. Detected TAD boundaries are significantly enriched in the main 

architectural proteins associated to TADs (CTCF, SMC3, RAD21). 

4. We developed a DiffT score to significantly detect where the main 

topological differences between two hierarchical levels are 

accumulated. 

5. TADpole is a publicly-available, open-source and numerically-

efficient R tool.  
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