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Abstract

Chromatin Conformation Capture techniques have unveiled several layers of chromosome organization
such as the segregation in compartments, the folding in topologically associating domains (TADs), and site-
specific looping interactions. The discovery of this genome hierarchical organization emerged from the
computational analysis of chromatin capture data. With the increasing availability of such data, automatic
pipelines for the robust comparison, grouping, and classification of multiple experiments are needed. Here
we present a pipeline based on the TADbit framework that emphasizes reproducibility, automation, quality
check, and statistical robustness. This comprehensive modular pipeline covers all the steps from the
sequencing products to the visualization of reconstructed 3D models of the chromatin.
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1 Introduction

Genome-wide Chromosome Conformation Capture (3C) technol-
ogies [1] fostered a huge improvement in the field of genome
structural biology [2]. The outcome of these techniques is a set of
DNA–DNA frequency interactions reflecting the spatial proximity
between pairs of chromatin regions [3, 4].

The applications of 3C technologies to many organisms and
cell lines shed light into the hierarchical genome structural organi-
zation. In particular, Hi-C confirmed the existence of chromosome
territories [5] initially characterized by imaging [6–8] and unveiled
the partition of chromosomes into active and inactive compart-
ments [5], into topologically associating domains (TADs) [9, 10],
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and in chromatin loops [11], which facilitate interactions between
genes and regulatory elements [12]. However, prior to the detec-
tion of these structural features, the data from a Hi-C experiment
has to be cleaned, normalized, and quantitatively characterized
by several steps of bioinformatic analysis. For this purpose, we
developed TADbit (https://github.com/3DGenomes/TADbit),
a comprehensive Python framework, to perform the analysis of
Hi-C interaction datasets covering all the steps from aligning the
sequenced reads (paired-end reads) up to the inference and analysis
of three-dimensional (3D) models. Specifically, TADbit can per-
form (1) Hi-C-specific quality control of the reads, (2) mapping to
the corresponding reference genome, (3) filtering of artifactual
reads, (4) normalization of experimental biases, (5) generation of
binned interaction maps, (6) statistical analysis of the differences
and consistencies between experiments, (7) identification and com-
parison of the structural features in the interaction maps, (8) gener-
ation and analysis of 3Dmodels using restraint-based methods, and
(9) visualization of the 3D models using the companion visualizer
TADkit. Here, we present a hands-on protocol for the analysis of
any Hi-C datasets with minimal previous knowledge of bioinfor-
matics, including an exhaustive description of each methodological
step and a detailed supplementary notebook (https://github.com/
3DGenomes/MethodsMolBiol).

2 Materials

2.1 Input

Experimental Data

The complete TADbit pipeline has been applied to 5C [13], dilu-
tion Hi-C [14, 15], in situ Hi-C [16], and Promoter Capture Hi-C
(https://doi.org/10.1101/400291). In this chapter, we will spe-
cifically refer to Hi-C experiments, for which we also provide a set
of notes and suggestions to help to design the experiment (Mat
erials-1-Design of the HiC experiment). Additionally, other types
of 3C-based datasets can be analyzed with ad hoc changes in the
parameter choice, mainly after the filtering of artifactual reads.
Chromatin feature tracks (such as ChIP-seq, methylation, GC con-
tent, chromHMM, or RNA-seq, among others) can be loaded and
used to label the genomic structural domains. Information as the
nuclear size and the chromatin compaction can be used as addi-
tional parameters for the generation of 3D models.

2.2 Hardware

Requirements

and Performances

The requirements and performances listed below are for a Hi-C
experiment of about 200 million reads binned at 50 kilobases
(kb) on a mammalian genome of about 2–3 gigabases (Gb):

l Random-access memory (RAM): it is especially important when
loading matrices at high resolution. About 32 gigabytes (GB) of
RAM should be sufficient.
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l Disk space: the data processing occupies around 500 GB per
experiment (temporary storage). Some intermediate files are
compressed or erased after processing; thus, the storage of the
final output files occupies around 50 GB per experiment (long-
term storage).

l Calculation (CPU) time: an 8-core computer can perform the
data processing in about 1 day. The time for 3D model genera-
tion and analysis depends on the size of the considered region
and the specific calculations required.

2.3 Software For data analysis:

l TADbit (https://github.com/3DGenomes/TADbit) [15].

l SciPy (https://www.scipy.org) [17].

l Matplotlib (https://matplotlib.org) [18].

l IMP (https://integrativemodeling.org) [19].

l SAMtools (http://samtools.sourceforge.net) [20].

l SRAtools (https://github.com/ncbi/sra-tools).

l GEM (http://algorithms.cnag.cat/wiki/The_GEM_
library) [21].

l OneD (https://github.com/qenvio/dryhic) [22].

l DSRC (http://sun.aei.polsl.pl/dsrc) [23].

For 3D model visualization:

l TADkit (https://github.com/3DGenomes/TADkit).

For more details on hardware requirement and software instal-
lation, see the notebook Materials-2-Preparing your computer for
the Hi-C data analysis.

3 Methods

Here, we provide a detailed explanation of TADbit framework for
Chromosome Conformation Capture dataset analysis. The task of
each processing step is described, and the core functions needed to
run the corresponding TADbit commands are provided in code
blocks. In these blocks, the input values to functions are in italic,
strings or lists of strings in green, numbers or list of numbers in red,
and Python constants in orange (Table 1). The complete code to
perform all the steps of the pipeline is provided in the supplemen-
tary notebooks (https://github.com/3DGenomes/Method
sMolBiol). In this chapter, for demonstration purposes, the
pipeline is applied on two experiments carried out on two mouse
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Table 1
List and description of all the variable used in the code blocks

Variable name Description

bam_file Path to the compressed and indexed bam file containing the
intersection of the pair of mapped reads file after filtering

counts_per_column List with the sum of counts per column (bin) of the matrix

Crm Python object containing one or more experiments

Cutoff Distance threshold (in nm) to determine if two particles interact. The
default value is twice the particle size

destination_dir Path to store the results of the function

end_bin Number of the last bin in the matrix for the region we want to model

Exp Python object containing the experiment and its description

factor_eq_positions Factor to define the percentage of equivalent positions to be considered
in the clustering

file_reads1,file_reads2 Paths to the mapped reads files

gc_content_per_column List with GC content ratio per column

hic_data, hic_data1, hic_data2 Python objects containing the Hi-C matrix and its properties

input_fastq Path to the FASTQ file containing the read-ends

list_of_chromosomes List of chromosomes names

list_of_cutoffs List of cutoffs in number of particles

list_of_experiments List of the experiment names included in the chromosome object

list_of_filters_numbers List of numbers of filter’s categories

Mappability List with the mappability score per column (bin)

Masked List of paths of the files containing the reads filtered

max_fragment_size Maximum fragment size of reads considered as being too long in the
filtering

max_molecule_length Maximum distance in nucleotides of two read-ends that are coming
from two different REs. It is used to define the extra-dangling-ends
category

minimum_distance_to_re Minimum distance of the reads to a RE cut site

Models Python object containing the structural models and their properties

nbr_cpus Number of cpu cores to use

nbr_models Number of models to compute

nbr_models_keep Number of best models to keep

number_ev_to_compare Number of top eigenvectors to compare

number_of_iterations Number of iterations for the ICE algorithm

(continued)
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cell types (B-cells and induced pluripotent stem cells (iPSC)) each
analyzed in two replicas, which were down-sampled at 150 million
(M) reads each (Accession number GSE53463) [16].

3.1 Data

Management

3.1.1 Hi-C Data

FASTQ files, either input by the user or downloaded from public
repositories (see Methods-1-Retrieve published Hi-C datasets),
contain the sequenced paired-end reads to be mapped to a refer-
ence genome (see Note 1).

3.1.2 Other Data A reference genome file contains the reference genome for the
species of interest in a FASTA format. Several databases provide
reference genomes for downloading, including the National Center
for Biotechnology Information (NCBI) that we use in the online
tutorial (Methods-2-Preparation of the reference genome). The
following information is generated accordingly to the reference
genome of interest:

Table 1
(continued)

Variable name Description

number_of_re_sites_per_column List with the numbers of restriction sites per column (bin)

number_of_reads Number of reads to use in the function

optimal_params Python dictionary containing the list of best parameters after the
optimization

path_to_gem_index Path to the indexed GEM file

read_length Read length in nucleotides

reads_file Path to the file containing the intersection of the pairs of mapped read-
ends

Resolution Resolution in base-pairs to use for binning the Hi-C matrix

restriction_enzyme Name of the restriction enzyme used in the Hi-C experiment

rich_in_A_marker Path to a BED or BEDGraph file with a list of genes or active epigenetic
marks

start_bin Number of the first bin in the matrix for the region we want to model

(start_lowfreq, end_lowfreq,
step_lowfreq)

Range of lowfreq values from start_lowfreq to end_lowfreq in steps of
step_lowfreq

(start_maxdist, end_maxdist,
step_maxdist)

Range of maxdist values from start_maxdist to end_maxdist in steps of
step_maxdist

(start_upfreq, end_upfreq,
step_upfreq)

Range of upfreq values from start_upfreq to end_upfreq in steps of
step_upfreq

valid_reads_file Path to the file containing the intersection of the pair of mapped reads
file after filtering

win1_start,win1_end,
win2_start,win2_end

Starts and ends of the windows of nucleotides to consider in the read for
the iterative mapping strategy
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l Genome index file: to speed up the mapping process, the FASTA
file of the reference genome is converted into an indexed file
used to efficiently map each read-end.

l Positions of restriction enzyme (RE) cut-site file: to assign each
mapped read-end to a given RE fragment and filter for nonspe-
cific products of the chromosome capture experiment.

l GC content file: to identify A and B compartments. It has been
shown that active genomic regions tend to have higher GC
content and are thus used to label type A compartments
[24]. However, if available, cell-specific markers of activity
(e.g., ChIP-seq for chromatin marks or RNA-seq data) should
be used.

l Mappability file: it stores the mappability score, which is the
probability that a genomic region produces uniquely mapped
reads. This is one of the biases fitted by the OneD normalization
procedure, and it is computed a priori for a given read
length [25].

3.1.3 Hi-C-Specific

FASTQ Quality Check

TADbit computes and plots several metrics from the FASTQ files to
assess the quality of the Hi-C experiment and the sequencing
(Fig. 1 and Note 2). Such metrics are:

l The PHRED score and the number of unidentified nucleotides
(Ns) in the read sequence, which are routinely computed to
address the quality of high-throughput sequencing experiments.

l The numbers of undigested and unligated RE sites per nucleo-
tide along the read to assess the quality of the Hi-C experiment.

l The overall percentage of digested sites, which relates directly to
the RE efficiency.

l The percentage of non-ligated digested (dangling-ends), which
relates to the ligation efficiency.

l The percentage of read-ends with a ligation site, which is nega-
tively correlated with the percentage of dangling-ends.

These quality measurements are performed on a subset of
reads, usually number_or_reads¼ 1000000 (Methods-3-Hi-C qual
ity check):

3.2 Paired-End Read

Mapping

The first step in the analysis of a Hi-C experiment consists on
uniquely mapping all reads in the input FASTQ files to a location
on the reference genome. In TADbit this is achieved using the
GEM mapper [21] (Fig. 2a). Currently, three mapping strategies
are implemented in TADbit:
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l Full-length mapping: The mapping of the read-end is attempted
once (single iteration) taking into account the full length of the
read. Unmapped read-ends are discarded.

Fig. 1 Hi-C quality check plots. The upper plot shows two classic metrics of NGS experiments: the PHRED
score (average in blue and standard deviation in yellow) and the proportion of Ns at each position of the read.
The lower panel is specific to Hi-C experiments (in the example for MboI restriction enzyme). The two curves
indicate the number of undigested sites (dangling-ends) in red, which is expected to be peaked at the
beginning of the read, and the number of digested and ligated products in blue, which usually have a more
homogeneous distribution along the read. For MboI, the patterns of undigested (GATC) and of digested and
ligated (GATCGATC) sites are similar, but for other RE (e.g., HindIII), these patterns are distinct. Above the
graph, three quantities are displayed: the proportions of ligated sites (84.8%), undigested sites (dangling-
ends) (3.9%), and reads carrying a digestion site (20.5%). Note that TADbit can perform the same analysis in
experiments where multiple REs are used at the same time

Analysis and Visualization of Chromatin Folding 41



l Iterative mapping: The mapping of the read-end is attempted
with iteratively increasingly larger reads. Therefore, to use this
option the user has to define the window parameter as a set of
different ranges of nucleotide indexes all starting from 1 and of
increasing sizes.Usually (in the human genome) the first section
of the read-end goes from 1 to 25 bp and is followed by ranges
that are incrementally extended by 5 bp ((1, 30), (1, 35), etc.).

Fig. 2 Mapping of paired-end reads. (a) Schematic cartoons of the iterative mapping (left) and the fragment-
based mapping (right) approaches. (b and c) The proportion of the read-ends mapped in each round of the
iterative mapping (b, here 6 steps are shown) and of the two rounds of the fragment-based mapping, that is,
full and fragment-based iterations (c)
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The mapping procedure is applied iteratively until the read is
uniquely mapped using the ranges defined in the set [26]. Note
that TADbit accepts any combination of window ranges.

l Fragment-based mapping: This procedure consists of two itera-
tion steps per read-end: (1) the full-length is attempted, and
(2) if the read-end is unmapped and contains ligation sites, it is
split at the ligation sites, and the split sequences are separately
mapped.

A detailed account of the commands to perform the mapping
step is provided in the notebook Methods-4-Mapping. A good
metric for assessing the quality of the mapping procedure is the
proportion of reads that have been uniquely mapped to the refer-
ence genome (Fig. 2b). To render the number of reads mapped at
each iteration of the mapping, one can use the command:

3.3 Intersection

of Paired-End Reads

After mapping, a browser extensible data (BED) file is created with
the reads that have been uniquely mapped on both ends. This
contains the genomic coordinates of each pair of mapped read-
ends as well as their position relative to the closest RE site. Note
that for reliably assembled genomes, more than 80% of the reads are
typically mapped for any of the two ends and more than 60% on
both ends.

3.3.1 Descriptive

Statistics after

the Intersection

of the Pair-End Reads

l Interaction count vs. genomic separation. Given the intrinsic
polymeric structure of chromatin, the number of captured inter-
actions is expected to decay as the genomic separation between
the interacting sequences increases. In mammals, this decay
typically follows a power law with an exponent around �1 in
the range between hundreds of kb and tens of Mb [5] (Fig. 3a).
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l Coverage per bin. The genome is partitioned into regions of the
same size (called “bins”), and the number of mapped reads per
bin (i.e., coverage) is computed. In an ideal situation, the cover-
age is expected to be homogeneous across the genome. How-
ever, variations in the distribution of GC content, mappability,
or the number of RE sites along the genome can cause hetero-
geneity. The source of such biases will be corrected during the
normalization of the interaction matrices (Subheading 3.6).

l Sequenced DNA fragment size. One can measure the genomic
length of the sequenced DNA strands using only the reads that
were digested, but not ligated and therefore belong to the same
DNA linear segment between two consecutive RE cut sites (e.g.,
the two paired-ends have been mapped within the same RE
fragment). These reads (dangling-ends) are mapped in facing
orientation (Fig. 3b and Note 3).

For details see Methods-5-Parsing mapped reads.

3.4 Filtering

of Mapped Reads

At this stage, the intersection file contains uniquely mapped paired-
end reads of DNA sequences, including those pairs with no relevant
structural information. After the filtering step, typically around

Fig. 3 Descriptive statistics of the mapped read-ends. (a) Decay of the number of Hi-C interactions with
respect to the genomic distance between interacting loci. (b) The distribution of RE fragment lengths is
estimated considering fragments mapped in a single RE fragment and in facing orientation (see dangling-ends
in Subheading 3.4). Although the dangling-ends are expected to be shorter than most fragments in the library,
we use their average length as a conservative estimate of the mapped fragments for the application of filters
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40–70% of the pairs are considered informative (also called “valid
pairs”). TADbit will classify the remaining (or discarded) mapped
pairs into one (or several) of the following categories (Fig. 4 and
Note 4):

l Self-circle: both read-ends are mapped to the same RE fragment
in opposed orientation.

l Dangling-end: both read-ends are mapped to the same RE
fragment in facing orientation.

l Error: both read-ends are mapped to the same RE fragment in
the same orientation.

l Extra dangling-end: the read-ends are mapped to different RE
fragments in facing orientation, but are close enough (< max_-
molecule_length bp) from the RE cut site to be considered part of
adjacent RE fragments that were not separated by digestion. The
max_molecule_length parameter can be inferred from the frag-
ment_size function previously detailed.

Fig. 4 Summary of the different products of a Hi-C experiment (top left) and the categories of mapped reads
(right). Here, the proportions are estimated from the analysis of 278 Hi-C experiments produced by the
4DGenome unit of the CRG. All experiments were performed using 75 bp paired-end sequencing. Fair quality
experiments would have proportions falling within the ranges displayed here
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l Too close from RE sites (or semi-dangling-end): the start position
of one of the read-end is too close (5 bp by default) from the RE
cutting site (see Note 5).

l Too short: one of the read-ends is mapped to RE fragments of less
than 75 bp. These are removed since there is ambiguity on where
the read-end is mapped as it could also belong to any of the two
neighboring RE fragments.

l Too large: the read-ends are mapped to long RE fragments
(default: 100 kb, P < 10�5 to occur in a randomized genome),
and they likely represent poorly assembled or repetitive regions.

l Overrepresented: the read-ends coming from the top 0.5% most
frequently detected RE fragments may represent PCR artifacts,
random breaks, or genome assembly errors.

l PCR artifacts or duplicated: the combination of the start posi-
tions, mapped length, and strands of both read-ends is identical.
In this case, only one copy is kept.

l Random breaks: the start position of one read-end is too far
(>minimum_distance_to_RE) from the RE cut site. These are
produced most probably by non-canonical enzyme activity or by
random physical breakage of the chromatin. Note, that to filter
all these types of fragments, the minimum_distance_to_RE
parameter should be larger than the
maximum_fragment_length.

Once TADbit has classified each read-end pair ( filter_reads
command below), one can define valid genomic interactions
(valid pairs) by removing the paired-end reads belonging to a set
of non-informative selected categories (apply_filter command).

For the detailed list of commands to perform the filtering step,
see the notebook Methods-6-Filtering mapped reads.

In all the step performed so far, the mapped read-ends were
stored in tab-separated value (TSV) files. At this stage, it is conve-
nient for faster processing to convert the TSV file to binary align-
ment map (BAM) format:
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3.5 Generation

of the Raw Interaction

Matrix

The interaction matrices are generated by partitioning the genome
in loci of equal length (bins) and assigning each end of the read to
its binned genomic location. We normally refer to this process as
binning, which will define the resolution of the Hi-C matrix.
Therefore, it is important to choose a suitable bin size (seeNote 6).

3.5.1 Plotting

the Interaction Matrix

Plotting and visually inspecting the interaction matrix is a key
quality control of a Hi-C experiment. In TADbit, this is achieved
by the hic_map function:

In this view, TADbit also provides some statistics on the quality
of these interactions as (1) the ratio between the intra-chromosome
and the total number of interactions (i.e., cis-to-trans ratio), which
is expected to be at least 50% in mammals, and (2) the three first
eigenvectors of the matrix that summarize the principal structural
features of the matrix (Fig. 5a and Subheading 3.7).

3.5.2 Filter Bins with Low

Interaction Counts

Very low coverage bins are identified and filtered out from the data
analysis (Fig. 5b). For example, these removed bins can contain no
RE site (or no mappable region around its RE sites) and so result in
zero valid pairs. However, those bins may still contain some valid
pairs as the results of mapping errors or random breakage of the
DNA before the cross-linking. It is also likely that very low coverage
bins present a cis-to-trans ratio typical of random ligation events
[26]. Such bins could also cause technical problems, as they will
introduce a strong variability in most of the normalization strate-
gies. To visualize the number of bins to be filtered, TADbit can
produce a histogram plot using the filter_columns function (Met
hods-7-Bin filtering and normalization).

3.6 Normalization Interaction matrices derived fromHi-C experiments contain differ-
ent types of biases [26, 27], which need to be removed (Fig. 5c).
This process is referred to as normalization, which can be done
within TADbit using different normalization procedures:

3.6.1 Normalization by

Visibility

l Iterative Correction and Eigenvector decomposition (ICE): ICE
assumes equal experimental visibility of each bin and seeks itera-
tively for biases that equalize the sum of counts per bin in the
matrix [26]. At each iteration, a new matrix is generated by
dividing each cell by the product of the sum of counts in its
row times the sum of counts in its column. The process con-
verges to a matrix in which all bins have identical sums.
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l Vanilla coverage: is a variation of the ICE where a single iteration
is performed [5].

l Square root vanilla coverage: is a variation of the vanilla coverage
where each element in the matrix is divided by the square root of
the product of sums of counts [11].

3.6.2 Normalization Via

Individual Bias Estimation

l OneD: is based on fitting a non-linear model between the total
amount of contacts per bin and the known biases, which are by
default the GC content, the number of RE sites, and the

Fig. 5 Matrix binning and normalization. (a) The standard Hi-C map representation in TADbit also summarizes
other relevant information. On the left, the histogram of the number of interactions (top), the plot of the
interaction counts vs genomic distance (middle), and descriptive statistics (the sum, the minimum and the
maximum of the pairwise interactions) (bottom) are shown. On the right, there is the binned interaction matrix
represented in Log2 color scale and the first three eigenvectors of the matrix on top. (b) Histogram of the
number of entries with non-zero values per bin. The histogram is expected to be bimodal. One peak is usually
close to zero and indicates artifactual bins that are almost empty. The other peak appears at higher values and
corresponds to the expected number of non-zero entries for informative bins. A polynomial function is fitted to
this distribution in order to filter out bins falling into the peak with almost all the cells empty. (c) The Hi-C maps
are shown in the normalized forms obtained with the different normalization algorithms
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mappability [22].

The detailed list of command to normalize a Hi-C matrix is
given in the notebook Methods-7-Bin filtering and normalization.

3.7 Call

for Structural Features

3.7.1 Compartments

Previous analysis of Hi-C experiments [5, 11] showed that the
genome is structurally organized in two major types of compart-
ments named A and B, which are enriched with active and inactive
chromatin, respectively. Various approaches exist to determine
genomic sub-compartments using Hi-C data [5, 11, 26, 27]. TAD-
bit uses the change in sign in the components of the first eigenvec-
tor (calculated on the autocorrelation matrix of the normalized
Hi-C matrix) to detect boundaries between A and B compartments
[5] (Fig. 6a and Note 7). To define the compartment to the
corresponding type, TADbit can use various type of genetic or
epigenetic activity markers such as GC content (Subheading 3.1.2
and Fig. 6a).

3.7.2 Topologically

Associating Domains

Topologically Associating Domains (TADs) constitute the next
level of organization of the genome structure. Several TAD callers
exist based on a variety of metrics and statistics. Briefly they consist
of two types: (1) tools that detect TAD borders (also known as
breakpoints) assuming that the whole genome consists of a succes-
sion of TADs (e.g., methods based on the insulation score [28])
and (2) tools that identify TADs as denser interacting regions of the
genome (e.g., methods using the directionality index [9]). Impor-
tantly, the choice of the suitable TAD caller is mainly dependent on
the hypothesis to be tested. However, it has been shown that the
results among the most used tools are overall consistent [29]. TAD-
bit implements several TAD callers giving the user the possibility to
choose the one that best fits its needs. Thus, it allows the compari-
son between different strategies (Fig. 6b–d). The available TAD
callers in TADbit are:

l TADbit: is the TAD caller algorithm after which TADbit frame-
work was named. It is a breakpoint detection algorithm that
defines TADs within a chromosome (or genomic region)
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under the BIC-penalized (Bayesian Information Criterion) like-
lihood [15]. The detected TAD borders are associated with a
score (from 1 to 10) quantifying the accuracy of the border
detection (Fig. 6b).

l TopDom: identifies TAD borders based on the assumption that
contact frequencies between regions upstream and downstream
of a border are lower than those between two regions within a
TAD. The algorithm only depends on a single parameter
corresponding to the window size [30]. The algorithm provides
a measure (from 0 to 10) of confidence on the accuracy of the
border detection (Fig. 6c).

Fig. 6 Detection of the structural features in Hi-C interaction matrices. (a) Autocorrelation matrix of a OneD
normalized matrix of mouse chromosome 3 at 200 kb resolution. The following steps were performed to
obtain the autocorrelated matrix: (1) the raw Hi-C matrix was normalized with the OneD algorithm to correct
for experimental and genomic biases, (2) the decay of the number of interactions with the genomic distance
was corrected by dividing each cell by the average interactions in its diagonal, and (3) the obtained matrix was
used to compute each element (aij) of the autocorrelation matrix as the Pearson correlation of the i-th row and
the j-th column. On the top panel, we show the first eigenvector of the autocorrelation matrix, the average GC
content in each compartment, and the prediction of compartment labeling (based on the average GC content).
The changes in sign of the eigenvector components mark the boundaries between compartments (green), but
the assignment of each compartment to type A or B is based on the average GC content with A compartments
on top of the red bands (high CG content) and B compartments on top of blue bands (low GC content). (b) and
(c) TAD border detections obtained using tadbit (b) and TopDom (c) in a region of mouse chromosome 3 for
two different cell types: B cells (top left) and iPS cells (bottom right). The width of the partitioning lines is
proportional to the confidence of the predicted border. (d) Insulation score in blue, the delta inferred from it in
orange, and the prediction of TAD border in scales of green depending on the strength of the border. The two
panels correspond to the same region of chromosome 3 and the same cell types of panels (b) and (c),
respectively
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l Insulation score: can be used to build an insulation profile of the
genome and, with a simple transformation, to identify TAD
borders [28, 31] (Fig. 6d).

TAD borders called using TADbit or TopDom can be saved to
text files and visualized using the visualize function. More details
are in notebook Methods-8-Compartments and TADs detection.

3.8 Comparison

between Hi-C

Experiments

An important aspect of the Hi-C data analysis is the comparison of
different experiments (e.g., technical or biological replicas, differ-
ent time points or conditions, etc.) that can unveil fundamental
biological insights. The comparison can be carried out at different
levels of the data processing from the interaction matrices to the
structural features or between 3D models of the chromatin (Met
hods-9-Compare and merge Hi-C experiments, Subheading 3.9).

3.8.1 Comparison

Between Interaction

Matrices

In TADbit the user can monitor several quantities to compare Hi-C
matrices:

l The Spearman rank correlation of the matrix diagonals at
increasing genomic distances and the stratum-adjusted correla-
tion coefficient (SCC) score [32]. Both quantities range from
�1 (anti-) to 1 (direct correlation) (Fig. 7a).

l The correlation of the eigenvectors. Since the eigenvectors of a
matrix capture its internal correlations [26], two matrices with
highly correlation of eigenvectors are considered to have similar
structure (Fig. 7b).
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l The reproducibility score. Computed as in HiC-spector [33], it
is also based on comparing eigenvectors. The reproducibility
score ranges from 0 (low similarity) to 1 (identity).

For details see Methods-9-Compare and merge Hi-C
experiments.

3.8.2 Comparison

of the Structural Features

l Compartments. The eigenvector analysis performed to detect
compartments can also be used to compare experiments. For
instance, the simple difference between the first eigenvector
(i.e., the one that captures the compartmentalization of the
genome) of the different experiments allows detecting changes
in the type of compartments between two different conditions
(Fig. 7c).

Fig. 7 Comparison between Hi-C experiments. (a) Spearman correlation coefficient between diagonals of the
two replicates matrices in B cells. The profile in this plot is typical of highly similar matrices. (b) Pearson
correlation of all combinations of the first six eigenvectors of these same two matrices. As in panel (a), these
eigenvector correlations are typical of similar matrices. (c) The comparison of compartment partitions in B vs
iPS cells is shown as the difference between the eigenvector of the autocorrelation matrix (Fig. 6a) computed
in each of the two conditions. Blue peaks indicate increased activity in B cells and red peaks in iPS cells. (d)
Alignment of TAD borders in B vs iPS cells. Each arc represents a TAD and each colored triangle a TAD border.
The confidence score of each border is conveyed by the color scale from 1 (low in blue) to 10 (high confidence
in red)
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l TADs. TAD border conservation across experiments can be used
as an additional comparative measure. However, the assessment
of co-occurrence of TAD borders in two different matrices is not
trivial due to the border strength variability and their dynamic
behavior under different conditions. For an effective TAD bor-
der comparison, TADbit allows the alignment of TAD borders
using a reciprocal best hit strategy (Fig. 7d).

For details on structural features comparison, see the note-
book Methods-8-Compartments and TADs detection.

3.9 3D Modeling In TADbit, 3D models of genomic regions can be generated via a
restraint-based modeling approach [34], by transforming the nor-
malized Hi-C interaction matrix (Subheading 6) into a set of spatial
restraints that are satisfied using the Integrative Modeling Platform
(IMP) [19]. Note, that TADbit provides an assessment score
named Matrix Modeling Potential (MMP) score [35] to predict
whether an interaction matrix can be used to produce reliable 3D
models. It is recommended to assess such score before 3D models
generation.

3.9.1 TADbit Modeling

Approach

TADbit modeling approach is based on three main steps. These
steps are briefly described [34]:

l System representation. Each bin of the matrix is described as a
spherical particle of size proportional to its DNA content.

l Scoring. Each normalized Hi-C interaction count is Z-score
transformed (Fig. 8a) and associated with a harmonic restraint.
The simple rationale behind this transformation is that the more
two particles interact, the stronger is the spring constant and the
smaller is the equilibrium distance of the associated harmonics
[34]. Briefly, this transformation depends on three parameters:
maxdist (i.e., the maximal target distance between two
non-interacting particles), as well as upfreq and lowfreq, which
determine particle pairs that interact more than expected as well
as those that do less than expected, respectively. Pairs of particles
with a Z-score larger than the upfreq will be restrained to be
close in 3D space, and particles with a Z-score smaller than
lowfreq will be kept apart in 3D space. The sum of all the
harmonic restraints is the so-called scoring function. The lower
the scoring function, the closer the corresponding 3D structure
is to the target pattern of interactions [34].

l Sampling. To find the 3D arrangement of the particles that
better represent the input Hi-C interactions pattern, the scoring
function is minimized using a Monte Carlo simulated annealing
sampling protocol with the Metropolis criterion [34].
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3.9.2 Parameter

Optimization

In TADbit, the optimal parameters (maxdist, lowfreq, upfreq) are
determined empirically via a grid search defined by the user. Other
parameters used in the reconstruction of the model can also be
optimized at the same time, like the distance cutoff that defines
contact between particles. However, those can be ignored by the
end-user and are less sensitive to the specifics of the Hi-C matrix
experiment to be modeled. The optimization command can be run
in parallel in different computers using in each case a predefined
number of CPUs:

Fig. 8 3D model generation and analysis. (a) Interaction matrix for B cells (left) and its Z-score transformation
(right). The central panel shows the distribution of the Z-score values divided into three categories: the pairs of
loci that are restrained to be far in blue, unrestrained pairs in white, and pairs with higher interaction counts
restrained to be close to each other in red. (b) Quantitative comparison between the contact map computed
from the generated 3D models using a distance cutoff of 2000 nm at 100 kb resolution (left) and the original
Hi-C interaction matrix of B cells (right). The central panel shows the scatter plot of the number of contacts
observed in the simulated models (the virtual contact matrix) and the original Hi-C interaction matrix. The
Spearman correlation coefficient between the two matrices is 0.91 in this specific case. (c) Deconvolution
analysis generated ensembles of models, which are compared and clustered to identify local differences
between subpopulations of 3D models. (d), (e), (f), (g), and (h) Structural measures from the 3D model
ensemble. As discussed in the main text, they are the consistency, chromatin density, walking angles, number
of interactions (dcutoff ¼ 2000 nm), and accessibility, respectively
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For each possible combination of the three parameters, TADbit
will produce a set of models (nbr_models) from which it will keep
the ones best satisfying the imposed restraints (top nbr_models_-
keep). The ratio between the numbers of kept and generated models
is typically 20%. During the search of the optimal parameters,
nbr_models_keep ¼ 100 and nbr_models ¼ 500 are the recom-
mended values. For assessing the best combination of parameters,
a contact matrix is computed from the best models choosing an
optimal distance cutoff (dcutoff) and compared with the input
normalized Hi-C matrix using the Spearman correlation coeffi-
cient. The results of the optimization grid search can be visualized
as a 2D matrix:

The best set of parameters, those associated with the highest
Spearman correlation coefficient, can be retrieved and used for the
next modeling step. For details, see notebook Methods-10-
Modeling parameters optimization:

3.9.3 Model Building The optimized modeling parameters are used next to build a more
exhaustive ensemble of 3D models usually ten times larger than the
one used in the optimization step (i.e., nbr_models ¼ 5000 and
nbr_models_keep¼ 1000). The larger number of models is meant to
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represent the heterogeneity of chromatin conformations in the cell
population of the Hi-C experiment; for details see the notebook
Methods-11-3D Models production and analysis.

3.9.4 3D Model

Assessment and Analysis

TADbit offers a set of functions for the evaluation and analysis of
the generated ensemble of models. For example, one can:

l Visualize how the experimental data were converted into har-
monic restraints (Fig. 8a).

l Verify the convergence of the Monte Carlo optimization step by
checking that the IMP scoring function decays as a function of
the Monte Carlo iteration and reaches a stable plateau.

l Compare a set of models with the original experimental data
using Spearman correlation coefficient (Fig. 8b).

3.9.5 Subpopulations

of Models

TADbit can measure similarities between the models in the gener-
ated ensemble via the structural alignment of each pair of models
using a pairwise rigid-body superposition that minimizes their
root-mean-square deviation (RMSD).

Using the aligned models and clustering them based on 3D
comparative metrics, the ensemble of models can be deconvolved
into subpopulations of structures that might represent the variabil-
ity in the subpopulations of cells in the experimental sample
(Fig. 8c).

This analysis generates differential contact maps between each
pair of clusters and allows the detection of shared or exclusive sets
of contacts within the ensemble.Alternatively, it is possible to cluster the model ensemble using
other measures as the RMSD, distance-RMSD, number of equiva-
lent positions, or a combination of all the above measures. Each
cluster will represent a given subpopulation of chromatin struc-
tures.

56 Marco Di Stefano et al.

https://github.com/3DGenomes/MethodsMolBiol/blob/master/Notebooks/Methods-11-3D%20Models%20production%20and%20analysis.ipynb


3.9.6 Quantitative

Characterization of the 3D

Models

TADbit also provides a set of measures averaged over the models
(or in a given subset of models such as those in a cluster) to extract
useful biological insights (Fig. 8d–h). Next, we briefly describe such
measures:

l The consistency score (Fig. 8d) is the percentage of models that
have a given particle superimposed within a predefined distance
cutoff. The lower is the consistency value, the less deterministic
(more variable) are the models in the corresponding position.
The consistency score should be measured independently for
each cluster.

l The density (or local compactness, Fig. 8e) is the number of
base-pairs per nanometer (nm) and is computed as the ratio of
the number of base-pairs per particle and the distance between
consecutive particles.

l The walking angle (Fig. 8f) is the angle between triplets of
contiguous particles. The higher are these values, the straighter
are the models.

l The number of interactions (Fig. 8g) measures contacts made by
each particle within a given cutoff distance.

l The accessibility score (Fig. 8h) measures how accessible a parti-
cle is to a spherical object of a predefined radius. Note that the
accessibility is measured only for the internal space of the models
as the 3D neighborhood of the modeled region is normally not
determined.

3.10 3D Visualization The 3D models generated by TADbit can be saved in different
formats, which can then be input to other external software for
visualization. TADbit currently outputs models in three main
formats:

l JSON file is the most efficient to store the results of the TADbit
analysis. This file contains the particle coordinates, the experi-
mental data structure (models, clusters, centroids, normalized
interaction matrix, and restraints), and the project metadata.
These can be visualized alongside genomic features and matrix
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datasets within the TADkit visualization tool (https://github.
com/3DGenomes/TADkit).

l XYZ/CMM file of particle coordinates. These can be examined
and rendered in the majority of the molecular visualization
software, e.g., Chimera [36], Delta [37], PyMOL [38], or
VMD [39].

4 Notes

1. To speed up the data preprocessing, we recommend using split
FASTQ files, one for each read-end. We also suggest working
with compressed files to save disk space. To this end, TADbit
accepts FASTQ files compressed in many formats such as zip,
bzip2, gzip, tar, and DSRC [23].

2. The Hi-C-specific quality plots provided by TADbit (Fig. 1)
use the first million paired-ends of the input FASTQ file to
assess the quality of the entire dataset. From the quality plot
measures, one can infer useful indicators of the quality of the
data:
(a) The first plot, that is common in next-generation

sequencing (NGS), describes the quality of the sequenc-
ing with PHRED scores and proportion of Ns per posi-
tion. A PHRED score larger than 30 (which represents a
99.9% accuracy of the base call) and a number of Ns close
to zero are indicative of high confidence in the sequenced
product.

(b) The percentage of digested sites (the ratio of digested over
undigested sites) should be larger than 60%. Lower values
indicate a problem in the digestion step of the Hi-C
experiment.

(c) The percentage of dangling-ends (the number of time a
digested site is found at the beginning of a read) should be
between 1% and 10%. This percentage varies also depend-
ing on the average length of the restriction fragments; the
larger they are, the fewer dangling-ends should be
expected. Large percentages indicate a problem in ligation
efficiency.

(d) The percentage of ligation sites (the number of times a
ligation site is found in the processed reads) should be
higher than 15% for read length of 75 nucleotides (nt) and
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sequenced fragment size ~300 nt. Low numbers here
indicate a problem in ligation efficiency. These percen-
tages are calculated as follows. Assuming that the ligation
sites are homogeneously distributed along the genome,
their average number per sequenced fragment can be
estimated by extrapolating it to the full length of the
sequenced fragment ~300 nt. For example, in the case of
Figs. 1, 20.5% of the reads present (at least) one ligation
site. Given that our search space for this set of reads is
67 nt (read length is 75, minus the size of the 8 nt ligation
pattern GATCGATC), and assuming a constant number
of ligation sites in all the 300 nt fragment, we would
expect to find a ligation site in about 92% of the reads.
Usually, we expect that all the reads in the library contain
biotinylated nucleotides. It means that each read has
either a ligation site or a dangling-end. In this case, we
have calculated that the proportions of ligation sites and
dangling-ends sum up to about 100% as expected.

3. The inference of the average RE fragment size in the sequenced
library is relevant for the interpretation of the Hi-C data
because valid interactions consist of read-ends mapped close
to a RE cut site, and this definition of proximity relies on the
estimated size of the sequenced DNA fragments.

4. Some of the filters applied to the set of pairs of mapped read-
ends may considerably reduce the number of valid interactions
while not increasing the general quality of the resulting inter-
action matrix. In the TADbit implementation, none of the
filters is mandatory but can be switched on or off making it
easy to adapt to other 3C-based methods. According to our
experience, for a Hi-C experiment, the user should define a
minimum set of filters to apply including (1) any paired-end
reads mapped in a single restriction fragment or very close to
the diagonal (self-circle, dangling-end, error, and extra
dangling-end), (2) read-ends mapped in too short or too
long defined RE fragments, (3) PCR artifacts (duplicates),
and (4) random breaks.

5. This filter may be too conservative for the in situ Hi-C protocol
[11], and it is usually not applied.

6. In Hi-C data analysis, the choice of the binning is limited
usually by the amount and the quality of data or more rarely
by the available computational power. However, some of the
structural features that can be detected may appear only at
certain scales above or below the chosen binning. For example,
in mammalian genomes, the compartments are usually
detected optimally at 100 kb binning. Depending on the inter-
action density, it may be more difficult to determine them at
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finer scales. To ensure that a given binning is adequate to the
scale of the measured structure or, more simply, does not entail
too much noise, a good strategy is to check for the consistency
between replicates or different resolutions. In this chapter, we
provide an example of the detection of TAD borders in the
notebook Methods-8-Compartments and TADs detection and
Fig. 6. Additionally, binning is important in the modeling step.
The genomic region to model could vary in size from few kb to
Mb because it can be defined as a chromosome part, an entire
chromosome, or also a set of chromosomes. Hence, the reso-
lution used in each situation should be tailored to the compu-
tational power to avoid having too many particles and restraints
during modeling. Normally the number of particles to model
should be maintained below 5000.

7. The sign variation of the first eigenvector of the autocorrelated
Hi-C matrix usually represents the borders between compart-
ments (Fig. 6a), but, especially in the case of low-quality Hi-C
experiments or aberrant karyotypes, it could also describe other
correlations in the matrix. In such cases, the A/B compart-
ments can be explained by the second or the third eigenvector.
To this end, it is essential to visually check the correspondence
between the checkerboard pattern characteristic of compart-
ments and the eigenvectors, especially when working with
atypical datasets. Other more automatic metrics can be used
to confirm the choice of a given eigenvector, like the level of
correlation with some activity marker (GC content, RNA-seq,
or epigenetic marks), or the consistency with the compartment
call done at a lower resolution.

In the case of the detection of TAD borders, a typical
problem is the choice of the adequate binning. The first con-
cern is that an increased resolution is correlated with increased
noise [29]. A good strategy is to test the consistency of several
resolutions between independent replicates. An example is
provided using the insulation score strategy (Fig. 9, Methods-
8-Compartments and TADs detection). It shows that in these
datasets a resolution between 50 kb and 100 kb is optimal to
call TAD border, while that at higher resolutions (<50 kb) the
consistency between time points is lost.

Acknowledgments

We thank all the current and past members of the Marti-Renom lab
for their continuous discussions and support to the development of
TADbit. I.F. was supported by the Ministerio de Ciencia, Innova-
ción y Universidades of Spain (IJCI-2015-23352). M.A.M-R was
supported by the European Research Council under the seventh

60 Marco Di Stefano et al.

https://github.com/3DGenomes/MethodsMolBiol/blob/master/Notebooks/Methods-8-Compartments%20and%20TADs%20detection.ipynb
https://github.com/3DGenomes/MethodsMolBiol/blob/master/Notebooks/Methods-8-Compartments%20and%20TADs%20detection.ipynb
https://github.com/3DGenomes/MethodsMolBiol/blob/master/Notebooks/Methods-8-Compartments%20and%20TADs%20detection.ipynb


Framework Program FP7/2007-2013 (ERC grant agreement
609989), the European Union’s Horizon 2020 research and inno-
vation program (grant agreement 676556), and the Spanish Min-
istry of Economy and Competitiveness (BFU2013-47736-P and
BFU2017-85926-P). We also acknowledge support from “Centro
de Excelencia Severo Ochoa 2013-2017,” SEV-2012-0208, and
the CERCA Programme/Generalitat de Catalunya to the CRG.
Marco Di Stefano and David Castillo contributed equally to
this work.

References

1. Dekker J, Rippe K, Dekker M, Kleckner N
(2002) Capturing chromosome conformation.
Science 295:1306–1311

2. Dekker J, Marti-RenomMA, Mirny LA (2013)
Exploring the three-dimensional organization
of genomes: interpreting chromatin interaction
data. Nat Rev Genet 14:390–403

3. Grob S, Cavalli G (2018) Technical review: a
Hitchhiker’s guide to chromosome conforma-
tion capture. Methods Mol Biol
1675:233–246

4. Kim TH, Dekker J (2018) 3C-based chromatin
interaction analyses. Cold Spring Harb Protoc
2018:pdb top097832

5. Lieberman-Aiden E, van Berkum NL,
Williams L, Imakaev M, Ragoczy T, Telling A,
Amit I, Lajoie BR, Sabo PJ, Dorschner MO,
Sandstrom R, Bernstein B, Bender MA,
Groudine M, Gnirke A,
Stamatoyannopoulos J, Mirny LA, Lander ES,

Dekker J (2009) Comprehensive mapping of
long-range interactions reveals folding princi-
ples of the human genome. Science
326:289–293

6. Zink D, Cremer T, Saffrich R, Fischer R, Tren-
delenburg MF, Ansorge W, Stelzer EH (1998)
Structure and dynamics of human interphase
chromosome territories in vivo. Hum Genet
102:241–251

7. Cremer T, Cremer C (2001) Chromosome
territories, nuclear architecture and gene regu-
lation in mammalian cells. Nat Rev Genet
2:292–301

8. Boyle S, Gilchrist S, Bridger JM, Mahy NL,
Ellis JA, BickmoreWA (2001) The spatial orga-
nization of human chromosomes within the
nuclei of normal and emerin-mutant cells.
Hum Mol Genet 10:211–219

9. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y,
Shen Y, Hu M, Liu JS, Ren B (2012)

Fig. 9 TAD border consistency as a function of matrix binning. Comparison of the number of TAD borders that
are shared (plus-minus one bin) between the two replicates in two different cell types (B and iPS cells) when
TAD borders are called at a different matrix resolution. The TAD borders are called using the insulation score
with a window of 500 kb and a delta of 100 kb

Analysis and Visualization of Chromatin Folding 61



Topological domains in mammalian genomes
identified by analysis of chromatin interactions.
Nature 485:376–380

10. Nora EP, Lajoie BR, Schulz EG, Giorgetti L,
Okamoto I, Servant N, Piolot T, van Berkum
NL, Meisig J, Sedat J, Gribnau J, Barillot E,
Bluthgen N, Dekker J, Heard E (2012) Spatial
partitioning of the regulatory landscape of the
X-inactivation Centre. Nature 485:381–385

11. Rao SS, Huntley MH, Durand NC, Stamenova
EK, Bochkov ID, Robinson JT, Sanborn AL,
Machol I, Omer AD, Lander ES, Aiden EL
(2014) A 3D map of the human genome at
kilobase resolution reveals principles of chro-
matin looping. Cell 159:1665–1680

12. Rowley MJ, Corces VG (2018) Organizational
principles of 3D genome architecture. Nat Rev
Genet 19:789–800

13. Bau D, Sanyal A, Lajoie BR, Capriotti E,
Byron M, Lawrence JB, Dekker J, Marti-
Renom MA (2011) The three-dimensional
folding of the alpha-globin gene domain
reveals formation of chromatin globules. Nat
Struct Mol Biol 18:107–114

14. Le Dily F, Bau D, Pohl A, Vicent GP, Serra F,
Soronellas D, Castellano G, Wright RH,
Ballare C, Filion G, Marti-Renom MA, Beato
M (2014) Distinct structural transitions of
chromatin topological domains correlate with
coordinated hormone-induced gene regula-
tion. Genes Dev 28:2151–2162

15. Serra F, Bau D, Goodstadt M, Castillo D,
Filion GJ, Marti-Renom MA (2017) Auto-
matic analysis and 3D-modelling of hi-C data
using TADbit reveals structural features of the
fly chromatin colors. PLoS Comput Biol 13:
e1005665

16. Stadhouders R, Vidal E, Serra F, Di Stefano B,
Le Dily F, Quilez J, Gomez A, Collombet S,
Berenguer C, Cuartero Y, Hecht J, Filion GJ,
Beato M, Marti-Renom MA, Graf T (2018)
Transcription factors orchestrate dynamic
interplay between genome topology and gene
regulation during cell reprogramming. Nat
Genet 50:238–249

17. Virtanen P, Gommers R, Oliphant TE, et al.
(2020) SciPy 1.0: fundamental algorithms for
scientific computing in Python. Nat Methods
17(3):261-272

18. Hunter JD (2007) Matplotlib: a 2D graphics
environment. Comput Sci Eng 9:90–95

19. Russel D, Lasker K, Webb B, Velazquez-
Muriel J, Tjioe E, Schneidman-Duhovny D,
Peterson B, Sali A (2012) Putting the pieces
together: integrative modeling platform soft-
ware for structure determination of macromo-
lecular assemblies. PLoS Biol 10:e1001244

20. Li H, Handsaker B, Wysoker A, Fennell T,
Ruan J, Homer N, Marth G, Abecasis G,
Durbin R, 1000 Genome Project Data Proces-
sing Subgroup (2009) The sequence align-
ment/map format and SAMtools.
Bioinformatics 25:2078–2079

21. Marco-Sola S, Sammeth M, Guigo R, Ribeca P
(2012) The GEM mapper: fast, accurate and
versatile alignment by filtration. Nat Methods
9:1185–1188

22. Vidal E, le Dily F, Quilez J, Stadhouders R,
Cuartero Y, Graf T, Marti-Renom MA,
Beato M, Filion GJ (2018) OneD: increasing
reproducibility of hi-C samples with abnormal
karyotypes. Nucleic Acids Res 46:e49

23. Roguski L, Deorowicz S (2014) DSRC 2--
industry-oriented compression of FASTQ
files. Bioinformatics 30:2213–2215

24. Dekker J (2007) GC- and AT-rich chromatin
domains differ in conformation and histone
modification status and are differentially
modulated by Rpd3p. Genome Biol 8:R116

25. Derrien T, Estelle J, Marco Sola S, Knowles
DG, Raineri E, Guigo R, Ribeca P (2012)
Fast computation and applications of genome
mappability. PLoS One 7:e30377

26. Imakaev M, Fudenberg G, McCord RP,
Naumova N, Goloborodko A, Lajoie BR,
Dekker J, Mirny LA (2012) Iterative correction
of hi-C data reveals hallmarks of chromosome
organization. Nat Methods 9:999–1003

27. Yaffe E, Tanay A (2011) Probabilistic modeling
of hi-C contact maps eliminates systematic
biases to characterize global chromosomal
architecture. Nat Genet 43:1059–1065

28. Crane E, Bian Q, McCord RP, Lajoie BR,
Wheeler BS, Ralston EJ, Uzawa S, Dekker J,
Meyer BJ (2015) Condensin-driven remodel-
ling of X chromosome topology during dosage
compensation. Nature 523:240–244

29. Forcato M, Nicoletti C, Pal K, Livi CM,
Ferrari F, Bicciato S (2017) Comparison of
computational methods for hi-C data analysis.
Nat Methods 14(7):679–685

30. Shin H, Shi Y, Dai C, Tjong H, Gong K,
Alber F, Zhou XJ (2016) TopDom: an efficient
and deterministic method for identifying topo-
logical domains in genomes. Nucleic Acids Res
44:e70

31. Mizuguchi T, Fudenberg G, Mehta S, Belton
JM, Taneja N, Folco HD, FitzGerald P,
Dekker J, Mirny L, Barrowman J, Grewal SI
(2014) Cohesin-dependent globules and het-
erochromatin shape 3D genome architecture in
S. pombe. Nature 516:432–435

32. Yang T, Zhang F, Yardimci GG, Song F, Hard-
ison RC, Noble WS, Yue F, Li Q (2017)

62 Marco Di Stefano et al.



HiCRep: assessing the reproducibility of hi-C
data using a stratum-adjusted correlation coef-
ficient. Genome Res 27:1939–1949

33. Yan KK, Yardimci GG, Yan C, Noble WS, Ger-
stein M (2017) HiC-spector: a matrix library
for spectral and reproducibility analysis of hi-C
contact maps. Bioinformatics 33:2199–2201
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