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Abstract

Background: Pancreatic cancer (PC) is a complex disease in which both non-genetic and genetic factors interplay.
To date, 40 GWAS hits have been associated with PC risk in individuals of European descent, explaining 4.1% of the
phenotypic variance.
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(Continued from previous page)

Methods: We complemented a new conventional PC GWAS (1D) with genome spatial autocorrelation analysis (2D)
permitting to prioritize low frequency variants not detected by GWAS. These were further expanded via Hi-C map
(3D) interactions to gain additional insight into the inherited basis of PC. In silico functional analysis of public
genomic information allowed prioritization of potentially relevant candidate variants.

Results: We identified several new variants located in genes for which there is experimental evidence of their
implication in the biology and function of pancreatic acinar cells. Among them is a novel independent variant in
NR5A2 (rs3790840) with a meta-analysis p value = 5.91E−06 in 1D approach and a Local Moran’s Index (LMI) = 7.76
in 2D approach. We also identified a multi-hit region in CASC8—a lncRNA associated with pancreatic
carcinogenesis—with a lowest p value = 6.91E−05. Importantly, two new PC loci were identified both by 2D and 3D
approaches: SIAH3 (LMI = 18.24), CTRB2/BCAR1 (LMI = 6.03), in addition to a chromatin interacting region in XBP1—a
major regulator of the ER stress and unfolded protein responses in acinar cells—identified by 3D; all of them with a
strong in silico functional support.

Conclusions: This multi-step strategy, combined with an in-depth in silico functional analysis, offers a
comprehensive approach to advance the study of PC genetic susceptibility and could be applied to other diseases.

Keywords: Pancreatic cancer risk, Genome-wide association analysis, Genetic susceptibility, 3D genomic structure,
Local indices of genome spatial autocorrelation

Background
Pancreatic cancer (PC) has a relatively low incidence,
but it is one of the deadliest tumors. In Western coun-
tries, PC ranks fourth among cancer-related deaths with
5-year survival of 3–7% in Europe [1–3]. In the last de-
cades, progress in the management of patients with PC
has been meager. In addition, mortality is rising [2] and
it is estimated that PC will become the second cause of
cancer-related deaths in the USA by 2030 [4].
PC is a complex disease in which both genetic and non-

genetic factors participate. However, relatively little is
known about its etiologic and genetic susceptibility back-
ground. In comparison with other major cancers, fewer
genome-wide association studies (GWAS) have been car-
ried out and the number of patients included in them is
relatively small (N = 9040). According to the GWAS Cata-
log (January 2019) [5], 40 common germline variants sited
in 32 loci and associated with PC risk have been identified
in individuals of European descent [6–11]. However, these
variants only explain 4.1% of the phenotypic variance for
PC [12]. More importantly, given the challenges in per-
forming new PC case-control studies with adequate clin-
ical, epidemiological, and genetic information, the field is
far from reaching the statistical power that has been
achieved in other more common cancers such as breast,
colorectal, or prostate cancers with > 100,000 subjects in-
cluded in GWAS, yielding a much larger number of gen-
etic variants associated with them [5].
Current GWAS methodology relies on establishing

simple SNP-disease associations by setting a strict statis-
tical threshold of significance (p value = 5 × 10−8) and
replicating them in independent studies. This approach
has been successful in minimizing false positive hits at
the expense of discarding variants that may be truly

associated with the disease displaying association p
values not reaching genome-wide significance after mul-
tiple testing correction or not being replicated in inde-
pendent populations. The false negatives can be the
result of weak associations or of low prevalence of the
variant SNP assessed, among others. The “simple” solu-
tion to this problem is to increase the sample size. How-
ever, it will take considerable time for PC GWAS to
reach the number of subjects achieved in other tumors
and the funding climate for replication studies is ex-
tremely weak. While a meta-analysis based on available
datasets provides an alternative strategy for novel variant
identification, this approach introduces heterogeneity
because studies differ regarding methods, data quality,
testing strategies, genetic background of the included in-
dividuals (e.g., population substructure), and study de-
sign, factors that can lead to lack of replicability.
Therefore, we are faced with the need of exploring alter-
native approaches to discover new putative genetic risk
variants missed by conventional GWAS criteria.
Here, we build upon one of the largest PC case-control

studies with extensive standardized clinical and epidemio-
logical data annotation and apply both a classical GWAS
approach (1D strategy) and novel strategies for risk-
variant discovery. We use, for the first time in genomics,
the Local Moran’s Index (LMI) [13], an approach that is
widely followed in geospatial statistics. In its original ap-
plication to geographic two-dimensional (2D) analysis,
LMI identifies the existence of relevant autocorrelated
clusters in the spatial arrangement of a variable, highlight-
ing points closely surrounded by others with similar risk
estimate values, allowing the identification of “hot spots.”
We computed LMI of (genomic) spatial autocorrelation to
identify clusters of SNPs based on their similar risk
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estimates (odds ratio, OR) weighted by their genomic dis-
tance as measured by linkage disequilibrium (LD). By cap-
turing LD structures of nearby SNPs, LMI leverages the
values of SNPs with low minor allele frequencies (MAFs)
that conventional GWAS fail to assess properly. In this re-
gard, LMI offers a novel opportunity to identify potentially
relevant new sets of genomic candidates associated with
PC genetic susceptibility.
In addition, we have taken advantage of recent ad-

vances in 3D genomic analyses providing insights into
the spatial relationship of regulatory elements and their
target genes. Since GWAS have largely identified vari-
ants present in non-coding regions of the genome, a
challenge has been to ascribe such variants to the corre-
sponding regulated genes, which may lie far away in the
genomic sequence. Chromosome Conformation Capture
experiments (3C-related techniques) [14] can provide
insight into the biology and function underlying previ-
ously “unexplained” hits, in addition to identify further
genetic susceptibility loci [15, 16].
The combined use of conventional GWAS (1D) ana-

lysis with LMI (2D) and 3D genomic approaches has
allowed enhancing the discovery of novel candidate vari-
ants involved in PC genetic susceptibility (Fig. 1). As

high-throughput technologies have produced large
amounts of publicly available data from cell types and
tissues, these resources represent a valuable approach to
perform an in silico functional validation of prioritized
variants using novel criteria, as well as for functional in-
terpretation of genetic findings. Importantly, here we
identified several new variants located in genes for which
there is functional evidence of their implication in the
biology of pancreatic acinar cells. Among them are a
novel independent variant in NR5A2, a multi-hit region
in CASC8, and three new PC loci in SIAH3, CTRB2/
BCAR1, and XBP1, all of them with strong in silico func-
tional support.

Methods
1D approach: PanGenEU GWAS—single marker
association analyses
Study population
We used the resources from the PanGenEU case-control
study conducted in Spain, Italy, Sweden, Germany, UK,
and Ireland, between 2009 and 2014 [17, 18]. Eligible PC
patients, men and women ≥ 18 years of age, were invited
to participate. Eligible controls were hospital in-patients
with primary diagnoses not associated with known risk

Fig. 1 Study flowchart: overview of the complementary approaches adopted in this study to identify new pancreatic cancer susceptibility regions
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factors of PC. Controls from Ireland and Sweden were
population-based. Institutional Review Board approval
and written informed consent were obtained from all
participating centers and study participants, respectively.
To increase statistical power, we included controls from
the Spanish Bladder Cancer (SBC)/EPICURO study,
carried out in the same geographical areas where
PanGenEU study was conducted. Characteristics of the
study populations are detailed in Additional file 1: Table
S1.

Genotyping and quality control of PanGenEU study subjects
DNA samples were genotyped using the Infinium
OncoArray-500K [19] at the CEGEN facility (Spanish
National Cancer Research Center, CNIO, Madrid,
Spain). Genotypes were called using the GenTrain 2.0
cluster algorithm in GenomeStudio software
v.2011.1.0.24550 (Illumina, San Diego, CA). Genotyping
quality control criteria considered the missing call rate,
unexpected heterozygosity, discordance between re-
ported and genotyped gender, unexpected relatedness,
and estimated European ancestry < 80%. After removing
samples that did not pass the quality control filters, du-
plicated samples, and individuals with incomplete data
regarding age of diagnosis/recruitment, 1317 cases and
700 controls were available for the association analyses.
SNPs in sex chromosomes and those that did not pass
the Hardy-Weinberg equilibrium (p value < 10−6) were
also discarded. Overall, 451,883 SNPs passed the quality
control filters conducted before the imputation.

Genotyping and quality control of SBC/EPICURO controls
Genotyping of germline DNA was performed using the
Illumina 1M Infinium array at the National Cancer Insti-
tute (NCI) Core Genotyping Facility as previously de-
scribed [20], which provided calls for 1,072,820 SNP
genotypes. We excluded SNPs in sex chromosomes,
those with a low genotyping rate (< 95%), and those that
did not pass the Hardy-Weinberg equilibrium threshold.
In addition, the exome of 36 controls was sequenced
with the TruSeq DNA Exome and a standard quality
control procedure both at the SNP and individual level
was applied: SNPs with read depth < 10 and those that
did not pass the tests of base sequencing quality, strand
bias or tail distance bias, were considered as missing and
imputed (see the “Imputation” section for further de-
tails). Overall, 1,122,335 SNPs were available for imput-
ation from a total of 916 additional controls.

Imputation
Imputation was performed at the Wellcome Sanger In-
stitute (Cambridge, UK) and at CNIO for the PanGenEU
and the SBC/EPICURO studies, respectively. Imputation
of missing genotypes was performed using IMPUTE v2

[21], and genotypes of SBC/EPICURO controls were
pre-phased to produce best-guess haplotypes using
SHAPEIT v2 software [22]. For both PanGenEU and
EPICURO studies, the 1000 G (Phase 3, v1) reference
dataset was used [23].

Association analyses
A final set of 317,270 common SNPs (MAF > 0.05) that
passed quality control in both studies and showed com-
parable MAF across genotyping platforms was used. We
ensured the inclusion of the 40 variants previously asso-
ciated with PC risk in individuals of Caucasian origin
compiled in GWAS Catalog [5]. Logistic regression
models [24] were computed assuming an additive mode
of inheritance for the SNPs, adjusted for age at PC diag-
nosis or at control recruitment, sex, the area of residence
[Northern Europe (Germany and Sweden), European
islands (UK and Ireland), and Southern Europe (Italy
and Spain)], and the first 5 principal components (PCA)
calculated with prcomp R function based on the geno-
types of 32,651 independent SNPs (J Tyrer, personal
communication) to control for potential population
substructure.

Validation of the novel GWAS hits
To replicate the top 20 associations identified in the Dis-
covery phase, we performed a meta-analysis using risk
estimates obtained in previous GWAS from the Pancre-
atic Cancer Cohort Consortium (PanScan: https://epi.
grants.cancer.gov/PanScan/) and the Pancreatic Cancer
Case-Control Consortium (PanC4: http://www.panc4.
org/), based on 16 cohort and 13 case-control studies,
respectively. Details on individual studies, namely Pan-
Scan I, PanScan II, PanScan III, and PanC4, have been
described elsewhere [6–9]. Genotyping for PanScan
studies was performed at the NCI Cancer Genomic Re-
search Laboratory using HumanHap550v3.0, and Hu-
man 610-Quad genotyping platforms for PanScan I and
II, respectively, and the Illumina Omni series arrays for
PanScan III. Genotyping for PanC4 was performed at
the Johns Hopkins Center for Inherited Disease Research
using the Illumina HumanOmniExpressExome-8v1
array. PanScan I/II datasets were imputed together while
PanScan III and PanC4 were each imputed independ-
ently using the 1000 G (Phase3, v1) reference dataset
[23] and IMPUTE2 [21]. Association models were ad-
justed for study (PanScan I and II), geographical region
(for PanScan III), age, sex, and PCA of population sub-
structure (5 PCA for PanScan I+II, 6 for PanScan III) for
PanScan models, and for study, age, sex, and 7 PCA
population substructure for PanC4 models. Summary
statistics from PanScanI/II, PanScan III, and PanC4 were
used for a meta-analysis using a random-effects model
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based on effect estimates and standard errors with the
metafor R package [25].

2D approach: Local Moran Index
Local Moran’s Index calculation
The LMI was obtained for each SNP considered in the
GWAS (n = 317,270) using the summary statistics result-
ing from the association analyses as follows. First, we
standardized the OR of each SNP after referring it to the
risk-increasing allele (i.e., OR > 1) using the inverse of
the normal distribution. Then, we calculated the weight
matrix containing the linkage disequilibrium (r2) as
proxy for the distance between each SNP and each of its
neighboring SNPs (± 500 kb). SNPs present within this
window were matched by MAF to maximize the chance
that haplotypes match. Therefore, the LMI for ith SNP
was calculated as:

LMIi ¼ zi �
X z j � r2i; jP

r2i; j
;

where LMIi is the LMI value for the ith SNP; zi is
the OR value for the ith SNP, obtained from the in-
verse of the normal distribution of ORs for all SNPs;
zj is the OR for the jth SNP within the physical dis-
tance and MAF-matched defined bounds; and r2i; j is
the LD value, measured by r2, between the ith SNP
and the jth SNP [26].

The LMI score could be estimated for 98.8% of the
SNPs in our dataset, as 1.2% of the SNPs were not geno-
typed in the 1000 G (Phase 3, v1) reference dataset [23]
or had a MAF < 1% in the CEU European population
(n = 85 individuals, phase 1, version 3). We then dis-
carded the SNPs that (1) had a negative LMI, meaning
either that surrounding SNPs and target SNP have
largely different ORs or that they are in linkage equilib-
rium and, therefore, do not pertain to the same cluster,
or (2) had a positive LMI, i.e., target and surrounding
SNPs have similar ORs, but the SNP came from the bot-
tom 50% tail of the distribution of the ordered trans-
formed OR distribution.

To assess the usefulness of the LMI score for SNP
prioritization, we ran two benchmarking tests. First, we
evaluated whether the GWAS Catalog PC-associated
SNPs known to be associated with PC in European pop-
ulations (GWAS Catalog, n = 40 [5]) had a LMI value
higher than expected. Then, we assessed how many of
the previously reported loci were also identified accord-
ing to the LMI out of the 30 independent signals of ≥ 1
SNPs. Further details can be found in Additional file 1:
Supplementary methods.

3D approach: Hi-C pancreas interaction maps and
interaction selection
The 3D Hi-C interaction maps for both healthy pancreas
tissue [27] and for a pancreatic cancer cell line (PANC-
1) were generated using TADbit as previously described
[28]. Briefly, Hi-C FASTQ files for 7 replicas of healthy
pancreas tissue were downloaded from GEO repository
(Accession number: GSE87112; Sequence Read Archive
Run IDs: SRR4272011, SRR4272012, SRR4272013,
SRR4272014, SRR4272015, SRR4272016, SRR4272017),
and for PANC-1 FASTQ, files were available from EN-
CODE (Accession number: ENCSR440CTR). Merged
FASTQ files of the 7 healthy samples and those of
PANC-1 were mapped against the human reference gen-
ome hg19, parsed and filtered with TADbit to get the
final number of valid interacting read pairs (99,074,082
and 287,201,883 valid interaction pairs, respectively).
From this set, we built chromosome-wide interaction
matrices at 40 kb resolution. The HOMER package [29]
was used to detect significant interactions between bins
using the –center and --maxDist 2000000 parameters.
Using HOMER’s default parameters, the final number of
nominally significant (p value ≤ 0.001) interactions was
41,833 for the healthy dataset and 357,749 for the
PANC-1 dataset. To further filter the interactions, we
retained those that passed a Bonferroni corrected
threshold < 1 × 10−5, resulting in 6761 for the healthy
sample (16.2% top interactions from those originally se-
lected by HOMER default parameters). To make it com-
parable, we also kept the top 16.2% interactions
identified in PANC-1, resulting in 57,813 significant
interactions.

Functional in silico analysis
An exhaustive in silico analysis was conducted for asso-
ciations with p values < 1 × 10−4 in the PanGenEU
GWAS (N = 143) and for the top 0.5% loci according to
their LMI (N = 510) (Additional file 1: Figure S1). Bio-
informatics assessments included evidence of functional
impact [30–32], annotation in overlapping genes and
pathways [31], methylation quantitative trait locus in
leukocyte DNA from a subset of the PanGenEU controls
(mQTLs), expression QTL (eQTLs) in normal and tu-
moral pancreas (GTEx and TCGA, respectively) [33, 34],
annotation in PC-associated long non-coding RNA
(lncRNAs) [35], protein quantitative trait locus analysis
in plasma (pQTLs) [36], overlap with regulatory chroma-
tin marks in pancreatic tissue obtained from ENCODE
[37], association with relevant human diseases [38], and
annotation in differentially open chromatin regions
(DORs) in human pancreatic cells [39]. We also investi-
gated whether prioritized variants had been previously
associated with PC comorbidities or other types of can-
cers [5].
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We also computed the credible sets (calculated follow-
ing the procedure in [40]; code at https://github.com/
hailianghuang/FM-summary), with an r2 > 0.1, physical
distance ± 500 kb, and up to a posterior probability of
0.99 for the variants prioritized by the 1D (N = 143
SNPs) and the 2D (510 SNPs) approaches within a 1-Mb
window.
In addition to the in silico functional analyses at the

variant level, we conducted enrichment analyses at the
gene level using the FUMAGWAS web tool [38] and in-
vestigated whether our prioritized set of genes appeared
altered at the tumor level in a collection of pancreatic
tumor samples [41]. Methodological details of all bio-
informatics analyses conducted are described in detail in
Additional file 1: Supplementary methods.

Results
1D approach: PanGenEU GWAS—single marker
association analyses
We performed a GWAS including data from 1317 pa-
tients diagnosed with PC (cases) and 1616 control indi-
viduals from European countries. In addition to the
genotyped SNPs that passed the quality control, we con-
sidered the imputed genotypes for previously reported
PC-associated hits not included in the OncoArray-500K
(19 SNPs with info score ≥ 0.91). In all, 317,270 SNPs
were tested (Additional file 1: Figure S2) with little evi-
dence of genomic inflation (Additional file 1: Figure S3).

Replication of previously reported GWAS hits
Of the 40 previously GWAS-discovered variants associ-
ated with PC risk in European ancestry populations [5],
17 (42.5%) were replicated with nominal p values < 0.05.
For all 17, the associations were in the same direction as
in the primary reports (Additional file 1: Table S2).
Among them, we replicated NR5A2-rs2816938 and
NR5A2-rs3790844, a gene for which extensive experi-
mental evidence supporting a role in PC has been ac-
quired. We also observed significant associations for
seven variants tagging NR5A2 previously reported in the
literature [7–10, 42]. Replicated GWAS hits included
LINC00673-rs7214041, reported to be in complete LD
with LINC00673-rs11655237 [11], previously shown to
be a PC-associated variant [9]. At the GWAS signifi-
cance level, we also replicated TERT-rs2736098 [8, 11].

The top 20 PanGenEU GWAS hits: validation in independent
populations
The risk estimates of the top 20 variants in the Pan-
GenEU GWAS were included in a meta-analysis with
those derived from PanScanI+II, PanScan III, and PanC4
consortia GWAS, representing a total of 10,357 cases
and 14,112 controls (Additional file 1: Table S3). Pan-
GenEU identified a new variant in NR5A2 associated

with PC (NR5A2-rs3790840, metaOR = 1.23, p value =
5.91 × 10−6) which is in moderate LD with NR5A2-
rs4465241 (r2 = 0.45, metaOR = 0.81, p value = 3.27 ×
10−10) and had previously been reported in a GWAS
pathway analysis [42]. NR5A2-rs3790840 remained
significant (p value < 0.05) when conditioned on NR5A2-
rs4465241, on NR5A2-rs3790844 plus NR5A2-
rs2816938, and even on the 13 NR5A2 GWAS hits
reported in the literature, indicating that NR5A2-
rs3790840 is a new, distinct, PC risk signal. The SKAT-
O [43] (seqMeta R package: https://rdrr.io/cran/
seqMeta/man/skatOMeta.html), a gene-based analysis
considering all significant NR5A2 hits plus NR5A2-
rs3790840, yielded a significant association (p value =
8.9 × 10−4). Furthermore, in a case-only analysis con-
ducted within the PanGenEU study, the overall NR5A2
variation was associated with diabetes (p value = 6.0 ×
10−3), suggesting an interaction between both factors in
relation to PC risk.
While not replicated in the meta-analysis or not in the

top 20 SNPs, other variants of interest identified by the
1D approach are located in SETDB1, FAM63A, SCTR,
SEC63, CASC8, and RPH3AL loci (Table 1). Their po-
tential functionality is commented below.

2D approach: genomic spatial integration
We scaled up from the single-SNP (1D) to the genomic
region (2D) association analysis by considering both gen-
omic distance (LD) between variants and the magnitude
of the association (OR) with the variants. We calculated
a LMI score and selected those SNPs with positive LMI
or within the top 50% of OR values resulting in a final
set of 102,146 SNPs. The LMI scores and p values for
these variants showed a direct correlation (Spearman r =
0.62; p value = 2.2 × 10−16, Additional file 1: Figure S4).
To assess the versatility of LMI, we ran two benchmarks
based on the MAFs and the ORs. Out of the 30 PC inde-
pendent signals (r2 < 0.2) derived from the GWAS Cata-
log, 22 were present in our 102,146 selected set. The
observed median rank position for the 22 PC signals in
this list was 22,640, an average position significantly
higher than that of 10,000 randomly selected sets of the
same size (one tail p value = 0.0013) (Additional file 1:
Figure S5). Moreover, out of the PC genomic loci, LMI
was able to capture those reported by at least two stud-
ies (21 out of 30 PC independent genomic loci).
An LMI-enriched variant set was generated by select-

ing the top 0.5% of SNPs according to their LMI scores
(LMI ≥ 5.1071) resulting in 510 SNPs, which included 29
out of the 143 SNPs prioritized by the 1D approach
(Additional file 2: Table S4). We compared the MAF of
the independent SNPs (r2 < 0.2) (see Additional file 1:
Supplementary methods) prioritized by the 1D approach
(N = 97/143) against the top 97 independent variants,
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out of 196 independent signals for the 510 SNPs selected
by LMI. Notably, the LMI-identified SNPs had a lower
MAF than GWAS-identified variants: 0.07 (SD = 0.03)
vs. 0.24 (SD = 0.13) (Wilcoxon statistic p value < 2.2 ×
10−16) (Additional file 1: Figure S6). In line with this ob-
servation, the average OR for the LMI-based SNPs was
significantly higher than that for the GWAS-based SNPs
(1.46 vs. 1.32, respectively, Wilcoxon statistic p value =
1.63 × 10−10).
The Manhattan plot of the LMI score across the gen-

ome displays the hits identified through this approach
(Additional file 1: Figure S7). Among the 0.5% top LMI
prioritized variants (N = 510), there were 8 SNPs in
NR5A2, including the novel PanGenEU GWAS identi-
fied variant (rs3790840). All of them showed a high LMI
score (> 6.859) what further endorses this approach.
Other variants of interest identified by the 2D approach
are in SETDB1, FAM63A/MINDY1, GPRC6A, RFX6,
CASC8, CDKN2A, KDM4C, ROR2, MS4A5, SIAH3,
LRRC36, and CTRB2/BCAR1 loci (Table 1). Their poten-
tial functionality is discussed below.

A total of 199 credible sets were identified among the
510 LMI-based SNP. Of them, 118 (60%) contained the
SNP with the lowest p value in the region. Moreover, we
observed an enrichment of SNPs with low p values in
the 1-Mb region for the LMI-based SNP set that was
even higher among the 118 credible sets (Additional file
1: Figure S8).

3D approach: genomic interaction analysis
To gain further insight into the biological function of
the 624 candidate SNPs prioritized using the 1D and 2D
approaches, and to identify additional PC genetic sus-
ceptibility loci, we focused on a set of 6761 significant
chromatin interactions (p values ≤ 1 × 10−5) identified
using Hi-C interaction pancreatic tissue maps at 40 Kb
resolution [27]. Throughout the rest of the text, we will
refer to the chromatin interaction component containing
the prioritized SNP as “bait” and to its interacting region
as “target.” In total, 54 target loci overlapping with 37
genes interacted with bait regions harboring 76/624
(12.1%) SNPs (Additional file 3: Table S5).

Table 1 Novel pancreatic cancer genetic susceptibility hits prioritized by approaches 1D, 2D, and 3D, as well as by in silico
functional analyses

Genomic location No. of prioritized
novel SNPs

Nearest gene Selection
approach

Relevance in pancreas physiology or carcinogenesis

1:150902203, 150974311 2 SETDB1,
FAM63A/
MINDY1

1D, 2D Histone methyltransferase that cooperates in the development of
PC; lysine 48 deubiquitinase

1:200016460 1 NR5A2 1D, 2D Transcription factor required for acinar differentiation and PC
susceptibility gene

2:120278171 1 SCTR 1D Secretin receptor expressed in ductal cells

6:108238917 1 SEC63 1D ER protein involved in ER stress response

6:117150008 1 GPRC6A 2D Disease-causal variant (CADD score = 35)

6:117196211 1 RFX6 2D Transcription factor involved in pancreatic development and
adult endocrine cell function

8:128302062-128494384 27 CASC8 1D, 2D LncRNA cancer associated susceptibility gene

9:21967751-21995300 6 CDKN2A 2D Tumor suppressor mutated in > 95% of PC; also involved in
familial PC

9:6772101, 6785243,
6831637

3 KDM4C 2D Highly expressed in PC

9:94601093, 94603970 2 ROR2 2D Wnt pathway (activated in PC)

11:60197299 1 MS4A5 2D Disease-causal variant (CADD score = 24.4)

13:46446427, 46405544,
46471859-46511859

2/CIR SIAH3 2D, 3D E3 ubiquitin ligase

16:67387817, 67397580 2 LRRC36 2D Disease-causal variant (CADD score = 24.4)

16:75263661, 75295639,
75201482-75241482

2/CIR BCAR1/CTRB2 2D, 3D CTRB2 is chymotrypsinogen 2, a major pancreatic protease;
associated with chronic pancreatitis and PC

17:143542 1 RPH3AL 1D Regulatory variant; rabphilin 3a is involved in exocytosis in acinar
cells

22:28476910-29165195 CIR MN1 3D No pancreas-related function has been discovered so far

22:28602352-28642352 CIR XBP1 3D Major regulator of the ER stress and unfolded protein responses
in acinar cells

PC pancreatic cancer, CIR chromatin interacting region
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As a proof of concept of the utility of the 3D approach
to identify novel PC genetic susceptibility loci, we high-
light a target region (22:29,197,371-29,237,371 bp, p
value = 1.3 × 10−9) interacting with an intronic region of
TTC28 (bait: 22:28,602,352-28,642,352 bp) that includes
four LMI-selected SNPs (rs9620778, rs9625437,
rs17487463, and rs75453968, all in high LD, r2 > 0.95, in
CEU population) (Fig. 2). Other loci of interest identified
by the 3D approach are in SIAH3, CTRB2, and MN1 loci
(Table 1). Their potential functionality is commented
below.

Functional in silico validation
We performed a systematic and exhaustive in silico
functional analysis of SNPs prioritized by GWAS (N =
143) and LMI (N = 510) at the variant, gene, and path-
way levels (Fig. 1 and Additional file 1: Figure S1).

Assessment of potential functionality of the variants
The evidence for potential functionality of the most rele-
vant SNPs for each of the approaches used is reviewed
here and summarized in Table 1, Additional file 1: Sup-
plementary methods, and Additional file 2: Table S4 and
Additional file 4: Table S6.
Among the 143 variants prioritized in the 1D ap-

proach, we highlight those in CASC8 (8q24.21) (Fig. 3):
27 variants with p values < 1 × 10−4 organized in four
LD-blocks, 9 of which were also captured in the 2D ap-
proach. The CASC8 locus is amplified in 5% of PC and
codes for a non-protein coding RNA overexpressed in
tumor vs. normal pancreatic tissue (Log2FC = 1.25, p
value = 2.29 × 10−56). CASC8 also overlaps with a PC-
associated lncRNA [35], suggesting that genetic variants
in CASC8 may contribute to the transcriptional program
of pancreatic tumor cells. All CASC8 variants were also
associated with differential leukocyte methylation
(mQTL) of RP11-382A18.1-cg25220992 in our Pan-
GenEU population sample. Moreover, 20 of them were
associated with differential methylation of cg03314633,
also in RP11-382A18.1. Twenty-three of the variants
overlapped with at least one histone mark in either
endocrine or exocrine pancreatic tissue. Alterations in
CASC8 significantly co-occur with alterations in TG (ad-
justed p values < 0.001), also associated with PC in our
GWAS, which is located downstream.
Three of the variants prioritized for in silico analysis

in the 1D approach (but not in the 2D approach) are lo-
cated in genes involved in pancreatic function:
rs1220684 is in SEC63, coding for a protein involved in
endoplasmic reticulum (ER) function and ER stress re-
sponse [44]; rs7212943, a putative regulatory variant, is
in NOC2/RPH3AL, a gene involved in exocytosis in exo-
crine and endocrine cells [45]; and rs4383344 is in
SCTR, which encodes for the secretin receptor,

selectively expressed in ductal cells, involved in the regu-
lation of bicarbonate, electrolyte, and volume secretion.
Interestingly, secretin regulation is affected by Helicobac-
ter pylori which has been suggested as a PC risk factor
[46]. High expression of SCTR has also been reported in
PC [47].
Two variants in high LD (r2 = 0.92) and potentially

relevant at the functional level are in 1q21.3 (SETDB1-
rs17661062 and FAM63A-rs59942146). SETDB1 has re-
cently been reported to be required for formation of PC
in mice by inhibiting p53-mediated apoptosis [48], and
FAM63A/MINDY1 has been found to interact signifi-
cantly with diabetes (duration ≥ 3 years) in a meta-
analysis on PC risk conducted within the PanC4 and
PanScan consortia [49]. Interestingly, these two variants
were also associated with an increased methylation of
the cg17724175 in MCL1. High mRNA expression of
this gene has been associated with poor survival [50],
and Mcl-1 has been explored to selectively radiosensitize
PC cells [51]. Importantly, these two variants were also
the top two prioritized by the 2D approach with a LMI
score > 16.87 (Additional file 2: Table S4).
Using the 2D approach, we prioritized several other

regions with potential functional relevance (Table 1,
Fig. 4, Additional file 1: Figure S7, Additional file 2:
Table S4). In chromosome 6, we identified rs6907580
(LMI = 8.93), a well-characterized stop-gain—and likely
disease-causal variant (CADD score = 35)—in exon 1 of
GPRC6A (G protein-coupled receptor family C group 6
member A). GPRC6A is expressed in pancreatic acinar,
ductal, and β-cells; it participates in endocrine metabol-
ism [52]; and it has been involved in pancreatitis using
mouse models [53]. Downstream in the same region,
LMI approach also identified rs17078438 (LMI = 8.90) in
RFX6, a pancreas-specific gene involved in pancreatic
development [39].
Other potentially functional SNPs relevant to PC

and prioritized in the 2D approach comprised 6 SNPs
(LMI ≤ 5.60) in the vicinities of CDKN2A/p16, a gene
that is almost universally inactivated in PC [54] and
that is mutated in some hereditary forms of PC [55,
56], with three variants (LMI ≤ 5.48) in CDKN2A-AS1
and two (LMI ≤ 5.88) in CDKN2B/p15, other import-
ant cell-cycle regulators; three variants in KDM4C
(LMI ≤ 11.27), a Lys demethylase 4C highly expressed
in PC [57]; and two SNPs tagging ROR2 (LMI ≤ 5.57),
a member of the Wnt pathway that plays a relevant
role in PC [58].
Another region, in chromosome 16, comprises

BCAR1-rs7190458, a variant with a relevant role in PC
[59] reported in two previous GWAS [8, 11], as well as a
novel SNP (rs13337397, LMI = 6.03) located in the first
exon of BCAR1. Both SNPs are in low LD (r2 = 0.36).
This second SNP is intergenic to CTRB2 and BCAR1
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(Table 1, Fig. 4, Additional file 1: Figure S7, Additional
file 2: Table S4). While BCAR1 is ubiquitous, CTRB2
code for chymotrypsinogens B2, a protease expressed

exclusively in the exocrine pancreas; genetic variation
therein has been previously associated with alcoholic
pancreatitis [60] and type 2 diabetes [61, 62]. The

Fig. 2 Three-dimensional genome organization in healthy and PANC-1 cells and association results corresponding to the genomic region around
XBP1 using the standard GWAS and 2D approaches. a Coverage-normalized Hi-C maps of healthy samples and PANC-1 cells at 40 Kb resolution.
Green ellipses highlight the interaction between the region harboring four Local Moran’s Index (LMI)-selected SNPs and the XBP1 promoter. b
Tracks of the ChromHMM Chromatin for 8 states in healthy pancreas, PANC-1 cells, and a Pancreatic Intraepithelial Neoplasia 1B. Promoters are
colored in light purple, strong enhancers in dark green, and weak enhancers in yellow. Note that the strong enhancer in the target region is lost
in the PANC-1 and PanIN-1B samples, compared to the healthy samples. c UCSC tracks of H3K27ac, an enhancer-associated mark, and arcs linking
significant interactions called by HOMER. Interactions in healthy pancreas samples are in green and those in PANC-1 and in the PanIN-1B sample
are in purple. Red arc represents the interaction between LMI-prioritized SNPs and the XBP1 promoter (highlighted region in Hi-C map in a). d
Scatterplots of SNPs in region chr22:28,400,000-29,600,000 (hg19) and their –log10 (p value), LMI, and odds ratio. Bait and target chromatin
interaction regions are highlighted in yellow and blue, respectively
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expression of that gene is reduced in tumors vs. normal
tissue [63]. Our finding using the 3D-approach further
supports that this locus harbors genetic variation of rele-
vance to PC risk.
According to their deleteriousness CADD score

[32], we highlight two variants in coding transcripts:
MS4A5-rs34169848 in chr11:60,197,299 (CADD
score = 24.4) and LRRC36-rs8052655 in chr16:67,409,
180 (CADD score = 24.4). CADD scores of such

magnitude are likely to correspond to disease-causal
variants [64].
The 3D approach highlighted XBP1 as a target region.

As said, this target region including the XBP1 promoter
interacts with four of the LMI-selected SNPs (Fig. 2) that
are in moderate LD with rs16986177. The alternative al-
lele (T) of this SNP is associated with a decreased ex-
pression of XBP1 in normal pancreas in GTEx (− 0.19, p
value = 1.3 × 10−4) and with an increased risk of PC in

Fig. 3 Zoom plot of the 8q24.21 CASC8 (cancer Susceptibility 8) region and linkage disequilibrium pattern of the PanGenEU GWAS prioritized
variants. Red and green points indicate OR < 1 and OR > 1, respectively
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our GWAS (OR = 1.28, p value = 8.71 × 10−3). Expression
of XBP1 is reduced in PC samples from TCGA, com-
pared to normal pancreas samples from GTEx
(Log2FC = − 1.561, p value = 1.72 × 10−34). Chip-Seq data
of all pancreatic samples available in ENCODE, as well
as PANC-1 pancreatic cancer cells (see the “Methods”
section), allowed us to find that, in comparison to nor-
mal pancreas, the H3K27Ac mark present in the XBP1
promoter is completely lost in PANC-1 cells and is re-
duced in a sample of a Pancreatic Intraepithelial Neopla-
sia 1B, a PC precursor (Fig. 2). To further characterize the
bait and promoter regions upstream of XBP1, we ran eight
chromatin states using ChromHMM [65] (Additional file
1: Supplementary methods). We observed a clear loss of

enhancers/weak promoters in the corresponding target re-
gions in the precursor lesions and in PANC-1 cells. This
loss of activity is in line with the observation that XBP1
expression is reduced in cancer. Moreover, small en-
hancers are also lost in the bait region of the aforemen-
tioned samples. The 3D maps for this region revealed loss
of 3D contact in PANC-1 cells (Fig. 2).

Gene set enrichment analyses (GSEA)
We performed GSEA of the genes harboring the SNPs
prioritized using the 1D and 2D approaches. Six chromo-
somal regions were significantly enriched among the 81
genes harboring the 143 prioritized SNPs in the 1D ap-
proach (Additional file 5: Table S7). GSEA for the gene-

Fig. 4 Scatterplots of the –log10 p values, Local Moran’s Index (LMI) values, and odds ratios (OR) for three genomic regions prioritized based on
their LMI value. Highlighted regions show the hits identified in the 2D, but not in the 1D approach
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trait associations reported in the GWAS Catalog yielded
29 enriched traits (Additional file 5: Table S7). The most
relevant GWAS traits significantly enriched were “Pancre-
atic cancer,” “Lung cancer,” “Prostate cancer,” “Uric acid
levels,” “Obesity-related traits,” and “Major depressive dis-
order.” We also performed a network analysis to visualize
the relationships between the enriched GWAS traits and
the prioritized genes using the igraph R package [66].
Twelve densely connected subgraphs were identified via
random walks (Fig. 5). Interestingly, “pancreatic cancer”
and “uric acid levels” GWAS traits were connected
through NR5A2, which is also linked to “chronic inflam-
matory diseases” and “lung carcinoma” traits. NR5A2 is an
important regulator of pancreatic differentiation and in-
flammation in the pancreas [67].

GSEA of the genes harboring the variants included
in the credible sets corresponding to the 2D approach
revealed enrichment in “Pancreatic cancer” as well as
other GWAS traits related to PC risk factors, includ-
ing alcoholic chronic pancreatitis, type 2 diabetes,
body mass index and waist-to-hip ratio adjusted for
body mass index, and HDL cholesterol (Add-
itional file 6: Table S8). These findings lend support
to the validity of the 2D approach as a tool to iden-
tify disease-relevant genetic variants.

Pathway enrichment analysis
The genes prioritized in the 1D approach were sig-
nificantly enriched in 112 Gene Ontology Biological
Function (GO:BP) terms (adjusted p values < 0.05,

Fig. 5 Network of traits in the GWAS Catalog enriched with the genes prioritized in the 1D approach of PanGenEU GWAS. Twelve densely
connected subgraphs identified via random walks are displayed in different colors
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with minimum of three genes overlapping), 7 Cellular
Component GO terms (GO:CC), and 11 Molecular
Function (GO:MF) terms (Additional file 5: Table S7).
Importantly, GO terms relevant to exocrine pancreatic
function were overrepresented. Three KEGG pathways
were significantly enriched with ≥ 2 genes from our
prioritized set, including “Glycosaminoglycan biosyn-
thesis heparan sulfate” (adj-p = 3.86 × 10−3), “ERBB
signaling pathway” (adj-p = 3.73 × 10−2), and “Melano-
genesis” (adj-p = 3.73 × 10−2) (Additional file 5: Table
S7). Pathways enriched with the genes prioritized in
the 2D approach included GO terms related to the
nervous system and G protein-coupled receptor sig-
naling. Interestingly, one of the hallmarks of PC is
perineural invasion. Because the standard databases
generally lack pathways related to acinar pancreatic
function, we generated several curated gene sets and
assessed their enrichment among the SNPs/genes pri-
oritized in the 1D and 2D approaches. We found an
overrepresentation of LMI genes in a signature in-
cluding transcription factors differentially expressed in
normal pancreas (GTEx). This signature was also
enriched with genes prioritized in the other two ap-
proaches used in our study (including 11 overlapping
genes: SETDB1, LHX4, NR5A2, ZBED6, ELK4, SIM1,
RFX6, KLF14, ZNF32, ZNF133, and XBP1).
In summary, the in silico functional analysis revealed a

remarkable enrichment of pathways related to the func-
tion of acinar and ductal cells, including SNPs associated
with novel genes in these pathways.

Discussion
To overcome some of the limitations of standard
GWAS analyses, we have expanded the scope of gen-
omic studies of PC susceptibility to include novel ap-
proaches that build on spatial genome
autocorrelations of LMI and 3D chromatin contacts.
An in-depth in silico functional analysis leveraging
available genomic information from public databases
allowed us to prioritize new candidate variants with
strong biological plausibility in well-established (i.e.,
NR5A2) as well as in novel (i.e., XBP1) genes playing
a key role in acinar function (Table 1). We have thus
reached a novel landscape on the inherited basis of
PC and have paved the way to the application of a
similar strategy to any other human disease or
interest.
This is the first PC GWAS involving an exclusively

Europe-based population sample. Of the previously re-
ported European ancestry population GWAS hits, 42.5%
were replicated, supporting the methodological sound-
ness of the study. The lack of replication of other PC
GWAS hits may be explained by variation in the MAFs
of the SNPs among Europeans, population heterogeneity,

differences in the genotyping platform used, and differ-
ences in calling methods applied, among others. This re-
sult emphasizes that statistical significance for GWAS-
SNPs is largely dependent on MAF and the statistical
power of the study, highlighting this as a major limita-
tion of classical GWAS analyses.
We applied the LMI (2D approach) for the first time

in the genomics field. LMI captured a new dimension of
signals independent from MAF and the statistical power
of the study (Additional file 1: Figure S6). The bench-
marking tests evidenced that LMI prioritizes SNPs on
the basis of OR that were largely present in credible sets
(Additional file 1: Figure S8). We replicated 6.4% of the
previous reported GWAS Catalog signals for PC in
European populations by considering the top 0.5% LMI
variants, a LMI threshold that is overly conservative,
given that many of the GWAS Catalog-replicated signals
have lower LMI than the cutoff value we selected. The
ability of LMI to prioritize low MAF SNPs, unlike the
GWAS approach, may also explain the low replicability
rate. LMI helps to identify signals within genomic re-
gions by scoring lower those regions that do not main-
tain LD structure.
The 3D genomic approach identified a highly po-

tential important chromatin interacting region in
XBP1. This is a potential candidate detected through
a previously uncharacterized “bait” SNP. These find-
ings are particularly important considering the over-
whelming evidence of a major role of ER stress and
unfolded protein responses in acinar function—two
highly relevant processes to acinar homeostasis due to
their high protein-producing capacity of these cells—
and it plays an important role in pancreatic regener-
ation [68]. In addition, genetic mouse models have
unequivocally shown that Xbp1 is required for acinar
homeostasis and pancreatic ductal adenocarcinoma,
the most common form of PC, can be initiated from
acinar cells [69]. Overall, these analyses indicate that
the SNPs interacting in 3D space with the XBP1 pro-
moter could contribute to the differential expression
of the gene associated with malignant transformation.
These findings provide proof of concept that 3D gen-
omics can contribute to identify further susceptibility
loci and to decipher the biological relevance of or-
phan SNPs. Similar results were found with other
LMI-selected SNPs associated with their target genes
only by detecting significant spatial interactions be-
tween them (Additional File 3: Table S5).
To shed light into the functionality of the newly iden-

tified variants, we applied novel post-GWAS approaches
to interrogate several databases at the SNP, gene, and
pathway levels. We found sound evidence pointing to
the functional relevance of several variants prioritized by
the 1D and 2D approaches (Additional files 2 and 4:
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Tables S4 and S6, respectively, and Additional file 1:
Supplemental methods). The importance of the multi-
hit CASC8 region (8q24.21) is further supported by in
silico functional analyses as well as by its previous asso-
ciations with PC at the gene level [35]. In particular, 12/
27 SNPs identified in CASC8 were annotated as regula-
tory variants. None of the CASC8 hits were in LD with
CASC11-rs180204, a GWAS hit previously associated
with PC risk, which is ~ 205 Kb downstream [10].
CASC8-rs283705 and CASC8-rs2837237 (r2 = 0.68) are
likely to be functional with a score of 2b in RegulomeDB
(TF binding + any motif + DNase Footprint + DNase
peak). CASC8-rs1562430, in high LD (r2 > 0.85) with 18
CASC8 prioritized variants, has been previously associ-
ated with other cancers (breast, colorectal, and stomach)
[70]. None of the prostate cancer-associated SNPs in
CASC8 overlapped with the 27 identified variants in our
study. The fact that this gene has not been reported pre-
viously in other PC GWAS could be due to the different
genetic background of the study populations or to an
overrepresentation of the variants tagging CASC8 in the
Oncoarray platform used here.
In addition to confirming SNPs in TERT, we found

strong evidence for the participation of novel susceptibil-
ity genes in telomere biology (PARN) and in the post-
transcriptional regulation of gene expression (PRKCA
and EIF2B5) (Additional File 1: Supplemental methods).
Our study also expands the landscape of variants and
genes involved in exocrine biology, including SEC63,
NOC2/RPH3AL, and SCRT whose products participate
in acinar function and possibly in acinar-ductal metapla-
sia, a PC pre-neoplastic lesion [71].
KEGG pathway enrichment analysis further validated

our results being involved in important pathways for PC,
including “Glycosaminoglycan biosynthesis heparan sul-
fate” and “ERBB signaling pathway.” Heparan sulfate
(HS) is formed by unbranched chains of disaccharide re-
peats which play roles in cancer initiation and progres-
sion [72]. Interestingly, the expression of HS
proteoglycans increases in PC [73] and related mole-
cules, such as hyaluronic acid, are important therapeutic
targets in PC [74, 75]. ERBB signaling is important both
in PC initiation and as a therapeutic target [76].
The enrichment analysis indicates that urate levels, de-

pression, and body mass index—three GWAS traits pre-
viously reported to be associated with PC risk—were
enriched in our prioritized gene set. Urate levels have
been associated with both PC risk and prognosis [77,
78]. In addition, patients with lower relative levels of
kynurenic acid have more depression symptoms [79].
PC is one of the cancers with the highest occurrence
of depression preceding its diagnosis [80]. Further-
more, body mass index has been previously associated
with PC risk in diverse populations [81–83] and it

has been suggested that increasing PC incidence may
be partially attributed to the obesity epidemic. Insulin
resistance is one of the mechanisms possibly under-
lying the obesity and PC association, through hyperin-
sulinemia and inflammation [84].
The post-GWAS approach used has limitations that

should be addressed in future studies. For example, our
study has a relatively small sample size, some imbalances
regarding gender and geographical areas, and the Hi-C
maps that we used have limited resolution (40 kb). To
account for population imbalances, regression models
were adjusted for gender and for country of origin, as
well as for first five principal components. The study of
a European-only population allows reducing the popula-
tion heterogeneity not only at the genetic but also at the
non-genetic level. This is particularly advantageous given
the novel nature of the analysis performed here and the
relatively small sample size of our study. More so, LMI
is based on both the summary statistics and LD struc-
ture; therefore, it was important to test its validity for
the first time in a more homogeneous population, with
individuals sharing a more consistent LD pattern. It is
now warranted to extend this approach to more
generalizable multi-ethnic populations.
Our study has many other strengths: a standardized

methodology was applied in all participating centers
to recruit cases and controls, to collect information,
and to obtain and process biosamples; state-of-the-art
methodology was used to extend the identification of
variants, genes, and pathways involved in PC genetic
susceptibility. Most importantly, the combination of
GWAS, LMI, and 3D genomics to identify new vari-
ants is completely novel and has proven crucial to re-
fine results, reduce the number of false positives, and
establish whether borderline GWAS p value signals
could be true positives. These three strategies, to-
gether with an in-depth in silico functional analysis,
offer a comprehensive approach to advance the study
of PC genetic susceptibility.

Conclusions
We present a novel multilayered post-GWAS assessment
on genetic susceptibility to PC. We showed that the
combined use of conventional GWAS (1D) analysis with
LMI (2D) and 3D genomic approaches allows enhancing
the discovery of novel candidate variants involved in PC.
Importantly, several of the new variants are located in
genes relevant to the biology and function of acinar and
ductal cells.
This multi-step strategy, combined with an in-depth in

silico functional analysis, offers a comprehensive ap-
proach to advance the study of PC genetic susceptibility
and could be applied to other diseases.
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