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ABSTRACT

Chromosome conformation capture (3C) technolo-
gies measure the interaction frequency between
pairs of chromatin regions within the nucleus in a cell
or a population of cells. Some of these 3C technolo-
gies retrieve interactions involving non-contiguous
sets of loci, resulting in sparse interaction matrices.
One of such 3C technologies is Promoter Capture Hi-
C (pcHi-C) that is tailored to probe only interactions
involving gene promoters. As such, pcHi-C provides
sparse interaction matrices that are suitable to char-
acterize short- and long-range enhancer–promoter
interactions. Here, we introduce a new method to re-
construct the chromatin structural (3D) organization
from sparse 3C-based datasets such as pcHi-C. Our
method allows for data normalization, detection of
significant interactions and reconstruction of the full
3D organization of the genomic region despite of the
data sparseness. Specifically, it builds, with as low as
the 2–3% of the data from the matrix, reliable 3D mod-
els of similar accuracy of those based on dense in-
teraction matrices. Furthermore, the method is sen-
sitive enough to detect cell-type-specific 3D organi-
zational features such as the formation of different
networks of active gene communities.

INTRODUCTION

Chromatin within the nucleus is organized into higher or-
der structures that emerge at different genomic scales, from
chromosome territories (at tens of megabases scale), active
and inactive chromatin domains (at few megabases scale)
(1), self-interacting domains or TADs (at hundreds of kilo-
bases scale) (2,3,4) and long-range chromatin loops between
regulatory elements (at tens of kilobases scale). This multi-

scale organization has a direct impact on many biological
processes, such as gene regulation, DNA replication and cell
differentiation (5,6,7). Indeed, genome structure typically
reflects cell-type-specific differences in the transcription pat-
tern, and it is frequently rewired upon cell state changes and
disease onset (8). Thus, investigating the principles shaping
chromosome three-dimensional (3D) structure is pivotal to
shed light into the relationship between genome structure
and function.

Several experimental techniques are available to examine
chromatin organization (9). Amongst them, molecular bi-
ology methods, such as chromosome conformation capture
(3C) and its derivatives are widely used (10). These exper-
iments retrieve information about the frequency of inter-
action between loci in single (11,12,13) or in populations
of thousands to millions of cells and have been designed to
analyse the chromatin landscape at different genomic scales
(1,14,15,16). For example, some cell population-based ex-
periments allow the retrieval of unspecified interactions in
the whole genome (e.g. Hi-C (1), Micro-C (14), GAM (15)
and SPRITE (16)). Complementarily, other 3C-based ex-
periments are tailored to capture interactions centred on a
specific locus with the rest of the genome (e.g. 4C (17) and
multi-contact 4C (MC-4C) (18)) or on sets of dispersed loci
in the genome, such as loci enriched for a specific protein
(HiChIP) (19) or loci harbouring gene promoters (pcHi-
C) (20). Each class of 3C-based experiments provide differ-
ent but complementary insights on particular aspects of the
genome organization, and their analysis is dependent on the
experimental genomic resolution and on the inherent tech-
nical biases of each experimental procedures.

A variety of physics- and data-driven approaches for
genome 3D reconstruction have been developed to ex-
pose the principles shaping chromosome 3D structure
(21,22,23,24). For instance, data-driven (restraint-based)
modelling approaches as PGS (25,26), TADbit (27), 4Cin
(28) and TADdyn (29) have been implemented to re-
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construct ensembles of chromatin 3D models from cell
population-based datasets. Others are focused on the 3D
modelling of chromatin based on single-cell Hi-C data, like
manifold based optimization (30) and NucDynamics (31).
However, the majority of the data-driven methods are based
on interaction experiments that have been designed to re-
trieve dense contact information from a continuous set of
loci or the whole genome, whilst other interaction exper-
iments are characterized by data sparseness (e.g. HiChIP
or pcHi-C). As such, data-driven methods for sparse data
modelling are needed.

Generally, the interaction profiles of sparse 3C-based
datasets have specific properties that set them apart from
other 3C-like techniques characterized by a dense inter-
action profile. Indeed, protein or promoter capture-based
interaction profiles are heavily biased on interactions be-
tween captured fragments and devoid of interactions be-
tween non-captured fragments. This fact poses the ques-
tion of whether this lack of information prevents the 3D
reconstruction of the whole loci of interest and its analy-
sis, or whether it is sufficient to allow for accurate 3D mod-
elling. To answer this question, we have implemented a new
method, which is tailored to integrative modelling and anal-
ysis of sparse 3C-based datasets. We have also validated
the procedure comparing the resulting reconstructed mod-
els with available dense experimental datasets, unveiling that
the 3D chromatin organization can be well recovered by in-
terrogating only a small percentage of loci. Additionally,
we have designed new tools to facilitate a robust differen-
tial analysis of the resulting models and showcased their
usability in comparative analyses using the �-globin locus
as a test case. Interestingly, comparing different cell-types,
we unveiled that the �-globin locus in cord-blood Erythrob-
lasts (cb-Ery), where its foetal and adult �-globin genes are
highly expressed, is hierarchically organized in a 3D net-
work of active gene communities that follows an expression
gradient.

MATERIALS AND METHODS

Experimental datasets

Structural data were obtained from publicly available 3C-
based chromatin interaction experiments of GM12878 cells
(Hi-C GEO: GSE63525 and pcHi-C ArrayExpress: E-
MTAB-2323) (6,32), and cord-blood derived Erythrob-
lasts (cb-Ery), naive CD4+ T-cells (nCD4), and Monocytes
(Mon) (pcHi-C EGA: EGAS00001001911) (33).

Hi-C datasets processing. The reads for each replicate were
mapped onto the GRCh38 reference genome, filtered and
merged using TADbit with default parameters (27). Then,
starting from the merged filtered fragments, the genome-
wide raw interaction maps were binned at 5 kilo-base (kb)
and normalized using OneD (34) as implemented in TAD-
bit (27).

pcHi-C datasets processing. For each experiment, the
reads were mapped onto the GRCh38 reference genome us-
ing TADbit (27) and were filtered applying the following fil-
ters: (i) self-circles, (ii) dangling-ends, (iii) errors, (iv) extra

dangling-ends, (v) duplicated reads and (vi) random breaks.
Next, we computed the reproducibility score to measure the
similarity between replicates from each pcHi-C dataset (35).
Then, for each cell-type, the different replicates from the
same experiment were merged into one dataset for further
analysis, making an exception with replicate ERR436029
from the GM12878 pcHi-C dataset (E-MTAB-2323), which
was discarded due to a clearly low reproducibility score
when compared with the rest of the replicates (average of
0.24 with the other replicates as compared to the average
of 0.84 obtained between the other replicates). Using the
merged filtered fragments, the genome-wide raw interaction
maps of each cell-type were binned at 5 kb and normalized
using the PRoportion of INTeraction approach (PRINT,
next section).

Sparse data normalization PRoportion of INTeraction ap-
proach (PRINT). PRINT, a multi-stage normalization
procedure, weighs each pair of interacting bins with the
same philosophy as the visibility approach for Hi-C (36).
Starting from a raw interaction matrix as input, PRINT first
transforms the raw interaction between two bins (i and j)
into a percentage of interaction with respect to the rest of
the genome as:

valuei j = binij∑
rowi + ∑

row j − bini j

where (binij) represent the number of times in which bin i
and j interact, and

∑
rowi and

∑
rowj are the sum of all the

interactions of bins i and j, respectively, with all the genome
(self-interactions included). Then, the non-baited interac-
tions (that is, those bins containing only pcHi-C off-target
reads) are filtered out.

PRINT assessment. Using the benchmarking datasets de-
scribed above, each stage of PRINT normalization (raw
pcHi-C (pcHi-C-raw), pre-normalized pcHi-C (pcHi-C-
pre) and normalized pcHi-C (pcHi-C-norm)) was assessed
in comparison with the dense Hi-C interaction matrix by
calculating the Spearman’s rank correlation coefficient be-
tween interactions (binij) present in both interaction matri-
ces.

Reconstructed 3D genomic regions

Benchmarking datasets. We selected 12 genomic regions of
interest (Supplementary Table S1) as defined by Rao et al.
(6). This set of genomic regions were predicted to result in
reliable 3D models based on their >0.7 MMP scores (37)
(Supplementary Table S2). Briefly, MMP score takes into
account the interaction matrix size, the contribution of sig-
nificant eigenvectors in the matrix and the skewness and
kurtosis of the z-scores distribution of the matrix to assess
their potential for being modelled (37).

Comparative analysis datasets. We selected a genomic re-
gion around a locus of interest (here the �-globin) defining
it in a semi-automatic manner in each cell-type. Briefly, a
viewpoint, which may be constituted by a bin or a set of
bins of interest, is selected. Here, as viewpoint we used bins
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enclosing the active haemoglobin genes in cb-Ery (HBB,
HBD, HBG1 and HBG2). Then, all the other bins that in-
teracted with the viewpoint bins in the normalized genome-
wide interaction matrix were selected. Each of these bins
were then scored by their cumulative normalized interaction
frequency values with the viewpoint bins. From this set only
the top intra-chromosomal 200 bins were selected since,
by visual inspection, they were the bins spanning the ge-
nomic region that best enclosed the viewpoint. Then an un-
weighted interaction network was generated with the nodes
corresponding to the top 200 bins and the viewpoint bins.
Edges between nodes were added if their pairwise cumula-
tive normalized interaction frequency value was in the top
200 interacting bins. Then, a series of transformations were
applied to the unweighted interaction network: (i) nodes
that are highly proximal in 1D genomic resolution (closer
than 25 kb) were merged into one node; and (ii) poorly con-
nected nodes in the network that had <5 edges were filtered
out (average number of edges per node in Mon, nCD4 and
cb-Ery were 200, 214 and 214, respectively). The extreme
nodes in terms of genomic coordinates were selected from
the final unweighted interaction network to represent the
optimal genomic region around the viewpoint. Here, to per-
form comparative analysis, we defined the optimal genomic
region around the viewpoint as the broader genomic region
that enclosed all of the genomic coordinates identified in
each cell-type.

3D chromosome ensemble reconstruction from sparse
datasets

Model representation. Each genomic region was described
with a beads-on-string model based-on the previously im-
plemented protocols (29,38) without bending rigidity po-
tential. Thus, a chromosome was represented with N spher-
ical beads with diameter σ = 50 nm that contain 5 kb of
chromatin which determined the genomic unit length of
each model.

System set up for molecular dynamics. All simulations
were done using TADdyn (29). A generic random self-
avoiding walk algorithm was used to define the initial con-
formation of each model. The potential energy of each sys-
tem comprised the terms of the Kremer–Grest polymer
model (39) including chain-connectivity (Finitely Extensi-
ble Nonlinear Elastic, FENE) (40) and excluded volume
(purely repulsive Lennard-Jones) interactions. The initial
conformation was placed randomly inside a cubic simula-
tion box of size 1000 � centred at the origin of the Carte-
sian axis O = (0.0, 0.0, 0.0), tethered at the centre of the box
using a harmonic (Kt = 50.0 kBT/σ 2 and deq = 0.0 �) to
avoid any border effect and energy minimized using a short
run of the Polak–Ribiere version of the conjugate gradient
algorithm (41) to favour smooth adaptations of the imple-
mentations of the excluded volume and chain connectivity
interaction.

Encoding sparse data into TADdyn restraints. TADdyn
(29) empirically identifies the three optimal parameters
to be used for modelling based on a grid search ap-

proach. These are: (i) maximal distance between two non-
interacting particles (maxdist); (ii) a lower-bound cut-off to
define particles that do not frequently interact (lowfreq);
and (3) an upper-bound cut-off to define particles that
frequently interact (upfreq). All possible combinations of
the parameters were explored in the intervals lowfreq =
(−1.0,−0.5, 0, 0.5), upfreq = (−1, −0.5, 0, 0.5), maxdist =
(200, 300, 400, 500) nm and assessing each combination us-
ing distance thresholds to determine if two particles are in
contact (dcutoff) at 100,150, 200, 250, 300, 350, 450, 500
nm. For each of the combinations an ensemble of 100 3D
models was generated and the Spearman correlation coeffi-
cient between the contact map derived from each ensemble
and the experimental input interaction matrix was calcu-
lated. The top set of parameters for each region in each cell-
type were set for those resulting in the highest Spearman
correlation coefficient between the models contact map and
the input interaction matrix. To allow for a robust compar-
ative analysis (‘Materials and Methods’ section) the opti-
mal maxdist and the dcutoff parameters were selected based
on the consensus within the top optimal values for each
region in each cell-type. Optimal maxdist and the dcutoff
were set at 300 and 200 nm, respectively for the ensembles
of models reconstructed from the GM12878, cb-Ery, nCD4
and Mon pcHi-C datasets. Once the three optimal param-
eters were defined, the type of restraints between each pair
of particles was set considering an inverse relationship be-
tween the frequencies of interactions of the contact map and
the corresponding spatial distances. Non-consecutive parti-
cles with contact frequencies above the upper-bound cut-off
were restrained by a harmonic oscillator at an equilibrium
distance, whilst those below the lower-bound cut-off were
maintained further apart than an equilibrium distance by
a lower-bound harmonic oscillator. To identify 3D mod-
els that best satisfy all the imposed restraints, the optimiza-
tion procedure was then performed using a steered molecu-
lar dynamic protocol. A total of 1000 replicate trajectories
were generated for each genomic region and dataset. Each
of the 1000 replicate trajectories, the conformation at the
end of the steering protocol (when the target spring con-
stant and equilibrium distance are reached) was retained to
form the final ensemble of 1000 3D models. For the cb-Ery,
nCD4 and Mon datasets, to account for possible mirrored
3D models within the final ensemble of 3D models, each
ensemble was then clustered based on structural similarity
score as implemented in TADbit (27) and only the models
from the most populated cluster were retained for further
analysis.

Steered molecular dynamics protocol. A steered molecu-
lar dynamics protocol was used to progressively favour the
imposition of the defined set of restraints between non-
consecutive particles. For each restraint, the equilibrium
distance was set to 1 particle diameter (�). The spring con-
stant k(L,t) was weighted with the sequence-separation L
between the constrained beads as in TADdyn (29) to en-
sure that the steering process was not dominated by the tar-
get pairs at the largest sequence separation. However, here
the k(L,t) was smoothly ramped during the steering phase
from zero to its maximum value.
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3D chromosome ensemble reconstruction from dense datasets

The reconstruction of 3D models of genomic regions
from dense data followed the modelling protocol described
above. That is, a grid search approach was used to se-
lect for the optimal parameters to be used for modelling.
The optimal maxdist and the dcutoff parameters were se-
lected based on the consensus within the top optimal val-
ues for each region in the GM12878 pcHi-C dataset and
set at 300 and 200 nm, respectively. Using these parameters,
the final ensemble of 1000 3D models was obtained start-
ing from the computed 1000 steered molecular dynamics
trajectories.

3D chromosome ensemble reconstruction from Virtual pcHi-
C derived from dense datasets

A dataset of Virtual pcHi-C interaction matrices was pro-
duced starting from the normalized Hi-C interaction ma-
trices at 5 kb resolution (GM12878 cells GEO: GSE63525;
‘Materials and Methods’ section) and from the liftover
(https://genome.ucsc.edu/cgi-bin/hgLiftOver) list of cap-
tured fragments in pcHi-C GM12878 experiment (32). The
obtained Virtual pcHi-C interaction matrices comprised
only interactions (binij) in which either i or j enclose the
coordinates of a captured fragment. These interaction ma-
trices were used as input for the reconstruction of 3D mod-
els of genomic regions following the modelling protocol de-
scribed above. The optimal maxdist and the dcutoff param-
eters were set at 300 and 200 based on their consensus with
the parameters used in the GM12878 pcHi-C dataset. A to-
tal of 1,000 steered molecular dynamics trajectories were
computed, and for each trajectory the conformations sat-
isfying the majority of the imposed constraints within a ra-
dius of 2 � were retained.

3D chromosome ensemble reconstruction from ‘synthetic’
sparse dataset

We used a previously published ‘toy genome’ (37) (that is,
the ensemble of models accounting for the formation of
TAD-like architecture with low structural variability and
high noise levels that comprises a total of 626 particles
at the highest genomic resolution) to randomly select 10
sets of 22 loci from the toy genome contact map (or syn-
thetic interaction maps). These loci mimic pcHi-C to gen-
erate reliable sparse interaction matrices comprising only
interactions (binij) in which either i or j have been se-
lected as random captured loci. Each of these sets was then
randomly subsampled to generate ‘synthetic’ capture ma-
trices with 2, 4, 6, 10, 14 and 18 selected captured loci.
The obtained ‘synthetic’ capture matrices (70 in total) were
next used as input for the reconstruction of 3D models
of genomic regions following the modelling protocol de-
scribed above. The optimal maxdist and the dcutoff pa-
rameters were set at 500 and 200 nm. Using these pa-
rameters, a final ensemble of 100 3D models was recon-
structed for each ‘synthetic’ capture matrices comprising
the conformations that best satisfied the imposed restraints
in each of the computed 100 steered molecular dynamics
trajectories.

Analysis of the ensemble of 3D models

Contact map generation. For each ensemble of 3D models,
a contact map was calculated at 5 kb resolution to visualize
the frequencies of contacts in the ensemble. Two beads were
considered to constitute a contact when their euclidean dis-
tance was below 200 nm cut-off.

Matrix comparison. The degree of similarity between two
matrices was computed by comparing each cell from the
matrices, or a subset of them, using the Spearman’s rank
correlation coefficient (rs) as implemented in the Python li-
brary SciPy (42,43):

rs = 1 − 6
∑n

i=1

(
rbinxi

− rbinyi

)2

n
(
n2 − 1

)

where rbinxi
is the rank of the ith observation in one matrix,

rbinyi
is the rank of the ith observation in the other matrix

and n states for the number of pairs of observations.

Particle-to-particle median distance correlation (ppMdC).
For each ensemble of 3D models, we differentiated three sets
comprising particles enclosing the coordinates of: (i) cap-
tured loci (capture), (ii) non-captured loci (other) and (iii)
all the loci (all). For each of the pairs of particles in a given
set we calculated the particle-to-particle median distance.
Then, the degree of similarity between two given sets was
computed using the Spearman’s rank correlation coefficient
between their particle-to-particle median distances. The pp-
MdC measure varies between −1.0 and 1.0 for compar-
isons where the particle-to-particle median distances per-
fectly anti-correlate or correlate, respectively.

Hierarchical clustering of ensembles of 3D models. Multi-
ple ensembles of 3D models were merged in a unique set and
the models were structurally superpose using pairwise rigid-
body superposition. Next, the all-vs-all distance root-mean-
square deviation (dRMSD) was calculated and the resulting
dRMSD matrix was hierarchically clustered using Ward’s
sum of squares method (44) as implemented in the Python
library SciPy (42).

Cell-specific expression profile. Publicly available (33)
expression matrix containing the expression values
(log(FPKM)) of each gene in cb-Ery, nCD4 and Mon
cell-types was downloaded (GeneExpressionMatrix.txt.gz
at https://osf.io/u8tzp/). The three datasets had two or more
replicates each (two cb-Ery, five Mac and eight nCD4,
respectively), thus the average expression value of each gene
from all replicates was used. Then, a cell-specific per-bin
cumulative expression profile of the chr11:3 795 000–8
505 000 genomic region at 5 kb resolution was obtained
assigning the mean expression value of each gene (with
log(FPKM) > 0) to bins enclosing for the coordinates of its
transcription start site (coordinates retrieved from bioMart
(45)).

3D enrichment analysis. To study the spatial co-
localization of different regulatory elements and the
local levels of transcription (based on genome-wide ChIP-
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and RNA-seq data) around a selected locus (central view-
point) we implement a 3D enrichment analysis tool (named
‘radial-plot’) that allows the comparison of heterogeneous
sets of data from multiple data sources. Per each cell-type
a per-particle binarized chromatin marks profile in the
genomic region was generated starting from the ChIP-seq
signal of H3K27ac, H3K36me3, H3K4me1, H3K4me3,
H3K9me3 and H3K27me3 in cb-Ery, nCD4 and Mon
cell-types (33). A particle was considered enclosing for a
chromatin mark if a peak was present. Similarly, we also
constructed, for each cell-type, a per-particle binarized
transcription profile starting from the cell-specific expres-
sion profile (‘Materials and Methods’ section). Then the
3D spatial distribution of the 3D enrichment based on the
per-particle binarized profile around the chosen central
viewpoint was calculated as follow: (i) starting from the
central viewpoint an initial sphere with a radius of 200
nm was constructed; (ii) a series of spherical shells, that
occupied a volume equal the initial sphere, were added; (iii)
each model in the ensemble of 3D models a particle of the
binarized profile was assigned to a spherical shell based
on its relative distance to the central viewpoint; (iv) each
spherical shell we performed Fisher’s exact tests for 2 × 2
contingency tables comparing the amount of particles with
or without signal in the spherical shell with the outside
ones, and the log of the odd ratios was assigned to the shell
if the P-value < 0.01. The obtained 3D enrichment was
then visualized as a 2D radial plot.

Defining gene communities: co-occurrence of expressed
genes. For each ensemble of 3D models, based on
their cell-specific expression profile (‘Materials and Meth-
ods’ section), we defined the set of expressed particles
(log(FPKM) > 0). Then, considering this set of particles,
an all-versus-all pairwise distances matrix was calculated in
each model and hierarchically clustered using Ward’s sum
of squares method (44) as implemented in the Python li-
brary SciPy (42). Then the Calinski–Harabasz index (46),
as implemented in the Python library Scikit-learn (47), was
used to determinate the optimal number of clusters in each
dendrogram. Then, for each ensemble, a co-occurrence ma-
trix was generated considering the percentage of models in
which a pair of particles belonged to the same cluster. The
co-occurrence measure varies between 0 and 100, where 0
indicates absence of co-occurrence and 100 indicates a sta-
ble co-occurrence within the ensemble of 3D models. The
co-occurrence matrix was next hierarchically clustered us-
ing Ward’s sum of squares method (44) and communities of
co-occurrent active genes were identified using the Calinski
–Harabasz index analysis in the dendrogram.

Communities stability within the ensemble of models. To
assess the stability of each community within the ensem-
ble we introduced the inter-community co-occurrence score
that defines the degree of unstable compositions of a com-
munity. It is computed as the mean co-occurrence values
between each gene in a community and the rest of the com-
munities.

Distance between communities and within community. To
describe the spatial arrangement of each community for a

given ensemble of 3D models, we treated each community as
a rigid body and calculated its centre of mass (COM) in each
3D model of the ensemble. Per each model the all-versus-
all pairwise distances between the COMs of each commu-
nities were computed and the mean distance values assigned
as the typical distance between communities. Similarly, per
each model, we also calculated the distance of each particle
in a given community and the COM of its community. The
within community distance of a given particle was defined
by its mean value in the ensemble of 3D models.

RESULTS

Overall modelling strategy for sparse 3C data

Sparse 3C datasets provide information of interactions that
involve a limited number of specific loci in the genome.
pcHi-C, for example, provides a promoter-centred view of
chromatin interactions, helping to assign distal regulatory
regions to their target genes, thus providing insights on
how gene expression might be controlled (32,33,48) and
how disease-associated genomic variation could affect gene
regulation (49). The main limitation of these sparse tech-
nologies, however, is the scarcity of specialized tools for
their analysis. Here, we have developed an integrative 3D
modelling method capable of dealing with data sparsity,
enabling the analysis and interpretation of pcHi-C data,
and tested it on 12 distinct loci (Benchmarking datasets;
‘Materials and Methods’ section and Supplementary Table
S1). Our method follows an integrative modelling procedure
comprising five steps (50): (i) gather experimental data and
process them to obtain the input interaction matrix for the
modelling approach, (ii) represent the selected chromatin
regions using a bead-spring polymer model with a particle
size proportional to the genomic resolution of the exper-
imental data, (iii) transform the frequency of interactions
into spatial retrains, (iv) sample the conformational space
by steered molecular dynamics and (v) analyse and validate
the obtained ensemble of 3D models (‘Materials and Meth-
ods’ section and Figure 1A).

In this work, we gathered pcHi-C interaction data (‘Ma-
terials and Methods’ section), whose processing step is piv-
otal to minimize the experimental biases from the capture
protocol. To this end, we designed a multi-stage normal-
ization procedure named PRINT (‘Materials and Meth-
ods’ section). PRINT weighs each interaction by dividing
it by the cumulative whole-genome interaction frequencies
of both of the interacting bins, regularizing the interaction
patterns for the fact that captured loci are highly enriched in
contacts. It also removes the pcHi-C unspecific interactions
between non-probed bins. To test quantitatively the perfor-
mance of our normalization procedure, we compared each
of the normalization stages of the pcHi-C matrices with the
respective Hi-C matrices normalized with OneD in each of
the selected loci (34). The median correlation between bins
with interaction data in both matrices was 0.27 (±0.025 Me-
dian Absolute Deviation (MAD)) for raw pcHi-C matrices
(pcHi-C-raw), increasing to 0.44 (±0.032 MAD) with the
pcHi-C pre-normalization step (pcHi-C-pre) and reaching
0.60 (± 0.056 MAD) for fully normalized pcHi-C matrices
(pcHi-C-norm) (Supplementary Figure S1A), suggesting
that PRINT reduced successfully the target biases. Then,
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Figure 1. Integrative modelling for sparse datasets efficiently reconstructs the 3D organization of genomic loci. (A) Workflow of the integrative modelling
approach followed to build ensembles of chromatin 3D models from pcHi-C: (i) gathering the input interaction matrices with subsequent normalization
and filtering; (ii) representation of the chromatin fibre as a polymer with the particle size proportional to the resolution of the experiment; (iii) definition
of the scoring function used in the modelling procedure. Here, the scoring function comprises spatial restraints derived directly from the input interaction
data and from properties of the chromatin fibre (‘Materials and Methods’ section); (iv) sampling the conformational space by steered molecular dynamics
(‘Materials and Methods’ section); and (v) validation of the obtained ensemble of models and further analysis. Model images in all panels were created
with Chimera (74). (B) Representation of the input and output data from region 2 (Supplementary Table S1). The upper half of the panel refer to the
dense dataset (Hi-C), whereas the lower half refer to the sparse-datasets (pcHi-C). From left to right, the matrices of normalized interaction frequency
(‘Materials and Methods’ section) between each pair of bins, the contact matrix obtained from the ensemble of models of region 2 displays the percentage
of models in which two bins are found bellow the defined distance cut-off for the contact (‘Materials and Methods’ section), and the best model from the
ensemble as assesses by the scoring function. The colour bar shows the colour coding from low (blue) to high (yellow) interaction or contact frequencies
signal. (C) Comparison between model ensembles derived from sparse (pcHi-Cvirt and pcHi-C in grey and blue, respectively) and dense (Hi-C) datasets
assessed by the particle-to-particle median distance correlation (ppMdC; ‘Materials and Methods’ section). Three subsets of particles have been compared
given the enclosed loci: (i) captured loci (capture), (ii) non-captured loci (other) and (iii) all the loci (all). The grey dashed line indicates the median ppMdC
in the 12 analysed regions. (D) Element-wise Spearman correlation coefficients between the experimental Hi-C interaction matrices and the contact maps
derived from the model ensembles reconstructed from sparse data (pcHi-Cvirt and pcHi-C in grey and blue, respectively). The grey dashed line indicates
the median element-wise Spearman correlation coefficients in the 12 analysed regions.
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we represented the selected loci as a bead-spring polymer
model with a particle size set to 5 kb, taking into account
the restriction fragment lengths distribution in the bench-
marking datasets (Supplementary Figure S1B). Similarly to
TADbit (27) and TADdyn (29), to simulate the structural
conformation of genomic loci, we then transformed the in-
teraction frequencies associated with each bin pair into spa-
tial restraints (‘Materials and Methods’ section). The latter
were then imposed on the model using steered molecular
dynamics as sampling method in which the spring constant
associated to each restraint was ramped up as a function of
simulation time from zero to the value computed from the
interaction data. Lastly, we implemented new means for a
robust quantitative spatial differential analysis of genomic
loci.

Comparison between sparse and dense 3C-derived models

Dense 3C data have been extensively used to reconstruct the
3D organization of genomic loci (25,27,29,30). Here, to test
the reliability of our modelling approach, we used sparse
and dense datasets to build ensembles of models of the
same loci. Specifically, we applied our integrative method
for sparse data modelling to previously published pcHi-C
datasets of GM12878 cells (32) to reconstruct 3D model
ensembles of 12 distinct loci (Figure 1B and Supplemen-
tary Table S1) at a 5 kb resolution and compared them
with the corresponding ones reconstructed using Hi-C (6) at
the same genomic resolution. Additionally, to quantify the
effect of sparsity in the comparison independently of the
experimental protocol biases, we generated virtual pcHi-
C (pcHi-Cvirt) interaction matrices from the normalized
Hi-C datasets extracting the rows and columns probed in
the pcHi-C experiment (‘Materials and Methods’ section).
These virtual sparse matrices were then used to reconstruct
3D model ensembles of the selected loci.

The comparison between the sparse and dense derived
3D model ensembles revealed that it is possible to recover
most of the 3D organization of the dense dataset in spite
of the data sparsity (Figure 1C). Indeed, the all-versus-all
particle-to-particle median distance correlation (ppMdC)
between the sparse and dense derived 3D model ensembles
was 0.81 (±0.019 MAD) and 0.93 (±0.024 MAD) for both
pcHi-C and pcHi-Cvirt. Additionally, when comparing dis-
tances between particles that have both been captured in
the pcHi-C experiment (capture–capture), the ppMdC was
higher, reaching 0.91 (±0.054 MAD) for pcHi-C and 0.96
(±0.019 MAD) for pcHi-Cvirt. Consistently, when compar-
ing distances between non-captured particles with captured
particles (capture-other) or between non-captured particles
(other–other), the ppMdC indicated good agreement with
values of 0.84 (±0.03 MAD) and 0.95 (±0.02 MAD), and
0.81 (±0.02 MAD) and 0.93 (±0.02 MAD), respectively, for
pcHi-C and pcHi-Cvirt in both comparisons (Figure 1C).
The results indicate that the sparse derived ensembles of
3D models are a good representation of the dense experi-
ment and that the intrinsic experimental biases of the cap-
ture experiment only minorly affect the 3D reconstruction.
Indeed, comparing the whole contact map computed from
the 3D model ensembles derived from sparse data directly
with the whole experimental Hi-C interaction matrices re-

vealed that the reconstructed ensembles of models are in
good agreement with the dense experimental data having
an element-wise Spearman’s rank correlation coefficient of
0.73 (±0.02 MAD) and 0.86 (±0.02 MAD), for pcHi-C and
pcHi-Cvirt derived ensembles of models, respectively (Fig-
ure 1D). Overall, this suggest that the ensembles of models
reconstructed by our approach represent well the 3D orga-
nization of the selected genomic regions and, more impor-
tantly, recover the spatial arrangements of loci that are not
interrogated by the sparse experiment.

Reconstruction efficiency and data sparsity

To investigate the relationship between the reconstruction
efficiency and data sparsity, we simulated ‘synthetic’ capture
data. Briefly, we generated 10 different sets of ‘synthetic’
capture matrices that represent generic capture-like exper-
iments. We started from the contact matrix derived from a
3D toy-genome models ensemble that simulates roughly a
one Mb length genome (comprising more than 600 parti-
cles) with a TAD-like architecture, a high level of interac-
tion noise and low variability between models (37) (‘Mate-
rials and Methods’ section and Figure 2A). To build each of
the 10 ‘synthetic’ sets, we randomly selected 22 captured loci
and constructed 6 additional datasets of different sparsity
downsampling each set considering 2, 4, 6, 10, 14 and 18 loci
at a time, which mimics the distribution of captured probes
per Mb present in a typical genome-wide pcHi-C experi-
ment (Figure 2B). The constructed 70 capture-like matrices
thus aim to represent typical pcHi-C experimental design.
Using our integrative modelling method for sparse datasets,
we reconstructed, from each of the ‘synthetic’ capture ma-
trices in the dataset and their downsampled counterparts,
ensembles of 100 models and compared them with the ref-
erence toy-genome ensemble (Figure 2A). Independently of
the sets, the ppMdC between the sparse and dense model
ensembles increased with the number of captured particles
used in the modelling procedure reaching a median correla-
tion between sets of 0.82 (+/- 0.02 MAD with just 10 cap-
tures per Mb (Figure 2C). Notably, also with 4 and 6 cap-
tures per Mb the ppMdC reached 0.69 (±0.04 MAD) and
0.79 (±0.05 MAD) for four and six captures, respectively,
although with greater variation within sets. This suggests
that with 10 captured loci per Mb the uncertainty in the in-
put information is smaller, leading to more precisely recon-
structed models. Nevertheless, it is possible to reconstruct
good models also with fewer as four captured loci per Mb
although with a higher degree of variability. To quantify the
effect of data sparseness on model reconstruction, we next
measured the amount of input information used during the
modelling as the percentage of all possible interaction pairs
in the contact matrix (dense data input) and then assessed
it with the ppMdC. The results indicate that it was possible
for the majority of the sets (8/10) to reliably reconstruct the
reference toy genome (ppMdC > 0.8) with just 2–3% of all
the interaction pairs in the contact matrix used as restraints
(Figure 2D and Supplementary Figure S2). Taken together,
this analysis shows that it is possible to consistently recover
most of the 3D organization of a region of interest with 10
captured loci per Mb and with just 2–3% of all possible in-
teractions within a region captured.
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Figure 2. A low percentage of the interaction data is needed to produce reliable 3D reconstructions. (A) Workflow for the generation of 3D model ensembles
from ‘synthetic’ sparse datasets and comparison with the toy genome. A total of 70 ‘synthetic’ captured map were generated representing 10 different capture
experiments with different level of data sparsity (‘Materials and Methods’ section). Model images were created with Chimera (74). (B) Distribution of pcHi-
C probes per megabase windows in the genome (32). (C) Distribution of the ppMdC between the ‘synthetic’ models and the toy genome grouped by subsets
of captures per megabase. Box boundaries represent first and third quartiles, middle line represents median and whiskers extend to 1.5 times the interquartile
range. The 10 sets of captured positions are displayed with the colour code shown in the insert. (D) Relationship between the ppMdC and the percentage
of cells in the matrix used as restraints in each set represented with an exponential fit. The used colour code is the same as in (C), the grey line represents
the mean fit of all the datasets in analysis.
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Cell-type-specific organization of the �-globin locus

To illustrate the utility of our integrative approach in un-
veiling the differential organization of loci, we applied it
to the genomic region surrounding the �-globin locus in
three different cell-types (cb-Ery, nCD4 and Mon; ‘Materi-
als and Methods’ section) for which pcHi-C data are avail-
able (33). The selected genomic region contains five cod-
ing genes (HBB, HBD, HBG1, HBG2 and HBE1) with
developmental-stage-dependent expression (51), which is
finely regulated by a set of upstream enhancers known as
the locus control region (LCR) (52). This locus is known to
be in an active conformation in cb-Ery, where the LCR is
interacting mainly with expressed genes as HBB and HBD,
but not in nCD4 and Mon cells (33).

First, we defined the optimal region to be modelled based
on the interaction networks (in all cell-types) of the embry-
onic (HBG1 and HBG2) and adult (HBB and HBD) globin
genes with the rest of the genome at 5 kb resolution (‘Ma-
terials and Methods’ section). The defined region spanned
4.7 Mb of chr11 (chr11:3 795 000–8 505 000 base-pairs (bp))
comprising several neighbouring genes and multiple long-
range regulatory elements. By applying our integrative ap-
proach, we generated an ensemble of 1000 3D models for
each cell-type. The packing of the genomic region was sig-
nificantly different in each cell-types with median radius of
gyration of 248 ± 3, 242 ± 2 and 237 ± 2 nm for cb-Ery,
nCD4 and Mon, respectively (P-values < 9.1e−163 in each of
the pairwise comparisons using two-samples Kolmogorov–
Smirnov statistics) (Supplementary Figure S3A), with the
topology of the region in cb-Ery being less tightly packed
than in nCD4 and Mon. Each ensemble was then clustered
by structural similarity (27) and the models from the most
populated cluster were selected for the comparative anal-
ysis between cell-types. Clustering by dRMSD, confirmed
that the topology of the region was markedly different in
the three cell-types, with nCD4 and Mon folds being more
similar between each other than with cb-Ery (Figure 3B).
Particularly interesting is how the topology of the �-globin
locus (chr11:5 201 270–5 302 470) varied in the three cell-
types. Indeed, in Erythroblasts the �-globin locus appeared
to be located further from the main core of the region as
compared with naı̈ve CD4+ T cells and Monocytes, with
median distances between the centre of mass of the �-globin
locus of 286, 243 and 207 nm in cb-Ery, nCD4 and Mon, re-
spectively (P-values < 3.46e−101 in all the pairwise cell-type
comparisons; two-samples Kolmogorov–Smirnov statistic)
(Supplementary Figure S3B).

To characterize this further, we focused specifically on the
�-globin locus and quantified its spatial organization with
respect to hypersensitive site 3 (HS3) in the LCR, which
is forming an intricate network of interaction with the �-
globin genes (53) and is required for their activation (54). In
line with this evidence, in the 3D ensemble of models rep-
resenting cb-Ery cells, HS3 was significantly closer to HBB,
HBD, HBG1, HBG2 and HBE1 genes than in the 3D en-
semble of models representing nCD4 and Mon (P-values <
0.007, two-samples Kolmogorov–Smirnov test). In the lat-
ter two cell-types HS3 had a similar distance distribution
with HBB, HBD, HBG1 and HBG2 genes (P-values > 0.01,
two samples Kolmogorov–Smirnov test) (Figure 3C).

Performing 3D enrichment analysis of varied epigenetic
features and expression levels around HS3 (‘Materials and
Methods’ section), we unveiled a stark enrichment of active
chromatin marks (H3K27ac, H3K36me, H3K4me1 and
H3K4me3) and expression levels, and a clear depletion of
inactive marks (H3K9me3 and H3K27me3) in cb-Ery. This
3D functional signature could not be inferred from the 2D
genomic track (Supplementary Figure S4A) and was absent
in nCD4 and Mon, where active chromatin marks and tran-
script levels were depleted (Figure 3D and E; Supplemen-
tary Figure S5). Overall, our models recapitulated the dif-
ferent 3D organization of the �-globin locus and highlight
the existence of a specific 3D functional signature enriched
in active chromatin features that characterized the active �-
globin locus in cb-Ery.

Active gene communities in cb-Ery: a cell-type-specific 3D
signature

To examine whether the specific 3D functional signature of
the active �-globin locus influence its genomic neighbour-
hood, we investigated its long-range interaction patterns.
Comparative analysis of the distance profile between HBG2
(the most expressed gene in cb-Ery) and each of the se-
lected loci (chr11: 3 795 000–8 505 000 bp), revealed the ex-
istence of an intricate cell-type-specific network of spatially
proximal expressed genes (Figure 4A), in line with previ-
ous observations of transcribed genes co-localizing in space
(24,55,56,57,58). This network comprised distal transcribed
sites (even located at 1.4 Mb away as STIM1) that showed
cell-type-specific spatial proximity. Indeed, HBG2 in cb-Ery
was in closer proximity with all other expressed loci of the
genomic neighbourhood than in nCD4 and Mon (Figure
4B).

To further characterize the cell-type-specific spatial dis-
tribution of these transcribed loci, we clustered their rela-
tive distances within the ensembles of 3D models and iden-
tified communities of expressed genomic loci (Figure 4C–
E and ‘Materials and Methods’ section). Then, we quanti-
fied the amount of times a given community of expressed
genomic loci occurred within the ensembles of 3D mod-
els (i.e. the co-occurrence score, ‘Materials and Methods’
section) and used this quantification as a proxy to define
the ‘community stability’. This analysis revealed the exis-
tence of highly variable communities of expressed genomic
loci that followed a cell-type-specific segregation in the 3D
space. Interestingly, the organization of these communities
was overall more stable in cb-Ery than in nCD4 and Mon,
where less defined communities were identified. Indeed, as
assessed by the mean inter-community co-occurrence scores
(‘Materials and Methods’ section), the cb-Ery network was
characterized by the presence of four stable communities
(‘Materials and Methods’ section and Table 1). Whilst the
nCD4 network was formed by three communities with over-
all low co-occurrence (although community 2 in this net-
work showed a stability in line with the communities in the
cb-Ery network), and the Mon network formed by only
two unstable communities (‘Materials and Methods’ sec-
tion and Table 1). Overall, the results highlight the pres-
ence of more defined 3D communities of expressed genes
in cb-Ery as compared to nCD4 and Mon, suggesting that
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Figure 3. Cell-type-specific organization patterns of the �-globin locus. (A) �-globin locus in cb-Ery, nCD4 and Mon cell-types. From left to right: repre-
sentation of the contact matrix derived from each of the model ensembles colour-coded from low (blue) to high (yellow) contact frequency (columns filtered
due to low interaction data are coloured grey); zoom in of the �-globin locus in the matrix; best model from ensemble as assessed by the scoring function;
zoom up of the �-globin locus in the model. Models are represented as a tube with thickness proportional to the cell-type expression profile (‘Materials
and Methods’ section), the regulatory elements and genes in the �-globin locus are coloured as follow: HBB and HBD in red, HBG1 and HBG2 in green,
HBE1 in yellow, LCR in blue and 3’HS1 and HS5 in orange. Model images were rendered with the Chimera visualization software (74). (B) Clustering
tree (see ‘Hierarchical clustering of ensembles of 3D models’ section in Chromatin ensemble 3D analysis) of cb-Ery (purple), nCD4 (orange) and Mon
(pink) model ensembles. (C) Cell-type-specific distance distributions between the particle containing HS3 site of the LCR and the �-globin genes (HBB,
HBD, HBG1, HBG2, and HBE1, colour coded as in (A)) as observed in the ensemble of models. Box boundaries represent first and third quartiles, middle
line represents median, and whiskers extend to 1.5 times the interquartile range (two-samples Kolmogorov–Smirnov test, asterisk indicate P < 0.007).
(D) Radial plot showing the 3D enrichment around HS3 (‘Materials and Methods’ section). Each circumference shows the enrichment or depletion of
features around HS3 on layers (up to 560 nm away from HS3) of non-overlapping volumes equal to the one of the initial sphere with radius of 200 nm. The
colour bar shows the colour coding from highly depleted (blue) to highly enriched (red) features. (E) The representative 3D model of each of the ensembles
(cb-Ery, Mon and nCD4) is represented as a tube and colour-coded by the 3D enrichment analysis of H3K27ac (from highly depleted in blue to highly
enriched in red) around HS3 (represented as a light blue sphere).
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Figure 4. Communities of active genes as a cell-type-specific 3D signature in cb-Ery. (A) Line plot of the mean distances between the TSS of HBG2 (focus
point, blue vertical line) and all other particles in the genomic region (chr11:3 795 000–8 504 999 bp) for cb-Ery (purple), nCD4 (orange) and Mon (pink) as
calculated in each model ensembles. Error bar, indicating one standard deviation, is displayed for particles enclosing a transcribed gene (in at least one cell).
The grey dashed line indicates 200 nm cut-off used in the analysis (‘Materials and Methods’ section). (B) Cell-type-specific distance distribution between
particles enclosing the HBG2 gene and all transcribed genes in the genomic region (chr11:3 795 000–8 504 999 bp) for cb-Ery (purple), nCD4 (orange),
and Mon (pink) as calculated in each model ensembles. Box boundaries represent first and third quartiles, middle line represents median, and whiskers
extend to 1.5 times the interquartile range (two-samples Kolmogorov–Smirnov test, asterisk indicate P-values < 7.5e−6). (C–E) Hierarchical clustering
of each genes based on the co-occurrence analysis (‘Materials and Methods’ section) in cb-Ery (C), nCD4 (D), and Mon (E). Co-occurrence value range
from 0 (low, dark blue) to 100 (high, bright yellow). In each hierarchical tree the communities are labelled at their root branch. Per each gene the relative
expression (log(FPKM) is shown in a scale of reds from 0 to 5. (F) Hierarchical clustering of the distances between the communities defined in cb-Ery
(‘Materials and Methods’ section). Distance values are coloured in the matrix from dark blue to bright yellow and the average expression in log(FPKM)
per community is coloured by ranking from lowest (lightest) to highest (darkest) in three different shades of red. (G) Relationship between gene expression
in log(FPKM) and the median distance of the gene particles to the centre of mass of its own community in cb-Ery ensemble of models (‘Materials and
Methods’ section). Purple line denotes the linear regression fit, the shading around the regression line represents the confidence interval, each community
is represented with different symbols (circle community 1; inverse triangle community 2; square community 3; and ex community 4).
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Table 1. Communities stability assessment

Cell Community

Mean
inter-community

co-occurrence

Average
inter-community

co-occurrence per cell

cb-Ery 1 2.96 3.06
2 4.90
3 0.54
4 3.85

nCD4 1 11.49 9.16
2 3.83
3 12.17

Mon 1 10.33 10.33
2 10.33

Description –– Cell: the cell-type data used to reconstruct the chromatin;
Community: the defined communities by Ward’s clustering; Mean inter-
community co-occurrence: communities stability score as defined in ‘Ma-
terials and Methods’ section; Average inter-community co-occurrence per
cell: average mean inter-community co-occurrence value of all the commu-
nities in each of the cells.

the co-occurrence of these segregated communities within
an ensemble of possible folds is part of the cell-type-specific
3D signature.

Next, we investigated whether the stability of the 3D com-
munities of expressed genes in cb-Ery could be related to
the high levels of expression of the �-globin genes (highest
as HBG2 with 10.86 FPKM, whilst the mean expression of
all the other expressed genes in nCD4 and Mon was 2.45
and 2.10 FPKM, respectively). Clustering the distance dis-
tribution between the centres of mass of each community
in cb-Ery (Figure 4F) revealed a clear hierarchical organi-
zation with the most expressed community, which included
the highly expressed �-globin locus (Supplementary Table
S3), located in the centre, and the least expressed commu-
nity in the periphery. This pattern was not present in nCD4,
and impossible to address in Mon with just two communi-
ties (Supplementary Figure S6A and B). This suggests a hi-
erarchical organization in cb-Ery, in which the location in
space of each of the communities and their levels of expres-
sion are related. Surprisingly, this hierarchy was also overall
present at the community level in cb-Ery, where the distance
between each gene to the centre of mass of the community
and its expression were negatively correlated (CC: −0.55,
P-value = 0.002; Figure 4G). This suggests the formation
in cb-Ery of a gradient of expression within the community
were the most expressed genes are located in the centre of
their communities and the less expressed ones are preferen-
tially located in the periphery in line with the organization
previously observed for the alpha-globin locus (24). This
overall community organization was not evident in nCD4
and Mon (Supplementary Figure S6C and D), thus suggest-
ing that the high expression of the �-globin loci in cb-Ery
could be associated with the establishment of a hierarchical
organization in the loci.

DISCUSSION

Here, we have introduced an integrative modelling method
for the 3D reconstruction, analysis and interpretation of
sparse 3C-based datasets such as pcHi-C. We also demon-
strate its usability in the comparative 3D analysis of ge-

nomic regions using the �-globin locus as an example,
showing that our method can detect cell-type-specific 3D
organizational features within genomic regions that can
lead to several important implications on the relationship
between genomic function and spatial genome organiza-
tion, such as the expression dependent organization of ac-
tive loci.

Generally, the analysis and interpretation of sparse 3C-
datasets is not trivial and specialized analytical tools
are required. In the case of pcHi-C, the available tools
(ChiCMaxima, Chicago, Chicdiff, Gothic, HiCapTools
(59,60,61,62,63)) are mainly focused on the implementation
of normalization strategies to reduce the impact of non-
biological biases and on strategies to detect interaction be-
tween captured loci. Conversely, the integrative modelling
method presented in this study has been designed for the
analysis and interpretation of sparse 3C-datasets in their
third dimension, allowing for data normalization, detection
of significative interaction, and most importantly, the recov-
ery of the full structural organization of a genomic region
despite of the data sparseness.

Indeed, here we extensively tested our procedure by com-
paring models reconstructed directly from sparse and dense
datasets, showing that 3D models reconstructed by the in-
tegrative modelling method for sparse data modelling are a
good representation of the dense experiment. In fact, model
reconstruction is only minorly affected by the intrinsic ex-
perimental biases of the capture experiment. Additionally,
and most importantly, our model procedure reproduces re-
markably well the whole 3D organization of the selected ge-
nomic regions even recovering the organization of loci that
are not included as input restraints and are not readily ob-
servable in the sparse experiment.

Next, to assess whether the 3D reconstructed models
were not only a bona fide representation of models based
on Hi-C datasets, we used a ‘synthetic’ toy genome with
known 3D organization (37) and proved that we can effi-
ciently model sparse pcHi-C-like datasets using as few as 2–
3% of all possible interaction data. Importantly, this quan-
tification highlights how the degree of sparseness of the data
is related to the efficiency of the 3D reconstruction process
and provide a general guideline for sparse data modelling.
In light of this, we speculate that our integrative approach
could easily be applied to different type of 3C datasets with
similar sparseness. For example, protein-centric chromatin
conformation method such as HiChIP (19) could be used as
input experiment to reconstruct the chromatin folding, as-
suming that the protein-capture biases of this type of exper-
iments are similar to the promoter-capture biases observed
in the pcHiC experiments.

Finally, to illustrate the utility of our integrative ap-
proach, we applied it to the �-globin locus, whose 3D or-
ganization has been extensively studied (51,53,64,65,66).
We investigated this locus in three different cell-types (cb-
Ery, nCD4 and Mon) and performed a comparative analy-
sis between them. In agreement with previous studies (33),
our models show that the topology of the �-globin lo-
cus varies in the three cell-types owing to their differen-
tial expression. Interestingly, our models also unveil that
the globin HBG2 gene is embedded in an epigenetically ac-
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tive and highly transcribed neighbourhood in cb-Ery giv-
ing rise to a locus-specific 3D functional signature. This
functional signature is absent in the models of other cell-
types (nCD4 and Mon), where the locus is not expressed.
We also show that this cell-specific organization, not only
occurs proximally to the �-globin genes but also involves
loci located at longer genomic distances (more than 1 Mb
away). Indeed, our 3D comparative analysis unveiled the
existence of an intricate cell-type-specific network of spa-
tially proximal expressed genes that forms gene commu-
nities that are segregated in the 3D space in a cell-type-
specific fashion. The identified communities are compat-
ible with the formation of chromatin foci in which tran-
scribed genes co-localize as a general mechanism to or-
ganize gene transcription (24,55,56,57,58,67). Interestingly,
we observed that the co-occurrence within the ensemble of
models of the identified cell-type-specific communities is
cell-type dependent, with the cb-Ery communities network
formed by more persistent communities than the nCD4 and
Mon community networks. This suggests that also the de-
gree of co-occurrence of the communities within the ensem-
ble is an important feature for the identification of a cell-
type-specific 3D signature. Additionally, we observed that
in cb-Ery, where the �-globin genes are highly expressed, the
communities present an overall hierarchical spatial organi-
zation, both between and within communities. This topol-
ogy is dependent on the level of transcription with highly ex-
pressed entities (entire community or specific gene within a
community) located in the core of the hierarchical 3D orga-
nization and low expressed entities found at the periphery.
We hypothesize that the observed communities could repre-
sent cell-type-specific transcription factories (24,67,68,69)
or phase-separated foci (70,71,72) organized following a
gradient of transcription with high concentration of nascent
transcripts and macromolecular protein complexes in the
core of the assemblies that create a ‘sticky’ environment for
the less expressed peripheral loci. This hierarchical organi-
zation is only marginally present in nCD4 and Mon, sug-
gesting that it contributes to the cell-type-specific 3D signa-
ture characterizing the �-globin region in cb-Ery. However,
the long-range interactions between the active �-globin lo-
cus and other active gene loci have been seen to be not de-
pendent on the process of ongoing transcription or on the
binding of RNAPII to regulatory elements (73), suggesting
that the observed communities’ organization is more likely
dependent on high concentrations of other macromolecu-
lar protein complexes in the ‘sticky’ core of the hierarchical
3D organization.

In summary, we have shown that sparse datasets like
pcHi-C can be effectively used to model in 3D the spatial
conformation of genomic domains. The resulting models re-
tain most of the genomic region organization and recover
also the organization of loci that are not readily observ-
able in the sparse experiment. Importantly, this is achiev-
able with a very small percentage (∼2–3%) of all possi-
ble interaction data in the genomic region. Additionally,
our study not only provides a novel approach for sparse-
data 3D modelling but also introduces new tools for the
comparative analysis of genomic regions. Thus, it will aid
the discovery of cell-type-specific 3D signatures and help
deciphering complex mechanism underlying the cell-type-
specific 3D genome organization.
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24. Baù,D., Sanyal,A., Lajoie,B.R., Capriotti,E., Byron,M.,
Lawrence,J.B., Dekker,J. and Marti-Renom,M.A. (2011) The
three-dimensional folding of the alpha-globin gene domain reveals
formation of chromatin globules. Nat. Struct. Mol. Biol., 18, 107–114.

25. Tjong,H., Li,W., Kalhor,R., Dai,C., Hao,S., Gong,K., Zhou,Y.,
Li,H., Zhou,X.J., Le Gros,M.A. et al. (2016) Population-based 3D
genome structure analysis reveals driving forces in spatial genome
organization. Proc. Natl Acad. Sci. U.S.A., 113, E1663–E1672.

26. Hua,N., Tjong,H., Shin,H., Gong,K., Zhou,X.J. and Alber,F. (2018)
Producing genome structure populations with the dynamic and
automated PGS software. Nat. Protoc., 13, 915–926.

27. Serra,F., Bau,D., Goodstadt,M., Castillo,D., Filion,G.J. and
Marti-Renom,M.A. (2017) Automatic analysis and 3D-modelling of
Hi-C data using TADbit reveals structural features of the fly
chromatin colors. PLoS Comput. Biol., 13, e1005665.

28. Irastorza-Azcarate,I., Acemel,R.D., Tena,J.J., Maeso,I.,
Gomez-Skarmeta,J.L. and Devos,D.P. (2018) 4Cin: a computational
pipeline for 3D genome modeling and virtual Hi-C analyses from 4C
data. PLoS Comput. Biol., 14, e1006030.

29. Di Stefano,M., Stadhouders,R., Farabella,I., Castillo,D., Serra,F.,
Graf,T. and Marti-Renom,M.A. (2020) Transcriptional activation
during cell reprogramming correlates with the formation of 3D open
chromatin hubs. Nat. Commun., 11, 2564.

30. Paulsen,J., Gramstad,O. and Collas,P. (2015) Manifold based
optimization for single-cell 3D genome reconstruction. PLoS
Comput. Biol., 11, e1004396.

31. Stevens,T.J., Lando,D., Basu,S., Atkinson,L.P., Cao,Y., Lee,S.F.,
Leeb,M., Wohlfahrt,K.J., Boucher,W., O’Shaughnessy-Kirwan,A.
et al. (2017) 3D structures of individual mammalian genomes studied
by single-cell Hi-C. Nature, 544, 59–64.

32. Mifsud,B., Tavares-Cadete,F., Young,A.N., Sugar,R.,
Schoenfelder,S., Ferreira,L., Wingett,S.W., Andrews,S., Grey,W.,
Ewels,P.A. et al. (2015) Mapping long-range promoter contacts in
human cells with high-resolution capture Hi-C. Nat. Genet., 47,
598–606.

33. Javierre,B.M., Burren,O.S., Wilder,S.P., Kreuzhuber,R., Hill,S.M.,
Sewitz,S., Cairns,J., Wingett,S.W., Varnai,C., Thiecke,M.J. et al.
(2016) Lineage-specific genome architecture links enhancers and
non-coding disease variants to target gene promoters. Cell, 167,
1369–1384.

34. Vidal,E., le Dily,F., Quilez,J., Stadhouders,R., Cuartero,Y., Graf,T.,
Marti-Renom,M.A., Beato,M. and Filion,G.J. (2018) OneD:
increasing reproducibility of Hi-C samples with abnormal
karyotypes. Nucleic Acids Res., 46, e49.

35. Yang,T., Zhang,F., Yardimci,G.G., Song,F., Hardison,R.C.,
Noble,W.S., Yue,F. and Li,Q. (2017) HiCRep: assessing the
reproducibility of Hi-C data using a stratum-adjusted correlation
coefficient. Genome Res., 27, 1939–1949.

36. Imakaev,M., Fudenberg,G., McCord,R.P., Naumova,N.,
Goloborodko,A., Lajoie,B.R., Dekker,J. and Mirny,L.A. (2012)
Iterative correction of Hi-C data reveals hallmarks of chromosome
organization. Nat. Methods, 9, 999–1003.

37. Trussart,M., Serra,F., Bau,D., Junier,I., Serrano,L. and
Marti-Renom,M.A. (2015) Assessing the limits of restraint-based 3D
modeling of genomes and genomic domains. Nucleic Acids Res., 43,
3465–3477.

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/3/1/lqab017/6180124 by guest on 30 M

arch 2021



NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 1 15

38. Di Stefano,M., Rosa,A., Belcastro,V., di Bernardo,D. and
Micheletti,C. (2013) Colocalization of coregulated genes: a steered
molecular dynamics study of human chromosome 19. PLoS Comput.
Biol., 9, e1003019.

39. Kremer,K. and Grest,G.S. (1990) Dynamics of entangled linear
polymer melts: a molecular-dynamics simulation. J. Chem. Phys., 92,
5057–5086.

40. Rosa,A. and Everaers,R. (2008) Structure and dynamics of
interphase chromosomes. PLoS Comput. Biol., 4, e1000153.

41. Polak,E. and Ribiere,G. (1969) Note sur la convergence de méthodes
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