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Abstract

Gene expression, epigenetic states and topological conformation are
three fundamental aspects of genome organization that are tightly
regulated in space and time. Epigenetic states, protein occupancy and
chromatin modifications are mapped on linear chromatin and constitute
a mono-dimensional perspective of chromatin functional states.
Importantly, they are linked to the topological conformation of the
genome for proper spatiotemporal regulation of gene expression.
However, the characterization of the relationship between the genome-
wide occupancy of chromatin-associated factors, chromatin states and
genome three-dimensional (3D) structure is still elusive. For this
purpose, in this thesis, I investigate the role of histone H1 in genome
3D conformation and gene expression and present a novel
computational method to integrate chromatin interactions and factor

occupancy data with the goal of characterizing chromatin states in 3D.
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Resumen

La expresion génica, los estados epigenéticos y la conformacion
topolégica son tres aspectos fundamentales de la organizacion del
genoma, los cuales estan estrechamente regulados en el espacio y
tiempo. Los estados epigenéticos, la ocupacién de proteinas y las
modificaciones de la cromatina se estudian de forma lineal y constituyen
una perspectiva mono-dimensional de los estados funcionales del
genoma. Sin embargo, estos aspectos del genoma estan relacionados
con la su conformaciéon topoldgica para permitir la correcta regulacion
espaciotemporal de la expresiéon génica. Desafortunadamente, la
caracterizacion de la relaciéon entre la ocupacién en el genoma de
factores asociados a la cromatina, los estados de la cromatina y la
estructura 3D del genoma es todavia dificil de estudiar. En esta tesis, he
investigado la funcién de la histona H1 en la conformacion 3D del
genoma y en la expresiéon génica, y presento un nuevo método
computacional para integrar datos de interacciones de la cromatina con
datos de ocupaciéon de factores, con el objetivo de caracterizar los

estados de la cromatina en 3D.
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Preface

The vast majority of hereditary information necessary for the
development and function of eukaryotic organisms is stored within the
cell nucleus. All this information is encoded in large polymer of DNA
of about 2 m, which must be organized and compacted at multiple levels
to be accommodated in the confined space of the nucleus. Genome
organization solves such challenging topological problem, while at the
same time it provides the substrate for the correct execution of gene
expression programs at the right time, and in the right tissue and cell
type. The characterization of the mechanisms underlying how
chromatin is organized within the nucleus and how this three-
dimensional (3D) architecture is linked to gene regulation, cell fate
decisions, and evolution are major questions in cell biology. Topological
organization in the 3D space occurs through a hierarchy of structures
with increasing complexity, from nucleosomes and chromatin fibers, to
chromatin loops, domains, compartments and, finally, chromosome
territories. Recent technological developments in quantitative biology,
genomics and cell and molecular biology approaches are helping gaining
insights into the precise nature of genome topology and its regulatory
functions in gene expression and genome maintenance, in development

and disease (Bonev & Cavalli, 2010).

This thesis is composed of multiple chapters. In the introduction, we
review genome organization within the nucleus and its relationship with
genome function across different genomic scales. The introduction
encompasses main experimental and computational approaches for the

analysis and representation of chromatin 3D organization. Following,
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the core of the thesis is articulated in chapter 1 and 2 and presents the
results obtained in two projects of the candidate. In chapter 1, we
investigate the relationship between histone H1, genome architecture
and gene expression. In this study, the candidate has specifically
contributed by performing the analysis and 3D modeling of chromatin
conformation data. The rest of the experiments, performed by our
collaborators at the Jordan Lab (IBMB-CSIC), are also included in the
chapter for proper understanding of the results. In chapter 2, we present
a novel computational method to characterize chromatin states in 3D
by integrating chromatin interactions and protein occupancy data, and
we study the evolution of 3D chromatin states during stem cell
differentiation. The entirety of the Chapter 2 constitutes the main body
of work of the candidate. The thesis is ended with a conclusion chapter
highlighting the main contributions to the field of 3D genomics by the
candidate. Finally, annexes 1, 2, and 3 contain three published articles,
where the candidate specifically contributed by carrying out the

computational analyses related to genome 3D conformation.



Objectives

The global goal of this thesis is the exploration of the role chromatin-

associated factors in genome 3D organization within the cell nucleus.

This main goal has been addressed by three different projects or

objectives, which aim at:

1.

Studying the consequences of histone H1 variants depletion in
human breast cancer cells, to gain insights in the role of histone
H1 variants in gene expression, chromatin state and genome 3D

conformation (Chapter 1).

Developing of a novel and generalized computational tool that
integrates chromatin interactions and factor occupancy data
with genome structural data, to reveal the contribution of

chromatin-associated factors to genome topology (Chapter 2,

first half).

Applying our new approach to mouse embryonic stem cells
(ESCs) and neural progenitor cells (NPCs) to identify and to
study genome 3D chromatin state changes during stem cell

differentiation (Chapter 2, second half).
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INTRODUCTION

1. The DNA macromolecule: structure and
organization

Despite the incredible diversity characterizing life on Earth, the coding
instructions of all living organisms are written in the same language of
nucleic acids. In the middle of the XX century, biologists recognized
that, whatever its nature, the genetic material must (1) store large
amounts of instructions, for all the attributes and functions of an
organism, (2) replicate faithfully, to be transmitted to descendant cells
with great accuracy, and (3) encode a phenotype, translating into the
amino acid sequence of proteins.

The discovery of the double-stranded structure of DNA (Franklin &
Gosling, 1953; Watson & Crick, 1953; Wilkins, Stokes, & Wilson, 1953),
with its specific base pairing, provided an elegant model that helped to
explain how the DNA could store and transmit genetic information. It
was found that DNA consists of two complementary and antiparallel
strings composed of a large number of repeating units, called
nucleotides, joined together by phosphodiester linkages. FEach
nucleotide contains a pentose deoxyribose sugar, a phosphate group,
and a nitrogenous base. The phosphate group and the pentose sugar are
the same for all nucleotides and constitute the sugar-phosphate
backbone of the DNA molecule. Differently, there are two basic types
of nitrogenous bases: purines, that are adenine (A) and guanine (G), and
pyrimidines, which are cytosine (C) and thymine (T). Since bases are the

variable part of the molecule, they encode for genetic instructions. Also,



they are complementary in pairs: A pairs with T, and C with G. Their
pairing by hydrogen bonds allows for the stabilization of the two
polynucleotide chains, which have complementary sequences and thus
encode for the same biological information. Notably, the
complementarity of polynucleotide strands provided an elegant
molecular explanation for the ability of DNA to replicate faithfully into
two identical copies, and to translate instructions into a phenotype by
ultimately specifying the amino acid sequence of proteins. The two
strands of nucleotides wound around each other, with the sugars and
phosphates in the exterior and the bases in the interior. DNA can adopt
a number of different configurations, depending on the conditions in
which the molecule is placed and on its base sequence. The B-DNA
structure (Fig. 1a) is the most stable configuration for a random
sequence of nucleotides under physiological conditions, and most
evidence suggests that it is the predominant structure in cells. B-DNA
is an alpha helix, with a diameter of around 2 nm, and approximately 10
base pairs (bp) per 360-degree rotation of the spiral. Base pairs are 0.34
nanometer (nm) apart from one another, so one complete rotation of
the helix encompasses 3.4 nm. The spiraling of the polynucleotide
strands generates major and minor grooves, which are important for the
binding of proteins that regulate the expression of genes. B-DNA
structure confers advantages both for information accessibility and for

DNA packaging (Travers & Muskhelishvili, 2015).
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Figure 1. From the DNA macromolecule to the chromatin fiber.
(a) Diagrammatic representation of B-DNA structure. (b) Chromatin compaction
within the interphase nucleus occurs through a hierarchy of histone-dependent

interactions. The nucleosome is formed by ~147 bp of DNA wrapped around a
histone octamer core, composed of two copies of H2A, H2B, H3, and H4. Histone
tails are subject to hundreds of different histone post-translational modifications
(PTMs) that influence chromatin compactions. Nucleosomal arrays undergo short-
range interactions with neighboring nucleosomes to form compacted chromatin
fibers. Figure adapted from (Fyodorov, Zhou, Skoultchi, & Bai, 2018; Pierce, 2012).

2. The Genetic Code

Since the revelation of DNA structure, much research focused on how
genetic information is encoded, copied and translated. The
determination of the human genome reference was a milestone in
modern biology. The considerable challenge that derived was to identify
and annotate its functional DNA elements. Intriguingly, nearly 99% of

the ~3.3 billion nucleotides constituting the human genome does not



code for proteins (Lander et al, 2001). Furthermore, studies of
comparative genomics and genome-wide association studies (GWAS)
revealed that non-coding elements correspond to the majority of
mammalian-conserved and recently adapted regions, and to most of
trait-associated loci (Kellis et al., 2014). These findings indicate that
non-coding DNA harbors a rich array of functionally significant
elements. To better delineate them, the Encyclopedia of DNA
Elements (ENCODE) project aims to systematically map cell and tissue
repertoires of RNA transcription, chromatin modification and
structure, DNA methylation, transcription factors occupancy and
RNA-binding proteins, in human and mouse genomes. These data
enabled to assign biochemical functions to discrete, linearly ordered
sequence features covering around 80% of the genome. Such elements
specify either molecular products, like protein-coding genes and non-
coding RNAs, or biochemical activities with mechanistic roles in gene
regulation, like enhancers and promoters (Consortium et al., 2020).
Non-coding RNAs are transcribed RNA molecules that are not
translated into proteins, and modulate complex molecular and cellular
processes (P. Zhang, Wu, Chen, & Chen, 2019). Enhancers are 10-100
bp regions, target for transcription factors binding, that modulate
transcription of target genes in a cell type-specific manner and
independently of the enhancer’s relative distance. Promoters are ~100
bp protein binding regions upstream of transcription start sites (T'SSs)
of genes, associated to transcription initiation of the proximal gene
(Zabidi & Stark, 2016). Therefore, the past years have witnessed
enormous progress in our knowledge about transcriptional regulation,

and genome topological rearrangements emerged as an important player



in the communication between different DNA functional elements for

correct function of the genetic machinery.

3. Chromatin and epigenetics

Despite having the same linear sequence map, the genome of
multicellular organisms must produce different phenotypes in
specialized cell types. To do so, information on genome function and
gene regulation is also encoded in the way the DNA molecule is
condensed in the cell nucleus. To reach this condensed state, genomic
DNA in eukaryotic cells is folded up with proteins and RNAs to form
chromatin. Chromatin structure is dynamic and exerts profound control
over gene expression and other fundamental cellular processes. Indeed,
it must ensure to be made accessible for readout by the complex
machineries involved in gene transcription, DNA repair and DNA
replication.

Maintenance of cell identity during somatic cell division and modulation
of cell-type specific gene expression patterns is achieved thanks to the
transmission of epigenetic information. Epigenetics can be defined as
the study of molecules and mechanisms that can perpetuate alternative
gene activity states in the context of the same DNA sequence,
encompassing molecular signals peripheral to the DNA such as DNA
methylation or histone post-translational modifications (PTMs), as well
as gene regulatory signals such as 3D genome organization. Such
definition includes both mitotic inheritance of these signals and
inheritance across generations via direct replicative mechanisms or

indirect reconstruction of the signal in subsequent generations



(Bantignies, Grimaud, Lavrov, Gabut, & Cavalli, 2003; Fitz-James &
Cavalli, 2022; Margueron & Reinberg, 2010). The convergence of
genetic, biochemical, and cell biological observations have revealed that
chromatin epigenetic and architectural states dynamically control
genome function at multiple levels of chromatin organization, in normal
development (Cheutin & Cavalli, 2019; Ogiyama, Schuettengruber,
Papadopoulos, Chang, & Cavalli, 2018) and disease (Loubiere,
Martinez, & Cavalli, 2019; Sati et al., 2020).

3.1 Nucleosomes

The building block of chromatin is the nucleosome, which is formed by
~145-147 bp of DNA wrapped around a histone octamer core,
composed of two copies of H2A, H2B, H3, and H4 (Luger, Mader,
Richmond, Sargent, & Richmond, 1997). Nucleosomes are connected
by short segments of linker DNA into nucleosomal arrays, which
constitute the primary structure of chromatin (Fig. 1b). Linker histones,
such as H1 and its isoforms, bind linker DNA at the base of the
nucleosome, near the DNA entry and exit, and are involved in
chromatin compaction (Happel & Doenecke, 2009; Willcockson et al.,
2021). The amino-termini of core histones are flexible histone tails that
extend away from nucleosomal DNA. They interact with neighboring
nucleosomes or nuclear factors, and are the site of most PTM:s.

An important feature of chromatin is its accessibility, corresponding to
the degree at which nuclear macromolecules are able to physically
contact chromatin. This parameter is determined by the occupancy and

topological organization of nucleosomes and other chromatin-binding



factors that interfere with access to DNA. Since nucleosome and linker
histone occupancy and positioning, protein composition of
nucleosomes, and nucleosome chemical stability are dynamically
variable across the genome, they generate a continuum of DNA
accessibility levels that range from closed chromatin to permissive and
open chromatin. Pioneer factors are able to bind closed and condensed
chromatin, initiate remodeling and increase local accessibility.
Accessible chromatin allows transcription factors (TFs) to bind
internucleosomal DNA and initiate sequence-specific accessibility
remodeling to establish an open chromatin conformation, that in turn
allows for the binding of RNA polymerases or other chromatin-binding
factors. The landscape of accessibility dynamically changes in response
to external stimuli and developmental cues, so it represents a critical
determinant of chromatin organization and function (Klemm, Shipony,

& Greenleaf, 2019).

3.2 Chromatin fiber

Nucleosomal arrays undergo short-range interactions with neighboring
nucleosomes to form compacted chromatin fibers, where DNA is
packaged and coiled into a shorter and thicker fiber. For a long time, on
the basis of in vitro electron microscopy, nucleosomes were thought to
form arrays (often called the 30 nm chromatin fibers) with either
solenoid or zigzag shapes (Finch & Klug, 19706; Schalch, Duda, Sargent,
& Richmond, 2005; Tremethick, 2007). However, over the years several
orthogonal studies have questioned the biological relevance of the 30
nm chromatin fiber (Fussner et al., 2012; T. S. Hsiceh et al., 2020; Luger,
Dechassa, & Tremethick, 2012; Sanborn et al., 2015; Woodcock, 2005).



Nowadays, the most widely accepted idea is that in vivo chromatin is
not a stable and periodic structure, but a flexible, heterogeneously
organized and unevenly condensed granular chain that is packed
together at different concentration densities, with a diameter that ranges
from 5 to 24 nm (Cai et al., 2018; Eltsov, Maclellan, Maeshima,
Frangakis, & Dubochet, 2008; Ou et al., 2017). Furthermore, stochastic
optical reconstruction microscopy (STORM) has shown that at
nanoscale level nucleosomes assemble in discrete heterogenous groups
of varying sizes, called nucleosome clutches, in the interphase nuclei of
mammalian cells (Fig. 2a) (Ricci, Manzo, Garcia-Parajo, Lakadamyali, &
Cosma, 2015). Interestingly, large dense clutches are associated to
compact heterochromatin and include more linker histone H1, while
nucleosome-depleted regions correspond to active chromatin regions.
These evidences support the idea that modulation of compactness and
accessibility occurs also at the level of the chromatin fiber, is cell type-

specific and correlates with chromatin activity states.

3.3 Modulation of chromatin compaction

Chemical modifications to DNA and histone proteins form a complex
regulatory network that has profound implications for regulation of key
nuclear processes. Changes in nucleosome structure, stability and
dynamics affect the compaction of nucleosomal arrays into higher-

order structures, which influences how molecular complexes such as
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Figure 2. Snapshot of the state-of-the-art knowledge about the architecture of the
eukaryotic genome.

(a) Hierarchical chromatin structure. (b) Schematic Hi-C maps tepresenting
compartments as a plaid-pattern on top, and TADs as triangles along the diagonal
below. Loops at TAD borders appear as enriched punctuate signal at the upper corner
of some TADs. Stripes are consistent with the idea that contacts reflect a captured
moment of a dynamic process. Figure adapted from (Dogan & Liu, 2018; van Steensel &
Furlong, 2019).

the transcriptional and repair machineries interact with DNA and
chromatin (Bartke et al, 2010; Luger et al, 2012). Epigenetic
modifications refer to the complete repertoire across the genome of
these potentially heritable changes (Bernstein, Meissner, & Lander,
2007).

In higher eukaryotes, cytosine DNA methylation at CpG dinucleotides
is associated with gene silencing (Chodavarapu et al., 2010). Although
the precise relationship between DNA methylation and nucleosome
positioning remains poorly understood, methylated DNA presents
decreased flexibility and, thus, is less accessible for the transcriptional
machinery (Segal & Widom, 2009). Furthermore, the amino acid side

chains of core histones that compose the nucleosome are subject to



hundreds of different PTMs, including acetylation, methylation,
phosphorylation, and ubiquitination. Such modifications chemically
alter histones, they can be added and removed by enzymes, and thus
dynamically modulate DNA accessibility. It has become evident that the
enzymes responsible histone modifications function in a coordinated
pattern to control gene expression, supervising cell fate decisions and
differentiation (Margueron, Trojer, & Reinberg, 2005). Indeed, histone
modifications may recruit other enzymes and proteins, which in turn
recruit nucleosome remodeling complexes and, depending on the
specific case, activating or repressing complexes. Histone acetylation
contrasts nucleosome array compaction, resulting in an increase in
chromatin accessibility and enhanced RNA transcription (Bowman &
Poirier, 2015). It acts by reducing the positive charge of histones, thus
decreasing the strength of interaction between the negatively charged
DNA phosphate backbone and the positively charged histone residues
mainly located on histone tails. Moreover, acetylated lysine residues are
recognized by protein domains of nucleosome remodeling complexes
that favor chromatin accessibility and transcription. Specifically,
acetylation of histone 3 lysine 27 (H3K27) is generally associated to
both active enhancers and promoters (Z. Wang et al., 2008). Histone
methylation, instead, can have different effects depending on which
residue is modified. Methylation of histone H3 lysine 4 (H3K4) and H3
lysine 36 (H3K306) is associated with transcribed DNA. Specifically,
H3K4me3 marks transcription start sites (IT'SSs) and promoters of
active genes, it stimulates recruitment of the transcriptional and
spliceosomal machinery, and is antagonistic to DNA methylation. In
contrast, methylation of H3 lysine 9 (H3K9), H3 lysine 27 (H3K27),
and H4 lysine 20 (H4K20) generally correlate with repression.

10



Methylated H3K9 and H3K27 are bound by HP1 and Polycomb,
respectively, which mediate chromatin compaction. In pluripotent
embryonic stem cells, H3K27me3 and H3K4me3 mark the so-called
bivalent promoters of developmental genes, which result repressed in
absence of differentiation signals, while poised for timely activation.
During differentiation, lineage-specific gene repression and activation
are associated with the corresponding loss of H3K4me3 and
H3K27me3, respectively (Voigt, Tee, & Reinberg, 2013).

In addition to DNA and histone chemical modifications, a variety of
factors influences nucleosome positioning, and thus chromatin
compaction, such as DNA sequence preferences, ATP-dependent
nucleosome remodeling complexes, transcription factors (TFs) binding,
architectural chromatin proteins, Polycomb group proteins (PcG), and
histone composition (Segal & Widom, 2009). ATP-dependent
chromatin remodellers, such as SWI/SNF or ISWI, are large molecular
machines that use the energy of ATP hydrolysis to move, destabilize,
eject, or restructure nucleosomes along the DNA (Clapier & Cairns,
2009; Gangaraju & Bartholomew, 2007). TFs can influence nucleosome
positioning by competing with them for access to DNA, depending on
their relative affinities to the underlying DNA and on their
concentrations (Segal & Widom, 2009). Architectural chromatin
proteins (ACPs) are abundant nuclear proteins that interact with
nucleosomes, influence the three-dimensional arrangement of
nucleosomal arrays and orchestrate higher-order chromatin
organization through the establishment of interactions between
regulatory elements across multiple spatial scales (Gomez-Diaz &
Corces, 2014). Their role in 3D genome organization will be discussed

in chapter XXX. The best characterized architectural protein in

11



vertebrates is CCCTC-binding factor (CTCF), which is located at
55,000-65,000 sites in the genome of mammalian cells, mainly located
in intergenic regions, introns and exons, and near promoters (T. H. Kim
et al., 2007). CTCF binding sites might both insulate different genomic
regions, and facilitate enhancer-promoter interactions in a cell type
specific manner (Gomez-Diaz & Corces, 2014).

PcG proteins are evolutionarily conserved chromatin-modifying factors
that are essential for maintaining epigenetic cellular memory of
transcriptional repressed state, and dynamically regulating cellular
identity and cell differentiation through epigenetic repression of key
developmental regulatory genes. They have been involved in a plethora
of cellular processes and have been discovered to orchestrate chromatin
architecture at multiple levels (Di Croce & Helin, 2013;
Schuettengruber, Bourbon, Di Croce, & Cavalli, 2017). At the scale of
the linear genome, PcG proteins modify histones and local chromatin
compaction. Even though multiple pathways and mechanisms
contribute to recruit PcG proteins in Drosophila and vertebrates (Aranda,
Mas, & Di Croce, 2015), it is known that in vertebrates hypomethylated
CpG islands (CGlIs) and long non-coding RNAs (IncRNAs) play a
critical role in PcG recruitment, which catalyzes H3K27 trimethylation.
Once recruited to their targets, PcG proteins employ diverse
mechanisms to regulate their target genes. However, within the most
described scenario, H3K27me3 can directly block the deposition of the
antagonistically activating acetylation mark on H3K27 (H3K27ac) and
can interfere with the recruitment of RNA polymerase II (RNA Pol II)
to target promoters.

One more factor influencing chromatin compaction is the

incorporation of histone variants. As a demonstration of their
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functional relevance, most histone variants are highly conserved
between different species (Luger et al., 2012). H1 linker histone variants
are the most abundant chromatin-binding proteins. Mammals express
11 different linker histone proteins and they have been reported to be
essential for mammalian development. Indeed, whereas deletion of one
or two H1 genes does not cause overt phenotypes, simultaneous
inactivation of H1-2, H1-3 and H1-4 leads to embryonic lethality (Fan
et al., 2005). Several studies have demonstrated that H1 variants are
non-randomly distributed in the genome and interact with different
protein partners, supporting the idea of functional specificity (Cao et al.,
2013; Izzo et al, 2013; Millan-Arino et al, 2014). Moreover, by
promoting genomic compaction, their association with chromatin
determines nucleosome spacing and controls the balance of repressive
and active chromatin domains (Willcockson et al., 2021). Chapter 1 of
this thesis is dedicated to the study of the role of histone H1 variants in
chromatin compaction and regulation.

Detailed mechanistic insights about how regulatory proteins influence
chromatin remodeling and gene regulation are fundamental to
characterize of how cells reshape their gene regulatory networks to

selectively respond to external signals.

3.4 Chromatin states

Given the central role of chromatin in regulatory signals and control of
DNA accessibility, chromatin profiling provides a systematic means of
detecting cis-regulatory elements. Indeed, specific histone modifications
correlate with regulatory binding, transcriptional initiation and

elongation, enhancer activity and repression (Barski et al., 2007; Birney
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et al, 2007, Guenther, Levine, Boyer, Jaenisch, & Young, 2007;
Heintzman et al., 2007; Mikkelsen et al., 2007). In order to segment the
genome into biologically meaningful units, unbiased computational
approaches like multivariate hidden Markov model (HMM) (Ernst &
Kellis, 2012, 2017) have been developed to identify chromatin states,
defined as specific combinations of multiple epigenomic datasets.
Chromatin states may correspond to known classes of genomic
elements, such as enhancers, promoters, transcribed and repressed
regions, or may help discover novel classes of elements (Day,
Hemmaplardh, Thurman, Stamatoyannopoulos, & Noble, 2007; Ernst
& Kellis, 2010; Exrnst et al., 2011; Filion et al., 2010; Hon, Wang, & Ren,
2009; mod et al,, 2010). Chromatin state annotation has a unique
advantage of data reduction, since a large number of datasets involving
partially redundant RNA-seq and ChIP-seq data is reduced into a single
simple data set, whereby each locus of the genome is annotated with
one of several states. Notably, chromatin states build more or less
favorable chromatin environments for gene expression, but do not fully
determine gene activity.

Mostly depending on the parameters used in the computational analysis,
various studies report somewhat different classifications of chromatin
types. However, the general consensus is that there are a few types of
repressive chromatin, which are Polycomb-bound euchromatin,
heterochromatin and a chromatin state that has no strong enrichment
for any of the specific analyzed factors or marks (Cavalli & Misteli,
2013). In contrast, it has been more challenging to rigorously classify
active or open chromatin states. Typically, at least four types of open
chromatin can be distinguished, encompassing enhancers, promoters,

transcribed regions and regions bound by chromatin insulator proteins
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(Bernstein et al., 2012). Chromatin state annotations for different cell
types and tissues are included in the ENCODE project (Siggens &
Ekwall, 2014); they provide an important resource for epigenetic and
medical genetic studies and represent a useful framework to track
regulatory pattern changes across cell types (Ernst et al., 2011).

However, the study of combinatorial patterns of multiple proteins and
marks offer a mono-dimensional perspective on chromatin states by
considering chromatin as a linear entity, even though, as described in
the next sections, chromatin displays a highly organized 3D structure
with an important role in gene expression control. To fill this gap,
chapter 2 of this thesis presents a novel computational method to
characterize combinations of multiple chromatin-associated factors that
take place thanks to the 3D folding of the genome and that may
contribute to proper gene regulation. At present, there is no other
computational tool to identify chromatin states in 3D, and such
advancement extends the advantages offered by 1D chromatin
segmentation by classifying major types of chromatin interaction that

are linked to a specific biological function.

4. Genome 3D Organization

A growing body of work has shown that the genome is a highly
organized hierarchical 3D  structure, yet involving dynamic
conformational changes, that is intimately connected with essential
biological functions such as transcription, replication, DNA repair and
chromosome translocation (Bickmore & van Steensel, 2013; Gonzalez-

Sandoval et al., 2015; Gross, Chowdhary, Anandhakumar, & Kainth,
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2015; Pombo & Dillon, 2015; Sexton & Cavalli, 2015; Therizols et al.,
2014). These insights have mainly arisen from application of high-
resolution microscopy approaches and molecular biology techniques,
two complementary classes of techniques that will be discussed in
Chapter 5.

Over the multiple scales of loops, hubs, topologically associating
domains (TADs), compartments, and nuclear positioning of
chromosomes, genome topological organization can be seen as an
emergent property of a self-organizing system (Rajapakse & Groudine,
2011), built up from progressive stabilization of homotypic interactions
between genes and regulatory elements. Since association of the
majority of DNA-bound factors with their cognate sites is transient
(Phair & Misteli, 2000), such model of self-organized spatial clustering
of related genetic loci may be important for their efficient regulation: a
chance encounter between two loci bound by common regulatory
factors increases the factors’ local concentration, so that when a factor
dissociates it is more likely to be re-trapped by the cluster of binding
sites within its locale than to diffuse away to another location (Kang et
al., 2011; Rajapakse et al., 2009). This model is consistent with the
maintenance of active chromatin hubs with expressed genes (Palstra et
al., 2003; Schoenfelder et al, 2010), the formation of Polycomb
repressive domains (Lanzuolo, Roure, Dekker, Bantignies, & Orlando,
2007), and heterochromatic clustering (Taddei et al, 2009).
Furthermore, in this view, beyond preventing aberrant communication
between genetic loci, TADs may allow for co-regulated genes to be
more efficiently bound by their regulators for prompt transcriptional
response, by increasing the local concentrations of diffusible regulatory

factors around their sites of activity.
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Collectively, mounting evidence demonstrates that chromatin topology
can be regulated and exploited by a variety of molecules such as
transcription factors, architectural proteins and non-coding RNAs, in
order to coordinate underlying gene activity at multiple scales within the
nucleus (Sexton & Cavalli, 2015). However, the detailed mechanistic
relationship between chromosome folding and genomic functions is

still 2 matter of considerable debate.

4.1 Nuclear positioning

At the scale of the whole nucleus, nuclear positioning of genetic material
is not random, is related to gene expression levels, and undergoes
changes during physiological processes such as differentiation,
development, aging, and in pathological conditions (Cavalli & Misteli,
2013). Depending on their transcriptional activity, genes tend to occupy
preferred positions in the 3D nuclear space, relative to other regions in
the genome, or to nuclear structures such as the nuclear lamina,
domains of heterochromatin or nuclear bodies (Finlan et al., 2008;
Lanctot, Cheutin, Cremer, Cavalli, & Cremer, 2007; Misteli, 2007; Peric-
Hupkes et al., 2010; Rajapakse & Groudine, 2011).

Fluorescence DNA and DNA in situ hybridization (FISH) have
revealed that in the nuclear space interphase chromosomes occupy
distinct chromosome territories (CT's) (Cremer & Cremer, 2010), which
constitute a basic feature of nuclear architecture. Gene-rich and
transcriptionally more active chromosomes tend to be located in the
euchromatic interior of the nucleus, whereas gene-poor and less active
chromosomes are closer to the predominantly heterochromatic

periphery (Lanctot et al., 2007). The observation of CTs was later
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validated by genome-wide Hi-C data, which showed that interactions
between loci on the same chromosome are much more frequent than
contacts in trans between different chromosomes (Lieberman-Aiden et
al., 2009).

A variety of orthogonal techniques have uncovered a plethora of long-
range interactions between genes that share regulation by a common
factor, such as Polycomb-mediated repression (Bantignies et al., 2011;
Denbholtz et al., 2013), activation by tissue-specific TFs (Papantonis et
al., 2012; Schoenfelder et al., 2010), pluripotency-linked TFs (Apostolou
etal, 2013; de Wit et al., 2013; Denholtz et al., 2013; Z. Wei et al., 2013),
or multiple super-enhancers (Beagrie et al., 2017). Such associations
occur specifically in cell types where the regulation is mediated, even
when genes occupy different chromosomes. The existence of functional
clusters of genes at nuclear foci enriched in their regulatory factors and
coalescing around different nuclear bodies such as nuclear speckles may
facilitate their coordinate expression, and has emerged as prominent
regulatory feature of nuclear architecture (Bantignies et al., 2011;
Papantonis et al., 2012; Quinodoz et al., 2021; Quinodoz et al., 2018;
Schoenfelder et al., 2010; Vangala et al., 2020).

Due to contrasting evidences about the deterministic link between the
spatial position of an individual locus and its activity (Kubben et al.,
2012; Peric-Hupkes et al., 2010; Reddy, Zullo, Bertolino, & Singh, 2008;
Shachar, Voss, Pegoraro, Sciascia, & Misteli, 2015; Therizols et al.,
2014), it is known that nuclear positioning is correlated with and
underlies gene expression, but the extent of such relationship is still not

fully resolved.
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4.2 Compartments

At the genomic scale, the eukaryotic genome is partitioned into
chromatin compartments, which are spatially segregated genomic
regions, located either on the same or on different chromosomes, with
distinct biochemical and functional properties.

Prominent nuclear compartments are heterochromatin  and
euchromatin, which were originally defined based on differences in
apparent chromatin compaction, as visible by microscopy. Generally,
transcriptionally  inactive or repressed genomic regions are
heterochromatic, whereas transcribed regions are euchromatic.
Heterochromatin tends to be marked by H3K27me3 mark, or by
H3K9me3 and H3K9me2 (Bernstein et al., 2012; Filion et al., 2010). In
metazoan cells, heterochromatin marked by H3K9me2 and H3K9me3
is typically concentrated at the nuclear lamina and, to a lesser extent,
around nucleoli. Euchromatin regions are densely populated by active
genes and enhancer elements, and are typically marked by a multitude
of histone modifications, such as methylation of H3K4 and acetylation
of various histone lysine residues. Euchromatin is generally located in
the nuclear interior, although it can also interact with nuclear pores (van
Steensel & TFurlong, 2019). Partitioning of euchromatin and
heterochromatin has also been reflected in chromosomal contact maps
generated by chromosome conformation capture technologies, such as
Hi-C. Hi-C contact maps exhibit a chromosome-wide plaid pattern of
extensive long-range intrachromosomal and interchromosomal
contacts (Fig. 2), which can be >10 Mb apart, corresponding to two
major classes of self-associating compartment with little inter-mixing

(Lieberman-Aiden et al., 2009). They were termed compartment A and
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compartment B, and are enriched in active or inactive chromatin marks,
respectively. Lamina-associated domains (LADs) and heterochromatin
overlap with compartment B, while euchromatic inter-LAD regions
overlap with compartment A.

Subsequently, higher resolution Hi-C and other 3C-based techniques
suggested that these two major compartments can be further
partitioned into six different subcompartments, with two
subcompartments for A compartment and four subcompartments for
B compartment (S. S. Rao et al., 2014; Wijchers et al., 2016).

The partitioning between compartments is dynamic and genomic loci
can switch between compartments in a cell-type specific manner (Dixon
et al,, 2015; Lieberman-Aiden et al., 2009). Accordingly, during cell
differentiation, hundreds of genes are repositioned from peripheral
heterochromatin to the internal euchromatin and vice versa (Shachar &
Misteli, 2017), corresponding in most case to their activation and
repression, respectively.

In mammalian cells, knockdown of architectural protein cohesin, which
is a key factor for chromatin looping (see below), results in
strengthening of existing compartmentalization and reduction of TADs
(Haarhuis et al., 2017; S. S. P. Rao et al., 2017; Schwarzer et al., 2017).
This and similar results suggest that chromatin looping and
compartmentalization are distinct and competing mechanisms
contributing to chromatin folding (van Steensel & Furlong, 2019).
Currently, the most accepted albeit speculative scenario describes local
mechanisms such as looping and gene activity as the basis of TAD
formation, whereas compartments may be formed by attraction and/or
repulsion between individual TADs with similar epigenetic marks. This

model is supported by super-resolution microscopy, which showed that
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spatial interactions between neighboring TADs with different
epigenetic states are remarkably different; for instance, Polycomb-
repressed domains are particularly condensed and exclude neighboring
domains to a large extent (Boettiger et al., 20106).

Although their mechanistic nature is still unclear, compartments appear
to emerge from the superposition of highly stochastic and mutually
exclusive interactions between different types of chromatin regions (S.
Wang et al., 2016), possibly mediated by mechanisms involving liquid—
liquid phase separation (LLPS) of chromatin-associated proteins (Falk
et al., 2019; Nuebler, Fudenberg, Imakaev, Abdennur, & Mirny, 2018;
Strom et al., 2017; L. Wang et al., 2019).

A variety of proteins contribute to the self-association of
heterochromatin in compartment B, including heterochromatin protein
HP1 mediating long-range interactions between H3K9me2 and
H3K9me3-marked loci (Strom et al., 2017). In mammalian cells,
H3K27me3-marked Polycomb domains form intrachromosomal and
interchromosomal contacts that can be part of either the A
compartment or the B compartment, depending on the cell type (van
Steensel & Furlong, 2019).

The role of euchromatin proteins in mediating the self-association of
the euchromatic loci is much less established. Despite direct evidence is
still lacking, transcription factors, cofactors and the transcription
machinery, whose nuclear foci have been known for decades (Jackson,
Hassan, Errington, & Cook, 1993), may collectively be responsible for
the organization and function of the euchromatin compartment
through the formation of condensates (Boehning et al., 2018; Boija et
al., 2018; Hnisz, Shrinivas, Young, Chakraborty, & Sharp, 2017; Sabari
et al,, 2018).
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Further genome-wide experiments in mutants deficient in chromatin
modifiers and proteins are required to determine the role of different

factors and epigenetic marks in genome architecture.

4.3 TADs

Genome-wide 3C technologies have shown that at the sub-megabase
scale, chromosomes of many metazoan genomes fold into distinct
modules, called topologically associating domains (TADs), that can be
considered as functional units of the genome (Dixon et al., 2012; Hou,
Li, Qin, & Corces, 2012; Nora et al., 2012; Sexton et al., 2012). They are
typically 100kb-1Mb in length, and in Hi-C maps appear as contiguous
squares or triangles along the diagonal (Fig. 2). Genomic interactions
are extensive within domains but are depleted on crossing the boundary
between neighboring TADs.

TADs display dynamics and cell-to-cell variability that cannot be
captured by Hi-C data, since this one reflects the population-average
folded state of the chromosome in fixed cells. However, domains
identified on Hi-C maps show a surprising developmental and
evolutionary robustness, suggesting that TADs may be chromosome
building blocks required for appropriate genome function. Indeed, most
domains correlate well with many linear markers of chromatin activity,
such as histone modifications and replication timing (Dixon et al., 2012;
Le Dily et al, 2014; Sexton et al, 2012), and coordinated gene
expression (Le Dily et al.,, 2014; Nora et al., 2012). Moreover, TADs
may avoid inappropriate enhancer—promoter (E-P) interactions and
insulate promoters from the action of enhancers located in neighboring

TADs (Sexton & Cavalli, 2015; Shen et al., 2012), by constraining the
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effective search space of enhancers and promoters to find each other
(Symmons et al., 2016; Symmons et al., 2014). Loss of a TAD boundary
could thereby lead to the misexpression of genes in a neighbouring
TAD, as observed at some loci (Flavahan et al., 2016; Lupianez et al,,
2015).

Furthermore, technological advances have revealed smaller and finer-
scale structures, hierarchically nested within TADs, that exhibit high
developmental dynamics and may even encompass a single gene unit.
Multiple studies called them with different names, such as sub-TADs,
mini-domains, microT'ADs, chromatin nanodomains (CNDs), or 3D
nanocompartments (T. S. Hsieh et al., 2020; Krietenstein et al., 2020,
Phillips-Cremins et al., 2013; S. S. Rao et al., 2014; Rowley et al., 2017,
Szabo et al., 2020; Szabo et al., 2018). Due to the nested structure of
TADs, their exact definition is ambiguous, and strongly depends on the
resolution of the performed experiment and to some extent on the
employed detection method (Soler-Vila, Cusco, Farabella, Di Stefano,
& Marti-Renom, 2020).

In general, TADs are characterized by sharp boundaries that
correspond to binding sites for CTCF, other chromatin insulator-
binding proteins and transcription factors, as well as to active
transcriptional start sites (Bonev et al, 2017; Dixon et al, 2012;
Krietenstein et al., 2020; Sexton et al, 2012). In mammals, strong
chromatin loops, that will be discussed below, are observed at the
borders of ~40% of the domains (Fig. 2), suggesting a strong
relationship between chromatin loop formation and the demarcation of
domain boundaries. The role of boundary factors such as CTCF and

loops could thus be to strengthen the stability of the boundaries
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between domains of different chromatin types or to sharpen their
localization.

Domains of the same type have the tendency to establish strong inter-
TAD interactions, whether they are active, Polycomb domains, or HP1-
heterochromatic domains (Csink & Henikoff, 1996; Sexton et al., 2012).
Polymer physics-based modeling showed that the simple assumption of
homotypic interactions between domains of these chromatin types are
sufficient to generate polymer structures that mimic those represented
in Hi-C contact maps (Jost, Carrivain, Cavalli, & Vaillant, 2014). This
result suggests that homotypic interactions between domains may
contribute to TADs establishment.

Opverall, in higher eukaryotic cells a diversity of mechanisms underlies
the existence of physical chromosomal domains, including
transcriptional levels, epigenetic compositions, architectural proteins,
and chromatin modifying factors like PcG proteins. However, the
detailed cause—consequence relationship between these factors is still
poorly understood, and it is still unknown whether TADs are
dynamically built by transcriptional silencing or activation machineries
and chromatin-modifying complexes, or TADs themselves set the stage
for cooperative binding of specific chromatin factors to determine gene
expression. TADs organization may be explained by the propensity of
chromatin to establish preferential transient contacts in the form of
loops, that are increasingly likely for smaller distances along the same
chromosome, with the specificity added by different chromatin factors
that contribute to the separation between types of loops, such as those
involving active and repressive chromatin.

Future research, including new genome-engineering tools such as

CRISPR/Cas9 and live imaging of chromatin interactions in single cells

24



following their dynamics over the cell cycle, should tease out the details

of TADs formation and functions in different nuclear environments.

4.4 Chromatin looping

Higher-order chromosome organization levels are thought to arise from
multiple, dynamic and cell type-specific chromatin interactions, that
occur at the kilobase-to-megabase scale between regulatory elements
and are crucial for proper gene expression and cell identity (Fig. 2a)
(Kieffer-Kwon et al., 2013; G. Li et al., 2012; Palstra et al., 2003; S. S.
Rao et al., 2014; Sanyal, Lajoie, Jain, & Dekker, 2012).

The pervasive tendency of chromatin to engage in contacts with other
chromatin fibers is reflected in the fact that at the TAD level the
predominant structural features are point-like focal interactions or
stripe-like structures of hundreds of kb (Fig. 2b), that often connect
sequences bound by CTCF and cohesin (de Wit et al., 2015; Fudenberg,
Abdennur, Imakaev, Goloborodko, & Mirny, 2017; Guo et al., 2015; S.
S. Rao et al,, 2014; Vian et al., 2018). Stripes are consistent with the idea
that contacts within TADs in individual cells reflect not static loops, but
a captured moment of a dynamic process (Giorgetti et al., 2014; Hansen,
Cattoglio, Darzacq, & Tjian, 2018).

Chromatin loops appear as a ubiquitous means for enhancer-promoter
(E-P) or promoter-promoter (P-P) communication (Fig. 3a) (Tolhuis,
Palstra, Splinter, Grosveld, & de Laat, 2002). Although the mechanistic
details of enhancers’ stimulation of transcription are not yet clarified,
distal enhancers carry a large regulatory potential and are bridged with
their target gene promoters for the induction of transcription. One well

known example is the locus control region (LCR) of the B-globin
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cluster, which in erythroid cells, where the 3-globin gene is active, forms
an active chromatin hub with its target genes (Palstra et al., 2003).

The leading mechanism governing loop formation is thought to involve
loop-extruding complexes like cohesin, and border elements such as
CTCEF architectural protein (Fig. 3b) (Fudenberg et al., 2016; Nichols &
Corces, 2015; Sanborn et al., 2015). Interestingly, loop extrusion and
compartmentalization appear as two separated principles of
chromosome folding (Schwarzer et al., 2017).

Cohesin is large ring-shaped protein complex, that is important for
genome stability in dividing cells, and is involved in sister chromatid
cohesion and DNA repair (Nasmyth & Haering, 2009). CTCF is a
DNA-binding protein that recognizes a specific sequence motif and,
among architectural proteins, has probably received the most attention
(Ong & Corces, 2014). It is conserved in most bilaterians, is
ubiquitously expressed, and is essential for embryonic development
(Soshnikova, Montavon, Leleu, Galjart, & Duboule, 2010). Originally,
it was characterized as an insulator protein, capable of restricting E-P
interactions and establishing discrete functional chromatin domains
(Narendra et al., 2015).

In the mechanistic model of loop extrusion, cohesin loads on DNA and
bidirectionally extrudes loops until it is blocked in each end of the loop
by CTCF proteins binding in convergent orientation (Davidson et al.,
2019; Fudenberg et al., 2016; Ganji et al., 2018; Golfier, Quail, Kimura,
& Brugues, 2020; Hansen, 2020; Y. Kim, Shi, Zhang, Finkelstein, & Yu,
2019). This model can explain the nesting of domains and loops as the
assembly of possible states within a population. Also, it predicts the
observed entrichment of CTCF at TAD boundaries, and the

consequences of CTCF motif deletion or inversion for loop and domain
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formation. Furthermore, it is consistent with changes in 3D
chromosome architecture observed in cohesin-depleted or CTCF-
depleted cells, where the decrease in TAD insulation most likely results
from loss of preferential contacts within TADs, and increased
randomness in interactions (Bintu et al., 2018; Nora et al., 2017).

Thus, CTCF-mediated loops are believed to play a fundamental role in
maintenance of TAD structure (Giorgetti et al., 2014), and appear to be
linked to multiple nuclear processes, such as transcriptional regulation
and DNA repair (Oudelaar & Higgs, 2021).

Besides CTCF-loops, nucleosome-resolution interaction maps spotlight
dots and ~10-15 kb stripes linking accessible co-expressed loci, such as
P-P or E-P sites, that are driven by the transcription machinery and are
independent from CTCF and cohesin (T. S. Hsieh et al, 2020).
Furthermore, TAD borders often coincide with active promoters but
not CTCEF sites (Bonev et al., 2017; Dixon et al., 2012; Ramirez et al.,
2018; Ulianov et al., 2016). These data suggest a dynamic, reciprocal
interplay between genome organization and active transcription (van
Steensel & Furlong, 2019).

In mammals and flies, Polycomb complexes have been proven to have
an important role in the formation of long-range contacts involving
repressed gene promoters in early development (Fig. 3¢c) (Bantignies et
al., 2011; Bonev et al., 2017; Denholtz et al., 2013; Rowley et al., 2017;
Schoenfelder et al., 2015; Vieux-Rochas, Fabre, Leleu, Duboule, &
Noordermeer, 2015), even at the nucleosomal level (T. S. Hsieh et al,,
2020). Despite PcG proteins have been historically described as
transcriptional repressors, it has also been found that during Drosophila
development PcG subunits might support transcriptional activation, by

forming 3D loops that involve active promoters and enhancers and
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fine-tune their expression (Loubiere, Papadopoulos, Szabo, Martinez,
& Cavalli, 2020). Also, other transcriptional regulators have been
involved in repressive loop interactions, and in general the molecular
principles underlying repressive looping, including Polycomb looping,
remain elusive.

Additional types of long-range chromatin contacts with direct
functional have been described. In the so-called intragenic loops (Fig.
3d), the 5' end of transcribed genes joins the transcription termination
site (T'TS). This may allow efficient recycling of the RNA polymerase 11
(Pol II) and may help establish a short-term memory of the
transcriptionally active state for the gene (Mas et al., 2018; Tan-Wong,
Wijayatilake, & Proudfoot, 2009; Tan-Wong et al., 2012).

Interestingly, in addition to proteins, long non-coding RNAs (IncRNAs)
may participate in the formation of loops, even though it is unclear to
what extent. LncRNAs have been shown to mediate the colocalization
of several genomic regions located on different chromosomes
(Hacisuleyman et al., 2014), and to exploit 3D chromatin organization
in order to spread across the X chromosome during X chromosome
inactivation (Engreitz et al., 2013; Simon et al., 2013). Future work is
required to dissect the precise role of IncRNAs in establishing and
maintaining 3D chromatin structure, which has been recently hinted by
computational models (Farabella, Di Stefano, Soler-Vila, Marti-
Marimon, & Marti-Renom, 2021).

Opverall, nested structures are the prevalent folding feature within TADs
and, together with constraints provided by the nuclear lamina and sub-

nuclear compartments such as speckles and nucleoli, several factors
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Figure 3. Different types of transcription regulatory loops.

(a) Enhancer-promoter loops leading to transcriptional activation. (b) Insulator-
mediated loops may segregate genes and their regulatory elements from surrounding
genome landscape, favoring proper gene expression. (c) Loops between Polycomb-
bound regions (PREs) and promoters prevent RNA Pol 1I recruitment and mediate
transcriptional silencing. (d) Intragenic loops joining the 5’ and 3’ end of genes may
allow recycling of RNA Pol II and facilitate maintenance pf transcriptional
directionality. Figure from (Cavalli & Misteli, 2013).

interact together to shape the complex pattern of chromatin
interactions of mammalian chromosomes, including the transcriptional
machinery, architectural proteins, IncRNAs, TFs and chromatin-
remodeling complexes like PcG. However, because of contrasting
evidences among different studies, how these interactions are

established and regulated is still a matter of considerable debate. It

would be important to clarify the contribution of the chromatin
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environment and transcription to loop formation, and to investigate

whether chromatin loops can be formed also through other processes.

4.5 Biomolecular condensates

Phase separation is emerging as key principle in the spatiotemporal
organization of living cells. Increasing evidence indicates that cells also
organize membrane-less biomolecular condensates of protein, RNA,
and other biomolecules, that are thought to form through the physical
process of liquid-liquid phase separation (LLPS) and might operate as
versatile biochemical 3D interaction hubs inside the cell (Banani, Lee,
Hyman, & Rosen, 2017; Y. Shin & Brangwynne, 2017).
Super-enhancers (SEs) have been proposed to be phase-separated
condensates formed by clusters of enhancers, remarkably occupied by
interacting master TFs that may cooperatively assemble the
transcriptional apparatus to drive robust expression of genes, with
prominent roles in cell identity (Hnisz et al., 2017; Sabari et al., 2018).
Similarly, transcription factor condensates have been suggested to
regulate transcriptional initiation and amplify transcriptional burst
frequency and size of expressed genes, being enriched in regulatory
elements such as enhancers or silencers, and facilitating the interaction
with gene promoters in a cell-specific manner (Beagrie et al., 2017;
Javierre et al., 2016; Y. Shin et al., 2018; Stevens et al., 2017).
Interestingly, macromolecular condensates may be dynamically
assembled in response to a tunable external stimulus, as in the case of
droplets of nuclear receptors TFs, protein kinases and enhancers, in
breast cancer hormone responsive cells upon steroid hormone stimulus

(Zaurin et al., 2021).
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Chromatin interactions driven by ATP-dependent loop extrusion have
emerged as key organizing principles of the genome (Di Pierro, Zhang,
Aiden, Wolynes, & Onuchic, 2016; Mirny, Imakaev, & Abdennur,
2019). Also, spatial compartmentalization is a hallmark of eukaryotic
genomes emerging on various length scales, but its intrinsic physical
properties have remained unclear. In conventional nuclei, euchromatin
is localized in the nuclear interior and heterochromatin at the nuclear
periphery. Inverted nuclei of rods in nocturnal mammals, instead,
present the opposite distribution and provided an opportunity to
clucidate the mechanisms that underlie compartmentalization.
Experiments and modelling suggest that phase separation of the active
and inactive genome in inverted and conventional nuclei is achieved
thanks to attractions between heterochromatic regions, and chromatin
interactions with the lamina are essential to build the conventional
architecture from these segregated phases (Falk et al., 2019).

Therefore, in a phase separation-based model for genome organization
and regulation, the intrinsic property of chromatin to phase separate
within the nucleoplasm may enable establishment and maintenance of
distinct chromatin compartments (Gibson et al., 2019), tuned through
engagement of cellular factors such as linker histone binding, histone
acetylation, interactions with histone tail readers, and spacing of
nucleosomes. Functional chromatin states, corresponding to
promoters, enhancers, insulators, PcG regions, etc. (Bernstein et al.,
2012; Filion et al., 2010) may adopt different phase-separated states with
specific structural and dynamic properties that are important for their
unique functions in cells and for the formation and segregation of

chromatin domains.
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Theoretically, phase separation is associated to the heterogeneous
mixing of two components, either by spinodal decomposition, or
nucleation. In living cells, it has been proposed that intrinsically
disordered regions (IDR) are the main driving mechanism promoting
LLPS (Boija et al., 2018). However, a quantitative understanding of the
biophysical parameters controlling transcription factor condensation in

the living cell nucleus is largely missing.

5. Experimental approaches for the analysis of genome
3D organization

Deciphering the rules of genome folding in the cell nucleus is essential
to understand its functions. Insights about genome 3D organization
have mostly arisen thanks to major technological breakthroughs in two
orthogonal classes of techniques, high-resolution microscopy
approaches and sequencing-based methods. Due to their respective
strengths and limitations and to the high complexity of genome
organization, chromatin architecture is best studied using a combination
of approaches, neither of which is comprehensive on its own.
Mathematical modelling can complement biological investigation,
rationalizing and predicting important aspects of chromatin behavior.

Microscopy-based methods provide important information about the
relative and radial positioning of genomic regions, as well as the
variability of spatial DNA organization within cell populations, but
these methods often suffer from limited throughput, coverage and

genomic resolution. By contrast, sequencing-based approaches are
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genome-wide, but their results may represent a superimposition of
individual genome conformations rather than one stable structure.

The simultaneous advances in technological and scientific approaches
is leading us to an integrated understanding of the function of the
genome and its associated components in development, physiology and
disease. The development of novel single cells technologies is essential
to capture structural features in rare cell populations, as well as
structural changes in dynamic processes, and is helping deepen the
characterization of cell type-specific gene regulation. Further
improvements of current live imaging may allow tracking of the
dynamics of chromatin domains and interactions in live cells in order to
investigate conformational changes upon various stimuli and in relation
to gene expression. The combination of these tools with functional
studies, particularly those made possible by the advent of genome-
engineering technologies such as CRISPR—Cas9 (Wright, Nunez, &
Doudna, 2016), promises to lead to major advances in the near future.
These complex multi-dimensional data generated with different
modalities require advanced computational strategies for integration

and extensive quantitative analyses.

5.1 Super-resolution microscopy

Remarkable improvements in microscopy techniques are expanding our
understanding of the fine-scale structure of the chromatin fiber to a
degree that was unthinkable a decade ago. Their incompatibility with
sequence determination has been circumvented by a second

complementary class of genomic methods, here collectively referred to
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as sequencing-based techniques, that will be discussed in the next
section.

Historically, fluorescent in situ hybridization (FISH) has mostly been
used to study the position and organization of chromosomes, domains
and specific loci within the nucleus. Despite its key advantage of direct
visualization of the spatial position and arrangement of genomic loci in
the nucleus, it has been traditionally limited in throughput and
resolution.

Recent advancements in super-resolution microscopy and imaging
techniques have enabled direct visualization of the fine-scale structures
of the genome of single cells at sub-diffraction resolution and at
unprecedented throughput.

Some examples are stochastic optical reconstruction microscopy
(STORM) (Rust, Bates, & Zhuang, 2006), photo-activated localization
microscopy (PALM) (Betzig et al., 20006), and oligonucleotide arrays
such as Oligopaint (Beliveau et al., 2015; Beliveau et al., 2012). Also,
HIPMap identifies novel factors affecting the radial positioning of
different types of genomic locus, with high-throughput (Shachar et al.,
2015). Super-resolution chromosome tracing approaches employing
highly multiplexed FISH probes perform distance measurements
between thousands of loci in single cells, at unprecedented scales (S.
Wang et al., 2016). Oligopaint design in conjunction with STORM
(OligoSTORM) (Beliveau et al., 2017; Nir et al., 2018) remarkably
improved the resolution, at the same time allowing the analysis of
regions at the megabase scale. Furthermore, sequential Oligopaints
method in conjunction with super-resolution allows to sequentially label
continuous genomic coordinates of the genome at the level of single

gene, loops, TADs, compartments (Bintu et al., 2018; Nir et al., 2018).
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OligoFISSEQ has remarkably improved high throughput imaging and
tracing of genomic loci in thousands of cells (Nguyen et al., 2020).
Other flavours of Oligopaint-based methods, such as Hi-M (Cardozo
Gizzi et al., 2019), jointly detect of the positioning and transcriptional
activity of loci.

In addition to improvements in spatial resolution, live imaging in
combination with genome engineering using CRISPR—Cas9 systems
facilitates and improves the study of 4D chromatin contact dynamics
(changes in 3D chromatin structure over time) of individual loci.
Chimeric array of gRNA-oligo (CARGO) and CRISPR—Cas-mediated
Live FISH are two examples (Gu et al., 2018; H. Wang et al., 2019).
The integration of single-cell information of spatial positioning of
genomic loci with functional genomic and epigenomic features, such as
gene activity, or epigenetic states, will enable the tracking of chromatin
and transcription dynamics in live cells during cell differentiation
(McCord, Kaplan, & Giorgetti, 2020), opening venues for application

ranging from basic science to diagnostics.

5.2 Sequencing-based methods

In contrast to microscopy, sequencing-based methods represent an
orthogonal approach to investigate large-scale chromatin organization,
providing rich sequence context but uncertain spatial context (Belmont,

2014).
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5.2.1 Proximity ligation-based methods:
chromosome conformation capture (3C)

A major breakthrough in chromatin biology was the establishment of
proximity ligation-based methods (Cullen, Kladde, & Seyfred, 1993)
and, in particular, chromosome conformation capture (3C) technologies
(Dekker, Rippe, Dekker, & Kleckner, 2002), which marked the
beginning of the era of high-throughput next-generation sequencing-
based methods for the investigation of chromosome conformation. 3C-
based methods provide quantitative, high-resolution, genome-wide
measurements of physical proximity events within and across
chromosomes, generally called chromatin contacts or interactions.

The first step of most 3C-based methods involves the formaldehyde
crosslinking of cells, wusually followed by in situ chromatin
fragmentation by digestion with restriction enzymes such as HindIII or
Dpnll. Then, proximity-based ligation of adjacent DNA ends is
followed by determination of pairwise interactions (Fig. 4a). After
reverse crosslinking, different approaches can be used (de Wit & de
Laat, 2012; Denker & de Laat, 2016). The classical 3C method
interrogates a single pair of interacting loci (one-versus-one). In the
circular chromosome conformation capture (4C) protocol, genome-
wide interactions involving one locus of interest are detected (one-
versus-many) (van de Werken et al, 2012). In the carbon copy
chromosome conformation capture (5C) approach, chromatin
interactions between two sets of loci are captured (many-versus-many)
(Dostie & Dekker, 2007). In Capture-C methodology, biotin-labelled
probes complementary to specific restriction fragment ends interrogate

hundreds of pairs of loci of interest
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Figure 4. 3C methods and fundamental principles of mammalian chromosome

organization.

(a) Scheme of the core steps in 3C protocols. Chromatin is crosslinked in cell nuclei
and digested with a restriction enzyme (or endonuclease in the case of Micro-C),
followed by ligation and decrosslinking. This results in the formation of hybrid DNA
molecules that can be identified by high-throughput sequencing. In the case of Hi-C,
the resulting list of genome-wide pairwise contacts can be represented by contact
maps. Maps need to be corrected for biases and artifacts. (b) Hi-C contact maps
illustrating the folding of mammalian chromosomes into A/B compartments (left),
TADs (middle), and finer-scale structures (right). (c) Chromosome folding may be
mainly driven by compartmentalization and loop extrusion. Figure adapted from
(McCotd et al., 2020).
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(Hughes et al., 2014; Mifsud et al., 2015). In the Hi-C method, the
coupling of 3C to high-throughput sequencing generates genome-wide
catalogs of pairwise chromatin interactions (all-versus-all) within
populations of billions of nuclei (Lieberman-Aiden et al, 2009).
Progressively, these techniques have been tweaked by combination with
chromatin immunoprecipitation to allow for enrichment of specific
contacts associated to proteins of interest, including chromatin
interaction analysis with paired-end tag (ChIA-PET) (Fullwood, Wei,
Liu, & Ruan, 2009), HiChIP (Mumbach et al., 2016) and proximity
ligation-assisted ChIP followed by sequencing (PLAC—seq) (Fang et al.,
20106).

Despite their immense contribution to the field of genome structure,
3C-based approaches currently have limitations. First, resolution is
strictly linked to sequencing depth and to the distribution of restriction
sites. Techniques that are based on different fragmentation methods,
such as DNase-Hi-C with DNase I (X. Deng et al., 2015; Ma et al., 2014;
Ramani et al., 2016) and Micro-C with MNase (T. H. Hsieh et al., 2015),
have successfully improved Hi-C resolution. Furthermore, it is still
unclear what structural features at the cell population level represent at
a single cell level (see Section 5.3). The typical maps obtained by 3C-
based approaches represent a superimposition of different
conformation states present in a population of cells, and the
interpretation of the relationship between the number of detected
ligation products with actual contact probabilities between genomic
sequences has important implications for the biological significance of
chromatin contacts, for the determination of an appropriate polymer
model from experimental data (Fudenberg & Mirny, 2012), and for how
data are normalized (Imakaev et al., 2012). Indeed, 3C-based data lack
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internal normalization criteria, limiting the ability to compare contact
frequencies different conditions and cell types. Another challenge is due
to the fact that 3C-based methods rely on formaldehyde crosslinking
and ligation, two molecular processes that represent potential sources
of bias (Belmont, 2014; Gavrilov, Razin, & Cavalli, 2015; Williamson et
al., 2014). For this reason, products captured by 3C-based approaches
do not always reflect spatial proximity, and crosslinking might capture
contacts between sequences located hundreds of nanometers apart, a
distance range that is about one order of magnitude larger than the
typical distance of contacts mediated by direct molecular interactions of
the chromatin fiber through protein complexes. Moreover, techniques
that rely on standard formaldehyde crosslinking inherently bias
fragmentation towards open chromatin regions, and are potentially
limited in capturing interactions of proteins with short residence time.
Cap-C approach aims at circumventing such problem through
dendrimer crosslinking, to achieve uniform fragmentation (You et al.,
2021).

Reassuringly, general features of large-scale chromatin organization are
generally recapitulated by 3C-based methods, microscopy and ligation-
independent methods (see Section 5.2.2) (McCord et al., 2020). Despite
significant discrepancies between DNA FISH and Hi-C have
occasionally been reported (Williamson et al., 2014), these comparisons
also show that Hi-C data are directly proportional to the fraction of cells
in the population where a certain contact occurs at the moment of
crosslinking, importantly for the development of mechanistic physical
models of chromosome folding. Last but not least, standard 3C-based
methods are unable to reveal whether multiple regions are interacting

simultaneously (cooperativity) or mutually exclusively (exclusion), while
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it is known that biologically relevant chromosome interactions may
occur between pairs of loci as well as within hubs of cooperative
contacts (Schoenfelder et al., 2015; Strom et al., 2017; Sutherland &
Bickmore, 2009). Modified 3C versions have been developed to detect
multi-contact configurations (Allahyar et al,, 2018; Ay et al, 2015;
Olivares-Chauvet et al., 2016; Oudelaar et al., 2018; Zheng et al., 2019)
and, overall, have revealed common cooperative interactions between
multiple loci, as well as multi-contact configurations occurring in a small
subset of cells, which would be missed in population-averaged pairwise
contact maps. Furthermore, complementary approaches, such as
ligation-free genomic methods and super-resolution chromosome
tracing, have revealed extensive evidence for cooperative multiway
contacts, including highly transcribed regions that form transcription
factories and super-enhancers (McCord et al., 2020). This type of data,
combined with perturbative studies, may clarify the role of phase

separation in the collective spatial partitioning of chromosome regions.

5.2.2 Ligation-independent techniques

The invention of ligation-independent techniques allowed to investigate
chromosome conformation at the same time probing the nuclear
position of chromatin contacts and multiway contacts, complementing
intrinsic limitations and potential source of bias inherent of 3C-based
methods (Kempfer & Pombo, 2020). Indeed, in 3C-like methods,
genomic fragments ligation prior to sequencing is only partially efficient,
and short paired-end sequencing, which does not provide information

about multipartite in vivo chromatin interactions.
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Among ligation-independent methods there are tyramide signal
amplification (TSA), DNA adenine methyltransferase identification
(DamlD), split-pool recognition of interactions by tag extension
(SPRITE), and genome architecture mapping (GAM) (Beagrie et al.,
2017; Y. Chen et al., 2018; Guelen et al., 2008; Quinodoz et al., 2018;
van Steensel & Henikoff, 2000; L. Zhang et al., 2020).

In SPRITE, crosslinked nuclei are isolated and fragmented, individual
crosslinked pieces of chromatin are uniquely barcoded. After high-
throughput sequencing, reads carrying the same combination of
barcodes represent genomic sites that are a part of the same crosslinked
cluster. In GAM, fixed cells are embedded in sucrose, frozen and cryo-
sectioned, and DNA is extracted and sequenced from each section. Loci
that are closer to each other in the nuclear space are co-sequenced more
frequently than distant loci. As sections are taken from multiple nuclei
sliced at random orientations, the co-segregation of all possible pairs of
loci among a large collection of nuclear section profiles is used to
generate a matrices of inferred locus proximities. Such maps are similar
to Hi-C ones, even though GAM requires fewer cells — a few hundred
nuclei produce maps that approximate those obtained from large
populations of cells in Hi-C. Like SPRITE, GAM can identify multiple
interactions, thereby enabling the direct study of multivalent enhancer—
promoter interactions and of higher-order chromatin structures.

The combination of genome structure analysis with additional omics
modalities is likely to offer critical information for revealing nuclear
function. For instance, SPRITE has been further adapted into RD-
SPRITE (Quinodoz et al., 2021), to enable mapping the interactions of
RNA relative to other DNA and RNA, thereby allowing to determine
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the relationship of some RNAs with the nuclear landmarks and

compartments.

5.3  Heterogeneity and dynamics in chromosome
conformation

Sequencing-based assays generally represent snapshots of chromosome
conformation at a given time point, averaged over an entire cell
population. Their relationship with the actual conformations of the
chromatin fiber in single cells and their evolution in time is still unclear.
In order to study chromatin conformation stochasticity and inter-cell
variability while not compromising high throughput, an increasing
number of chromatin analysis techniques are being developed into
single-cell applications.

The first of these single-cell adaptations was single-cell Hi-C (scHi-C)
(Nagano et al., 2013). Also, ligation-free tools have been migrated
towards single cell assays, such as scSPRITE (Arrastia et al., 2021). A
major observation from single cell chromatin conformation
experiments and computational analyses is the existence of extensive
inter-cell conformational variability at all genomic length scales (Finn et
al., 2019). At the sub-TAD level, pairwise contacts and CTCF loops
occur as stochastic events (Flyamer et al., 2017; Nagano et al., 2013;
Ramani et al., 2017; Stevens et al., 2017; Tan, Xing, Chang, Li, & Xie,
2018), with only a subset of the contacts identified by population-
average assays being present within an individual cell. Patterns of TADs
and compartments in single cells are highly variable as well, and the ones
observed in population Hi-C maps emerge when superimposing many
single-cell conformations, reflecting preferential interactions in a highly

stochastic ensemble of structures (Bintu et al., 2018; Boettiger et al.,
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2016; Cardozo Gizzi et al., 2019; Cattoni et al., 2017; Giorgetti et al.,
2014; Mateo et al., 2019; Nagano et al., 2013; Nora et al., 2012; Szabo
et al., 2020; Szabo et al., 2018).

Thus, the probabilistic nature of higher-order spatial genome
organization is a critically important feature, and average interaction
maps generated using population-based methods appear as an ensemble
of many different genome landscapes pertaining to multiple
subpopulations of cells.

Since stochastic interactions between regulatory elements are likely to
result in the stochastic transfer of regulatory information, pervasive cell-
to-cell structural variability might have important implications for
transcriptional regulation. However, single-cell genomics and fixed-cell
imaging still generate static snapshots of 3D genome structures in single
cells. Therefore, there are still many open questions about the degree of
stochasticity and dynamicity of the exchange of regulatory information.
For instance, very little is known about the timescale over which
enhancer-promoter contacts assemble and disassemble, and how they
relate to transcription and other nuclear processes. To address this issue,
live-cell imaging (Brandao, Gabriele, & Hansen, 2021) and advances in
genomic engineering are opening exciting possibilities to characterize
the dynamics of chromatin looping and its link to the dynamic exchange

of regulatory information and transcription.
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6. Computational strategies for the analysis and
representation of chromatin organization

The continuous evolution of experimental methods dedicated to the
study of genome 3D organization is accompanied by rapid
advancements of specialized algorithms to grasp the full biological
significance of the experimental data. Since in the last decades massive
amount of Hi-C data has been produced and greatly improved our

characterization of nuclear structure.

6.1  Analysis of Hi-C data

Within Hi-C data, a series of factors introduce biases and limits in the
resolution for the call of contact regions or domain boundaries. The
achievable spatial resolution of Hi-C is affected by sequencing depth,
library complexity and the DNA-cutting frequency of the enzyme used
for chromatin fragmentation. This typically results in sparse Hi-C
matrices, with many null entries, where the genuine absence of contacts
and the absence of contacts due to low sequencing depth are
undistinguishable. Moreover, uneven restriction fragment sizes and
mappability levels across the genome make Hi-C matrices very
heterogeneous at different genomic locations, while the decay of
interaction frequencies with increase in genomic distance differentially
affects Hi-C signal across different distances. Next, I briefly outline the
major approaches affecting each of the key steps of Hi-C analysis (Fig.
4a, 4b):

Normalization. For the filtering and normalization of Hi-C data, different

tools based on alternative strategies cope with typical Hi-C data biases.
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Some of the most common methods are Yaffe and Tanay’s one (Yaffe
& Tanay, 2011), ICE (Imakaev et al., 2012), HICNorm (Hu et al., 2012),
and OneD (Vidal et al., 2018).

Compartment analysis. In the first Hi-C study (Lieberman-Aiden et al.,
2009), compartments have been identified by conversion of Hi-C
matrices into correlation matrices, followed by principal component
analysis to distinguish A and B compartment types. Later studies
produced Hi-C maps based on much deeper sequencing, and
additionally applied clustering steps such as Gaussian hidden Markov
modelling for improved specification of epigenetic compartment
signatures, leading to more detailed stratification of the A compartment
into two sub-compartments and of the B compartment into three sub-
compartments (S. S. Rao et al., 2014).

TAD detection. As regards TAD calling, although it is routinely done,
there are numerous TAD callers that are based on different principles.
Initial computational approaches, such as the insulation score and the
directionality index, could not identify nested TADs (Dixon et al., 2012;
H. Shin et al., 2016). Subsequently, other computational approaches
were developed to inform on TAD hierarchy, such as Matryoshka
(Malik & Patro, 2018), by further development of the linear score
approach, ICFinder (Haddad, Vaillant, & Jost, 2017) and TADpole
(Soler-Vila et al, 2020), by clustering of contacts’ map data, or
3DnetMod (Norton et al., 2018), by graph theory-based algorithms.
Loop analysis. Thanks to the increase in Hi-C maps resolution, it became
possible to detect specific chromatin contacts and loops, corresponding
to statistically significant enrichment in contact frequency compared
with a general background model. One of the first loop-dedicated
algorithms, HiICCUPS (S. S. Rao et al., 2014), identifies a chromatin
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loop as the most enriched bin compared with its immediate
neighborhood. The tool Fit-Hi-C instead assigns statistical confidence
to contacts by using random polymer modelling, while accounting for
known Hi-C biases such as genomic distance, to find significant
interactions (Ay, Bailey, & Noble, 2014). HiCPlus is a machine learning
approach based on deep convolutional neural network that enhances
Hi-C maps with low-sequence depth, to overcome the resolution limit
of Hi-C maps for better loops and TAD borders detection (Y. Zhang
et al., 2018).

6.2 3D modeling approaches

Computational modeling provides an important avenue for
interpretation of data generated by experimental techniques that probe
chromatin conformation and inference of the underlying chromatin 3D
structure. The configuration in space of the genome serves as a
quantitative framework to integrate information from different types of
experimental datasets, often allows to test hypothesis regarding
underlying molecular mechanisms and to generate predictions that can
be experimentally tested. Importantly, models translate 3C information
into a context of distances/space helping discern simultaneous from
exclusive contacts, and representing heterogeneity between cells and
dynamics across time.

Most modelling approaches subdivide the genome in chunks, by either
specific underlying features or a defined genomic length. Each chunk is
then represented by connected points or spheres, or alternatively as
elements composing a polymer (Oluwadare, Highsmith, & Cheng,

2019). A set of parameters or physics rules constrains such particles to
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define how they interact with the rest of particles and how the model
folds.

Chromatin modelling approaches can be divided into two main
categories: ab initio models aim at understanding the processes of
genome folding and identifying components shaping the genome, while
data-driven models are focused on the more refined analysis of the
represented chromatin (Bendandi, Dante, Zia, Diaspro, & Rocchia,
2020; Lin, Bonora, Yardimci, & Noble, 2019; Marti-Renom & Mirny,
2011).

On the one hand, Ab initio models use as input statistical features and
physics principles to simulate the behavior of chromatin in the 3D
space, by applying a conjunction of known and hypothesized properties
to the chromatin fiber. Usually, varying levels of packing conformation
of the chromatin fiber and the behavior of the bead-spring polymer
models are assumed, with defined toughness, elasticity and behavior
(Finch & Klug, 1976; Rosa & Everaers, 2008). Polymer folding has been
typically modelled as an equilibrium globule (Mirny, 2011), or as a fractal
globule (Grosberg, Nechaev, & Shakhnovich, 1988). The last modality
is consistent with the first genome-wide chromosome interaction maps,
where it was observed that different chromatin regions poorly
intermingle, probably allowing for rapid access to active regions by the
transcriptional machinery (Lieberman-Aiden et al, 2009). Methods
following these approaches have contributed to prove that loop
extrusion processes could be sufficient to drive chromatin compaction
(Goloborodko, Marko, & Mirny, 2016) and form chromosomal
domains (Fudenberg et al., 2016), and that epigenetic features such as
chromatin states contribute to the formation of TADs and

compartments (Di Pierro, Cheng, Lieberman Aiden, Wolynes, &
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Onuchic, 2017; Falk et al., 2019; Jost et al., 2014; Jost & Vaillant, 2018).
A current limitation of such models is that typically they do not perform
equally well at the different scales of loops, TADs, compartments,
chromosome territories, partly due to the considerable computational
time that they require.

On the other hand, data-driven models are focused on the treatment
and transformation of experimental data into restraints, to reliably
reconstruct its 3D organization. Restraints may be inferred from
interaction data, such as Hi-C experiments, additional experimental
observations such as nuclear dimensions or chromatin-lamina
interactions, and physics properties of the chromatin like the bending
rigidity of the fiber (Serra et al., 2015). The resolution of the experiment
and the computational workload are the main limiting factors.
Therefore, when analyzing long chromatin fibers such as the whole
human genome, resolution is normally lowered at about a megabase.
When instead models are focused on specific selected regions of
interest, they typically reach a resolution of few kilobases, closer to the
limit defined by the experiment itself (Serra et al., 2015). Scoring
functions infer how well the 3D distances between the output model
represent the input interaction data, and, finally, the conformations that
best satisfy the imposed restraints are retained. Modelling methods are
further divided into two classes. Consensus-based modeling approaches
analytically provide a single consensus structure that best explains the
input interaction data, with reduced computational time. Ensemble-
based modeling methods, instead, determine a set of 3D conformations
that try to account for the variability of population 3C-based datasets
(Lin et al., 2019). Among ensemble-based methods, TADbit (Serra et
al., 2017) is well-suited for chromatin 3D modeling from Hi-C data,
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serving of the Integrative Modeling Platform (IMP) (Russel et al., 2012)
for the application of spatial restraints. First, the input interaction data
is normalized and transformed via log10 and Z-score. Then, chromatin
is represented as a chain of particles, with a diameter defined by the
resolution of the data. A combination of parameters is used to
transform the Z-scores of non-consecutive particles into different types
of restraints and assign a range of allowed distances to each pair of
particles, while consecutive particles are spatially restrained by their
occupancy. Finally, the restraints are applied starting from randomly
distributed particles, by a series of Monte Carlo rounds combined with
standard simulated annealing. The output of this process is an ensemble
of models that best fit the input restraints, while minimizing the defined
scoring function for the different parameter combinations.
Subsequently, the comparison of obtained ensembles with the input
interaction matrix allows to optimize the parameters. By using only Hi-
C data as input, TADDbit was able to generate models at the kilobase
scale representing distinct 3D features associated to previously defined
epigenetic states (Filion et al.,, 2010; Serra et al.,, 2017). Additionally,
provided Hi-C data from time course experiments are available, this
type of modelling can interpolate the restraints through the various time
points to deliver information about chromatin folding dynamics (Di
Stefano et al., 2020).

Overall, modelling strategies have mostly focused their attention on
technologies like Hi-C, which have been widely used in the last decade.
However, other chromatin interaction technologies, like 4C, Promoter
Capture Hi-C (PCHi-C) or HiChlIP, are being increasingly employed,

and, since they produce sparser interaction datasets compared to Hi-C,
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the use of appropriate methods is required (Mendieta-Esteban, Di
Stefano, Castillo, Farabella, & Marti-Renom, 2021).

Improvements in algorithms and computation power are crucial
complementary tools to experimental methods, and will hopefully soon
allow to model the dynamics of whole-genome folding at high spatial

and temporal resolution.

7. The relationship between genome function and
structure

Abundant experimental evidence suggests that chromatin structural
dynamics contributes to the specification of distinct gene expression
programs and biological functions (Galupa & Heard, 2017; Spitz, 2010).
Perturbative studies coupling existing methods, notably 3C-based, with
recently developed techniques such as CRISPR—Cas9 technology, give
unprecedented opportunities to manipulate genome architecture and
explore the mechanistic connections between chromosome structure
and nuclear biology. However, because of contradicting evidences, the
mechanisms regulating dynamic chromatin changes and the causality
between genome topology and transcription are under intense
investigation.

Positioning patterns of genes and chromosomes differ between cell
types, and undergo changes during physiological processes such as
differentiation, development, aging, and in pathological conditions. The
genomic landscape in embryonic stem (ES) cells is abundantly
associated to active marks (Meshorer et al., 2006; Mikkelsen et al., 2007),

and its structure is maintained in a globally open, readily accessible
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configuration, allowing for maximum plasticity (Fussner et al., 2011).
Upon ES cells differentiation, many of ES cell-specific chromatin
hallmarks rapidly disappear.

Despite primary domain architecture seems to be mainly preserved in
different cell types and across species (Dixon et al., 2012; S. S. Rao et
al., 2014; Sexton et al., 2012), during lineage specification in early stages
of human development intra-TAD interactions in some domains are
strongly altered, often correlate with relocation of the TAD from one
compartment to another, and with changes in chromatin accessibility
and transcription status (Dixon et al, 2015). On the same line, in
response to the transient stimuli of hormone treatment in breast cancer
cells, substantial changes in transcription are accompanied by only few
dynamic TAD boundary regions, but TADs respond to the hormone
treatment as a unit. Responsive TADs change epigenetic signature,
switch between the A and B compartments and undergo changes in
their level of compaction, suggesting that the transcription status might
be coordinated within a TAD (Le Dily et al., 2014).

It has also been described that mature B cell formation and activation
involves a strong relationship between nuclear architecture, TFs, and
the epigenetic machinery (Azagra, Marina-Zarate, Ramiro, Javierre, &
Parra, 2020; Stadhouders et al., 2018), including the formation of DNA
loops between distant regulatory regions mediated by CTCF, and
potentially also by IncRNAs (Bunting et al., 2016; Kieffer-Kwon et al.,
2017; Ramachandrareddy et al., 2010).

In human primary hematopoietic cell types and embryonic stem cell-
derived cardiomyocytes, the promoters interactome has been
demonstrated to be crucial for enhancers to contact their target genes

in a cell-type specific manner, and for non-coding genome-wide
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association study (GWAS) variants to be linked with putative target
genes, shedding light on the genomic regulatory mechanisms underlying
common diseases (Choy et al., 2018; Javierre et al., 2010).

Several elegant genetic perturbation studies have together favored a
model in which TADs ensure proper spatiotemporal regulation of gene
expression, by creating insulated neighborhoods that demarcate the
enhancer search space for target gene promoters in the appropriate
developmental time window (Beagan & Phillips-Cremins, 2020; Norton
& Phillips-Cremins, 2017; Symmons et al., 2014). Hox gene cluster
domains constitute a representative example of this principle. They are
among the best-studied Polycomb domains, which in general are
formed by clusters of Polycomb-bound sites with preferential
interactions (Bantignies et al, 2011; Lanzuolo et al, 2007,
Schuettengruber et al., 2014; Sexton et al., 2012). In mouse embryonic
stem cells, where Hox genes are transcriptionally inactive, they associate
into a single Polycomb domain that is well separated from flanking
active regions (Vieux-Rochas et al., 2015). Upon Hox gene activation
during differentiation, active genes progressively segregate into an active
TAD, and the transition in spatial configuration coincides with the
change of chromatin marks from a repressed to an active state
(Noordermeer et al., 2014; Noordermeer et al., 2011). Architectural
protein CTCF seems to be a key protein in insulating active and
repressed Hox clusters into spatially disjoint domains (Narendra et al.,
2015).

Although the relationship between TAD boundaries, insulation and
disease is not entirely clear, structural variations perturbing TAD
boundaries, CTCF binding, and insulation can lead to aberrant gene

expression, developmental defects and disease (Akdemir et al., 2020;

52



Andrey & Mundlos, 2017; Bruneau & Nora, 2018; Despang et al., 2019;
Dowen et al., 2014; Flavahan et al., 2016; Franke et al., 2016; Hnisz et
al., 2016; Kraft et al., 2019; Laugsch et al.,, 2019; X. S. Liu et al., 2018;
Lupianez et al., 2015; Lupianez, Spielmann, & Mundlos, 2016; Narendra
et al, 2015; Valton & Dekker, 2016; van Bemmel et al., 2019;
Weischenfeldt et al., 2017).

Chromatin looping has been demonstrated to play a critical role in
activation or repression of gene expression, depending on the specific
cases. In a landmark study, forcing a loop between the [-globin
promoter and its locus control region (LCR) in absence of the TF
GATAI1, which is normally required for B-globin expression, was
sufficient to recruit RNAPII and upregulate the expression of the -
globin gene (W. Deng et al., 2012). In D. melanogaster, the prevention of
loop formation showed that Polycomb-dependent genomic loops can
contribute to gene silencing during development (Ogiyama et al., 2018).
Interestingly, acute depletion of CTCF or of cohesin complex subunits
results in the disruption of most of loop domains across the genome,
while compartmentalization is unaffected or strengthened (Nora et al.,
2017; S. S. P. Rao et al,, 2017; Schwarzer et al., 2017), and changes in
gene expression are unexpectedly modest (Beagan & Phillips-Cremins,
2020). Extensive genome-wide deletions, duplications and inversions in
Drosophila impact chromatin-domain placement, but generate only
minor alterations in gene expression (Ghavi-Helm et al., 2019). These
results indicate that possibly not all genes might be regulated through
long-range spatial contacts (Beagan & Phillips-Cremins, 2020). Overall,
the data available to date indicate a dynamic, reciprocal interplay
between transcription and fine-scale genome organization. Loops and

domains can modulate function, albeit to a modest degree in some
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cases, and genome transcription can also influence looping structures.
In contrast, transcription has only moderate effects on domain
organization and is not sufficient to create new domain boundaries (van
Steensel & Furlong, 2019). As regards A and B compartments, since yet
there is no way to prevent their formation without perturbing the
nuclear processes by which they form, i.e. self-association and/or phase
separation of similarly modified chromatin, experiments to test their
functional role are still missing.

Globally, the emerging picture points to a self-organizing function-
structure-function model of genome organization. Genome topology
might be a modulatory, rather than deterministic, regulator of genome
function, consistently with the observed stochastic nature of gene
expression. In this model, genome activity would primarily be dictated
by DNA sequence, and drive genome topology and epigenetic patterns.
Resulting topological and epigenetic features would in turn reinforce
genome function, superimposing additional layers of regulation,
maintaining the ground state generated by the genetic information and
acting as a buffer to potentially detrimental environmental influences,
such as cellular stress or aberrant signaling. Possibly, epigenetic and
structural mechanisms may alter the functional state of a certain
genomic region, such as by placing an active gene into a
heterochromatic, repressed environment. Consequently, the newly
induced functional state would strengthen the epigenetic and structural

features of the genomic region.
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CHAPTER 1

Coordinated changes in gene expression, H1 variant
distribution and genome 3D conformation in response

to H1 depletion

Candidate’s contribution: Study of all aspects of the work
related to the analysis of Hi-C maps of the 3D genome.

Nuria Serna-Pujol T, Moénica Salinas-Penaf, Francesca Mugianesif,
Francois Le Dily, Marc A. Marti-Renom, Albert Jordan. Coordinated
changes in gene expression, H1 variant distribution and genome 3D conformation
in response to HT depletion. Nucleic Acids Research, 2022;, gkac226,
https://doi.org/10.1093/nar/gkac226.
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ABSTRACT

Up to seven members of the histone H1 family may contribute to

chromatin compaction and its regulation in human somatic cells. In
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breast cancer cells, knock-down of multiple H1 variants deregulates
many genes, promotes the appearance of genome-wide accessibility
sites and triggers an interferon response via activation of
heterochromatic repeats. However, how these changes in the
expression profile relate to the re-distribution of H1 variants as well as
to genome conformational changes have not been yet studied. Here, we
combined ChIP-seq of five endogenous H1 variants with Chromosome
Conformation Captute analysis in wild-type and H1.2/H1.4 knock-
down T47D cells. The results indicate that H1 variants coexist in the
genome in two large groups depending on the local GC content and
that their distribution is robust with respect to H1 depletion. Despite
the small changes in H1 variants distribution, knock-down of HI1
translated into more isolated but de-compacted chromatin structures at
the scale of topologically associating domains (TADs). Such changes in
TAD structure correlated with a coordinated gene expression response
of their resident genes. This is the first report describing simultaneous
profiling of five endogenous H1 variants and giving functional evidence
of genome topology alterations upon H1 depletion in human cancer

cells.

INTRODUCTION

DNA is packaged within the nucleus to efficiently regulate nuclear
processes. Chromatin packing involves several hierarchical levels of
organization that have been mostly described by chromosome
conformation capture techniques, among others. First, at megabases
scale, the genome can be segregated into the so-called A and B
compartments. The A compartment represents active, accessible

chromatin with a tendency to occupy a more central position in the
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nucleus. The B compartment corresponds to heterochromatin and gene
deserts enriched at the nuclear periphery (1). Second, topological
associating domains (TADs), which are submegabase structures,
interact more frequently within themselves than with the rest of the
genome (2—4). TADs are conserved across species and cell types and
show a coordinated transcriptional status (5,6). Third, these domains
are formed by assemblies of chromatin loops with physical properties
that, ultimately, depend on the histone composition and modifications
of its resident nucleosomes. In particular, histone H1, which has
classically been regarded as a simple condenser, is now known to
contribute to the higher-order organization of the genome (7-9).
Histone H1 family is evolutionary diverse and human somatic cells may
contain up to seven H1 variants (H1.1 to H1.5, H1.0 and H1X). H1.1-
H1.5 variants are expressed in a replication-dependent manner while
H1.0 and H1X are replication-independent. H1.2 to H1.5 and H1X are
ubiquitously expressed, while H1.1 is restricted to certain tissues and
H1.0 accumulates in terminally differentiated cells (8,10,11).

Several studies support the idea that H1 variants are not redundant and
that functional specificity may exist with H1 variants non-randomly
distributed in the genome and interacting with different protein partners
(12-18). For example, in breast cancer cells, knock-down (KD) of each
individual H1 variant deregulates different subsets of genes (17,19). In
mouse embryonic stem cells (ESCs), Hlc and H1d (orthologs of the
human H1.2 and H1.3, respectively) are depleted from high GC/gene-
rich regions and are enriched at major satellites (14). In IMR90 cells,
H1.2-H1.5, in contrast to H1.1, are depleted from CpG-dense and
regulatory regions (15), with H1.5 binding correlating with depletion of
RNA polymerase II (RNApol II) and repression of target genes in
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differentiated cells (13). In skin fibroblasts, H1.0 distribution correlates
with GC content and is abundant at gene-rich chromosomes (18). In
T47D breast cancer cells, all H1 variants are depleted at promoters of
active genes (16) and tagged-H1s are enriched at high GC regions with
endogenous H1.2 and H1X resulting in opposite profiles. That is, while
H1.2 is found in low GC regions and lamina-associated domains
(LADs), H1X strongly correlates with GC content and is associated to
RNApol II binding sites (16,17). Moreover, H1.2 and H1X have an
opposite distribution among Giemsa bands (G bands), being H1.2 and
H1X associated with low and high GC bands, respectively (20). Finally,
a strong cotrelation has been observed between high H1.2/H1X ratio
and the so-called genome B compartment, low GC bands and compact,
late-replicating chromatin (20). Although no functional Hi-C
experiments have been performed in H1-depleted human cells, the
direct involvement of linker histones in chromatin structure has been
proved in mouse ESCs. Hi-C experiments were performed in wild-type
and H1-triple knockout (TKO) ESCs. In H1 TKO, an increase in inter-
TAD interactions correlated with changes in active histone marks,
increased number of DNA hypersensitivity sites and decreased DNA
methylation (21). These results point to an essential role of histone H1
in modulating local chromatin organization and chromatin 3D
organization.

To study the consequences H1 depletion in human cells, we have
previously generated a derivative T47D cell line containing a short-
hairpin-RNA that affects the expression of several H1 genes as well as
the protein levels of mainly H1.2 and H1.4 (22). In such cell line, the
H1 total levels are reduced to =70%, which results in heterochromatic

repeats including satellites and endogenous retroviruses overexpression
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that triggers a strong interferon response. Using this system, here we
aim at studying the effects of H1 wvariant depletion in chromatin
organization and nuclear homeostasis. To address this question, we
have performed ChIP-seq in T47D breast cancer cells, and Hi-C
experiments under basal conditions and after combined depletion of
H1.2 and H1.4 (H1 KD). Profiling of endogenous H1 variants revealed
that H1.2, H1.5 and H1.0 were abundant at low GC regions while H1.4
and H1X preferentially co-localized at high GC regions. Profiling of
H1s within chromatin states showed that all H1 variants were enriched
at heterochromatin and low-activity chromatin, but H1X was more
abundant at promoters compared to other H1 variants. After H1 KD,
chromatin accessibility increased genome-wide, especially at the A
compartment where H3K9me3 abundance was reduced. Similatly, the
B compartment, where H1.2 was enriched at basal conditions, also
showed a more open state. Interestingly, these changes occurred with
only slight H1 variant redistributions across the genome. For example,
H1.4 profile switched towards the H1.2 group and H1X decreased at
heterochromatin and increased in almost all other chromatin states. Our
Hi-C results also indicate that upon H1 KD, parts of the genome
suffered changes in compartmentalization with no specific direction
and TADs increased their internal interactions, which resulted in an
increased TAD border strength. In particular, those regions of the
genome with high H1.2 overlap resulted in increased local interactions
upon H1 KD. Such structural changes were parallel to coordinated gene
expression changes within TADs with up-regulated genes enriched in
TADs with low basal gene expression and high H1.2 content. Finally,
the three-dimensional (3D) modeling of TADs with coordinated gene

response indicate that they suffered a general decompaction upon H1
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KD. This is the first report describing simultaneous profiling of five
endogenous H1 variants within a cell line and giving functional evidence

of genome topology alterations upon H1 KD in human cancer cells.

RESULTS

A stable genome distribution of H1 variants correlates with GC
content and chromatin state

It has been previously described that the content of histone H1 variants
varies between cell types and along differentiation (8,40). Moreover, its
genomic distribution is non-homogeneous and with specific patterns
depending on the variants (13-18,20). Therefore, we hypothesize that
altering the H1 variants composition in a particular cell type may affect
the genomic distribution of the different variants. To test this, we
performed ChIP-seq experiments in T47D cells harboring an inducible
multiH1 shRNA expression vector which, upon Doxycycline treatment,
efficiently depletes H1.2 and H1.4 proteins (H1 KD) (22). After testing
the efficacy of H1 KD by Western blot (Figure 1A), we performed ChIP
with antibodies against endogenous H1.2, H1.4, H1.5, H1.0 and H1X.
The amount of DNA immunoprecipitated with H1.2 and H1.4
antibodies decreased >065% in treated cells compared to untreated,
confirming the antibody specificity and the effect of the H1 knock-
down. ChIPed DNA was qPCR-amplified with oligonucleotides for
TSS and distal promoter regions of CDK2 (active)
and NANOG (inactive) genes (Figure 1B), which confirmed that all
ChIPs efficiently worked compared to unspecific IgG. The active gene
presented the characteristic H1 valley at the Transcription Starting Site
(TSS) compared to the distal region, but not the inactive gene (16).
Upon H1 KD, the signal of H1.2 and H1.4 significantly decreased, while
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Figure 1. Genomic distribution of histone H1 variants upon H1 knock-down in
breast cancer cells. (A) Immunoblot analysis of H1 depletion in H1 KD cells.
Chromatin extracts (1 or 5Spg of protein) from T47D multiH1 KD cells cultured in
the presence or not of Doxycycline for 6 days were tun in SDS/PAGE and

immunoblotted with the indicated antibodies against H1 variants or histone H3 as

loading control. Image] Immunoblot quantification of multiple experiments is
indicated as mean (tatio + Dox/untreated) and SD. Number of biological replicates
used for quantification were: » = 6 (H1.2, H1.4 and H1.0), » = 4 (H1X), » = 2 (H1.3,
H1.5). (B) ChIP-qPCR of H1 variants in multiH1 KD cells. Chromatin from
untreated or Dox-treated H1 KD cells was used for ChIP with antibodies against H1
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variants and unrelated IgG as a control. Resulting DNA was amplified by gPCR with
oligos for distal promoter (3kb upstream TSS) and TSS regions of
genes CDK2 and NANOG. ChIP amplification is shown relative to input DNA
amplification. A representative experiment quantified in triplicate is shown. Statistical
differences between Untreated (—Dox) and + Dox immunoprecipitated DNA for
each H1 wvatiant are supported by paired-#test. (***) P <0.001; (ns/non-
significant) P > 0.05. (C) Heat map and cluster analysis of the input-subtracted ChIP-
seq abundance of H1 variants within Gpos and Gneg bands from untreated T47D
cells. The color of heatmap grids represents the relative input-corrected coverage of
the H1 variant indicated at the X-axis within each G band, while the Y-axis shows to
which group the band belongs. Two main clusters of H1 variant distribution are
formed, one with abundant H1.X and H1.4 at high GC bands, the other with H1.2,
H1.5 and H1.0 enriched at low GC bands. Two replicates are shown (r1, r2). (D)
Scatter plots of the indicated H1 variant pairs input-subtracted ChIP-seq abundance
within 100-kb bins of the human genome. The GC content at each bin is color-coded.
Pearson's correlation coefficient is shown (P-value < 0.001). (E) Heat map and cluster
analysis of the input-subtracted ChIP-seq abundance of H1 vatiants from WT or H1
KD T47D cells (—/+Dox) within 10 chromatin states (ChromHMM segmentation).
The profile of H3K9me3 is included. For each heatmap grid, the color represents the
input-cortrected coverage of the H1 variant identified by the X-axis within each region,
while the Y-axis shows the ChromHMM group the region belongs to. (F) Scatter plots
of H1 variants input-subtracted ChIP-seq abundance within 100-kb bins of the human
genome in multiH1 KD cells treated or not with Doxycycline. The GC content at each
bin is color-coded. (C, E) Heatmaps were performed by using the R package
‘pheatmap’. The ‘euclidean’ distance measure and the ‘complete’ cluster method were

used in clustering rows and columns.

H1.0 signal increased, in agreement with the Western blot results
(Figure 1A-B). The effect of H1 KD as well as the specificity of H1
antibodies were further confirmed RT-qPCR, western blot, ChIP-qPCR
and mass-spectrometry (Supplementary Figure S1 and Supplementary
Table S2). Cell cycle analysis in H1 KD cells is also shown
(Supplementary Figure S1).

We have previously shown that H1.2 strongly correlates with B
compartment, late replicating, inaccessible chromatin and low GC
bands (20). To further extend this analysis, we measured the ChIP-seq
abundance of each H1 within G bands and compared its distribution

upon H1 KD. A browser snapshot of the distribution of the H1 variants
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in the genome is shown in Supplementary Figure 2. Unsupervised
clustering of H1 variant distributions in G bands clearly show the
existence of two major clusters of H1 variants within G bands
(Figure 1C and Supplementary Figure S3A). In untreated cells, H1.2
was enriched towards low GC content regions (that is,
Gpos100/Gneg4, repressed bands), and H1X was enriched at high GC
(that is, Gpos25/Gnegl, active bands). Additionally, H1.4 was also
enriched at high GC bands, whereas H1.5 and H1.0 were enriched
towards low GC bands. These results confirm and expand previous
findings on the distribution of H1 variants in the genome (16,20).
Interestingly, correlation analysis of the distribution of H1 variants
genome-wide using bins of 100-kb confirmed the existence of these two
groups of variants (i.e. H1.2, H1.5 and H1.0 in low GC regions as well
as H1.4 and H1X in high GC regions) with H1.2 and H1X selected as
prototypes of the two groups and opposed distribution within the
genome (Figure 1D and Supplementary Figure S3B, C). Next, we
assessed whether the clustering distribution of H1 variants would also
correlate with genomic chromatin states. To do so, we used as a proxy
10-chromatin states (colors) maps generated elsewhere from several
genomic datasets of Hela-S3 cells (41). Most H1 variants were
particularly abundant within heterochromatin/ repetitive and low-
activity chromatin  states, but also  at polycomb-repressed, transcription-
associated and weak-enbancer (Figure 1E and Supplementary Figure S3D).
In  concordance, such  variants  were  underrepresented
at active and nactive promoter states. This trend was broken by the H1X
variant, which was enriched at promoters, compared to other variants,

confirming that this variant is the most specific of all with respect its
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genome-wide distribution. H1.4 was the variant that overlapped the
most with H3K9me3 profile within chromatin states.

Changes of H1 variants distribution upon H1 KD were further analyzed
within 100-kb bins throughout the genome. Upon H1 KD, H1.0
distribution was unaltered, while H1.2 and H1.5 were slightly increased
specially at high GC bins. H1X occupancy increased at high GC bins
and decreased at low GC bins, whereas H1.4 decreased at high GC bins
(Figure 1F and Supplementary Figures S2, 3A). Similarly, upon H1 KD,
H1.2, H1.5 and H1.0 profiles within chromatin states were not altered
and H1X profile decreased at heterochromatin and increased in almost all
other chromatin states, particularly at Polycomb-repressed regions
and promoters, and among them the highest increase occurred at znactive
promoters (Figure 1E and Supplementary Figure S3D). Finally, H1.4
profile switched towards the H1.2 group. It has to be considered that
H1.2 and H1.4 profiles refer to the relative ChIP-seq signal remaining
after efficient KD (ca. =65% of the H1.2 or H1.4 genomic abundance
was disappeared).

The average profiles of all H1 variants around transcription start sites
(TSS) or termination sites (T'TS) and around coding genes was
calculated using CEAS software and is shown in Supplementary Figure
S4A. All H1 variants showed depletion around TSS of active genes and
no changes upon H1 KD, except for H1X, which was enriched around
TSS of genes, especially upon H1 KD. Annotation of genomic regions
enriched for the different variants showed that H1.2, H1.5 and H1.0
were enriched at intergenic regions both in the absence or presence of
Doxycycline, whereas H1X and H1.4 were enriched at promoters and
introns, compared to the other variants, in wild-type conditions, but

distribution was altered upon H1 KD (Supplementary Figure S4B).
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H1X was further enriched at promoters, exons and UTRs upon H1 KD,
whereas the remaining H1.4 was decreased from introns and increased
at intergenic regions.

Furthermore, differential genomic distribution of H1 variants in T47D
cells established by ChIP-seq here is compatible with
immunofluorescence imaging of HI1 variants within the nuclei
(Supplementary Figure S5). H1.2 showed enrichment towards the
nuclear periphery and co-localized with lamin A, features of
heterochromatin; H1.5 presented a similar pattern. Instead, H1X and
H1.4 showed a punctuated pattern inside the nuclei, without lamin A
overlapping. Notably, H1X was highly enriched at the nucleolus, as
previously reported (17,42). H1.0 was also distributed overall the
nucleus but no general overlapping with H1.4 was found, confirming
that they occupied different genomic regions. Upon H1 KD,
abundances of H1.2 and H1.4 were highly reduced, whereas H1X and
H1.0 were increased. However, H1 wvariants redistribution within
chromatin states upon H1 KD was difficult to evaluate with this
technique.

In summary, ChIP-seq data in T47D cells demonstrated that H1
variants are differentially distributed through the genome in two
profiles: H1.2, H1.5 and H1.0 enriched towards low GC regions and
H1X and H1.4 more abundant at high GC regions. Still, all H1 variants
are abundant within heterochromatin or inactive regions of the genome.
Upon H1.2 and H1.4 depletion, H1.2, H1.0 and H1.5 did not
significantly change their genomic distribution, whereas H1X increased
at high GC regions, where H1.4 was selectively depleted. H1.0, whose
expression and protein levels increased, was homogeneously

incorporated throughout the genome.
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Changes on genome architecture upon depletion of multiple
histone H1 variants

Chromosome conformation capture techniques such as Hi-C allows to
detect local and distal contacts within the genome and to establish the
position of borders flanking the so-called topologically associating
domains (TADs). Hi-C experiments also allow to establish a division of
the genome into two compartments, active (A) and inactive (B). To
address the consequences of histone H1 depletion on genome
architecture, we prepared nuclear DNA from untreated and 6-days
Doxycycline-treated multiH1 shRNA cells, in two independent
experiments with a total of 3 replicates, and performed the Hi-C
protocol (Supplementary Figure S6). After assessing the similarity
between Hi-C replicates using HiCRep score (Materials and Methods
and Figure 2A), replicates within samples were merged and analysed as
a single experiment for WT and H1 KD. Analysis of the average Hi-C
interactions as a function of genomic distance indicates that upon H1
depletion there was a decrease in short and medium-range interactions
(<30 Mb), and an increase in long-range contacts (>30 Mb) (Figure 2B).
To further characterize where those average changes occurred, we
segmented the genome first into compartments and then into TADs for
WT and H1 KD samples (Supplementary Figure S2).

The segmentation of the genome into the A and B compartments
remained largely unchanged upon H1 KD (~80% of the 100-kb bins
did not change compartment, Figure 2C). However, significant
differences in compartmentalization were observed. For example, about
280 Mb of the genome decompacted (B to A direction) after H1 KD
with 1/3 of the bins moving from the B compartment to an A

compartment. Conversely, about 294 Mb of the genome compacted (A
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Figure 2. A/B compartments redisttibution upon H1 KD. (A) Hierarchical clustering
of Hi-C replicates from WT (—Dox) and multiH1 KD (+Dox) cells based on the Hi-

C reproducibility score between paired experiments. (B) Plot comparing the
distribution of Hi-C interactions versus genomic distance across the genome for a

maximum distance of 500 Mb for WT and H1 KD cells. (C) Scatter plot of principal
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component (PC) coefficients for 100-kb genomic segments (bins) from WT' (—Dox)
and H1 KD (+Dox) cells. PC coefficients were used to define A (positive PC) and B
(negative PC) compartments, as well as compartment shifting (A-to-B and B-to-A),
compaction (blue bins AA-A and BB + B) and decompaction (red bins AA + A and
BB-B) upon H1 KD. Unchanged segments AA and BB are black-colored. A
polynomial regression line was used to model the relationship between the dependent
and the independent variables. (D) A/B compartments redisttibution within
chromosomes. Scatter plot between the percentage of bins that changed from A to B
or vice versa upon H1 KD, and the average H1.2 ChIP-seq signal in untreated cells
within TADs, for each chromosome. Spearman's correlation coefficient is shown as
well as P-value. (E) Gene expression changes upon H1 KD within bins changing
compartment or compaction rate. Normalized RNA-seq reads of coding and non-
coding genes before and after Dox-induced H1 KD within 100-kb bins of the eight
categoties obtained in (C) wete used to calculate the +/—Dox fold-change (expressed
as log2). (F, G) Box plot showing H1 variants input-subtracted ChIP-seq signal within
bins of each category in WT cells (-Dox) (F), or the ratio of change (log2) in H1 KD
(+Dox) compared to untreated cells (—-Dox) (G). (***) P <0.001; (**) P <0.01;
(*) P < 0.05. Kruskal-Wallis test determined that there were statistically significant
differences between the groups (P < 0.001). One-sample Wilcoxon signed-rank test
was used to compare each group of bins against the median gene expression changes
(E), H1 variants input-subtracted ChIP-seq signal (F), or ratio of change (G).

to B direction) with about 1/4 completely changing compartment
category  (Figure 2C). Interestingly,  these = changes in
compartmentalization were not homogenous across the genome, being
B-to-A shifts upon H1 KD more frequent within chromosomes with
high H1.2 content. Notably, the expected anti-correlation for bins
moving from the A compartment to the B compartment was not
observed, despite chromosomes rich in A compartment were poor in
H1.2 (Figure 2D and Supplementary Figure S7). To assess if changes in
compartment were related to gene activity, we also explored whether
gene expression was altered within bins changing compaction upon H1
KD using RNA-seq data previously acquired in the same cell systems
(22). Significant overall gene up-regulation was observed within bins
being decompacted (B-to-A and A or B decompaction), but the

opposite was not observed for bins being compacted (Figure 2E). We
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next wondered whether the changes in compartmentalization and
expression were dependent on the basal distribution of H1 variants in
the genome as well as their re-distribution upon H1 KD. As expected,
we found that H1X and H1.4 were enriched in the A compartment and
H1.0, H1.5 and H1.2 were enriched in the B compartment (Figure 2F).
Interestingly, such a trend was pronounced for all the bins in the
genome which compartmentalization did not change upon H1 KD
indicating that the basal state of different H1 variants could determine
how compartments respond to H1 depletion. However, was the
observed trend upon H1 depletion also accompanied by a change of H1
variant distribution? Interestingly, H1X decreased upon H1 KD in B
compartment bins (regardless of their change in compartmentalization)
as well as in A-compartment bins that compacted or even moved to the
B compartment (Figure 2G), which could indicate that decrease of H1X
is associated to B compartmentalization. Similarly, H1.2 decreased in all
A compartment bins as well as B compartments that decompacted or
even moved to the A compartment, which again indicates that H1.2
decrease is associated to A compartmentalization. To note that, despite
H1.4 clear depletion after H1 KD, its changes associated to
compartmentalization did not correlate with the observed changes in
H1X (Figure 2G). In fact, H1.4 decreased in all A compartment bins
and increased in all B compartment bins after H1 depletion, which
could indicate a redistribution that could play a significant role in
compartmentalization.

Topologically Associating Domains or TADs comprise the next scale
of the so-called higher-order organization of chromatin after
compartmentalization (43). Similar to the compartmentalization

changes, the large majority of TAD borders (i.e. 71.0%) remained
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Figure 3. TAD boundaries changes upon H1 KD. (A) Hi-C interaction maps of 6.25
Mb region in chromosome 3 at 50-kb resolution. Leff panel is a heat map of Hi-C maps
normalized by reads coverage in Log2 scale with TADs overlayed by black lines. Top
triangle of the map corresponds to Hi-C in WT and lower triangle to H1 KD. Green
arrow points to the de-novo detected TAD border in H1 KD. Righ? panel, differential
Hi-C map showing the entichment of internal interaction in the two separated TADs
around the new detected border. (B) Box plot showing the H1.2 and H1.4 input-
subtracted ChIP-seq signal in WT cells within TADs containing the TAD borders
divided in conserved, shifted <100 kb and non-conserved according to their behavior
upon H1 KD. (C) TAD border dynamics. Box plot of normalized border strength
distribution for TAD borders in WT and H1 KD cells, divided in conserved,
shifted <100 kb and non-conserved borders. (***) P <0.001; (*¥) P<0.01;
(*) P <0.05 Mann—Whitney test).

unchanged upon H1 KD (Supplementary Figure S2), 12.4% shifted by
only one 100-kb bin, and 16.5% were not conserved (that is, shifted by
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>1 bin, newly formed or disappeared; Figure 3A as example of a de
novo detected border after H1 KD). To determine whether those
changes could be linked to the basal distribution of H1 variants prior
H1 KD, we interrogated the TAD enrichment of H1.2 or H1.4, which
we identified above having a role in A/B compartmentalization. The
results indicate that H1.2 was significantly depleted at non-conserved
compared to conserved TAD borders and H1.4 was higher at TADs
with non-conserved borders (Figure 3B). Interestingly, the differences
in border position were also associated to changes in border strength.
Upon H1 KD there was an increase in border strength for conserved
and shifted TAD borders but not for the non-conserved borders, which
slightly decreased its border strengths but with no statistically significant
differences (Figure 3C). The results suggest, thus, that ‘soft’ borders
were prone to be altered upon histone H1 depletion, both in its position
as well as in its strength.

The observed increased border strength was associated to an increase in
intra-TAD (i.e. local interactions) both within A and B compartments and
a decrease of inter-T'AD interactions (i.e. non-local interactions) within the
A and between A and B compartments (Figure 4A). The increase of local
interactions (intra-T'AD) with a decrease of non-local interactions (intet-
TAD) was also observed with the D-score, which measures the differential
local interactions per each of the 100-kb bins in a Hi-C matrices.
Specifically, the D-score is the average of differential interactions between
WT and H1 KD of each bin with any other bin within a window of 2 Mb.
Thus, it measures if a bin is surrounded by mainly a region in the genome
of increased (D-score> 0) or decreased (D-score< 0) interactions (Figure 4B).
Next, we compared the basal distribution of H1 variants with the D-

score and found that H1.2 signal was a strong predictor of the D-score across
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resolution. Bottom, D score. Profiles of differential interaction D score and input-
subtracted H1.2 ChIP-seq abundance from WT cells along chromosome 11,
calculated within 100 kb bins. (C) Scatter plots between differential
interaction D score and H1.2 or H1X abundance from WT cells, genome-wide.
Spearman correlation coefficient is shown as well as P-value. The GC content at each
bin is color-coded. (D, E) Box plots showing the relative number of ATAC-seq peaks
(normalized by length) within TAD:s classified according to H1.2/H1X ratio (Groups
1-4) (D) ot within A/B compartments (E), at WT and H1 KD (—/+Dox) cells. The
ChIP-seq H1.2/H1X signal ratio within TADs in the four groups repotted is shown
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signed-rank  test. A compartment, N =1032; B compartment, N = 1014;
TADs, N = 756 TADs per group.

the genome (corr.coef. = 0.707 and Figure 4B, C). Conversely, there was
an inverse correlation between the D-score and the basal abundancy of H1X
variant (corr. coeff. = —0.422). In other words, those regions of the
genome with high H1.2 overlap are likely to result in increased local
interactions once H1 is depleted while regions with high H1X are likely to
decrease interactions.

Next, to identify if there was a correlation between the observed
changes in H1 variants upon H1 KD within the spatial genome and the
underlying chromatin state, we further classified TADs by their content
in H1.2 and H1X variants (that is, we generate four discreate groups of
TADs from lowest to highest H1.2/H1X ratio;
Figure 4D and Supplementary Figure S2). Upon HI1 depletion,
accessibility measured by ATAC-seq was significantly increased at all
TAD categories, but its increase was more pronounced at low
H1.2/H1X TADs (Figure 4D). Accordingly, accessibility was also
increased at the A and B compartments but most notably in A
compartment (Figure 4E and Supplementary Figure S2). As expected,
the opposite trend was observed in analyzing the distribution of the
repressive mark H3K9me3 upon H1 KD. Indeed, H3K9me3 ChIP-seq
signal decreased more in the A compartment compared to the B
compartment and in low H1.2/H1X ratio TADs (Figure 4F), which
indicates again that chromatin decompaction upon H1 depletion occurs
more prominently in already open regions of the genome.

Altogether our findings indicate that the genome structure is not
generally but specifically altered upon depletion of H1 variants. First,

local and non-local interactions genome-wide were differentially altered
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with short and mid-range interactions decreasing and long-range
increasing. Second, these changes in interactions correlated with
changes in A and B compartments associated to changes of gene
expression. Third, intra-TAD interactions increased, mostly within A or
B compartments, which resulted in a clear increase of TAD border
strength. Fourth, these genome interaction changes were more
prominent depending on the basal H1 variant occupancy being the
distribution of H1.2 and H1X most informative of the observed
changes. Fifth, and final, depletion of H1 variants resulted in an overall
increase of accessibility of chromatin, which also depended on the basal

occupancy of H1.2 and H1X.

Gene expression is coordinately altered within TADs upon H1 KD
As previously observed, H1 variant depletion resulted in deregulation
of hundreds of genes with about one third of the up-regulated genes
associated to transcriptional response to interferon (22). In our
experiments, a total of 1089 and 1254 genes were up-regulated and
down-regulated, respectively (FC = 1.4, adjusted P-value < 0.05,
Figure 5A). Interestingly, groups of regulated genes were more often
than expected co-localized within the same TAD. The 2,343
deregulated genes were distributed across 1,292 TADs with an
enrichment of TADs with either only up or down regulated genes
(Supplementary Figure S8A). For example, there was 531 TADs with at
least one up-regulated genes and no down-regulated genes (here called
‘Up’). Similar numbers were observed for down-regulated TADs with
520 with at least one down-regulated gene and no up-regulated genes
(here called ‘Dw’). Finally, a total of 241 TADs contained at least 2
genes deregulated with mix directions (here called ‘UpDw’). UpDw
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Figure 5. Gene expression is coordinately altered within TADs upon H1 KD. (A) Top,
Histogram of the frequencies of TADs for the observed (gray) or randomized (purple)
position of genes, for TADs containing an increasing proportion of genes per TAD
with positive FC. Observed and expected values were compared using Pearson's chi-
square test. Gene locations were randomized 10 000 times, constraining by
chromosome, not allowing overlapping, and only considering TADs with =24
genes. Bottom- Ratio of observed versus expected frequencies of TADs with distinct
proportions of genes with positive or negative H1 KD-induced FC; FC > 1 or FC«1.
(B) TADs with =4 genes where at least 90% of genes are down- (left) or up-regulated
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(right) with FC«1 or FC > 1, respectively (total N = 115). Log2 of gene expression
FC is shown. TADs ate ordered from low to high abundance of genes per TAD.
Dashed lanes indicate FC = —1.4 or FC = 1.4. Red dots represent ISGs. Example
genes shown in (C) are located within TADs marked with an arrow. (C) Examples of
TADs with biased coordinated tesponse to H1 KD. Fold change +Dox/-Dox (log2)
is shown for all coding and non-coding genes present within a representative TAD
containing 90-100% of genes with negative (left) or positive (right) FC, respectively.
Genes are ordered according to their position within the genome. Red asterisk
represents 1SGs. (D) Box plot showing the H1.2 ChIP-seq signal in untreated cells
within TADs in the 10 groups described in (A). (E) Box plot showing the ATAC-seq
accessibility gain upon H1 KD (+/—Dox) within TADs in the 10 groups desctibed in
(A). Kruskal-Wallis test determined that there were statistically significant differences
between the groups in (D) and (E). Comparison between each group of TADs and
the median ChIP-seq H1.2/H1X log2 ratio (D) or the ATAC-seq accessibility changes
(E) was performed using the one-sample Wilcoxon signed-rank test (***) P < 0.001;
(**) P < 0.01. (F) Bar plots showing the frequency of ovetlap between all the TAD
groups described in (A) and genome segments within A/B compartment categoties
described in Figure 2C that changed compaction upon H1 KD. The observed and
expected count of bins of the different groups of TADs wete significantly different
(P < 0.001, Pearson's chi-squared test).

TADs corresponded to higher gene density and lower H1.2 content
compared to either TAD-Up or TAD-Dw. Finally, TADs without
deregulated genes (here called Control) had the highest H1.2 content as
well as the lowest gene richness (Figure 5B). Accordingly, H1X was
significantly enriched within UpDw TADs and depleted from Control
TADs contrary to the observed trend for H1.2 variant. Most TADs
containing significantly deregulated genes upon H1 KD were located
before KD within the A compartment (Figure 5C), while Control TADs
were enriched at the B compartment. Chromatin remodeling also
followed the expected trends for the TAD groups classified by their
change in expression of the resident genes. For example, upon H1 KD,
ATAC-seq accessibility increased globally in all TADs, especially in
UpDw type (Figure 5D). Conversely, H3K9me3 abundance
significantly decreased in Dw and UpDw TADs (Figure 5E). The same
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Figure 6. Gene expression is coordinately altered within TADs upon H1 KD. (A) Top,
Histogram of the frequencies of TADs for the observed (gray) or randomized (purple)
position of genes, for TADs containing an increasing proportion of genes per TAD
with positive FC. Observed and expected values were compared using Pearson's chi-
square test. Gene locations were randomized 10 000 times, constraining by
chromosome, not allowing overlapping, and only considering TADs with 24
genes. Bottom- Ratio of observed versus expected frequencies of TADs with distinct
proportions of genes with positive or negative H1 KD-induced FC; FC > 1 or FC«1.
(B) TADs with =4 genes where at least 90% of genes are down- (left) or up-regulated
(right) with FC«1 or FC > 1, respectively (total N = 115). Log?2 of gene expression
FC is shown. TADs ate ordered from low to high abundance of genes per TAD.
Dashed lanes indicate FC = —1.4 or FC = 1.4. Red dots represent ISGs. Example
genes shown in (C) are located within TADs marked with an arrow. (C) Examples of
TADs with biased cootrdinated tesponse to H1 KD. Fold change +Dox/-Dox (log2)
is shown for all coding and non-coding genes present within a representative TAD
containing 90-100% of genes with negative (left) or positive (right) FC, respectively.
Genes are ordered according to their position within the genome. Red asterisk
represents 1SGs. (D) Box plot showing the H1.2 ChIP-seq signal in untreated cells
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within TADs in the 10 groups described in (A). (E) Box plot showing the ATAC-seq
accessibility gain upon H1 KD (+/—Dox) within TADs in the 10 groups desctibed in
(A). Kruskal-Wallis test determined that there were statistically significant differences
between the groups in (D) and (E). Comparison between each group of TADs and
the median ChIP-seq H1.2/H1X log2 ratio (D) or the ATAC-seq accessibility changes
(E) was performed using the one-sample Wilcoxon signed-rank test (***) P < 0.001;
(**) P < 0.01. (F) Bar plots showing the frequency of ovetlap between all the TAD
groups described in (A) and genome segments within A/B compartment categoties
described in Figure 2C that changed compaction upon H1 KD. The observed and
expected count of bins of the different groups of TADs wete significantly different
(P < 0.001, Pearson's chi-squared test).

correlations were obtained using TADs containing genes deregulated
upon H1 KD considering a FC = 2 (Supplementary Figure S8B-F).

As previously described in T47D cell lines (6), we observed an intra-
TAD coordinated response of gene expression. Indeed, we found an
enrichment of gene-rich TADs (that is, with at least four genes) where
most of its genes changed expression in the same direction (FC > *1).
Specifically, TADs with over 70% of their genes up-regulated or at least
80% down-regulated were observed in proportions beyond random
expectation (Figure 6A). These correspond to TADs where all or most
of the genes changed expression in the same direction upon H1 KD,
including Interferon stimulated genes (ISGs) such as ISG20, CMPK2,
DDX60 or GBP3 (Figure 6B, C and Supplementary Figure S9A). This
could result from two hypothetical scenarios: (i) upon H1 depletion, the
whole TADs were (architecturally) affected and most resident genes
became up- or down-regulated coordinately; (ii) upon H1 depletion,
some gene within a TAD became deregulated and, consequently,
neighbor genes within the same TAD changed expression in the same
direction. To discern between these two scenarios, we characterized the

groups of TADs with most coordinated changes of expression upon

depletion of H1. Generally, these were poor in gene density, low in GC
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content, low in basal expression (except group 0-0.1), and high in H1.2
(Figure 6D and Supplementary Figure S9B-F). Moreover, the selected
TADs were poor in H1X and H1.4 (Supplementary Figure S9G).
Interestingly, these TADs suffered less prominent changes in H1
variant distribution or ATAC-seq coverage than non-coordinated
response TADs (Figure 6E and Supplementary Figure SOH). Despite
this, coordinated TADs were enriched in regions of the genome that
suffered decompaction as measured by the Hi-C compartmentalization
analysis (Figure OF).

Altogether, the results support that upon H1 depletion the majority of
the genome does not alter its expression. However, genes located in
regions of high H1.2 content harbored more genes whose expression
was cootrdinated within entire TADs. Therefore, our results indicate
that upon H1 depletion, the entire TADs were architecturally altered

and most resident genes were coordinately deregulated.

3D modeling of TADs with coordinated transcriptional response
To further characterize architecturally changes within TADs with
coordinated transcriptional response to H1 KD, we next generated 3D
models of genomic regions harboring TADs that contained at least 90%
of genes down or up-regulated (group 0-0.1, ‘¢, N = 42; group 0.9-1,
‘u’, N = 73; Figure 6B), both in WT and H1 KD conditions. As a
control, we also modeled TADs with the most extreme H1.4 decrease
upon H1 KD (group ‘7, N =100), TADs with a bidirectional
transcriptional response (‘4z’, N =174, picked from groups 0.4—
0.6; Supplementary Figure S9C), TADs with minimum gene expression
changes (‘w7 N =100), and TADs with no annotated genes
(‘wi’, N = 12). Models were built based on our Hi-C data at 10 kb
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Figure 7. Structural properties of TADs. (A) Violin plots of structural properties
measured on the 3D models computed for seven classes of TADs, both in WT and
H1 KD conditions (—/+Dox): TADs with the most extreme H1.4 dectease upon H1
KD (b7, N =100), TADs presenting a bidirectional transcriptional response to H1
KD (b, N=174), TADs presenting the minimum gene exptression
changes (7, N = 100), TADs presenting a coordinated transcriptional response to H1
KD (#, only up-regulated genes, N = 73; d, only down-regulated genes, N = 42; ud,
TADs # and d together, N = 115), TADs without genes (7, N = 12). For each TAD
1000 models have been generated and clustered, and plotted measures are relative to
the main cluster of models. Reported measures are consistency, radius of gyration,
accessibility, density and walking angle. Matrices next to violin plots indicate classes
of TADs that are significantly different for each measure. Statistical significance of the
difference between distributions was computed with Kolmogorov-Smirnov test (P-
value < 0.01). See Materials and Methods for details. (B) 3D models of the indicated
TADs within chr10, chr17 and chr4, from the #4, 57 and # groups, respectively, in WT
(blue) and KD (orange) conditions. The 3D modelling reflected a tendency to
chromatin opening upon H1 KD.
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resolution using TADbit as previously described (29). Several structural
measures were computed and compared between groups of modeled
TADs, such as: consistency, radius of gyration, accessibility, density and
walking angle (Figure 7 and Materials and Methods for the definition of
the structural measures). Additionally, the analyzed TAD groups were
characterized in terms of H1 abundance, gene expression changes, GC
content and ATAC-seq accessibility for comparison with the structural
data (Supplementary Figure S10). All modeled TAD groups resulted in
highly consistent models, this indicates that the input Hi-C data did not
contain many contradictory interactions and that fairly structural similar
conformations were obtained from the ensemble of models for all cases.
Only TADs harboring no genes resulted in 3D models with lower
consistency measures indicating that more different conformations
could satisfy the input restraints (Figure 7A). Interestingly, TADs with
the highest H1.4 decrease upon H1 KD (‘47’ group) as well as TADs
with no genes (‘w7 group) overall resulted in more different structural
properties. Specifically, both 47 and »/ TADs are more compact (lower
radius of gyration) compared to the rest of the groups (Figure 7A).
However, 47 results in the densest DNA (bp per nanometer) models
compared to the 7 which are the least dense of all. Other groups have
similar density values and between these two extremes. It is important
to note that there is an apparent discrepancy in TAD structural features
and ATAC-seq data for some TAD groups such as /7. These TADs
result in models that tend to be dense/compact while highly accessible
in the ATAC experiment. Nevertheless, at the level of resolution of the
3D models (that is 10 kb) it is impossible to assess whether the apparent
discrepancy is due to the data or the modeling exercise. The reason is

that the measures are averaged over entire TADs and the comparison
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of both datasets cannot be done directly as ATAC-seq data is ~100 base
pair resolution and our models are 10 kb resolution. The high gene
expression rate and GC content in 47 TADs group explains the high
ATAC accessibility at low resolution. However, at 10 kb resolution the
‘density’ measure says that at the TAD level the DNA fiber is more
compacted.

Finally, the models indicate that upon H1 KD and across all types of TAD
groups there is a significant increase of the walking angle measure
indicating a change of stiffness of the chromatin (Figure 7A). In general,
changes in the structural properties of TADs reflected a tendency to
chromatin opening upon H1 KD, such as the significant increase of
chromatin walking angle and tendency to increase of the radius of gyration.
The observed changes are exemplified in three models from
the wi, b1 and ud groups (Figure 7B). In general, we observed no significant
differences in structural changes upon H1 KD in TADs with no genes (),
while the changes were more evident in the 47 group and also in
the #d group independently of the direction of the changes in gene
expression. Indeed, although without significance, changes in the TADs
with a coordinated transcriptional response to H1 KD (#, d) have the same
trends, indicating that TADs that were coordinately up- or down-regulated
were similarly structurally altered upon H1 KD. Our 3D models indicate
that all TADs are altered in a similar way due to H1 KD, with different
consequences in gene expression deregulation that might depend on local

features or distinct H1 abundance.

DISCUSSION
In this study, we have analyzed the genomic distribution of five
endogenous H1 variants within T47D breast cancer cells by ChIP-seq

using specific antibodies. This is almost the whole somatic H1
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complement of this cell line with the exception of H1.1, which is not
expressed in these cells, and H1.3 that was not profiled due to the lack
of ChIP-grade antibodies. This is, to our knowledge, the first time that
most of endogenous variants have been profiled in a mammalian cell.
Antibodies for H1.2, H1X and H1.0 were used before on ChIP-seq
experiments (16-18,20); H1.4 and H1.5 antibodies have been used here
for the first time, to our knowledge. Specificity of all H1 antibodies used
has been assayed extensively (Supplementary Figure S1).

In previous studies, we mapped endogenous H1.2 and HIX,
demonstrating that they have different distributions across the genome
(16,17,20). On the one side, H1.2 is enriched within intergenic, low gene
expression regions and lamina-associated domains. On the other side,
H1X is enriched at gene-rich chromosomes, RNA polymerase 11
enriched sites, coding regions and hypomethylated CpG islands. The
apparent differential distribution of the two H1 variants in active versus
inactive chromatin, also correlates with the CG content of the regions
where they localize. Indeed, we have observed here that H1.5 and H1.0
colocalize with H1.2, at low GC regions, while H1.4 distribution is
similar to H1X with the exception of H1X being highly enriched at high
GC regions. Previously, we profiled H1.0 and H1.4 fused to an HA tag
at C-termini, stably expressed through a lentiviral vector into T47D
cells. Using this technique, both H1.4-HA and H1.0-HA were enriched
at high GC regions, indicating that profiling exogenous, tagged H1
proteins may give different results than endogenous proteins (16). In
apparent contradiction, H1.0 has been profiled in human skin
fibroblasts, being enriched at high GC regions (18) while in mouse,
tagged, knocked-in Hlc (H1.2), H1d (H1.3) and H1.0 have been
profiled in ESCs and found enriched at low GC regions (14).
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Altogether, this suggests that H1 variants distribution might be different
among cell types, and could be explained by the relative levels of
expression of the different variants. Extensive profiling of H1 variants
among different cell types with the same methodology should be done
to clarify whether the observed distribution of H1 variants is cell type-
specific or universal for some of the variants.

In T47D cells, the H1 content was estimated to be 9% for H1.0, 23%
for H1.2, 13% for H1.3, 24% for H1.4 and 31% for H1.5 (19). Our
distribution analysis thus indicates that most of H1 variants we profiled
are located in low GC regions, which supports its role as
heterochromatic protein. However, and as previously described (17),
H1X is enriched at high GC regions suggesting its possible role as
regulatory H1. We also found that the enrichment of H1.4 at high GC
regions 1s intriguing as it was suggested that, because of its K26 residue
which may be methylated and bind HP1, it could be related to
heterochromatin (44,45). Still, a fraction of H1.4 is at low GC regions,
and even at high GC bands it could have a role in repression at particular
sites. In fact, when profiled within chromatin states, H1.4 overlapped
H3K9me3 distribution, a bona fide heterochromatin marker.

To study whether alteration of the total H1 content and relative
abundance of the different variants affected the genomic localization of
remaining histones, we performed ChIP-seq in T47D cells knocked-
down for H1.2 and H1.4 with an inducible system, previously
characterized (22). Interestingly, upon H1 KD, H1.4 preferentially
remained at low GC regions, supporting its putative role in
heterochromatin, and was displaced from high GC regions. In parallel,
H1X redistributed to high GC regions. H1.0 maintained its distribution

across the genome despite its expression and protein levels increased to
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compensate the H1 overall = 30% decrease. Overall, H1.2 was depleted
but did not change much its relative genomic distribution. Profiling
within chromatin states showed that H1.4 slightly switched towards the
H1.2 group upon H1 KD, and H1X decreased at heterochromatin and
increased in almost all other chromatin states. The redistribution of
remaining H1.4 upon H1 KD (i.e its preferential depletion from high
GC regions), is puzzling. An alternative explanation could be that the
H1.4 antibody, upon depletion of its specific epitope, cross-reacted with
other variants located at low GC regions (H1.0, H1.2 or H1.5). Our
specificity analysis, so far, does not support this hypothesis
(Supplementary Figure S1). Whether this H1.4-distribution occurs in
other cell types would be interesting to investigate.
Immunofluorescence analysis of H1 location within the nuclei
confirmed the expression changes described upon H1 KD, but any
redistribution within chromatin states is difficult to pick up with this
technique. Still, it was possible to confirm that H1.4 and HIX
localization differs from H1.2, H1.5 and H1.0. Further studies at super
resolution fluorescence microscopy might help to characterize, in the
future, the differential localization of H1 wvariants and their role in
chromatin organization and genomic functions.

In this work, we have shown that H1 KD caused changes in chromatin
accessibility and H3K9me3 distribution, shifts in A/B compartments
and TAD borders, and changes in the 3D architecture of TADs
(Figure 8). Some of these changes were dependent on the compaction
or GC content of genomic domains. In fact, we have previously shown
that A and B compartments positively correlate with the measured
H1.2/H1X ratio (20). Here we have further shown that the A/B

compartments present different abundance of H1 variants and respond

86



A Compartment

Open chromatin

Short
TADs  \YH12H1X

HghGC [T T T T 7]
G-bands Gpos25, Gnegl

H1 variants

Chromatin

Structure & = 4 WH3K9me3 i}

interactions AMAccessbilty =
/\ Alntra-TAD 3
- Winter-TAD

@ NTAD border strength

Figure 8. Chromatin organization and consequences upon H1 depletion on genome

structure. Chromatin organization and H1 variants distribution (npper panel): Hi-C data allows
determination of B (inactive) and A (active) compartments. B compartment is
characterized by closed chromatin, long TADs with a high H1.2/H1X ratio and a
great ovetlap with low GC Giemsa bands, while the opposite occurs for A
compartment. H1 variants were differentially distributed along the genome and two
profiles could be distinguished in T47D breast cancer cells: H1.2, H1.5 and H1.0 co-
localized at low GC regions whereas H1.4 and H1X occupied high GC regions. Upon
multiple H1 depletion (H1 KD), H1.2 and H1.4 were strongly depleted while H1.0
became up-regulated but without changing its distribution. Remaining H1.4
redistributed to low GC regions, whereas H1.2, H1.5 and especially H1X were
redistributed to higher GC regions. Consequences of H1 KD in chromatin structure (middle
panel): Upon H1 KD, chromatin accessibility increased and H3K9me3 signal
decreased, especially at A compartment. Intra-TAD interactions increased both at B
and A compartments whereas inter-TAD interactions were reduced at A
compartment. TAD-border strength increased, together with some TAD borders
being lost ot shifted. Upon H1 KD, shifts between and within A/B compattments
occurred, being more frequent compaction shifts at A compartment (including A-to-
B shifts) and decompaction at B compartment (incl. B-to-A). Consequences of H1 KD in
genome structure are related to gene expression deregulation (bottom panel): TADs presenting a
coordinated response to H1 KD were enriched compared to the expected frequency.
Up-regulated genes accumulated within TADs with poor basal expression and low
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gene density. Gene-dense TADs contained both up- and down-regulated genes
simultaneously. TADs with only down-regulated genes showed intermediate features.
differently to H1 depletion. Upon H1 KD, ATAC-seq chromatin
accessibility increased genome-wide but more markedly at A
compartment. Accordingly, the repressive histone mark H3K9me3
decreased majorly from A compartment. Recent reports have shown
that H1 depletion in mouse T cells and germinal centre B cells lead to
B-to-A compartment shifting (46,47). These could be due to the fact
that differentiated cells present a well-constituted heterochromatin rich
in histone H1, compared to pluripotent and cancer cells where
chromatin may be more plastic, partially because of a lower H1 content
(48,49). H1-mediated compartmentalization may be established along
differentiation, sequestering the stem cell programs within the B
compartment. Deregulation of H1 levels and compartmentalization
may occur in cancer and along reprogramming (40,50,51). The
observation of A-to-B and B-to-A shifting in our cancer model T47D
cells in similar proportions could be due to an overall less compacted
chromatin, or to the simultaneous depletion of H1 variants assayed here
to occupy distinct genomic compartments. We here show that H1.2 is
abundant at the B compartment and its depletion in H1 KD cells
resulted in decompaction and B-to-A shifts, accompanied by gene
induction and local increase of DNA interactions. Conversely, H1.4 is
abundant at the A compartment and its depletion upon H1 KD
preferentially accompanied A-to-B shifts or compaction. However, as
A decompaction also occurred in regions with H1.4 occupancy, our
results could suggest a dual role of this H1 variant, which requires

further investigation.
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We reported before that multiH1 KD (H1.2 + H1.4) effects were more
drastic than the simple addition of H1.2 or H1.4 KD effects, e.g. in the
number of genes being deregulated, or in causing the induction of the
interferon response due to de-repression of heterochromatic repeats
(Supplementary Figure S11) (22). This appeared to be due to the
synergistic function of these two variants, more than to the total amount
of H1 being depleted, because other H1 variants KD combinations did
not produce the observed effects. Using our RNAseq data we have
explored whether genes that showed coordinated expression within
TADs in multiH1 KD cells (Figure 6C) changed expression in H1.2 or
H1.4 individual KD cells. The result was that these changes did not
occur, neither in intensity nor sense (Supplementary Figure S12). This
is an indirect demonstration that single H1 KDs would not alter TADs
in the manner shown here for multiH1 KD. All this would support our
hypothesis that effects on accessibility or topology would be seen
importantly in multiH1 KD but not on the single H1 KD cells.

Previously, we and others have shown that epigenetic states and H1
distribution are more homogeneous within a TAD, suggesting that
TAD borders prevent the spreading of these features (6,20). In our
work, TADs hardly changed its size or distribution upon H1 KD,
however, a clear increased TAD border strength and intra-TAD
contacts was observed. Interestingly, the concomitant inter-TAD
contacts reduced more predominantly in A compartment compared to
the B compartment. Indeed, several reports have also shown that TAD
organization remains largely unchanged when disturbing chromatin
homeostasis, including mouse HI-depleted cells or epithelial-to-
mesenchymal transition (6,21,28,52). However, our work now

highlights novel relevant changes in TAD organization due to depletion

&9



of H1 variants, including an increase in border strength accompanied
by an increase of intra-TAD interactions.

Severe H1 depletion causes cell cycle arrest and transcription-
replication conflicts (22,53,54). One could speculate that this could be
the basis for the observed changes in genome topology. It has been
shown that topology changes along the cell cycle in ES cells analyzed at
single-cell resolution (55). Upon transition of ES cells from G1 to S
phase there is a gradual decrease of TAD insulation and a gradual
increase on compartmentalization peaking at G2 phase. If we were
comparing T47D cells completely shifting from S to G1, we could
speculate that observed changes are due to those described in ES cells,
but this is not the case. Normal T47D cells cycle slowly and in basal
conditions (—-Dox) show a =50% of cells in G1. Upon H1 KD, G1
increases up to =60% (Supplementary Figure S1). In addition, we have
found some of the topological changes enriched at regions abundant in
H1 variants that have been depleted in the H1 KD, concomitant with
chromatin opening. For all this, we consider that changes observed are
compatible with the depletion of H1 from the genome more than with
changes linked to cell cycle shift.

We have shown here and previously that H1 variants selective depletion
results in changes in expression of hundreds of genes, including de-
repression of intergenic and intronic RNAs, as well as heterochromatic
repeats and ERVs, which leads to the induction of the interferon
response (22). Moreover, we have shown that responsive genes are non-
randomly located throughout the genome but enriched in a limited
number of TADs with their resident genes coordinately changing
expression to H1 depletion. We have previously reported that, upon H1

KD in T47D cells, the interferon response is induced with many ISGs

90



being up-regulated. This is due to the accumulation of RNAs from
repeats and ERVs, which stimulate the response at cytoplasm
mimicking a viral infection and resulting in the transcription of many
genes involved in such response. A part of this direct effect of H1
depletion, our results may also indicate that other genes not directly
related to such response may be deregulated due to structural changes,
chromatin decompaction, or simply by co-existing within the same
TAD with genes directly activated. Indeed, we show that ISGs up-
regulated genes co-exist within TADs with other genes that coordinated
respond to H1 KD. Despite this observation, we also found that many
TADs with a coordinated response do not contain annotated ISGs
genes, so we propose that the response may be a consequence of
architectural changes upon H1 KD. This result is further supported by
the 3D modeling of TADs.

Overall, our results indicate that the non-random genomic distribution
of H1 variants, their re-location upon variant depletion, and the
subsequent genome structural changes have a read-out in their direct

(but also indirect) change of the gene expression program.
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MATHERIALS AND METHODS

Cell lines, culturing conditions and H1 knock-down

Breast cancer T47D-MTVL derivative cell lines, which carry one stably
integrated copy of luciferase reporter gene driven by the MMTV
promoter, were grown at 37°C with 5% CO,in RPMI 1640 medium,
supplemented with 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin,
and 100 pg/ml streptomycin, as described previously (19). Hela and
HCT-116 cell lines were grown at 37°C with 5% CO,in DMEM
GlutaMax medium, supplemented with 10% FBS and 1%
penicillin/streptomycin. The T47D-MTVL multiH1 shRNA cell line
(22) was used as a model for H1 depletion. This cell line contains a drug-
inducible RNA interference system that leads to the combined
depletion of H1.2 and H1.4 variants at protein level although it reduces
the expression of several H1 transcripts. Construction, establishment
and wvalidation of single-H1 knock-downs have been previously

described (19). Specifically, shRNA expression was induced with 6 days
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treatment of Doxycycline (Dox), in which cells were passaged on day 3.
Dox (Sigma) was added at 2.5 pg/ml.

Immunoblot

Chromatin samples were exposed to SDS-PAGE (14%), transferred to
a PVDF membrane, blocked with Odyssey blocking buffer (LI-COR
Biosciences) for 1 h, and incubated with primary antibodies overnight
at 4°C as well as with secondary antibodies conjugated to fluorescence
(IRDye 680 goat anti-rabbit IgG, Li-Cor) for 1 h at room temperature.
Bands were visualized in an Odyssey Infrared Imaging System (Li-Cor).
Coomassie staining or histone H3 immunoblotting were used as loading
controls. Image] software was used for immunoblot quantification.
Chromatin immunoprecipitation (ChIP)

Chromatin immunoprecipitation was performed according to the
Upstate (Millipore) standard protocol. Briefly, cells were fixed using 1%
formaldehyde for 10 min at 37°C, chromatin was extracted and
sonicated to generate fragments between 200 and 500 bp. Next, 30 ug
of sheared chromatin was immunoprecipitated overnight with the
indicated antibody. Immunocomplexes were recovered using 20 pl of
protein A magnetic beads, washed and eluted. Cross-linking was
reversed at 65°C overnight and immunoprecipitated DNA was
recovered using the [Pure Kit (Diagenode). Genomic regions of interest
were identified by real-time PCR (qPCR) using SYBR Green Master
Mix (Invitrogen) and specific oligonucleotides in a Roche 480 Light
Cycler machine. Each value was corrected by the corresponding input
chromatin sample. Oligonucleotide sequences are detailed in previous
studies (17).

ChIP-Seq
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Library construction and sequencing: Qualified ChIP and Input samples were
subjected to end-repair and then 3’ adenylated. Adaptors were ligated
to the ends of these 3’ adenylated fragments. Fragments were PCR-
amplified and PCR products were purified and selected with the
Agencourt AMPure XP-Medium kit. The double stranded PCR
products were heat denatured and circularized by the splint oligo
sequence. The single strand circle DNA (ssCir DNA) were formatted
as the final library and then quality-checked. The library was amplified
to make DNA nanoball (DNB) which had more than 300 copies of one
molecular. The DNBs were loaded into the patterned nanoarray and
single end 50 bases reads were generated in the way of sequenced by
combinatorial Probe-Anchor Synthesis (cPAS).

ChIP-seq data analysis: Single-end reads were quality-checked via FastQC
(v0.11.9) and aligned to the human GRCh37/hg19 reference genome
using Bowtie2 (v2.3.5.1) (23) with default options. SAMtools (v1.9) (24)
utilities were used to filter out the low-quality reads with the flag 3844.
Input, H1 variants, and H3K9me3 genome coverage was calculated and
normalized by reads per million with BEDTools (v2.28.0) (25), and
regions with zero coverage were also reported in the ChIP-Seq
annotation (genomecov -iban -bga -scale). MACS2 (v2.1.2) (26) was used to
subtract input coverage from H1 variants and H3K9me3 to generate
signal tracks (bdgemp -m subtract).

ChIP-Seq data on histone H1 variants and H3K9me3 epigenetic
modification from T47D multiH1 shRNA cells treated or not with Dox
has been deposited in NCBI’s Gene Expression Omnibus and is
accessible through GEO Series accession number GSE156036. ChIP-
Seq data on histone H1 variants from WT T47D cells is at GSE166645.
Antibodies
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Specific antibodies recognizing human H1 variants used for
ChIP/ChIP-seq were: anti-H1.0/H5 clone 3H9 (Millipore, 05-629-I),
anti-H1.2 (Abcam, ab40806), anti-H1.4 (Invitrogen, 702876), anti-H1.5
(Invitrogen, 711912) and anti-H1X (Abcam, ab31972). ChIP-seq of
H3K9me3 was performed using anti-H3K9me3 (Abcam, ab8898).
Other antibodies used were: anti-H1.0 (Abcam, ab11079), anti-H1.3
(Abcam, ab24174), anti-H1.5 (Abcam, ab24175), anti-H3 (Abcam,
ab1791) and anti-Lamin A (Abcam, ab8980).

In situ Hi-C

Hi-C libraries were generated from T47D multiH1 shRNA cells treated
or not with Dox, as single replica (r1) or duplicate (r2 and r3), as
previously described (27,28). In brief, adherent cells were cross-linked
with 1% formaldehyde in PBS for 10 min at room temperature and
glycine 0.125 M was added for 5 min at room temperature and for 15
min at 4°C to stop the cross-link reaction. Before permeabilization, cells
were treated for 5 min with trypsin. Nuclei digestion was performed
with 400 units of Mbol restriction enzyme. The ends of restriction
fragments were labeled using biotinylated nucleotides and ligated with
T4 DNA ligase. After reversal of cross-links, DNA was purified and
sheared (Diagenode BioruptorPico) to obtain DNA fragments between
300 and 500 bp and ligation junctions were pull-down with streptavidin
beads. Hi-C libraries were amplified, controlled for quality and
sequenced on an Illumina HiSeq 2500 sequencer (r1) or DNBseq
(r2,r3).

Hi-C data pre-processing, normalization and generation of
interaction matrices

The analysis of Hi-C data, from FASTQ files mapping to genome

segmentation into A/B compartments and TADs, was petformed
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using T°ADbit (29), which started by performing a quality control on the
raw data in FASTQ) format. Next, sequencing reads were mapped to the
reference genome (GRCh37/hgl9) applying an iterative strategy (30)
and using the GEM mapper (31). Mapped reads were filtered to remove
those resulting from unspecified ligations, errors or experimental
artefacts. Specifically, nine different filters were applied using the
default parameters in TADDbit: self-circles, dangling ends, errors, extra
dangling-ends, over-represented, too short, too long, duplicated and
random breaks (29). Hi-C data were next normalized with OneD
correction to remove Hi-C biases and artifacts (32). Filtered read-pairs
were binned at the resolutions of 1 Mb, 500, 100 and 10 kb, applying
biases from the normalization step and decay correction to generate
interaction matrices. Hi-C data on T47D breast cancer cells has been
deposited in NCBI’s Gene Expression Omnibus and is accessible
through accession number GSE172618. A summary of the number of
valid reads obtained per replica and filtered artifacts is shown
as Supplementary Table S1. Replicates were compared and merged
with TADbit merge that implements the HiCRep score (33).

Genome segmentation into Topologically Associating Domains
(TADs)

TADs were identified at the resolution of 50 kb using T:ADbit
segment with default parameters. Briefly, TADDbit segments the genome
into constitutive TADs after analyzing the contact distribution along
the genome using a BIC-penalized breakpoint detection algorithm (29).
This algorithm leads to a ~99% average genome coverage. To assign a
strength value to each TAD border, TADbit repeats the dynamic
programming segmentation 10 times after the optimum is reached, each

time decreasing the by a fix off-set the optimal TAD border detection
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path. The strength of a TAD border is then calculated as the number of
times it was included in the optimal pathway. If a TAD border is found
in all 10 sub-optimal paths, then the score of the border is equal to 10,
if it was found only one time, the score is 1. Finally, TADDbit also returns
a TAD density score as the ratio between the number of interactions
within TADs and the number of interactions of the rest of the genome.
Genome segmentation into A/B compartments

A/B compartments wete identified at 100kb resolution using HOMER
(34). Briefly, HOMER calculates correlation between the contact
profiles of each bin against each other, and performs principal
component analysis (PCA) on chromosome-wide matrices. Normally,
the A compartment is assigned to genomic bins with positive first
principal component (PC1), and the B compartment is assigned to
genomic bins with negative PC1. However, in some chromosomes and
in cell lines with aberrant karyotypes, the PC1 is reversed in the sign,
with A compartment corresponding to negative PC1, and B
compartment corresponding to positive PC1. Additionally, sometimes
the PC1 captures other correlations in the chromosome that do not
correspond to the compartments. For these reasons, all PC1 and PC2
for all chromosomes were visually inspected and correctly assigned to
decipher the proper segmentation of the genome into the A and B
compartments.

3D modelling of TADs based on Hi-C data

T ADbit model (29) was used with default parameters to generate 3D
models of selected TADs at the resolution of 10 kb. Hi-C interaction
maps were transformed into a set of spatial restraints that were then
used to build 3D models of the TADs that satisfied as best as possible
the imposed restraints, as previously described (35,36). For each TAD,
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we generated 1000 models, structurally aligned and clustered them in an
unsupervised manner, to generate sets of structurally related models.
For every TAD, we used the main cluster to compute consistency,
accessibility, density, radius of gyration, and walking angle (29).
Consistency quantifies the variability of the position of particles across
the considered set of models. Accessibility measures with a fraction
from 0 to 1 how much each particle in a model is accessible to an object
(z.e. a protein complex) with a radius of 100 nm. Density measures a
proxy for local DNA compactness as the ratio of DNA base pairs and
the distances between two consecutive particles in the models — the
higher the density, the more compact the DNA. Walking angle
measures the angle between triplets of consecutive particles—the
higher the value, the straighter the models— and can be used as a proxy
for the stiffness of the chromatin fiber. Finally, radius of gyration
measures 3D structure compactness as the root mean square distance
of the all particles in a model from its center of mass.

ATAC-Seq data analysis

ATAC-Seq data identified by the accession number GSE100762 was
reprocessed as previously described (37) with slight modifications.
Paired-end reads were quality-checked via FASTQC (v0.11.9), trimmed,
and subsequently aligned to the human GRCh37/hgl9 reference
genome using Bowtie2 (v2.3.5.1) (23). SAMtools (v1.9) (24) was used to
filter out the low-quality reads with the flag 1796, remove reads mapped
in the mitochondrial chromosome and discard those with a MAPQ
score below 30. The peak calling was performed with MACS2 (v.2.1.2)
(20) by specifying the -BAMPE mode. Filtered BAM files were also used
to compute the ATAC-Seq genome coverage, which was normalized to

reads per million (genomecov -ibam -bga -scale).
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Genomic data retrieval

Genome-wide GC content, G bands coordinates at 850 bands per
haploid sequence (bphs) resolution and chromosomes coordinates were
obtained from the UCSC human genome database (38,39). G bands
were classified as G positive (Gpos25 to Gpos100, according to its
intensity upon Giemsa staining), and G negative (unstained), which
were further divided into four groups according to their GC content
(Gnegl to Gneg4, from high to low GC content). Hel.a-S3 genome
segmentation by ChromHMM (ENCODE) was obtained from UCSC
human genome database (38,39). RNA-seq and ATAC-seq datasets
were download from GEO (accession numbers GSE83277 and

GSE100762, respectively) an parsed as previously described (22).
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CHAPTER 2

CHROMATIC reveals chromatin-associated factors

contributing to genome topology

Candidate’s contribution: Design, development and
coding of the CHROMATIC method. Application of
CHROMATIC to biologically relevant samples. Analysis and

interpretation of the results.

109



CHROMATIC reveals chromatin-associated factors

contributing to genome topology

Francesca Mugianesi'?, Ivano Mocavini’, Enrique Blanco®, Luciano Di

* .
Croce™*", and Marc A. Marti-Renom'*>**

1. CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona
Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028

Barcelona, Spain.

2. Centre for Genomic Regulation (CRG), Barcelona Institute of
Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona,
Spain.

3. Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain.

4. ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain.

*To whom correspondence should be addressed: M.A.M-R.

martitenom@cnag.ctg.cu and L.D.C. Luciano.DiCroce@crg.cu

ABSTRACT

Chromatin-associated factors play a fundamental role in chromatin
long-range interactions, which in turn are key for proper spatiotemporal
regulation of gene expression. However, the identification of factor-
associated chromatin interactions and the characterization of their role

in transcription are still elusive. Here we introduce CHROMATIC, a
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novel computational method that integrates Hi-C and ChIP-seq data to
study chromatin three-dimensional (3D) interactions associated with
any factor of interest. CHROMATIC is faster and less expensive than
performing experiments that probe protein-directed genome
architecture, such as HiChIP. Thanks to the deconvolution of the Hi-C
data into factor-specific interactions, our strategy allows discerning the
role of each studied factor in genome 3D structure in a cell-type-specific
manner. Furthermore, the classification of 3D colocalization patterns
of factors using CHROMATIC identifies types of functional 3D
interactions, that we call 3D-types’. 3D-types may reflect already
known interactions between different chromatin factors or may help
discover new associations between molecules with specific functional
roles. By applying our algorithm to mouse embryonic stem cells (ESCs)
and neural progenitor cells (NPCs), we analyzed changes in the types of
3D interactions during early stages of neuronal cell differentiation. We
found that pluripotency transcription factors (TFs) play a major role in
the genome structure of pluripotent stem cells. When differentiating
from ESCs to NPCs, cells switch to a less plastic and more specialized
configuration. Overall, the CHROMATIC tool unifies factor
occupancy and genome topology analyses, to shed light on their link

with gene expression.

INTRODUCTION

Gene expression, epigenetic states, and topological conformation are
three facets of the genome that tightly operate in space and time (Zheng
& Xie, 2019). Unfortunately, the detailed characterization of the link

between them is still largely missing.
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The 3D architecture of eukaryotic genomes is organized in multiple
layers with a relevant role in gene expression control (Bonev et al., 2017;
Rowley & Corces, 2018). At the chromosomal scale, the genome is
partitioned into regions of preferential long-range interactions, called A
and B compartments, which resemble euchromatin and
heterochromatin, respectively (Lieberman-Aiden et al., 2009). A
compartment is enriched in histone post-translational modifications
(PTMs) associated with transcriptional activity, while B compartment in
chromatin modifications that are typical of transcriptional repression.
At the sub-megabase scale, Topologically Associating Domains
(TADs), or domains in general, are self-interacting regions considered
functional units of the genome (Dixon et al., 2012; Nora et al., 2012).
Compartments and domains emerge as a result of multiple, dynamic,
and cell-type-specific interactions between distal regulatory elements,
such as gene promoters and enhancers, driven by different classes of
proteins that tightly interact with DNA via either specific or unspecific
sequence recognition (Cavalli & Misteli, 2013).

Chromatin interactions can be either loops between pairs of DNA loci
or hubs of multiple DNA loci that are clustered together (Bonev &
Cavalli, 2016; Rao et al., 2014), likely via loop-extrusion (Alipour &
Marko, 2012; Fudenberg et al., 2016; Sanborn et al., 2015) and phase
separation (Banani, Lee, Hyman, & Rosen, 2017; Shin & Brangwynne,
2017) mechanisms. Indeed, the loop extrusion model proposed that
CTCF and cohesin mediate loop interactions, which are important for
accurate gene regulation (Alipour & Marko, 2012; Fudenberg et al.,
2016; Sanborn et al., 2015). Also, Polycomb group proteins (PcG)
repress target genes via their clustering into repressive 3D hubs known

as Polycomb bodies (Blackledge et al., 2020; Eagen, Aiden, & Kornberg,
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2017; Huseyin & Klose, 2021; Kundu et al, 2017; Ogiyama,
Schuettengruber, Papadopoulos, Chang, & Cavalli, 2018). Additionally,
key ESC TFs such as NANOG, SOX2, OCT4, KLF4, and ESRRB are
found at most pluripotency genes in ESCs (Whyte et al., 2013) and are
associated with 3D enhancer rewiring and transcriptional changes
during reprogramming (Stadhouders et al., 2018). Overall, protein-
associated chromatin interactions are fundamental to ensure proper
gene expression (Di Giammartino et al., 2019), but their identification
and the characterization of the underlying mechanisms are still lacking.
Hi-C is an experimental technique combining DNA proximity ligation
(Cullen, Kladde, & Seyfred, 1993; Dekker, Rippe, Dekker, & Kleckner,
2002) with high-throughput sequencing, that is mostly used to probe
compartments, domains, loops, and hubs (Lieberman-Aiden et al.,
2009). The result of a population-based Hi-C experiment is a list of
DNA-DNA contacts between pairs of loci in at least hundreds of
thousands of cells, usually represented by a map of contact frequencies.
To elucidate the map of chromatin long-range interactions driven by
specific proteins, several methods have been developed that combine
ChIP-seq with 3C-based (Chromosome Conformation Capture)
experiments (Furey, 2012). Currently, HiChIP is the most suitable
strategy (Mumbach et al., 20106), in which ChIP is performed on the Hi-
C library of proximity-ligated DNA fragments. The comparison of
HiChIP of cohesin subunit SMC1a with Hi-C revealed that this method
enhances the signal-to-background ratio, enriching the signal at
chromatin loops associated with cohesin and depleting it elsewhere
(Mumbach et al., 2016).

The study of combinations of multiple proteins and marks in linear

chromatin (1D) has been fundamental to annotate chromatin states,
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discover regulatory regions, and characterize their cell type-specific
patterns (Day, Hemmaplardh, Thurman, Stamatoyannopoulos, &
Noble, 2007; Ernst & Kellis, 2010; Ernst et al., 2011; Filion et al., 2010;
mod et al., 2010). These combinatorial patterns often capture known
classes of genomic elements, such as enhancers, promoters,
transcriptionally active and repressed regions, or can help discover
novel classes of elements. ChromHMM learns chromatin states from
multiple ChIP-seq epigenomic tracks using a multivariate hidden
Markov model (HMM) and is the most widely used software for this
purpose (Ernst & Kellis, 2012, 2017). However, ChromHMM offers a
mono-dimensional perspective on chromatin states by considering
chromatin as a linear entity. Thus, it does not take advantage of the
insights gained from studying chromatin in its 3D context. A recent
study based on machine learning and polymer physics discovered a
combinatorial code linking 3D chromatin architecture to 1D chromatin
states, that allows to derive models of genome 3D conformations from
1D chromatin states through physics mechanisms, outperforming the
3D modeling based on epigenetic linear segmentation only (Esposito et
al., 2022). Hence, 1D chromatin states and genome architecture are
intimately linked, but at present there is no computational method to
characterize chromatin states directly in 3D, by integrating chromatin
interactions and factor occupancy.

To address this limitation, we have developed CHROMATIC, a
computational method to characterize chromatin functional states in
3D. CHROMATIC systematically integrates chromatin structure data
from Hi-C interaction matrices and genome-wide factor occupancy data
from ChIP-seq profiles, to identify chromatin 3D interactions

associated with proteins and histone post-translational modifications
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(PTMs). Importantly, since different chromatin factors may cooperate
for proper gene regulation thanks to their colocalization in the 3D
genome, the application of CHROMATIC to a certain set of factors
reveals ‘3D-types’, i.e., types of 3D interactions associated with specific
combinations of factors.

To demonstrate its applicability, we used CHROMATIC on a
comprehensive set of 37 ChlIP-seq tracks of chromatin factors in two
different cell types, mouse ESCs and NPCs. We characterized four
major types of functional 3D interactions for each cell line. Finally, by
comparing the results obtained for the two, we identified factors that
mostly contribute to genome structure in a cell type-specific manner
and analyzed changes in types of 3D interactions during eatly stages of
neuronal cell differentiation.

CHROMATIC is fast and conceptually simple, resulting in the
classification of major types of chromatin interactions that are linked to
a specific biological function. Thus, CHROMATIC constitutes an
inexpensive and reliable alternative to study factor-associated

interactions compared to performing experiments such as HiChIP.

METHODS

Experimental datasets

Genome interaction maps for mouse ES cells (mESC) and neural
progenitor cells (NPC) were obtained from 7 situ Hi-C experiments
previously generated (GEO database accession number GSE96107)
(Bonev etal., 2017). ChIP-seq datasets were previously generated by our
(Stevens et al., 2017) and other labs and are available in the GEO
database with accession codes GSE99530 (Mas et al., 2018), GSE79606
(Beringer et al., 2016), GSE42466 (Morey, Aloia, Cozzuto, Benitah, &
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Di Croce, 2013), GSE44288 (Whyte et al., 2013), GSE22557 (Kagey et
al., 2010), GSE11431 (Chen et al., 2008), GSE89575 (C. Huang et al.,
2017), GSE53542 (Aloia et al., 2014), GSE57186 (McAninch &
Thomas, 2014), GSE35496 (Lodato et al., 2013), GSE(65462 (Nishi et
al., 2015), GSE96107 (Bonev et al., 2017), GSE36203 (Phillips-Cremins
et al.,, 2013), GSE74330 (Kloet et al., 2016). Interaction datasets for
SMC1 and OCT4 HiChIP were also downloaded from GEO
(GSES80820) (Mumbach et al., 2016). Constitutive Lamin Associating
Domains (LADs) dataset was downloaded from GEO (GSE17051)

bl

MGSCv37/mm9 to GRCm38/mm10 reference genome using the Lift

(Peric-Hupkes et al, 2010) and converted from mouse
Genome Annotation tool (Kent et al., 2002). To find active enhancers,
the command zutersect -v from BEDTools toolkit (Quinlan & Hall, 2010)
was used to select peaks of H3K27ac not overlapping with peaks of
H3K4me3, the command genomeDistribution from SeqCode toolkit
(Blanco, Gonzalez-Ramirez, & Di Croce, 2021) was used to calculate
the distribution of the selected peaks into different genomic features,
and the peaks annotated as intergenic and intronic were considered as
active enhancers. Analogously, poised enhancers were found as
intergenic and intronic peaks H3K27me3. To find active promoters, the
command zntersect from BEDTools toolkit (Quinlan & Hall, 2010) was
used to find the overlap between peaks of H3K4me3 and H3K27ac,
that was then intersected with the position of the Transcription Start
Site (TSS) of RefSeq genes (TSS+500bp). For bivalent promoters, the
same process was applied, considering instead the overlap between
H3K4me3 and H3K27me3 peaks. Super-enhancers were computed
using HOMER (Heinz et al., 2010) on H3K27ac ChIP-seq data and
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relative to the control, with the command findPeaks -style super -0 anto. All
datasets were parsed as described in the following sections.

ChIP-seq data processing

Single-end reads were aligned to mouse GRCm38/mm10 reference
genome using Bowtie2 (Langmead & Salzberg, 2012) with default
options. SAMtools utilities (Li et al., 2009) were used to filter out
unaligned reads with the flag -F Ox4. The command buildChIPprofile
from SeqCode toolkit (Blanco et al, 2021) was used to generate
BedGraph profiles from BAM files, where the total number of reads of
the experiment was used to normalize the height of the resulting profile.
To avoid mapping artifacts, the set of genomic regions reported in the
ENCODE blacklist was removed from the aligned sequences
(Amemiya, Kundaje, & Boyle, 2019). To reduce the influence of
outliers, we held out values that are more than five standard deviations
higher than the average, since their probability is significantly low
(p=3x10"in case of normal distribution) and possibly correspond to
artifacts. We set this selected group of values to the maximum value
among the retained ones, corresponding to five standard deviations
above the average value. Next, ChIP-seq BedGraph tracks were binned
at a resolution of 5 kb for their subsequent integration with the Hi-C
data. The resulting tracks were further divided by the corresponding
tracks of control (IgG, WCE, GFP) for normalization, and linearly
transformed in the range of values between zero and one to be able to
compare the output obtained for different ChIP-seq tracks. Finally, the
MAC2 software (Y. Zhang et al., 2008) was used for peak calling from
BAM files against controls using the command callpeak --nomodel --extsize
150, with the --broad option for H3K36me3, H3K27me3, RNA Pol 11
Serine 5P, and RNA Pol IT tracks.
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Hi-C and HiChIP data processing

Hi-C datasets were processed using TADDbit (Serra et al,, 2017).
Specifically, for both mESC and NPC datasets, paired-end FASTQ files
of four Hi-C replicates, previously assessed for reproducibility (Bonev
et al,, 2017), were merged and mapped to mouse GRCm38/mm10
reference genome applying a fragment-based iterative strategy (Imakaev
et al., 2012) using the GEM mapper (Marco-Sola, Sammeth, Guigo, &
Ribeca, 2012). Mapped reads were filtered using TADDbit with default
parameters, which removed self-circles, dangling ends, duplicated and
random breaks among other minor artifactual reads (Serra et al., 2017).
After mapping and filtering, the resulting Hi-C matrices contained a
total of 1,537,751,681 valid pairs for mESC (Supplementary Table 2)
and 3,974,901,849 for NPC (Supplementary Table 3). The resulting
raw Hi-C interaction matrices were next normalized using OneD (Vidal
et al., 2018) at the resolution of 5kb, which removed experimental Hi-
C biases. Similarly, the available merged FASTQ files from four
replicates of SMC1 and OCT4 HiChIP (Mumbach et al., 2016) were
processed, mapped, filtered, and normalized with TADDbit with default
parameters, which resulted in a total of 219,998,058 valid pairs for
SMC1 and 252,920,123 valid pairs for OCT4 (Supplementary Table
4).

Genome segmentation into A/B compartments

A/B compartments were identified at the resolution of 100kb using
TADDit (Serra et al., 2017). Briefly, TADbit calculates the correlation
between the contact profiles of each bin against each other and
performs principal component analysis (PCA) on chromosome-wide
matrices. Normally, the A compartment is assigned to genomic bins

with positive first principal component (PC1), and the B compartment
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is assigned to genomic bins with negative PC1. However, in some
chromosomes the PC1 is reversed in the sign, with A compartment
corresponding to negative PC1, and B compartment corresponding to
positive PC1. Additionally, sometimes the PC1 captures other
correlations in the chromosome that do not correspond to
compartments. For these reasons, and since GC content correlates with
A compartment, PC1 and PC2 were compared to GC content for all
chromosomes, visually inspected, and correctly assigned to decipher the
proper segmentation of the genome into A and B compartments.

The CHROMATIC pipeline

The CHROMATIC pipeline takes as input a Hi-C normalized
interaction matrix and integrates it with a series of ChIP-seq tracks to
identify colocalization of groups of marks in the 3D space of the

nucleus. Specifically, the pipeline is composed of several steps:

1. ChbIP-seq and Hi-C pre-processing. For each studied factor,
CHROMATIC takes as input the ChIP-seq track ¢ of the factor
and an intra-chromosomal Hi-C matrix H obtained from the
same cell type and obtained as described above. Before the
integration of the two types of data, the input Hi-C matrix is
smoothed with the function wedfilt from scipy.signal package with
kernel_size=5. Also, the input ChIP-seq values are re-scaled as
follows to increase the spread of the signal:

flc) = J—abs(c;—0.5)+08,  ifc¢; <0.5
l 34, if c; =20.5

where ¢; is the ChIP-seq signal at bin i. To choose the re-
scaling function, we employed a heuristic strategy where

several different transformations were applied to our ChIP-seq
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to identify the one that best separated low and high ChIP-seq
values (Suppl. Figure 1).

Hi-C' re-weighting. Intra-chromosomal Hi-C matrices were next
re-weighted using the following formula:

Cij = Hyj x f(ci) x f(cp)
where Cjj is the re-weighted Hi-C interaction between bins i
and j, H;;j is the Hi-C normalized interaction frequency, and
f(¢;) and f(c;) are the transformed ChIP-seq values of bins i
and j. To minimize the computational burden for re-
weighting large Hi-C matrices, a sliding window of 2,000 bins
of 5 kb resolution was used allowing the re-weighting of
interactions as far as 10 Mb in sequence using a single

computer.

Detection of patches of 3D interaction. To detect chromatin
interactions associated with a given factor, CHROMATIC
generated a binary matrix P for each chromosome and for each
factor, whose pixels P;; were equal to 1 if there was a ChIP-seq
peak in at least one of the bases of the interaction or their
adjacent bins and its C;; values were equal to or larger than 0.2.
Next, a series of four operations from morphological image
processing was applied to the P;; matrix, with scipy.ndimage
python package: 1) a binary opening using a square 4 by 4
structuring element, 2) a binary closing with a cross-shaped 3 by
3 structuring element, 3) a binary dilation with a square 5 by 5
structuring element, and 4) a binary closing with a square 5 by 5

structuring element. The resulting matrix L, thus, included all
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patches of interactions corresponding to significant integration
of ChIP-seq and Hi-C signals.

Ldentification of 3D-types’. Next, CHROMATIC implements
Latent Semantic Analysis (LSA) (Dumais, 2005), a technique in
natural language processing. LSA analyzes relationships
between a set of documents and their contained terms to
automatically identify sets of topics with shared terms. As
implemented in CHROMATIC, LSA aims to identify types of
3D interaction (“topics”) based on the overlap of 3D
interactions associated with different factors (“terms”). In
general, LSA generates a document-term array describing the terms
contained in each document. In our case, it generates an
interaction-factor array describing the factors participating in each
interaction. Next, LSA uses Singular-Value Decomposition
(SVD) to find the main combinations of terms that define
topics. Thus, in CHROMATIC it finds the main combination
of factors in the detected genome interactions, which represent
the types of 3D interactions (or ‘3D-types’). This is performed
by two functions: first  TfidfVectorizer  from  the
sklearn.feature_extraction.text package (stop_words='"english', max_df
= 1.0, smooth_idf=True), and then TruncatedS1’D from
sklearn.decomposition package (algorithm="randomized’, n_iter=100,
random_state=122). CHROMATIC applied to the ESC, found 18
3D-types, which corresponds to the maximum allowed with 19
factors. In NPC, CHROMATIC found 17 3D-types for a total
of 18 factors. As output, CHROMATIC generates two
matrices: the nteraction-3Dtype, which allowed to associate each

3D interaction to one of the identified 3D-types and the 3D#ype-
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factor arrays, which described the composition of each 3D-type
in terms of enrichment or depletion of the studied factors.

Overlap of 3D-types with functional genomic features. 3D-types
identified by CHROMATIC were next mapped into genomic
loci, which allowed to assess their overlap with functional
genomic features for active enhancers (AE), active promoters
(AP), super-enhancers (SE), poised enhancers (PE), bivalent
promoters (BP), and constitutive LADs (CL). The enrichment
of selected 3D-types in each of the functional genomic features
was measured by its odds ratio (OR), which quantified the level

of association between two events. OR was defined as:

or = <
b/d

where a is the number of bins of overlap between a functional

state and a 3D-type, ¢ is the number of bins of the functional

state that do not overlap with the 3D-type, b is the number of

bins of 3D-type that are not of the functional type, and d is

the number of classified bins that are neither of the functional

type or the 3D-type.

Clustering of 3D-types into major types of 3D interactions. The logio of
the OR of the overlap between 3D-types and functional
genomic features (AE, BP, SE, PE, BP, CL) was used as input
data for a Principal Component Analysis (PCA). Data
standardization was performed by the function StandardS caler of
the sklearn.preprocessing package and fitting of data was done by
using PCA().fit of the sklearn.decomposition module. For each cell

type, the minimum number of principal components (PC)
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explaining more than 80% of the variance was chosen.
Specifically, in ESC the first two PC were kept, capturing 92.2%
of the variance, while in NPC the first three PC were kept,
explaining 90.9% of the variance. Then, PCA was performed
with the chosen number of components and the obtained data
was used for K-means clustering to cluster the 3D-types. To
determine the number of clusters to compute, the K-means
algorithm was run multiple times with a different number of
clusters: from 1 to 18 in ESC, where 18 3D-types were
identified, and from 1 to 17 in NPC, where 17 3D-types were
classified. For each solution, the Within Cluster Sum of Squares
(WCSS) was computed. To determine the number of clusters to
use, the approach known as the E/bow method was used, which
consists of looking for a kink or elbow in the plot of the values
of WCSS against the number of clusters. The elbow point is
identified by the different exponential of the descent on the left
and the right of the plot. In both ESC and NPC, the elbow
appeared in correspondence with 4 clusters of major types of

interactions (Suppl. Figure 2).

Functional characterization of major types of 3D interactions

To assign the identified major types of interactions to their biological

function, the following analyses were performed:

1.

Overlap with AE, AP, SE, PE, BP, CL.. Each major 3D-type was
mapped to 1D genomic loci, whose overlap with AE, AP, SE,
PE, BP, and CL was measured by odds ratio as described above.
Proportion of highly-, lowly-expressed and silent genes. The command
matchpeaksgenes from SeqCode toolkit (Blanco et al., 2021) was

used to match the genomic loci corresponding to each major
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3D-types to mouse genes (mm10), within the promoter, 2.5 kb
upstream of TSS, and the body of genes. Subsequently, in ESC
and NPC, genes were divided into three categories based on
whether they were highly-, lowly-expressed or silent. For this
purpose, 2 RNA-seq replicates per cell type were analyzed. So,
for each gene, the average between the RPKM values of the two
replicates was computed, and the gene was considered highly-,
lowly-expressed or silent if the RPKM value was respectively
RPKM>10, 1<RPKM<10, and RPKM<1.
3. Proportion of overlap with A/B  compartments. Genomic loci
corresponding to each major 3D-types were intersected with the
list of loci assighed to the A compartment or the B
compartment as calculated from the Hi-C maps using TADbit
(Serra et al., 2017).
Statistical tools for benchmarking
For the comparison between CHROMATIC output and HiChIP data,
linear regression was performed by the pofyfit function from
numpy.polynomial package. The function ks_2samp trom scipy.stats package
was used to perform two-sample Kolmogorov-Smirnov test, that
compares the distribution of HiChIP values corresponding to loops and
hubs detected by CHROMATIC against the distribution of HiChIP
values in the rest of the interaction matrix.
Statistical tools for clustering
Unsupervised hierarchical clustering results were obtained by the
clustermap function from seaborn library (method=average, metric=euclidean).
To assess how the resulting clustering resembled an ideal one (7.e., when
factors cluster according to their functional role), we used the

normalized_mutnal_info_score from sklearn.metrics package (NMIS). Thus,
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from the obtained hierarchical clustering the ideal number of clusters
was computed and then compared with the ideal solution. NMIS value
was between 0 (no correlation between clusters) and 1 (perfect
correlation).

Cell culture and differentiation

Sox1:GFP E14Tg2a mouse embryonic stem cells (mESC) (Ying,
Stavridis, Griffiths, Li, & Smith, 2003) were routinely cultured in
Serum/LIF conditions using Glasgow minimum essential medium
(Sigma, G5154) supplemented with 20% inactivated fetal bovine serum
(Cytiva HyClone SV30160.03), Glutamax (Gibco, 35050-038),
Pen/Strep (Gibco, 15140-122), non-essential amino acids (NEAA,
Gibco, 11140-050), B-Mercaptoethanol (Gibco, 31350-010), and
Leukemia inhibitory factor (LIF, produced and titrated in-house) on cell
culture treated plates coated with 0.1% gelatin (Millipore, ES-006-B).
Neural precursor cells (NPCs) were obtained as described in ref. (Ying
et al., 2003). Briefly, 1.8 x 10’ cells cm™ were plated on gelatin-coated
plate in Serum/LIF conditions. After 24h the medium was changed to
N2B27 differentiation medium, composed of a 1:1 mixture of
Neurobasal (Gibco, 21203-049) supplemented with N2 (17502-048)
and DMEM-F12 (11320-074) supplemented with B27 (17504-044), to
which Glutamax, Pen/Strep, NEAA, and 0.33% BSA fraction V
(15260-037) were added. Differentiation medium was changed every
other day. Cell differentiation was monitored via cytometre using the
Sox1:GFP internal reporter, that marks early neuroectoderm committed
cells (Wood & Episkopou, 1999; Ying et al., 2003) and harvested after

6 days of differentiation.
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Gene expression analysis

RNA extraction was performed using the RNeasy kit (Qiagen, 74134)
according to manufacturer’s instructions. For RNA-seq application,
RNA samples were processed as follows: samples were quantified using
the Nanodrop spectrophotometer (Thermo Fisher Scientific) and
libraries were prepared using the TruSeq stranded mRNA Library Prep
(Mlumina, 20020595) according to the manufacturer's protocol.
Libraries were sequenced on a single end for 50+8bp on Illumina’s
HiSeq2500. A minimum of 40 x 10° reads per sample was generated.
Next, raw sequencing data was analyzed as follows: RNA-seq samples
were mapped against the mm10 mouse genome assembly using TopHat
(Trapnell, Pachter, & Salzberg, 2009) with the option —g 1 to discard
reads that could not be uniquely mapped. DESeq2 (Love, Huber, &
Anders, 2014) was run to quantify the expression of every annotated
transcript using the RefSeq catalogue of exons (O'Leaty et al., 2016) and
to identify each set of differentially expressed genes between two
conditions. Raw counts and mapped statistics are provided as

supplementary material (Supplementary Table 1).

RESULTS

Overview of the CHROMATIC algorithm

CHROMATIC characterizes chromatin states in 3D by combining Hi-
C data with ChIP-seq tracks of proteins and histone PTMs. First, Hi-C
and ChIP-seq data are pre-processed and normalized to remove biases
and artifacts (Methods). Second, for each factor, CHROMATIC
combines the Hi-C map with its ChIP-seq track, generating a new

matrix (C) where the coefficient for each pair of bins is given by the
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Figure 1. Overview of the CHROMATIC algorithm. a Schematic representation
of the fundamental steps of CHROMATIC. Left, normalized Hi-C matrix and ChIP-
seq tracks of two generic factors X and Y. Center, for each factor the combination of
the Hi-C map with the ChIP-seq track generates a new matrix resembling Hi-ChIP
maps (CHROMATIC map), whete the coefficient Cjis high if bins 7 and ; interact in
3D and have also ChIP-seq enrichment for the factor. Right, a series of morphological
image processing operations detects loops and hubs associated with each factor. b
Specific example for SMC1 in ESCs at the resolution of 5kb, in a region containing
HoxA gene cluster. Left, normalized Hi-C map and ChIP-seq track of SMC1. Center,
CHROMATIC map generated for SMC1. Right, loops and hubs detected for SMC1.

corresponding normalized Hi-C coefficient multiplied by the
transformed ChIP-seq values of the two anchoring bins (Fig. 1a)
(Methods). Thus, the value Cjin matrix C'is high if loci in bins 7 and ;
interact in 3D and exhibit enrichment for the factor signal. Next, to
automatically detect loops and hubs associated with the factor, a series
of operations from morphological image processing is applied to matrix

C. Such operators are applied to identify loops/hubs up to 10 Mb in

sequence range and with at least a ChIP-seq peak at one of the two
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Figure 2. CHROMATIC interactions correlate with HiChIP. a Comparison of
CHROMATIC SMC1 maps (left) to HiChIP data (right) in a region in chromosome
6 including HoxA cluster, at the resolution of 5kb for ESC. SMC1 ChIP-seq is shown
underneath each matrix. b Correlation between CHROMATIC coefficients and
HiChIP values for SMC1 in chromosome 6. Spearman correlation coefficient r=0.6
(p-value = 0). ¢ Spearman correlation coefficients per chromosome. Genome-wide
median r=0.5 genome-wide. d Boxplots of HiChIP values of SMC1 from detected
CHROMATIC SMC1 patches compared HiChIP interactions elsewhere in the matrix
(statistically different distributions as for Kolmogorov-Smirnov statistical test=0.76,
p-val=0).

anchors (Methods). As an example, CHROMATIC efficiently detects
loops associated with SMC1 on the HoxA locus (Fig. 1b).

CHROMATIC interactions correlate with HiChIP

To benchmark the CHROMATIC detection of significant interactions
mediated by a given factor, we used already published HiChIP datasets
for the structural protein SMC1 and the TF OCT4 in mESC (Mumbach
et al., 2016) (Fig. 2a and Suppl. Figure 3). For each chromosome,
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CHROMATIC interactions were compared with the corresponding
HiChIP maps (Fig. 2b), resulting in a median Spearman correlation
coefficient of 0.5 genome-wide (Fig. 2c). To further assess the accuracy
of CHROMATIC detection of significant interactions directed by
SMC1, next, we studied the frequency of HiChIP interactions within
CHROMATIC detections compared to sites with no detection (Fig.
2d). Our analysis clearly indicated that sites with detected
CHROMATIC interaction corresponded to pairs of loci that highly
interact in HiChIP (Kolmogorov-Smirnov statistical test=0.76, p-
val~0). Similar results were obtained for the OCT4 factor (Suppl.
Figure 3). Overall, CHROMATIC accurately identifies factor-
associated chromatin interactions experimentally determined by
HiChIP.

CHROMATIC identifies 3D chromatin functional interactions
CHROMATIC can be regarded as a Hi-C matrix deconvolver where
the original interaction map is separated into a series of layers associated
with each of the different analyzed factors (Fig. 3a). This
deconvolution exercise allows CHROMATIC to efficiently identify
interactions associated with a given factor, which would have been
difficult to detect from the original Hi-C map. CHROMATIC was
indeed applied genome-wide to 5 kb Hi-C maps and two distinct ChIP-
seq datasets of 19 factors and 18 factors in mouse ESC and neural
progenitor cells (NPC), respectively (Fig. 3b and Suppl. Figure 4a).
ChIP-seq data included Polycomb group proteins, pluripotency and
neuronal TFs, architectural proteins, and chromatin marks related to
both activity and repression.

Genome-wide, CHROMATIC detected 49,597 and 46,850 patches of
interactions in ESC and NPC, respectively (that is, 5.5% less in NPC
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Figure 3. CHROMATIC identifies 3D chromatin functional interactions. a In
essence, CHROMATIC deconvolves the original Hi-C matrix in layers associated with
each of the analyzed factors, allowing to efficiently identify interactions associated
with each of them. b Example of CHROMATIC applied to Hi-C interaction maps
and ChIP-seq profiles at the resolution of 5kb, for 19 factors in ESC. Factors are
colored according to their factional role. ¢ Top, value distributions of original Hi-C
interactions corrected by decay and median filter in ESC, before CHROMATIC
processing, in correspondence of the patches detected by CHROMATIC. For each
patch, the average of the corresponding Hi-C values is considered. Bottom,
CHROMATIC coefficient distributions in ESC, in correspondence of the detected
patches. d Top, number of ChIP-seq peaks for each factor with respect to their
median length (base pairs), in ESC. Bottom, number of patches detected genome-
wide by CHROMATIC for each factor with respect to their median area (number of
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5kb x 5kb pixels). e Unsupervised hierarchical clustering of factors studied in ESC
based on their genome-wide pair-wise correlation, of ChIP-seq tracks on the left and
of CHROMATIC maps on the right.

than in ESC). The values of original Hi-C, before CHROMATIC
processing, in correspondence with the detected patches, reveal that
architectural proteins, especially CTCF and SMC1, are associated with
the strongest Hi-C interactions (Fig. 3¢ and Suppl. Fig. 4b, top
panels). This result agrees with the fact that CTCF-driven peaks were
the first ones to be systematically discovered in Hi-C maps (Rao et al,,
2014). However, the values of the CHROMATIC score are appreciably
balanced among different factors (Fig. 3¢ and Suppl. Fig. 4b, bottom
panels). CHROMATIC can, thus, detect significant interactions also for
factors whose interactions appear comparatively weak in the Hi-C map
such as H3K36me3 in ESC (Fig. 3c).

To explore the relative contribution of the studied factors to the spatial
organization of the genome, we next compared the number and length
of ChIP-seq peaks to the number and area of CHROMATIC detected
patches (Fig. 3d and Suppl. Fig. 4c). In ESC, histone PTMs related to
transcriptional activity, RNA Pol II-Ser5P, and RNA Pol II subunit
RPB1 have a high number of mid-sized ChIP-seq peaks. However, they
appear in fewer and smaller 3D interactions compared to other factors
(Fig. 3d bottom). This may indicate that, in ESCs, histone marks related
to transcriptional activity, RNA Pol II-Ser5P, and RNA Pol II subunit
RPB1 may not play a genome-wide structural role and could be rather
considered of a more specific functional role. Instead, pluripotency TFs
may play a more relevant role in ESC genome topology than previously
reported (ze, they result in the highest number of CHROMATIN

patches of largest size, Fig 3d bottom). Interestingly, in NPC, histone

131



PTM H3K27ac and neuronal TF OLIG2 result in the most abundant
CHROMATIC interactions and of larger sizes, indicating that they may
have a more prominent structural role (Suppl. Fig. 4c bottom).
Notably, at the structural level H3K27ac may be more related to
organizing the genome structure (more patches and of larger size) in
NPC compared to ESC. In NPC, CTCF is also found in a large number
of CHROMATIC interactions of mid-size (Suppl. Fig. 4c bottom).
The apparent stronger correlation between factor type and their role in
3D genome organization, especially in ESC, prompted us to further
analyze the correlation of the factors at ChIP-seq tracks (1D) and
CHROMATIC (3D) levels (Fig. 3e and Suppl. Fig. 4d). The results
indicate that the dendrogram of unsupervised hierarchical clustering of
factors based on CHROMATIC correlations better separates the
functional role of factors, especially in ESC. For example, EPOP and
SUZ12, two Polycomb (PcG) proteins, are known to co-bind the same
set of loci, same for CBX7 and RING1B. Importantly, although this is
not reflected in the clustering of ChlIP-seq signals, CHROMATIC
correctly associates PcG components together.

In summary, CHROMATIC allows the discovery of factor-specific
interactions by deconvolving the Hi-C signal into factor-specific signals
otherwise hidden by the background levels of the experimental data.
The detection of CHROMATIC signal results in the identification of
factors that may contribute to genome structure in a cell type-specific
manner. Finally, the CHROMATIC interactions detected are more

informative of the functions of the studied factots.
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CHROMATIC classifies functional types of chromatin 3D
interactions

To study the function of the analyzed factors in mediating genome
structure, we next aimed to classify all CHROMATIC interactions into
a limited number of interaction types similar to what ChromHMM does
in 1D signal (Ernst & Kellis, 2012). To do so, we implement a Latent
Semantic Analysis (LSA) approach that aims at identifying the co-
operativity of signals in the spatial genome (Fig. 4a and Methods). LSA
is conceptually simple and computationally fast. Indeed, for its genome-
wide application, the computing time was less than 10 minutes in a
single modern workstation for both studied cell types. The LSA output
is represented as a heatmap (Fig. 4b and Suppl. Fig. 5a) defining a set
of types of chromatin 3D interactions (‘3D-types’) based on specific
combinations of factors found in those genome interactions. In ESC,
3D-type ‘1’ is the most abundant and is concomitantly enriched in
pluripotency factors OCT4, NANOG, SOX2, CDKS8, and CDKOY,
while it is moderately depleted of the rest of factors. 3D-type 2’, instead,
is enriched in the association of NANOG and SOX2, and is depleted
of CDKY9, CDKS, and OCT4 (Fig. 4b). To functionally characterize
the identified 3D-types, all CHROMATIC interactions were mapped
into their genomic coordinates and their overlap with functional
genomic features was computed. These included active enhancers (AE),
active promoters (AP), super-enhancers (SE, ze, 3D clusters of
enhancers), poised enhancers (PE), bivalent promoters (BP), and
constitutive LADs (CL) (Fig. 4c and Suppl. Fig. 5b). Interestingly, in
ESC 3D-type ‘4’ is characterized by the presence of SOX2 and the
absence of NANOG and OCT4, and has a strong overlap with CLs.
3D-type ‘5’ is enriched in PcG components EPOP and CBX7, together
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Figure 4. CHROMATIC classifies functional types of chromatin 3D
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3D in a set of limited combinations detected by latent semantic analysis (LSA). b
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ESC. d LogOdds of the overlap between 1D loci corresponding to each 3D-type and
the functional genomic features in ¢ were used as input for principal component
analysis. The first two PC were considered, capturing 92.2% of the total variance. Plots
depict the values of principal components 1 and 2 (PC1, PC2) for the different 3D-
types, which were further classified by K-means unsupervised clustering, in ESC. The
arrow shows the direction from inactive to active for the identified 3D-types. e
LogOdds of the overlap between 1D loci corresponding to each major 3D-type and
the functional genomic features in ESC. f Percentage of silent (si), lowly-expressed
(o), and highly-expressed (hi) genes, and percentage of A and B compartments for
the whole genome (in gray) and for the 4 major 3D-types, in ESC.

with SMC1, while it is depleted in pluripotency TFs and strongly
overlaps with BPs and PEs. Conversely, 3D-type 7’ is enriched in
SMC1 while it is depleted of EPOP, and overlaps more with AEs and
APs compared to 3D-type ‘5. Similar to 3D-type ‘5’, 3D-types ‘8, ‘13,
‘14’ and ‘15’ are enriched in Polycomb components and mainly overlap
with BPs and PEs. Unexpectedly, 3D-type ‘10’ is enriched in CTCF and,
to a lesser extent, in H3K9me3, and overlaps mainly with CLs. 3D-type
‘11’ is strongly enriched in H3K9me3, partially enriched in RNA Pol 11
subunits, histone marks related to transcriptional activation, and PcG
proteins, at the same time that mildly depleted of pluripotency TFs, and
sharply overlap with CLs. 3D-type ‘14’, where H3K9me3 and Polycomb
Repressive Complex 2 (PRC2) subunit SUZ12 are strongly enriched
simultaneously, with depletion of H3K36me3, H3K27ac, and
H3K4me3, overlaps with BPs and PEs. 3D-types 12, ‘17" and ‘18’ are
among the least abundant types, are enriched in histone marks related
to transcriptional activity (ze., H3K36me3 or H3K27ac and RNA Pol 11
subunit RPB1), and mainly overlap with SEs. Surprisingly, 3D-type 16’
is enriched in H3K27me3 and weakly in RNAPII-Ser5P, and overlaps
with APs and SEs.

In NPC, 3D-type ‘1’ is the most abundant of all and is simultaneously
enriched in neuronal TF OLIG2, PRC1 component RING1B, PRC2
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component EZH2 and heterochromatic protein CBX3. 3D-type 2’ is
again enriched in OLIG2 but it is depleted in PcG components, and
compared to 3D-type ‘1’ it is more associated with AEs, APs, and SEs.
3D-type ‘3’ is enriched in EZH2 and CBX3, depleted in RING1B and
OLIG2, and mainly overlaps with CLs and APs. 3D-type ‘4’ is enriched
in CBX3 and depleted in EZH2, it overlaps with CLs similar to 3D-type
‘3, but also with BPs. 3D-type ‘5’ is enriched in SMC1, neuronal TF
NKXo6.1, activator ZRF1, and active mark H3K4me3, is depleted of
factors enriched in 3D-types ‘1’-‘4” and strongly overlaps with BPs, APs,
and SEs. 3D-type 7’ is similar to 3D-type ‘5’, but it is enriched only in
H3K4me3 and ZRF1, while being depleted in SMC1 and NKX6.1. 3D-
type ‘9’ is enriched in Pol II, CTCF, and H3K27me3, and overlaps with
AEs, APs, SEs, and BPs. 3D-type ‘10’ is enriched in CTCF and
H3K27me3 but it is depleted in Pol II, and overlaps more with PEs and
CLs. Surprisingly, 3D-type ‘117 is enriched in H3K27me3, H3K9me3,
and neuronal TF NKX2.2, and mainly overlaps with APs. 3D-type ‘14’
is enriched in SOX2, PcG proteins SUZ12 and PCGF2 and active mark
H3K27ac, and overlaps with PEs and BPs.

Next, the results of the overlap between loci corresponding to each 3D-
type and AEs, APs, SEs, PEs, BPs, and CLs were used as input for
principal component analysis (PCA) to reduce the dimensionality of the
data, which finally was further classified by K-means unsupervised
clustering (Fig. 4d, Suppl. Fig. 5c, and Methods). In each cell type,
3D-types were clustered into four groups of interactions with different
functional roles according to their enrichment or depletion of
functional marks (Fig. 4e and Suppl. Fig. 5d). The PCA analysis
indicates that for both cell types, the detection of interaction types by
CHROMATIC allows for functionally classifying the 3D-types from
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inactive to active regions of the 3D genome (ie, in ESC the axis
composed of PC1 and PC2, while for NPC PC1 axis can be considered
the path from inactive to active interactions). Therefore, the four
identified clusters based on the PCA analysis correspond to four
functional types: Active, cell-type-specific Transcription Factors, PcG-
bivalent and Inactive.

To assess whether the four types of spatial interactions indeed represent
ranges of activity in the genome, mouse genes were assigned to their
3D-type/s (Methods). Once mapped, genes were classified as silent
“si”, RPKM<1), lowly (“lo”, 1<RPKM<10), and highly expressed
(“hi”, RPKM>10) and their proportion in each of the four groups of
3D-type interactions was assessed (Fig. 4f and Suppl. Fig. 5e). For
both cell types, and as expected by their chromatin states (both 1D and
3D), there is a correlation between the expression of the resident genes
and the type of 3D interaction they concur. The “Active” 3D-type is
enriched in active genes and occurs more often in the A compartment
compared with the genome-wide distribution. Conversely, the
“Inactive” 3D-type is enriched in silent genes and occurs more often in
the B compartment (Fig. 4f and Suppl. Fig. 5e).

In total, 5,216,011 5Kb x 5Kb patches are classified in ESC, while
6,710,882 are classified in NPC (22.3% less in ESC than in NPC). In
ESC the vast majority (73.4%) of 3D interactions are associated with
pluripotency TFs, 20.1% is associated with a bivalent state characterized
by the presence of PcG proteins, and only 6.5% is specialized in either
active or inactive states (Fig. 5a left panel). In NPC, TFs are associated
with structure (40.2%), but to a lower extent compared to ESC, there

are many more 3D interactions that are specialized in either active or
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Figure 5. Changes in 3D interaction types during mouse neural development.
a Distribution of the four major types of interactions in ESC (left) and NPC (right).
Percentages refer to the number of 5kb x 5kb cells of each type compared to the total
number of 5kb x 5kb cells classified in each cell type (reported at top of the pie charts).
b Sankey plot describing the transitions between the different types of 3D interactions,
between ESC (left) and NPC (right). “Unclassified” cells indicate 5kb x 5kb cells that
were not classified by CHROMATIC.

inactive states (57.6%), and bivalent interactions have a 10-fold decrease
(2.2%) (Fig. 5a right panel). Most interactions that are classified in ESC
are unclassified in NPC, and vice versa (Fig. 5b). Considering only

interactions that are classified in both cell types, each major 3D-type
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identified in ESC mainly transitions into “Active” and “Neuronal TFs”
in NPC, except for “Inactive” interactions that mainly remain
“Inactive” (Suppl. Fig. 6).

Altogether, CHROMATIC classification into 3D interaction types
allows for further investigation of structural interactions with functional
meaning. Such classes can be regarded as the 3D chromatin state of a
cell type in a similar way that ChromHMM classifies linear chromatin
states based solely on co-occupancy of ChIP-seq tracks (Ernst & Kellis,
2012, 2017).

Changes in complex functional 3D hubs during mouse neural
development

To assess whether specific loci alter their chromatin states in 3D, we
studied the changes on CHROMATIC identified interactions between
ESC and NPC of two loci of interest for their involvement in the
development of neurons (that is, the Zp608 and HoxA loci). The Zfp608
locus is a neural-specific region where, during differentiation, a novel
domain boundary is formed at the TSS of Z/p608, concomitantly with
the activation of the gene (Bonev et al., 2017). In ESC, the gene is
involved in a few interactions that CHROMATIC classified as PcG-
bivalent, while in NPC it participates in a larger number of interactions
that were classified as active and associated with neuronal TFs involving
H3K27ac (Fig. 6). In contrast to the Zp608 locus, the structural
changes between ESC and NPC of the HoxA locus are less dramatic.
However, the chromatin binding of factors changes significantly, which
is identified by the altered 3D-types of interactions as determined by
CHROMATIC. In ESC, the HoxA cluster genes are not expressed and

are found within a bivalent domain associated with PcG proteins. In
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Figure 6. Changes in complex functional 3D hubs during mouse neural
development. Interactions classified into major 3D-types, in ESC (left) and NPC
(right), in a neural-specific region in chromosome 18. Hi-C maps (top) and ChIP-seq
tracks (below) are in grey. Major 3D-types classified by CHROMATIC ate in colors.
The Zfp60§ gene is highlighted. During differentiation, a novel TAD boundary is
formed at the TSS of Zp608, concomitantly with the activation of the gene. In ESC,
there are no CHROMATIC interactions involving the gene. In NPC, multiple
interactions are classified as active or associated with neuronal TFs, possibly allowing
the gene to scan downstream putative enhancers.

NPC, instead, they are still enclosed by a bivalent cage, but in the
interior a small active domain appears, in agreement with the activation
of a small group of HoxA genes (Noordermeer et al, 2014

Noordermeer et al., 2011) (Suppl. Fig. 7).

DISCUSSION

To better capture the relationship between gene expression, epigenetic
states, and genome topology, here we presented CHROMATIC, a novel

computational method that for the first time integrates Hi-C and ChIP-
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seq data in a single map of 7 silico HIChIP. CHROMATIC results in
fast, inexpensive, and accurate identification of factor-associated
chromatin interactions in the 3D space, which agree with those already
determined experimentally by HiChIP. Effectively, CHROMATIC
deconvolves the Hi-C signal into factor-specific interactions otherwise
hidden by the background levels of the Hi-C experimental data.
Moreover, compared to the analysis of ChIP-seq data alone, the
detected CHROMATIC interactions will provide more information on
the function(s) of these factors on chromatin.

The application of CHROMATIC between two or more different cell
types also helps to identify factors that contribute to genome topology
in a cell type-specific manner. Thus, we applied it to a total of 37
different factors in ESC and NPC. Among the analyzed factors,
pluripotency TFs in ESC and H3K27ac and neuronal TF OLIG2 in
NPC are associated with an unexpectedly large fraction of 3D
chromatin interactions, suggesting that they may play the most relevant
structural role. On the one hand, in line with pieces of evidence from
other studies (Kim & Shendure, 2019), TFs might play a crucial role in
shaping the genome, especially in pluripotent cells, to propetly regulate
genes in a cell-type manner. On the other hand, H3K27ac, which
decorates AEs and APs, results in a more prominent structural role in
NPC compared to ESC, which may be explained by the fact that in ESC
it is dispensable for enhancer activity (T. Zhang, Zhang, Dong, Xiong,
& Zhu, 2020), in agreement with the remarkable structural role
observed for this mark in NPC. Some other factor may intervene to
bridge together H3K27ac enhancers in NPC.

Based on the 3D colocalization of the studied factors, we identified

different types of functional 3D interactions. In ESC, 3D-type ‘1’ is the
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most abundant and is enriched in OCT4, SOX2, NANOG, CDKS, and
CDKO9. This may represent the cooperative association of pluripotency
TFs that is known to be crucial for the efficiency of stem cell
transcriptional regulation (Chronis et al., 2017; X. Huang & Wang, 2014;
Yeo & Ng, 2013), which could correspond to condensates of
pluripotency TFs (Boija et al, 2018; Hnisz, Shrinivas, Young,

Chakraborty, & Sharp, 2017). 3D-type 2’, instead, is enriched

exclusively in SOX2 and NANOG, whose cooperative interaction has
been already reported to be central to ESC self-renewal (Gagliardi et al.,
2013; Yesudhas D, Anwar MA, & S, 2019). 3D-type ‘4’ is enriched in
SOX2, depleted in NANOG and OCT4, and mainly overlaps with CLs.
Interestingly, SOX2 has been shown to act also as a transcriptional
repressor in neural stem cells (Liu et al, 2014), thus 3D-type ‘4
interactions could help SOX2 to exert its repressive role. As expected,
3D-types that are enriched in Polycomb components (3D-types 5, ‘8,
‘13, “14°, and ‘15’) mainly overlap with BPs and PEs. As it happens for
most of the analyzed proteins, SMC1 participates in 3D interactions
with different functional roles depending on its 3D-colocalizing factors.
When it associates in 3D with Polycomb proteins, the involved loci
strongly overlap with BPs and PEs (3D-type ‘5’). In absence of
Polycomb, SMC1 interactions overlap more with APs and AEs (3D-
type “7°). Notably, the 3D association of CTCF and SMC1 described in
the loop-extrusion model is not particularly enriched in any identified
3D-type. However, this does not exclude that it is a participant in more
than one 3D-type of interaction. For example, 3D-types ‘5” and ‘7’ are
enriched in SMC1 and show mild enrichment in CT'CF. Thus, 3D-types
“7” might correspond also to the well-known CTCF-SMC1 extruded
loops. 3D-type ‘10’ instead, which is strongly enriched in CTCF and
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H3K9me3 and mainly overlaps with CLs, might capture the repressive
role of CTCF which has been previously described (Lutz et al., 2000).
3D-type ‘11’ is particularly enriched in H3K9me3 and sharply overlaps
with CLs. It is interesting that, despite being the most inactive 3D-type
in ESC (Fig. 4d), it is also enriched in RNA Pol II subunits, histone
marks related to transcriptional activation, and PcG proteins. This
might indicate that in pluripotent stem cells inactive regions are not
completely silent, but are instead ready to be activated at the right time
during differentiation, reflecting the high plasticity characteristic of
ESCs. Differently, in 3D-type ‘14°, where H3K9me3 and PRC2 subunit
SUZ12 are simultaneously enriched together with the depletion of
H3K36me3, H3K27ac, and H3K4me3, chromatin interactions are
associated with a bivalent state. Finally, 3D-types ‘12’, ‘17" and ‘18’ are
enriched in histone marks related to transcriptional activity H3K36me3
or H3K27ac and RNA Pol II subunit RPB1, and mainly overlap with
SEs. They are among the least abundant 3D-types, meaning that only a
portion of SEs may be exclusively characterized by H3K36me3,
H3K27ac, RPB1, while most SEs may also be enriched in pluripotency
TFs (3D-types ‘1’ to ‘4). Surprisingly, 3D-type 16’ includes 3D
interactions marked by H3K27me3 in the absence of Polycomb and
involving active loci. Further investigations are needed to propetly
interpret such observation.

In NPC, 3D-type ‘1’ is enriched in neuronal TFs OLIG2 and NKXG6.1,
RING1B, EZH2, and CBX3. This result agrees with the fact that PRC2
component EZH2 colocalizes with OLIG2 in neurogenic astroglia
(Hwang et al., 2014). O/jg2 is a direct target of EZH2, and its repression
is critical for neuronal differentiation. Thus, regions involved in 3D-

type ‘1’ might include genes like O/g2 that will be shut down for mature
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neuron differentiation. Conversely, 3D-type 2’ is enriched in OLIG2
and NKXO0.1 but it is depleted of RING1B, EZH2, and CBX3 and
overlaps more with AEs, APs and SEs compared to 3D-type ‘1. OLIG2
can function either as a repressor or an activator in oligodendrocyte
formation (Wei et al., 2021) and this might be reflected in the different
functional roles of 3D-types ‘1’ and 2’. 3D-types ‘3’ and ‘4’ are enriched
in heterochromatic protein CBX3 and show marked overlap with CLs.
However, 3D-type 3’ is also enriched in PRC2 subunit EZH2 and
slightly in H3K4me3, and overlaps more with APs. This might reflect
the fact that, beyond its well-known repressive function, PRC2 binds
APs and contacts nascent RNAs (Kaneko, Son, Shen, Reinberg, &
Bonasio, 2013). 3D-type ‘5’ and ‘7’ are enriched in ZRF1 and active
mark H3K4me3, with 3D-type ‘5’ involving also SMC1 and NKXG6.1.
Both 3D-types mainly overlap with BPs, APs, and SEs, and might
involve loci that are important for the establishment and maintenance
of neural progenitor identity (Aloia et al., 2014). 3D-type ‘9’ is enriched
in RNA Pol II, CTCF, and mildly in H3K27me3, and overlaps with
AEs, APs, SEs, and BPs. It might correspond to regions that in ESC
were covered by H3K27me3 and kept in a bivalent state and that began
to be expressed in NPC. 3D-type ‘10’ is also enriched in CTCF and
H3K27me3 but it is depleted in Pol 11, and indeed it overlaps more with
PEs and CLs. Such type of 3D interaction is consistent with the
observed role of CTCF-based loops in the spreading of repressive
H3K27me3 mark at distant micro-domains that repress euchromatic
genes (Heurteau et al., 2020). Surprisingly, 3D-type 117 is enriched in
H3K27me3, H3K9me3, and neuronal TF NKX2.2, and mainly overlaps
with APs. NKX2.2 can function both as a transcriptional repressor and

activator, depending on temporal and cellular context (Doyle & Sussel,
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2007), thus regions involved in 3D-type ‘11’ interactions might be
repressed in ESC and start to be expressed in NPC. Further analyses
are needed to characterize this type of interaction. 3D-type ‘14’ is
enriched in SOX2, PcG proteins, and H3K27ac and overlaps with PEs
and BPs; like 3D-type ‘4’ in ESC, SOX2 might act as a transcriptional
repressor in such interactions and, thanks to Polycomb and H3K27ac,
contribute to set the involved loci in a bivalent state.

The study of combinatorial patterns of multiple proteins and chromatin
marks has been fundamental to annotate chromatin states, discover
novel regulatory elements and characterize their cell type-specific
patterns (Day et al., 2007; Ernst & Kellis, 2010; Ernst et al., 2011; Filion
et al., 2010; mod et al., 2010). Chromatin states have recently been
linked to genome 3D conformation by machine learning and polymer
physics approaches (Esposito et al.,, 2022), but they continue to be
considered as a 1D entity. CHROMATIC follows principles that are
similar to the ones of ChromHMM, but it extends the potential of such
combinatorial approaches being the first computational method to offer
a 3D perspective on chromatin states. Identified 3D-types may indeed
reflect already known interactions between different chromatin factors,
or may help discover new associations between molecules with specific
functional roles that need to be validated by specific experiments.

To further investigate the functional implications of chromatin
interaction types, in each studied cell we grouped chromatin interaction
types into four major functional classes: Active, TFs-associated, PcG-
bivalent, and Inactive. Such classes can be regarded as the 3D chromatin
states of a cell type, similar to how we consider linear chromatin states
(Ernst & Kellis, 2012, 2017). Overall, ES cells result in about 50% of all

genome interactions as unclassified (that is, with no CHROMATIC
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significant interaction type), which is about 20% fewer classified pixels
compared to NPC. Hence, the structure of the NPC genome is more
restrained by functional interactions compared to the ESC genome.
Moreover, most ESC interactions are associated with pluripotency TFs
and with a Polycomb-bivalent state, leaving only 6.5% of the genome
associated with active or inactive states. In NPC, instead, most of the
classified interactions are active or inactive (57.6%), while bivalent
interactions have a 10-fold decrease compared to ESC. Overall, this
suggests that ESC transitions from a mostly flexible, open, plastic state
to a more specialized configuration when differentiating to NPC.
Interestingly, most of the interactions that are classified in ESC are
unclassified in NPC, and vice versa, pointing to substantial changes in
the overall chromatin 3D conformation and factor occupancy between
the two cell types. Considering only interactions that are classified in
both cell types, each major 3D-type identified in ESC mainly transitions
into the Active or Neuronal-TFs state in NPC. However, most of the
interactions that are Inactive in ESC remain Inactive in NPC, which
suggests that a subgroup of 3D interactions associated with a repressed
transcriptional state in NPC was already present in ESC.

Finally, beyond global changes in structure and factor occupancy, we
explored changes in complex functional 3D hubs occurring at specific
loci during early stages of neural cell differentiation. The Zf608 gene is
specifically activated in NPC, concomitantly with the appearance of a
novel TAD border at its transcription starting site. CHROMATIC
identifies that the gene promoter site switches from a configuration
where it is involved in a few PcG-bivalent interactions in ESC, to one
with a large number of interactions mainly classified as active and

associated with neuronal TFs. Eventually, this structural change might
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be driven by the active factors and neuronal TFs, and might allow the
gene to scan putative enhancers marked by peaks of H3K27ac.

Our classification is limited by 5 kb resolution that we employed for
computational feasibility. Furthermore, the integration of data from
different experimental assays, such as chromatin accessibility and DNA
methylation assays, would provide a more complete picture of 3D
chromatin states. Overall, we consider that CHROMATIC will allow
researchers to have a better understanding of the link between
chromatin states, genome topology, and gene transcription in the

studied cell type.
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Supplementary Figure 1. Re-scaling of ChIP-seq values. a ChIP-seq values
before re-scaling. Values are distributed from 0 to 1. b ChIP-seq values after re-scaling.
Re-scaled values are separated in two groups, one of low ChIP-seq values and one of
high ChIP-seq values.
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Supplementary Figure 2. Determination of the number of clusters for major types
of 3D interactions. a K-means algorithm was run multiple times with a different
number of clusters, from 1 to 18 in ESC, where 18 3D-types were identified. For each
solution, the Within Cluster Sum of Squares (WCSS) is shown. The elbow point
appeared in correspondence of 4 clusters of major types of interactions. b Same as a,
for NPC. K-means algorithm was run multiple times with a different number of
clusters, from 1 to 17 in NPC, where 17 3D-types were classified.
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Supplementary Figure 3. Validation with HiChIP data of OCT4. a Correlation
between CHROMATIC coefficients and HiChIP values for OCT4 in chromosome 6.
Spearman correlation coefficient +=0.57 (p-value = 0). b Spearman correlation
coefficients per chromosome. Genome-wide median r=0.44 genome-wide. ¢
Boxplots of HiChIP values of OCT4 from detected CHROMATIC OCT#4 patches
compared HiChIP interactions elsewhere in the matrix (statistically different
distributions as for Kolmogorov-Smirnov statistical test=0.45, p-val=0).
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Supplementary Figure 4. CHROMATIC applied to NPC. a Example of
CHROMATIC applied to Hi-C interaction maps and ChIP-seq profiles at the
resolution of 5kb, for 18 factors in NPC. Factors are colored according to their
factional role. b Top, value distributions of original Hi-C interactions corrected by
decay and median filter in NPC, before CHROMATIC processing, in correspondence
of the patches detected by CHROMATIC. For each patch, the average of the
corresponding Hi-C values is considered. Bottom, CHROMATIC coefficient
distributions in NPC, in correspondence of the detected patches. ¢ Left, number of
ChIP-seq peaks for each factor with respect to their median length (base pairs), in
NPC. Right, number of patches detected genome-wide by CHROMATIC for each
factor with respect to their median area (number of 5kbX5kb pixels). d Unsupervised
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hierarchical clustering of factors studied in NPC based on their genome-wide pair-
wise correlation, of ChIP-seq tracks on the left and of CHROMATIC maps on the
right.
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5kbX5kb pixels associated to each 3D-type. b Overlap in number of 5kb-bins between
1D loci cortesponding to each 3D-type and chromatin types, in NPC. ¢ LogOdds of
the overlap between 1D loci corresponding to each 3D-type and the functional
genomic features in b was used as input for principal component analysis. Plots depict
the values of principal components 1 and 2 (PC1, PC2) for the different 3D-types,
which were further classified by K-means unsupervised clustering, in NPC. The arrow
shows the direction from inactive to active for the identified 3D-types. d LogOdds of
the ovetlap between 1D loci corresponding to each major 3D-type and the functional
genomic features in ESC. e Percentage of silent (si), lowly-expressed (lo) and highly-
expressed (hi) genes, and percentage of A and B compartments for the whole genome
(in gray) and for the 4 major 3D-types, in ESC.
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Supplementary Figure 6. Changes in 3D interaction types during mouse neural
development. Sankey plot describing the transitions between the different types of
3D interactions, between ESC (left) and NPC (right). Here, “Unclassified” cells are
excluded.
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Supplementary Figure 7. Changes in complex functional 3D hubs during
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SUPPLEMENTARY TABLES

Supplementary Table 1.

Raw counts and mapped statistics of RNA-seq experiments.

Sample Raw reads Mapped reads

ESC repl 48463796 46557499 (96%)

ESC rep2 40148534 38336872 (95%)

NPC repl 41686101 40318090 (97%)

NPC rep2 50350011 48441325 (96%)
Supplementary Table 2.

Hi-C experimental statistics for merged replicates of mESCs.
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Supplementary Table 3.

Hi-C experimental statistics for merged replicates of NPCs.

Filtered artifacts

Duplicated 2,9006,553,357
Too short 191,364,911
Error 30,930,472
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Supplementary Table 4.

Hi-ChIP experimental statistics for merged replicates of mESCs.
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CONCLUSIONS

This thesis is focused on the characterization of the role of chromatin-
associated factors in genome topology, which in turn is important for
proper spatiotemporal regulation of gene expression and cell fate

decisions.

In Chapter 1, we studied the transcriptional and architectural
consequences of histone H1 variants depletion in human breast cancer
cells. From this chapter, we can specifically conclude that:

1. Despite the small changes in H1 variants distribution, knock-
down of H1 translated into more isolated but de-compacted
chromatin structures at the scale of Topologically Associating
Domains (TADs).

2. Such changes in TAD structure correlated with a coordinated

gene expression response of their resident genes.

In Chapter 2, we presented CHROMATIC, a novel and generalized
computational method that integrates chromatin interactions and factor
occupancy data with genome structural data to reveal the contribution

of chromatin-associated factors to genome topology.

From the first part of this chapter, dedicated to the description of the

computational tool and of its utility, we can specifically conclude that:
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1. CHROMATIC integrates Hi-C and ChIP-seq data in a single
map of in silico HiChIP, representing chromatin interactions
associated to any factor of interest.

2. CHROMATIC interactions correlate with HiChIP data, while
being much faster and less expensive than real HiChIP
experiments.

3. By deconvolving the Hi-C data into factor-specific interactions
otherwise hidden by background levels, CHROMATIC allows
to discern the role of each studied factor in the global genome
structure and to better identify factors participating in genome
architecture in a cell-type specific manner.

4. Compared to the analysis of data mapped exclusively on linear
chromatin (1D) such as ChIP-seq, CHROMATIC output is
more informative of the functional role performed by factors in
the nucleus.

5. The study of 3D co-localization patterns of factors allows to
identify types of functional 3D interactions, which may reflect
already known interactions between different chromatin
factors, or may help discover new associations between
molecules with specific functional roles. Such types of 3D
interactions can be regarded as 3D chromatin states and

represent a functional annotation of chromatin 3D interactions.

From the second part of Chapter 2, dedicated to the application of
CHROMATIC to embryonic stem cells (ESCs) and neural progenitor
cells (NPCs) data, we can specifically conclude that:

1. ES cells transition from a plastic state to a more specialized one

when differentiating to NPCs,
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Stem cell differentiation involves substantial changes in
chromatin 3D conformation and factor occupancy, even
though a subgroup of NPC interactions associated to an

inactive state are already established in ESCs.
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ANNEX 1

In vivo temporal resolution of acute promyelocytic
leukemia progression reveals a role of KIf4 in

suppressing early leukemic transformation

Candidate’s contribution: Analysis of the Hi-C
experiments.

Mas G, Santoro F, Blanco E, Gamarra Figueroa GP, Le Dily F, Frige
G, Vidal E, Mugianesi F, Ballaré C, Gutierrez A, Sparavier A, Marti-
Renom MA, Minucci S, Di Croce L. In vivo temporal resolution of
acute promyelocytic leukemia progression reveals a role of K/# in
suppressing early leukemic transformation. Genes Dev. 2022 Apr
1;36(7-8):451-467. doi: 10.1101/gad.349115.121. Epub 2022 Apr 21.
PMID: 35450883.
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In vivo temporal resolution of acute
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reveals a role of KIf4 in suppressing early
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Genome organization plays a pivotal role in transcription, but how transcription factors (TFs) rewire the structure of
the genome to initiate and maintain the programs that lead to oncogenic transformation remains poorly understood.
Acute promyelocytic leukemia (APL) s a fatal subtype of leukemia driven by a chromosomal translocation between
the promyelocytic leukemia (PML) and retinoic acid receptor a (RARa) genes. We used primary hematopoietic stem
and progenitor cells (HSPCs) and leukemic blasts that express the fusion protein PML-RARa as a paradigm to
temporally dissect the dynamic changes in the epigenome, transcriptome, and genome architecture induced during
oncogenic transformation. We found that PML-RARa initiates a continuum of topologic alterations, including
switches from A to B compartments, transcriptional repression, loss of active histone marks, and gain of repressive
histone marks. Our multiomics-integrated analysis identifies KIf4 as an early down-regulated gene in PML-RARa-
driven leukemogenesis. Furthermore, we characterized the dynamic alterations in the KIf4 cis-regulatory network
during APL progression and demonstrated that ectopic KIf4 overexpression can suppress self-renewal and reverse the
differentiation block induced by PML-RARa. Our study provides a comprehensive in vivo temporal dissection of the
epigenomic and topological reprogramming induced by an oncogenic TF and illustrates how topological architecture
can be used to identify new drivers of malignant transformation.

[Keywords: chromatin; chromatin topology; gene regulation; leukemia
Supplemental material is available for this article.
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The 3D organization of the genome, ranging from nucleo-
somes to heterochromatin/euchromatin compartments
and chromosome territories, provides a fundamental
mechanism for genome regulation (Schoenfelder and Fra-
ser 2019; Zheng and Xie 2019). Transcriptional regulatory
elements, including enhancers and promoters, are in phys-
ical contact to fine-tune the timing and magnitude of gene
expression, and perturbation of this contact can profound-
ly affect cell identity, differentiation, and tumorigenesis
(Groschel et al. 2014; Northcott et al. 2014; Lupianez
etal.2015; Flavahan et al. 2016; Hnisz et al. 2016; Akdemir
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et al. 2020). Epigenetic changes often drive the initiation,
maintenance, and progression of cancer, and their revers-
ibility and plasticity make them attractive targets in the
clinical field (Dawson 2017). However, little is known
about how the genome structure is rewired during the ac-
quisition of oncogenic features, or whether structural
changes are functionally linked to epigenome and tran-
scriptome alterations during oncogenic transformation.
Acute promyelocytic leukemias (APLs) represent 10%—
15% of acute myeloid leukemias (AMLs) and are charac-
terized by the presence of the t(15;17) chromosomal

© 2022 Mas et al.  This article is distributed exclusively by Cold Spring
Harbor Laboratory Press for the first six months after the full-issue publi-
cation date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After
six months, it is available under a Creative Commons License (Attribu-
tion-NonCommercial 4.0 International), as described at http://creative-
commons.org/licenses/by-nc/4.0/.
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translocation between PML and RARa (de Thé et al. 1990;
Goddard et al. 1991). Expression of the oncofusion protein
PML-RARa in hematopoietic stem/progenitor cells
(HSPCs) results in a differentiation block at the promyelo-
cytic stage and in malignant transformation, as these cells
are able to recapitulate most clinical and morphological
features of human APL in transplantation mouse models
(Brown et al. 1997; Grisolano et al. 1997; He et al. 1997;
Grignani et al. 2000; Westervelt et al. 2003; Guibal et al.
2009; Wojiski et al. 2009). Mechanistic studies using
APL cell lines and primary blasts have shown that the
PML-RARa oncofusion protein competes with normal
RARa functions and recruits histone deacetylases
(HDACs), the NuRD chromatin remodeling complex,
and Polycomb-repressive complexes (PRCs) to constitu-
tively repress target genes of the TFs RARa and PU.1 (Pan-
dolfi 2001; Villa et al. 2007; Morey et al. 2008; Martens
et al. 2010; Wang et al. 2010; Mas and Di Croce 2016).
These epigenetic complexes mediate long-range interac-
tions to instruct gene expression programs during devel-
opment and in tumor cells (Denholtz et al. 2013;
Schoenfelder et al. 2015; Mas et al. 2018; Oksuz et al.
2018; Basu et al. 2020). In addition to its repressive func-
tions, PML-RARa binds superenhancer regions to directly
transactivate genes that encode key myeloid-determining
TFs or enzymes, including GFI1, MPO, WT1, and MYC
(Tan et al. 2021). PML-RARa also disrupts PML nuclear
bodies, which are structures involved in the control of
cell cycle, apoptosis, senescence, DNA damage, and anti-
viral immunity (Bernardi and Pandolfi 2007; Scherer and
Stamminger 2016; Chang et al. 2018). Induction of DNA
damage by PML-RARa results in increased mutability, fa-
voring the occurrence of cooperating secondary mutations
and development of full-blown leukemia (di Masi et al.
2016; Voisset et al. 2018). Recent reports using APL cell
lines and primary blasts showed that PML-RARa medi-
ates the formation of long-range interactions to repress
the expression of genes controlling myeloid differentia-
tion and maturation (Li et al. 2018; Wang et al. 2020)
and activate the GFI1 superenhancer (Tan et al. 2021).
However, these studies did not provide a dynamic per-
spective of how PML-RARa remodels the genome to im-
pair the function and differentiation of normal primary
HPSCs to generate fully transformed leukemic blasts.
Here, we used the PML-RARa model system as a paradigm
to temporally dissect the dynamics of epigenomic and
transcriptomic reprogramming occurring at the onset,
during progression, and in full-blown APL leukemias in
animal models that faithfully recapitulate human APL
clinical features. Our global profiling identified the Kif4
locus as one of the most extensively reorganized genes
during PML-RARa-driven APL progression. KIf4 encodes
a TF with important roles in myeloid differentiation (Fein-
berg et al. 2007; Park et al. 2016, 2019a). KIf4 expression
has been shown to be lower in samples from AML patients
than in those from healthy individuals (Faber et al. 2013b;
Morris et al. 2016). However, the function of KIf4 in APL
has remained controversial, with a few studies reporting
that KIf4 overexpression induces differentiation using
the APL cell line HL-60 (Feinberg et al. 2007; Alder et al.
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2008; Morris et al. 2016), and others showing that KIf4 ex-
pression supports cell growth and survival of the APL cell
line NB4 (Lewis et al. 2021). Using our integrative multio-
mics analysis, we temporally resolved the genomic alter-
ations induced by PML-RARa and showed that the KIf4
locus undergoes extensive reprogramming of enhancer—
promoter interactions, transcriptional down-regulation,
and gain of repressive histone modifications. We further
showed that ectopic overexpression of KIf4 partially re-
stored the phenotypic defects induced by the expression
of PML-RARa. This work provides a dynamic model of
the genomic reprogramming triggered by an oncogenic
TF in vivo and highlights the use of topological informa-
tion to identify new drivers of malignant transformation.

Results

PML-RAR« induces a progressive reorganization
of genome architecture

To dissect the dynamic changes induced by PML-RARa in
genome architecture and transcription during leukemia
progression, we infected primary mouse bone marrow he-
matopoietic stem/progenitor cells (lineage negative [Lin|)
with lentiviruses carrying an empty vector control or a
Flag-tagged human PML-RARa and harvested cells at dif-
ferent stages of APL transformation (Fig. 1A). Stage 0 and
stage I corresponded to sorted GFP* cells transformed
with empty vector or PML-RARa-3xFlag vector, respec-
tively (Supplemental Fig. S1A,B). We followed the progres-
sive transformation of cells carrying PML-RARa by
culturing them in semisolid media and harvesting after 2
or 4 wk of serial replating (equivalent to stage II or III, re-
spectively). The final stage of APL transformation (stage
1V) corresponded to blasts isolated from mice that were
transplanted with cells carrying PML-RARq; mice devel-
oped leukemia after ~6 mo (Fig. 1A). We verified that cells
expressing PML-RARa-3xFlag showed increased serial re-
plating capacity, impaired differentiation, and promyelo-
cytic morphology, as compared with cells expressing
empty vector control (Supplemental Fig. SIC,D). We
then used multiple biological replicates of cells from stag-
es 0-IV to generate in situ Hi-C libraries (Rao et al. 2014),
RNA-seq libraries, and ChIP-seq libraries in order to com-
prehensively characterize the genome architecture, the
transcriptome, and the epigenome, respectively, during
the process of leukemic transformation.

We obtained high-quality maps of the 3D genome orga-
nization across all stages (Supplemental Fig. S1E), which
allowed us to examine the segregation of active (A, gene-
rich) and inactive (B, gene-poor) compartments (Lieber-
man-Aiden et al. 2009; Imakaev et al. 2012). Principal com-
ponent analysis (PCA) of the eigenvectors of all autosomes
revealed that PML-RARa induced genome-wide, cumula-
tive changes in A/B compartments (Fig. 1B,C). Overall,
7.1% of the genome changed compartment at some point
during APL transformation, with 3% of the genome stably
switching from the A to Bcompartment, and 1.1% switch-
ing from B to A (Fig. 1D,E). A greater proportion of switch-
ing events from stage 0 to Il occurred from the A to B
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ed and corresponded to stage 0 (carrying empty vector) or stage I (carrying PML-RARa-3xFlag vector). Stage I cells were then cultured in
methylcellulose media and harvested at the second replating (for stage IT) or fourth replating (for stage ITT). Stage I cells were also transplanted
into lethallyirradiated recipient mice. Blast cells were harvested from bone marrow of mice developing leukemias, at ~6 mo after transplant
(stage IV). (B) Principal component analysis (PCA) based on Hi-C eigenvectors for all autosomes. (C) Scatter plots of first eigenvectors along
the time course for chromosome 7. The Y-axis represents the first eigenvector associated with replicate 1 of stage 0, and the X-axis repre-
sents the first eigenvector of the different stages (replicate 2 for stage 0, and replicate 1 for the remaining stages). Pearson correlations are
highlighted in red. (D) Proportion of the genome that changed compartment during the time course. We assumed that a region was A (or B) if
all replicates at the same stage were flagged as A (or B). Regions not consistent between replicates were considered ambiguous and repre-
sented 2% of the genome. About 5% of the genome was excluded due to low mapability. (E) Alluvial plot showing the dynamic A-to-B com-
partment switching of bins during the time course. Stages are represented along the X-axis, and the genomic size is represented on the Y-axis
as well as by the width of the ribbons. Bins that did not switch compartments or that were flagged as “ambiguous” at any point were ex-
cluded. (F) Stacked bar plots of the number of genes in bins that were (1) in compartment A at stage 0 and switched to compartment B at
another stage (left), or (2) in compartment B at stage 0 and switched to compartment A at another stage (right). Only genes that switched
compartments from one stage to the next and were stably maintained in the new compartment were considered (i.e., genes in bins that
switched compartments more than once during the time course were excluded). (G) KEGG analysis and WikiPathways analysis of 724 genes
that switched from A to B compartments. (H) Example of A-to-B compartment switching of chromosome 4. The left panel shows the first
eigenvector (compartments; Y-axis) along the genomic position in megabases (X-axis). Each row corresponds to one independent biological
replicate of the indicated stage. A compartments are depicted in yellow, and Bcompartments are shown in blue. The right panel corresponds
to an 11.4-Mb zoomed region of chromosome 4 that contains the KIf4 locus. (I) Aggregate genome-wide contact profiles centered on TAD
borders defined in stage 0. Data are the log, ratio of observed and expected contacts in 10-kb bins, pooling biological replicates.
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compartment (Fig. 1D,E; Supplemental Fig. S1F); this is in
agreement with the known role of PML-RARa as a tran-
scription repressor (Di Croce et al. 2002; Segalla et al.
2003; Villa et al. 2004, 2006, 2007; Carbone et al. 2006;
Morey et al. 2008; Saumet et al. 2009; Martens et al.
2010; Subramanyam et al. 2010; Saeed et al. 2011, 2012;
Cole et al. 2016). We found a cumulative total of 724 genes
in bins that stably switched from compartment A to B, and
223 genes in bins that switched from B to A (Fig. 1F). The
gene set that switched from A to B was enriched for genes
associated with MAPK signaling (including those encod-
ing Ras, Rapl, and cAMP), immune signaling via TGF-B,
cellular differentiation, apoptosis, and transcriptional
misregulation in cancer, as shown by KEGG analysis
(Fig. 1G). In addition, this A-to-B gene set was significantly
enriched for SMAD4 targets, as shown by ChEA analysis
(adjusted P=0.00045) and Polycomb targets (enriched in
H3K27me3; adjusted P=0.00034); specific genes included
Mef2c, Flt3, Hmga2, Maf, Pax7, Met, Igf1, Wnt16, Aff1,
Ptk2, Runx2, Rel, and Prom1. Of note, the A-to-B gene
set also included several genes with known roles in leuke-
mia development at compartment boundaries, such as
KIf4, Setbpl, Efl1, and Hhip (Fig. 1H; Supplemental Fig.
S1H; Alder et al. 2008; Kobune et al. 2012; Faber et al.
2013a; Schoenhals et al. 2013; Huang et al. 2014; Filarsky
et al. 2016; Morris et al. 2016; Seipel et al. 2016; Makish-
ima 2017; Park et al. 2019b; Tan et al. 2019). In contrast,
the set of genes that switched from the B to A compart-
ment was enriched for immune system processes, as
shown by KEGG pathway analysis (Supplemental Fig.
S1G); this included 1133, 119z, KIf5, and Mcm10. When ex-
amining Hi-C interactions with intra-TAD regions, we ob-
served minimal changes in TAD border strength (Fig. 11).
Overall, our data showed that PML-RARa expression in-
duced a dynamic reorganization of the genome, affecting
a large set of actively transcribed regions of the genome
and causing their interaction patterns to switch toward
those in the inactive chromatin compartment.

PML-RARa promotes dynamic changes in gene
expression that are linked to changes in genome topology

OurinsituHi-C data indicated that PML-RARareorganized
long-range interactions in a cumulative manner across the
genome and was potentially accompanied by dynamic tran-
scription alterations. To confirm this hypothesis, we per-
formed RNA-seq on independent biological replicates
harvested in duplicate at all stages. Based on PCA of the
RNA-seq data sets, we observed a trajectory of transcrip-
tome alterations concurrent with PML-RARa expression;
of note, full-blown leukemias (stage IV) showed extensive
transcriptome reprogramming as compared with the other
stages (Supplemental Fig. S2A). We used two differential
gene expression analyses to identify (1) genes significantly
deregulated during APL transformation with respect to
stage 0 (control) cells, and (2) genes uniquely deregulated
(i.e., excluding genes that were also deregulated at other
stages) at each stage of APL progression as compared with
stage 0, which identified genes that are “transiently” altered
during the kinetic analysis (Supplemental Table S1). The
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first analysis revealed an increasing number of significantly
deregulated genes (Q-value <0.05) from stage 0 during leu-
kemic transformation (Fig. 2A). In addition, these differen-
tially regulated genes progressively increased or decreased
in expression along the time course (Fig. 2B), suggesting
that PML-RARa expression induced early alterations in ex-
pression (e.g., at stage I) that were maintained during APL
transformation. The second analysis revealed that a rela-
tively small subset of genes was uniquely up-regulated or
down-regulated at early stages of APL transformation, and
that a larger number of genes was transcriptionally deregu-
lated specifically at stages III and IV (Supplemental Fig.
S2B; Supplemental Table S1). These results put forward
the hypothesis that early expression of PML-RARaimpaired
the expression of a relatively few genes encoding for key he-
matopoietic TFs, which subsequently altered the transcrip-
tional landscape genome-wide. Indeed, several genes
encoding TFs or enzymes were either significantly up-regu-
lated (e.g., Bcl2, Bmp2, Hes1, Mycn, Twist1, and 1d2) or
down-regulated (e.g., Cdh1, Lef1, Rxrb, and Rarg) at stages
Iand II. Overall, more genes were found to be down-regulat-
ed thanup-regulated (Fig. 2A; Supplemental Fig. S2B), inline
with previous reports of PML-RARa driving transcriptional
repression (Morey et al. 2008; Gaillard et al. 2015; Li et al.
2018; Wang et al. 2020).

We next performed gene ontology and KEGG pathway
analyses to dissect the pathways perturbed by PML-
RARa. Genes with an increased expression in early stages
showed enrichment in pathways related to MAPK signal-
ing, regulation of cell proliferation and/or adhesion, or
pathways in cancer. In turn, genes with a reduced expres-
sion in early stages were mostly related to hematopoietic
cell lineage or immune response (Supplemental Table S1;
Supplemental Fig. S2C). GSEAs of genes during APL pro-
gression revealed increased expression of genes involved
in pathways related to cell cycle (E2F targets, G2M check-
point, and mitotic spindle) or DNA repair, and decreased
expression of genes involved in apoptosis and immune sig-
naling pathways (Fig. 2C). In the leukemic stage (IV), a large
number of genes was deregulated with respect to their sta-
tus in stage O (Supplemental Fig. S2D); however, a large
proportion of these genes already showed altered expres-
sion at stage III (Supplemental Fig. S2E). Included in the
top transcriptionally deregulated genes were genes that en-
code TFs or enzymes that play fundamental roles in mye-
loid differentiation (Rosenbauer and Tenen 2007) and
HSPC function, including Gata2, Cebpa, Bcl2, Hoxal0,
Irf8, Myc, Spil, and KIf4 (Fig. 2D). These results were val-
idated in independent biological samples using QqRT-PCR
(Supplemental Fig. S2F).

Overall, our Hi-C and transcriptomic data indicated that
cells expressing PML-RARa undergo progressive and pro-
found alterations in genome architecture that may be cor-
related to changes in gene transcription. To confirm this
hypothesis, we examined the transcriptional status of
genes located in bins that switch compartments during
APL transformation. Indeed, expression of genes in regions
that switched from the A compartment at stage O to the B
compartment at any later stage was significantly down-
regulated (Fig. 2E). Although not statistically significant,
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Figure 2. PML-RARa promotes dynamic changes in expression of gene pathways that control cell cycle progression, immune signaling,
and DNA repair. (A) Number of differentially expressed genes (DEGs) obtained by DESeq2 (Q-value > 0.05) at each of the indicated stages,
using stage 0 as baseline. (B) Heat maps showing unsupervised clustering of expression levels (Z-score values) of genes at each stage, using
stage 0 as reference. The left heat map depicts all genes that were up-regulated with respect to stage 0, and the right heat map depicts all
down-regulated genes. (C) GSEA signatures of DEGs at each indicated stage with respect to stage 0. Gene expression signatures related to
cell cycle control and p53/DNA damage repair were positively enriched during the time course, while signatures related to immune sig-
naling were negatively enriched. (D) Heat map depicting the dynamic gene expression alterations (log RPKM values) of key hematopoietic
transcription factors and leukemia-associated genes at each stage. (E, left panel) Expression of genes in regions that were in compartment A
at stage 0 and switched to compartment B at another stage (724 genes). P =2 x 10~ between stages 0 and II; P = 1.1 x 10~ between stages 0
and II1. (Right panel) Same as the left panel, but for genes in the B compartment at stage 0 that switched to the A compartment at another
stage (223 genes). P=0.79 between stages 0 and I; P=0.11 between stages 0 and II. Genes in bins that switched compartments more than
once during the kinetic assay were excluded. P-values were computed using the Wilcoxon test (two-sided).

the opposite trend was observed for genes that switched at pre-existing boundaries between A and B compartments
from the B to A compartment. Genes that stably switched at stage 0(22.28% of the total genes are located at +100 kb
from one compartment to the other were frequently found from A/Bboundaries, whereas this proportion increases to
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66.58% and 66.97% for stable A-to-B and stable B-to-A
genes, respectively; P-value <2.2x 107'¢). Together, our
data indicated that PML-RARa induced early chromatin
topological alterations, and in particular switched the in-
teraction patterns of active regions of the genome to inac-
tive chromatin compartments, which correlated with
transcription repression.

PML-RAR« induces epigenomic alterations at enhancers,
which correlate with changes in expression of nearby
genes

PML-RARa induces important expression changes of key
genes involved in hematopoietic stem cell function and dif-
ferentiation (Fig. 2D; Supplemental Fig. S2F; Tan et al.
2021). Given that transcriptional output is controlled by
the activity of distal regulatory enhancers, we hypothesized
that PML-RARa influences transcription of these genes by
modulating enhancer activation. To comprehensively ex-
amine alterations of enhancer activity during APL progres-
sion, we collected samples at all experimental stages and
performed ChIP-seq to map the genome-wide distribution
of active enhancers (H3K4mel and H3K27ac), active pro-
moters (H3K4me3 and H3K27ac), and Polycomb-mediated
repression (H3K27me3). These experiments revealed inter-
esting patterns in both the number of peaks and their geno-
mic distribution (Supplemental Fig. S3A, B). First, while the
global number of H3K4mel-enriched regions was very sim-
ilar between stages, the number of regions enriched in
H3K4me3 and H3K27ac—hallmarks of active promoters
—substantially decreased during APL progression (stages
Il and IV) (Supplemental Fig. S3A). Second, regions decorat-
ed by H3K27me3 increased along the four stages (Supple-
mental Fig. S3A), suggesting that PML-RARa led to a
cumulative repression of the epigenome. Third, the reduced
H3K27ac and increased H3K27me3 levels mostly occurred
outside promoters of coding genes (i.e., in intergenic and in-
tragenic regions), suggesting that PML-RARa had a primary
role in epigenetic repression of putative enhancers (Supple-
mental Fig. S3B). Following these results, we next mapped
the dynamic loss of enhancer activity during leukemic
transformation (Fig. 3A). We identified 27,341 active en-
hancers at stage 0, of which 5%, 17%, 20%, and 21% lost
H3K27ac at stages I, II, I1I, and IV, respectively (Fig. 3A; Sup-
plemental Fig. S3C). We observed a striking progressive re-
duction of H3K27ac levels at enhancers with reduced levels
in one stage during the subsequent stages. For example, en-
hancers with reduced H3K27ac levels at stage II continued
to lose H3K27ac levels at stages III and IV (Fig. 3A). Impor-
tantly, loss of H3K27ac was accompanied by a gain in the re-
pressive histone mark H3K27me3 (Fig. 3B). Interestingly,
motif analysis of sequences of these enhancers revealed sig-
nificant hits for the PU.1/SPI1 and the myeloid-determin-
ing transcription factor GFI1B (Supplemental Fig. S3D).
These data align with previous literature (Wang et al.
2010; Tan et al. 2021) and confirm the role of the PML-
RARa-PU.1 and PML-RARa-GFI1B axes during APL pro-
gression. Moreover, the KLF4 motif was enriched at en-
hancers that are inactivated during leukemia progression,
suggesting that KLF4 down-regulation might be one of the
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key events that could induce decommissioning of enhanc-
ers at a later time point, although some of the observed
changes might be indirect. Together, our results indicate
that PML-RARa induced a vast reprogramming of the epige-
nome that involved the repression of active enhancers con-
comitant with a gain of Polycomb-mediated repression.

To closely examine the dynamic alterations of the epi-
genome during leukemic transformation, we next sub-
tracted the normalized signal intensity of H3K27ac and
H3K27me3 at each stage from the baseline signal at stage
0; we then inspected the regulatory landscape near key he-
matopoietic transcription factors. We observed that PML-
RARa expression induced a progressive loss of H3K27ac at
enhancers near KIf4 and Spil, which became transcrip-
tionally repressed during APL transformation (Figs. 2D,
3C). In contrast, Gata?2 and its putative enhancers showed
progressively increased H3K27ac and reduced H3K27me3
levels (Fig. 3C), in line with its increased expression (Fig.
2D). These examples suggested that the epigenetic alter-
ations induced by PML-RARa at enhancers were associat-
ed with changes in nearby gene expression. To address
this question genome-wide, we examined the levels of ex-
pression of genes located within 5 kb from enhancers that
presented a significant decrease in the H3K27ac levels at
each stage (Supplemental Fig. S3C). Our data confirmed
that loss of enhancer activity correlated with a significant
decrease in expression of nearby genes (Fig. 3D).

Next, we used Hi-C to examine whether the overall
physical contacts within the same TAD (topologically as-
sociating domain; i.e., contacts with other promoters or
enhancers) were affected in promoters that lost or gained
H3K27ac during APL transformation. Notably, promoters
that had decreased levels of H3K27ac—and thus had be-
come repressed—showed decreased contacts during the
early phases of leukemic transformation (Fig. 3E). In con-
trast, activated promoters with increased H3K27ac levels
showed the opposite trend, whereas the contacts of stably
active or inactive promoters were maintained (Fig. 3E). Ex-
amples of intra-TAD reorganizations for a repressed gene
(KLF4) and an activated gene (GATA2) are shown in Figure
4 and Supplemental Figure S4, respectively. These results
suggest that changes in intra-TAD interactions may be re-
quired for transcriptional activation but not for transcrip-
tional deactivation. To generalize those observations, we
ranked TADs according to their changes in domain score,
which reflect internal reorganization and compartmental-
ization of TADs (Krijger et al. 2016; Stadhouders et al.
2018) between stage 0 and stage III. The 10% of TADs
with a higher increase in domain score at stage Il showed
increased levels of H3K27ac (Fig. 3F, left panel), reflecting
intra-TAD reorganization and establishment of regulatory
contacts in TADs that become active, confirming previous
observations (Krijger et al. 2016; Stadhouders et al. 2018).
Changes in domain score did not correlate with changes
in H3K27me3 levels, and both TADs with a higher in-
crease or decrease in gene expression showed an increased
domain score at stage III, indicating a link between TAD
reorganization and gene expression changes and suggest-
ing complex reorganization of TADs upon PML-RARa ex-
pression. Collectively, our data indicated that PML-RARa
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Figure 3. PML-RARainduces epigenomic alterations at distal regulatory elements correlated with changes in expression of nearby genes.
(A) Intensity of H3K27ac signal at 27,341 stage 0 active enhancers (non-TSS regions with overlapping H3K4mel and H3K27ac peaks) that
lost H3K27ac during the time course. Box plots below correspond to the normalized H3K27ac ChIP-seq signal intensity of enhancers lost
at each stage. For H3K27ac, P = 2.2 x 107" between stages 0 and I, between stages 0 and II, between stages 0 and III, between stages 0 and IV.
For H3K27me3, P =0.33 between stages 0 and I, P=2.2 x 107" between stages 0 and II, P= 2.2 x 10~ between stages 0 and III, and P =2.2 x
107'¢ between stages 0 and IV. (B) Intensity of H3K27me3 signal at the same enhancers shown in A. Box plots show the normalized
H3K27me3 ChIP-seq signal intensity of enhancers lost at each stage. (C) UCSC genome browser snapshots of differential H3K27ac (pur-
ple) and H3K27me3 (green) ChIP-seq profiles at promoters and putative distal regulatory elements of the indicated genes. Each row cor-
responds to the ChIP-seq signal intensity at each indicated stage subtracted from the signal at stage 0 as baseline. (D) Expression of genes
within 5 kb around active enhancers at stage 0 that are lost in stage I (1464 enhancers; left graph), stage II (4668 enhancers; middle graph),
or stage III (5406 enhancers; right graph). P-values were computed using Wilcoxon test (two-sided). (E) Dynamic changes of overall contact
enrichment (intra-TAD) of promoters depending on activation status from stage 0 to stage Il are as follows: Active (blue dots) maintained
H3K27ac in both stages, inactive (red dots) were not marked by H3K27ac in either stage, gain (purple dots) gained H3K27ac at stage I1I, and
loss (green dots) lost H3K27ac at stage III. Contact enrichments were measured as log, of observed contacts over expected (log, Obs/Exp)
and were corrected against background. (F) Box plots showing the changes in H3K27ac, H3K27me3, and RNA levels per TAD for the top
and bottom 10% of TADs with higher changes in domain score.
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promoted extensive epigenomic reprogramming of en-
hancer regions and induced transcriptional changes by re-
wiring promoter-promoter and promoter-enhancer
contacts, thus affecting genes that encode for critical regu-
lators of hematopoietic differentiation.

The K1f4 genomic locus undergoes progressive
rearrangement of long-range interactions during PML-
RARa-induced transformation

KLF4 is a master hematopoietic transcription factor that
acts as a tumor suppressor in leukemia by activating the
expression of genes that promote myeloid differentiation,
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tion of the signal at stage 0. Blue depicts in-
teractions that decreased after stage 0, and
brown depicts interactions that increased af-
ter stage 0. Red arrows indicate the location
of the KIf4 locus. (Bottom panels) Same as
the middle panels, but zooming in at the re-
gion between 55 and 56 Mb of chromosome
4, depicting a progressive loss of interactions
of K1f4 with downstream genomic elements.
(B) Differential matrix at 5-kb resolution,
showing normalized interaction counts at
the region between 55 and 56 Mb of chromo-
some 4 at stage III after subtraction of stage 0
signal. Blue depicts interactions that de-
creased at stage III, and brown depicts inter-
actions that increased at stage III. The
insulation score track is shown below for
stages 0 and III. RNA-seq tracks (black)
show a progressive decrease of KIf4 gene ex-
pression. Differential H3K27ac (purple) and
K3K27me3 (green) ChIP-seq tracks show a
sequential loss of H3K27ac signal and gain
of H3K27me3. A/B compartment bins
showed progressive compartment switching
of the KIf4 locus from A (orange) to B (blue).
RefSeq genes of this genomic region are
shown at the bottom.

apoptosis, and cell cycle arrest (Feinberg et al. 2007; Alder
et al. 2008; Huang et al. 2014; Filarsky et al. 2016; Morris
et al. 2016). Our data showed that the KIf4 locus under-
went an extensive regulatory reprogramming during APL
transformation with an A-to-B compartment switch (Fig.
1H) and transcriptomic and epigenomic repression (Figs.
2D, 3C; Supplemental Fig. S2F). To investigate whether
this reprogramming was accompanied by alterations in
long-range interactions, we inspected the temporal chang-
es in interactions centered around the KIf4 gene. The KIf4
locus is located at the boundary between two well-defined
TADs (Fig. 4A). During APL transformation, we observed a
progressive loss of long-range interactions of the KIf4 locus
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with the downstream TAD, with multiple interaction
loops profoundly decreased at stage III as compared with
stage 0 (Fig. 4A, middle Hi-C map). Simultaneously, the in-
sulation between the two TADs (Crane et al. 2015) de-
creased during the kinetic (Fig. 4B), leading to increased
interactions with the upstream TAD linked to the change
of compartment of the KIf4 locus. Interestingly, such
changes in long-range interactions were accompanied by
epigenetic and transcriptional reprogramming, as shown
by decreases in H3K27ac levels and gene expression to-
ward the downstream TAD (Fig. 4B).

Similar topological alterations were observed in the
Etv1 locus, a gene that is recurrently transposed in acute
leukemia (Sacchi et al. 1986) and that was also repressed
during APL progression (Supplemental Fig. S4A, left pan-
el). The Etvl gene progressively lost contacts, H3K27ac
signal strength, and transcriptional output, concomitant
with a gain of H3K27me3 levels. We also inspected the
pattern of interactions around the Gata2 locus as an ex-
ample of a gene encoding a master regulator of myeloid
differentiation that is up-regulated in APL (Fig. 2D;
Zhang et al. 2008a; Li et al. 2018). The Gata2 gene
showed conspicuously increased contacts with neighbor-
ing genes in a region of ~0.5 Mb (Supplemental Fig. S4A,
right panel). In addition, we observed an enrichment in
H3K27ac levels and transcriptional output at the Gata2
locus during APL transformation (Supplemental Fig.
S4A, right panel).

Given the remarkable topological rearrangements ob-
served at the KIf4 locus, we next sought to identify poten-
tial cis-regulatory elements that interacted with the KIf4
locus and to examine their contact profiles during APL
transformation. To this end, we generated virtual 4C-seq
maps at stage 0 and stage III that were centered at the
KIf4 locus (Fig. 5A). These maps revealed that, in normal
hematopoietic stem/progenitor cells, the KIf4 promoter
had strong interactions with potential enhancers located
at ~119, 198, and 274 kb upstream of the promoter (Fig.
5A). These interactions were markedly reduced at stage
III of the time course, while interactions downstream
from the KIf4 promoter tended to increase. Notably, the
KIf4 putative enhancers identified at stage 0 were en-
riched in H3K4mel and H3K27ac in normal cells, and
these marks were reduced in stage III. In addition, the re-
gion spanning the +119-kb enhancer showed a conspicu-
ous increase in the levels of the Polycomb-repressive
mark H3K27me3 (Fig. 5A; Di Carlo et al. 2019). The virtu-
al 4C-seq map around the Etv1 locus also confirmed that
transcriptional repression was accompanied by loss of
contacts between the Etvl promoter and its downstream
enhancers, which decreased their activity from stage 0
to stage III, as shown by the loss of active histone modifi-
cations (Supplemental Fig. S4B). In contrast, the Gata2 lo-
cus (which is up-regulated during APL progression)
showed a marked gain in interactions both upstream of
and downstream from the gene, including at Gata2 puta-
tive enhancers (Supplemental Fig. S4C). Furthermore, we
found a marked decrease in the Polycomb-mediated re-
pressive mark H3K27me3 around Gata2. Altogether, our
data showed that PML-RARa expression induced exten-

sive rearrangements in long-range interactivity at loci en-
coding for master hematopoietic transcription factors.

Klf4 overexpression inhibits self-renewal and promotes
differentiation of PML-RARa-expressing cells

Our data indicated that PML-RARa progressively down-
regulated KIf4 expression by remodeling long-range interac-
tions at the KIf4 locus. Both tumor suppressor and oncogen-
ic roles have been reported for KIf4 in the context of APL
(Feinberg et al. 2007; Alder et al. 2008; Morris et al. 2016;
Lewis et al. 2021). KIf4 expression appears to be lower in
APL patient samples carrying the t(15;17) translocation as
compared with other AML subtypes or healthy bone mar-
row (Supplemental Fig. S5A). To determine whether
down-regulation of this TF contributes to leukemic pheno-
types, we examined whether ectopic KIf4 expression was
able to reverse the phenotypic alterations driven by PML-
RARa. To this end, we generated lineage-negative (Lin~)
cells expressing PML-RARa only, KIf4 only, or both using
a retroviral strategy (Supplemental Fig. S5B). Expression of
PML-RARa arrested cellular differentiation, as shown by
the decreased frequency of CD11b" cells and the increased
frequency of cKit" cells, as compared with an empty vector
control (Supplemental Fig. S5C). KIf4 overexpression alone
did not significantly change the frequency of cKit" or
CD11b" cells as compared with empty vector control (Sup-
plemental Fig. S5C). However, ectopic KIf4 expression in
cells simultaneously expressing PML-RARa substantially
increased differentiation (Fig. 5B; Supplemental Fig. S5C).
In addition, the self-renewal capacity of PML-RARa-ex-
pressing cells was completely abrogated when KIfd was
overexpressed (Fig. 5C; Supplemental Fig. S5D,E). These re-
sults were further supported by RNA-seq analysis of cells
overexpressing KLF4 in the absence and presence of PML-
RARa (Supplemental Fig. S6A,B). By comparing the tran-
scriptome of cells co-overexpressing PML-RARa and
KLF4 with the one from cells overexpressing PML-RARa
only, we observed alterations in different processes that
are essential for cell growth and leukocyte function. Inter-
estingly, KLF4 expression in PML-RARa cells results in
up-regulation of cellular senescence programs (Supplemen-
tal Fig. S6C). Together, these results suggested that KIf4
down-regulation, which is induced by PML-RARg, is in-
deed a leukemia-promoting event that can be reversed by
ectopic KIf4 expression.

Discussion

We have shown that the expression of the chimeric pro-
tein PML-RARa in primary HPSCs induces a rapid and ex-
tensive remodeling of contacts genome-wide as well as
reprogramming of both the epigenome and the transcrip-
tome. We showed that this process is, at least partially, dy-
namic and continuous, impacting transcription and the
enhancer landscape around genes that encode for key tran-
scription factors, which control the differentiation and
function of HPSCs. Among these alterations, we identi-
fied major changes and transcriptional repression at the
KIf4 gene and neighboring enhancers and showed that
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Figure 5. KIf4 overexpression restores the normal function of PML-RARa-expressing HSCs. (A) Virtual 4C-seq signal around the KIf4 ge-
nomic region. The top panel illustrates overall contact profiles at the gene promoter at stage 0 (red line) and stage III (black line) for the
region between 54.5 and 56.5 Mb of chromosome 4. The zoomed-in panel corresponds to the region between 55 and 56 Mb of chromosome
4. ChIP-seq tracks of the indicated histone modifications at stage 0 and stage IIl are shown. Shadowed regions highlight the regions span-
ning the KIf4 gene and the putative enhancers upstream of the KIf4 promoter (+119 kb, +198 kb, and +274 kb from the promoter). (B) Immu-
nophenotyping analyses of lineage-negative bone marrow cells overexpressing KLF4-GFP, PML-RARa-hCD4, or both (KLF4 OE + PML-
RARAa). Cells were sorted and analyzed by flow cytometry using the indicated cell surface markers. P-values were calculated using a Stu-
dent’s t-test between PML-RARa and KLF4 OE + PML-RARa conditions. (**) P=0.016, (*) P=0.003. (C) Quantification of colony-forming
units (CFUs) during four consecutive replatings of sorted cells overexpressing KLF4-GFP, PML-RARa-hCD4, or both (KLF4 OE + PML-

RARa).

ectopic overexpression of KIf4 restored the differentiation
capacity of HPSCs that expressed PML-RARa. Our find-
ings add to recent studies addressing the role of PML-
RARa (Li et al. 2018; Wang et al. 2020; Tan et al. 2021)
and of other oncofusion proteins, such as RUNX1-ETO
(Ptasinska et al. 2019), in genome architecture by (1) using
a primary cellular and animal model system that closely
recapitulates clinical and morphological features of hu-
man APL, (2) providing the first temporal multiomics
analysis of the alterations driven by the chimeric protein
at both promoter and enhancer regions, and (3) identifying
specific changes that occur at KIfd putative enhancers and
demonstrating a tumor suppressor role of this transcrip-
tion factor in promyelocyte leukemic transformation.
While our experimental system has been validated exten-
sively and is known to maintain two key functional as-
pects of PML-RARa function (inhibiting differentiation
and enhancing self-renewal), it is important to acknowl-
edge that using in vitro cultured cells to characterize early
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stages of PML-RARa function may not provide the com-
plete view of the molecular events or genetic mutations
required to develop leukemogenesis in vivo.

A few studies have mapped PML-RARa occupancy ge-
nome-wide using human APL cell lines or APL blasts
(Hoemme et al. 2008; Martens et al. 2010; Mikesch et al.
2010; Wang et al. 2010, 2020; Singh et al. 2018; Tan et al.
2021). Despite multiple attempts, we were unable to
map the fusion protein in primary mouse HSPCs by
ChIP-seq; however, our temporal analysis allowed us to
identify early (and potentially direct) alterations in the to-
pology, epigenome, and transcriptome driven by PML-
RARa expression. Such earlier changes are more likely
driven by the direct effect of the fusion protein and its pri-
mary targets, while stage IV alterations might reflect the
occurrence of additional genetic alterations and other
potentially cooperative effects that promote the fully
transformed leukemic phenotype. Among the early alter-
ations, we focused on those occurring at the Kl1f4 locus,
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which we characterized in depth. Furthermore, we cross-
validated our RNA-seq data by overlapping our differen-
tially expressed gene lists with known PML-RARa target
genes in the NB4 APL cell line (Tan et al. 2021), and with
known target genes of the TF PU.1 in HSCs (Pundhir
et al. 2018), which are reported to be coregulated by
PML-RARa (Wang et al. 2010; Yang et al. 2014). These
analyses showed that ~30% of differentially expressed
genes between stages 0 and II, and between stages 0 and
11, are bona fide PML-RARa targets in the patient-derived
NB4 cells. We also found that >52% or 60% of up-regulated
or down-regulated genes, respectively, were PU.1 targets
in HSCs. In addition, genes down-regulated during the ki-
netic analysis showed significant enrichment in PRC2
(Suz12) as well as SMAD4 targets (adjusted P-values 1 x
2.5%and 1 x 1.057%, respectively), confirming previous re-
ports (Lin et al. 2004; Villa et al. 2007; Morey et al. 2008)
and further validating our analyses. Interestingly, up-regu-
lated genes were enriched not only for Suz12 and SMAD4
targets (adjusted P-values 10x4.887% and 10x9.473, re-
spectively), but also for Gata2 targets (adjusted P-value
10x4.887%). Expression of Gata2 increased very early dur-
ing the kinetic analysis (Fig. 2D; Supplemental Fig. S4A,C)
and in human APL patient samples (Sukhai et al. 2008;
Katerndahl et al. 2021). Notably, Gata2 up-regulation
was recently reported to suppress PML-RARa-induced leu-
kemic transformation, indicating that, in addition to KIf4,
Gata2 modulation might contribute to suppressing malig-
nant transformation (Katerndahl et al. 2021).

The temporal resolution of our data revealed that the
previously reported repressive functions of PML-RARa
occurred in a progressive manner as cells underwent trans-
formation (Figs. 2B,D, 3A). We found that the most pro-
nounced alterations in long-range interactions, the
epigenome, and the transcriptome occurred from stage III
to stage IV (full-blown leukemia). These observations inte-
grated other studies (Gaillard et al. 2015) that have shown
that the initial changes in gene expression driven by PML-
RARa are relatively subtle and related to metabolism, cell
cycle, and DNA damage response signatures (Fig. 2C),
which may be insufficient to terminally arrest differentia-
tion. This model is further reinforced by DNA methyla-
tion analyses that report only modest epigenome
alterations at early stages of APL development (Schoofs
et al. 2013; Gaillard et al. 2015). It is important to note
that stage IV leukemic blasts were isolated from live ani-
mals and thus were likely to be influenced by microenvi-
ronmental cues in the bone marrow. Furthermore, the
development of full-blown APL blasts requires secondary
mutations, which could further contribute to the diver-
gence in our stage IV samples. Future studies are warranted
to identify the contribution of secondary lesions and the
bone marrow microenvironment in the cellular pheno-
types observed during later stages of APL development.

Here, we focused on uncovering early alterations occur-
ring at regulatory enhancers encoding for key hematopoiet-
ic TFs, including KIf4, that can subsequently have major
impacts in the transcriptome, genome architecture, and
methylome of APL blasts. The role of K1f4 in hematopoietic
malignancies has remained controversial. Our study sheds

Temporal di ion of leukemi ¢

new light on this issue by demonstrating a tumor suppres-
sor role of KIf4 in the context of APL, showing that the gene
is progressively down-regulated during APL progression
and that its ectopic overexpression counteracts oncogenic
transformation. Given that Klf4 is required for mesoderm
lineage commitment (Aksoy et al. 2014), we speculate
that KIf4 down-regulation rewires gene regulatory net-
works that promote HSPC differentiation, thus contribut-
ing to leukemogenesis. We found that the cis-regulatory
landscape within the KIf4 locus substantially changed its
pattern of long-range interactions and histone modifica-
tions concomitant with a reduction in KIf4 expression.
The increase in long-range interactions observed around
the KIf4 locus could be triggered by the switch from the
A to B compartment: As KIf4 is progressively embedded
into a larger B compartment, B-to-B interactions might be
facilitated. Although treatment of APL with all-trans reti-
noic acid in combination with chemotherapy results in re-
mission in >90% of patients, our data suggest that ATRA
combined with enhanced KLF4 expression may open a nov-
el avenue of therapeutic intervention. Indeed, we have ob-
served synergistic effects of ATRA in inducing apoptosis,
enhanced G1-phase arrest, and differentiation of cells coex-
pressing PML-RARa and KLF4 (data not shown), confirm-
ing the tumor suppressor role of KLF4 overexpression and
its molecular effects in the context of APL.

Our work delineates the dynamic mechanisms whereby
the oncogenic TF PML-RARa builds a network of chromo-
some interactions that repress transcription of master he-
matopoietic regulators. We propose that the dynamic
changes in the genome architecture mediated by PML-
RARa may serve as a general paradigm for other oncogenic
proteins that act as transcriptional repressors, bringing
new light to the molecular mechanisms by which these
transcriptional repressors drive malignant transforma-
tion, and possibly leading to the identification of novel
transformative therapeutic strategies.

Materials and methods

Murine APL model, bone marrow harvest, and cell culture

Bone marrow lineage-negative hematopoietic stem/progenitor
cells from 8- to 10-wk-old female 129SvEv mice were harvested
and infected with high-titer retroviruses expressing either an
empty PINCO-3xFlag vector or a PINCO-PML-RARa-3 x Flag
vector carrying human PML-RARa. PINCO plasmids expressing
human PML-RARa from the 5 viral long terminal repeat (LTR)
and GFP from an internal promoter (cytomegalovirus [CMV])
were described previously (Grignani et al. 1998; Minucci et al.
2002) and were modified by cloning three copies of a Flag tag
(69 bp) at the C-terminal of the human PML-RARa sequence.
GFP" cells transformed with empty vector or PML-RARa-3xFlag
vector were sorted by FACS and correspond to stage 0 and stage I,
respectively. Stage I cells were then plated in methylcellulose
supplemented with cytokines and stem cell factor and serially re-
plated for 2 wk (stage II) and 4 wk (stage III). The GFP" cells that
were passaged on methylcellulose were not resorted at each pas-
sage. In parallel, ~1 million GFP* PML-RARa-3xFlag transduced
lineage-negative cells (stage I) were transplanted via tail vein in-
jection into lethally irradiated (9 Gy) syngeneic mice (129SvEv)
as previously described (Minucci et al. 2002). The animals were
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monitored periodically for signs of disease and the presence of
blasts as evaluated by complete blood counts (CBC) and peripher-
al blood smears. Leukemic mice were humanely euthanized, and
leukemic blasts were isolated from the spleen (with >95% of leu-
kemic cell infiltration) for subsequent experiments (stage IV).

Bone marrow lineage-negative cells were obtained and trans-
duced as described previously (Minucci et al. 2002). Serial replat-
ing assays of GFP* cells were performed by seeding 10,000 cells/
well in methylcellulose medium (Methocult, Stem Cell Technol-
ogies M3434) and replating every 7 d. Flow cytometry analyses
were performed by staining cells with antimouse CD11b (eBio-
science 25-0112-82) and using BD FACSCalibur 2.

Animal handling was performed following Italian laws (D.L.vo
116/92 and subsequent additions), which enforce EU Council Di-
rective 86/609/EEC of November 24, 1986, on the approximation
of laws, regulations, and administrative provisions of the Member
States regarding the protection of animals used for scientific pur-
poses. Mice were housed according to guidelines from the Co-
mmission Recommendation 2007/526/EC, June 18, 2007. The
protocol was approved by the Italian Ministry of Health (authori-
zation October 2013).

Western blotting

Whole-cell lysates of 293T cells infected with empty PINCO-
3xFlag vector, PINCO-PML-RARa (Minucci et al. 2002), or
PINCO-PML-RARa-3xFlag were obtained using RIPA buffer con-
taining protease inhibitors (Roche). Sixty micrograms of total pro-
tein was loaded per lane on an 8% SDS-PAGE. After blocking in
5% milk-TBST-1X, the following antibodies were incubated
overnight at 4°C: anti-Flag (mouse monoclonal, 1:500; Sigma
F1804) and anti-Tubulin (mouse monoclonal, 1:5000; Abcam
ab7291). Inmunodetection was performed using ECL.

In situ Hi-C experiments

For in situ Hi-C experiments, 5 million to 10 million cells of each
stage were harvested at two independent biological replicates per
stage. Cells were cross-linked for 10 min at room temperature
with 1% formaldehyde and quenched during a 5-min incubation
at room temperature with 125 mM glycine, followed by a 15-min
incubation on ice and two washes with cold PBS; samples were
then pelleted and frozen at —80°C.

In situ Hi-C libraries were generated as previously described
(Rao et al. 2014) with minor modifications (Mas et al. 2018).
Two biological replicates were sequenced for all stages, with
one additional technical replicate for stage II, giving between 70
million and 400 million valid reads per replicate. Supplemental
Table S2 summarizes the statistics and reads obtained for all in
situ Hi-C samples.

RNA-seq and quantitative real-time PCR (qRT-PCR)

For RNA-seq experiments, 1 million to 3 million cells at each
stage were resuspended in 350 pL of Qiazol (Qiagen) and frozen
at —80°C. RNA was obtained by thawing the samples, adding
an additional 350 pL of Qiazol, and using the miRNEAsy mini
kit as recommended (Qiagen). After RNA extraction, contami-
nating genomic DNA was eliminated with DNase I digestion.
Two independent biological replicates per stage were used to gen-
erate RNA-seq libraries.

RNA samples were quantified using Nanodrop, and RNA qual-
ity was evaluated with an Agilent Bioanalyser (RIN > 9.9). Total
RNA (1 nuL) was used to generate RNA-seq libraries with rRNA
depletion using TruSeq stranded total RNA library preparation
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kit (Illumina RS-122-2201). Libraries were sequenced in a HiSeq
2000 (75-bp, paired-end reads) to obtain ~300 million raw reads
per sample.

For qRT-PCR, 0.5-1 ng of total RNA obtained from indepen-
dent biological samples at each stage was converted to cDNA,
and gqRT-PCR was conducted using SYBR Green (LightCycler
Roche) and the following primer sequences (5’ to 3'): KIf4 (Fwd-
CGGGAAGGGAGAAGACA, Rev- GAGTTCCTCACGCCA
AC), Spil (Fwd- GCGTGCAAAATGGAAGGGTT, Rev-GTGTG
CGGAGAAATCCCAGT), Irf8 (Fwd-CAATCAGGAGGTGGA
TGCTT, Rev-AGCACAGCGTAACCTCGTCT), Myc (Fwd-CC
TAGTGCTGCATGAGGAGA, Rev-TCCACAGACACCACAT-
CAATTT), FIt3 (Fwd-ATCTCCGAGGGTGTTCCAGA, Rev-T
GAACAGCTTGGTGCATTCG), Gata2 (Fwd-GCTTCACCCC
TAAGCAGAGA, Rev-TGGCACCACAGTTGACACA), Gatal
(Fwd-ACGACCACTACAACACTCTGGC, Rev- TTGCGGTTC
CTCGTCTGGATTC), c¢-Kit (Fwd-GATCTGCTCTGCGTCCT
GTT, Rev-CTTGCAGATGGCTGAGACG), and Bcl2 (Fwd-
GAACTGGGGGAGGATTGTGG, Rev- GGCCATATAGTTCC
ACAAAGGC). Rplp0 (Fwd- TTCATTGTGGGAGCAGAC, Rev-
CAGCAGTTTCTCCAGAGC) was used as housekeeping control
for KIf4, Gatal, c-Kit, and Bcl2. For those genes, final values were
multiplied by 1000. For the rest of genes, f-actin (Fwd- GGCCCA
GAGCAAGAGAGGTATCC, Rev-ACGCACGATTTCCCTCT
CAGC) was used as housekeeping control.

ChIP-seq experiments

For ChIP-seq experiments, 5 million to 10 million cells were
cross-linked as described above. Experiments were performed as
previously published (Mas et al. 2018). Chromatin complexes
were immunoprecipitated using anti-H3K27me3 (Millipore 07-
449), anti-H3K4mel (Abcam ab8895), anti-H3K4me3 (Diagenode
C15410003), and anti-H3K27ac (Millipore 07-360). A small ali-
quot of ChIP DNA was used for ChIP-qPCR validations using
primers of transcriptionally active and repressed genes (Nucleo-
lin, Sox2, and Gapdh) to verify enrichment of the histone modifi-
cations. About 2-10 ng of ChIP or input DNA material was used
to prepare ChIP-seq libraries following the NEBNext Ultra DNA
library preparation kit for Illumina (NEB E7370L) as per the man-
ufacturer’s instructions. Final ChIP-seq libraries were size-select-
ed to remove fragments <100 bp and then amplified for 10 PCR
cycles. Libraries were sequenced on a HiSeq 2000 platform (Illu-
mina) to obtain ~30 million reads per library (50 bp, single end).

RNA-seq and ChIP-seq data analyses

RNA-seq replicate samples were mapped against the mm10 mouse
genome assembly using TopHat (Trapnell et al. 2009) with the op-
tion-g 1 to discard reads that could not be uniquely mapped to just
one region. DESeq2 (Love et al. 2014) was run to quantify the ex-
pression of every annotated transcript using the RefSeq catalog of
exons and to identify each set of differentially expressed genes. Ex-
pression values shown in the box plots correspond to the averaged
FPKMs across the two replicates in each stage. The rows of the heat
maps of gene expression were scaled to have mean 0 and a standard
deviation of 1 (Z-score). To define the set of unique differentially
expressed genes (up or down), only genes reported to significantly
change expression in a single stage as compared with stage 0
were included in the heat maps. Gene set enrichment analysis of
the preranked lists of genes by DESeq2 stat value was performed
with the GSEA software (Subramanian et al. 2005).

ChIP-seq raw reads were mapped against the mm10 mouse ge-
nome assembly using Bowtie (Langmead et al. 2009) with the op-
tion -m 1 to discard reads that did not map uniquely to one
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region. MACS (Zhang et al. 2008b) was run with the default pa-
rameters but with the shift size adjusted to 100 bp to perform
the peak calling of ChIP-seq experiments. The genome distribu-
tion of each set of peaks was calculated by counting the number
of peaks fitted on each class of region according to RefSeq anno-
tations (O’Leary et al. 2016). “Promoter” wass the region within +
2.5 kb of the transcription start site (TSS), intragenic regions cor-
responded to the rest of the gene not classified as promoter, and
the rest of the genome was considered to be intergenic. Peaks
that overlapped with more than one genomic feature were count-
ed in multiple categories. Active enhancers were defined by the
presence of overlapping peaks of H3K4mel and H3K27ac at stage
0 within intronic and intergenic regions. To define the set of ac-
tive enhancers at stage 0 that were lost along the rest of stages (I,
11, I1I, and IV), the ChIP-seq signal of H3K27ac was subtracted in
stage 0 from the rest of H3K27ac profiles, and enhancers were
identified in which the final value was less than one normalized
read. To identify examples of enhancers gaining H3K27ac signal,
the subtraction was inversely performed. The same procedure
was used to determine the gain or loss of H3K27me3 in the
same enhancer collection. Heat maps displaying the density of
H3K27ac and H3K27me3 ChIP-seq reads around the center of
each enhancer were generated by counting the number of reads
for each individual enhancer and normalizing this value with
the total number of mapped reads of the sample. The rows of
the heat maps were scaled to have mean 0 and standard deviation
1 (Z-score), and plots were generated using SeqCode (Blanco et al.
2021).

In all analyses, we used release 68 of the RefSeq annotations
(O’Leary et al. 2016) as provided by the UCSC genome browser
on the refGene.txt file (Tyner et al. 2017). This RefSeq version
contains 34,904 transcripts corresponding to 24,338 mouse genes.
No preprocessing filtering steps were performed on this file. The
UCSC genome browser was used to generate screenshots of the
genomic landscape of selected genes (Tyner et al. 2017). Enrichr
(Kuleshov et al. 2016) was used to perform gene ontology (GO),
KEGG, and other functional analysis (such as ChEA) of the
gene sets obtained from RNA-seq and genes in bins that switched
A/B compartments. Supplemental Table S1 lists all differentially
expressed genes and Enrichr results in each comparison. Graphi-
cal treatment and quantification of the ChIP-seq and the RNA-
seq experiments was performed using SeqCode (Blanco et al.
2021).

Hi-C data analysis

Hi-C data were processed using an in-house pipeline based on
TADDbit (Serra et al. 2017). Reads were mapped according to a frag-
ment-based strategy: Each side of the sequenced read was mapped
in full length to the reference genome mouse December 2011
(GRCm38/mm10). TADbit filtering module was used to remove
noninformative contacts and to create contact matrices as previ-
ously described (Serra et al. 2017). PCR duplicates were removed,
and the Hi-C filters applied corresponded to potential nondi-
gested fragments (extradangling ends), nonligated fragments (dan-
gling ends), self-circles, and random breaks. Contact matrices
were normalized for sequencing depth and genomic biases using
OneD (Vidal et al. 2018). A and B chromatin compartment analy-
sis was performed at 100-kb resolution as previously described
(Lieberman-Aiden et al. 2009; Serra et al. 2017). Differential Hi-
C matrices were computed from normalized Hi-C matrices at 5-
kb resolution. Matrices of the specific regions were corrected
for read coverage, a Gaussian filter was applied for noise reduc-
tion, and the difference between maps at stage IIl and stage 0
was plotted. Virtual 4C-seq profiles were generated from local

coverage-normalized Hi-C matrices at 5-kb resolution, and
Gaussian filter was applied for smoothing. The 5-kb bin contain-
ing the TSS of the gene of interest was used as the viewpoint. The
domain score of consensus TADs was computed as previously de-
scribed (Krijger et al. 2016; Stadhouders et al. 2018). TADs were
ranked according to the ratio stage Ill/stage 0 of this score. The
normalized level of H3K27ac, H3K27me3, and RNA per TAD
was obtained using respective ChIP-seq and RNA-seq data sets.
The ratio of the levels of these marks between stage Il and stage
0 was compared between the 10% of TADs with higher changes
(higher at stage 0 or higher at stage III).

KIf4 overexpression experiments

The KLF4 (mouse) and PML-RARa (human) cDNAs were cloned
into MSCV-GFP and MSCV-hCD4 vectors (Addgene vector
35712) under the control of the EV promoter. The ecotropic phoe-
nix packaging cell line was transiently transduced with the retro-
viral vectors cited above, and the retroviral supernatant was
collected and filtered. Bone marrow lineage-negative cells were
obtained from C57/Bl6 wild-type mice and transduced with retro-
viruses carrying either MSCV-GFP-KLF4, MSCV-hCD4-PE-PML-
RARg, or both by two rounds of spinfection in nontissue culture-
treated plates (Corning 351147) coated with retronectin (Takara
T100A). Transduced Lin~ cells were sorted and serially replated
in methylcellulose medium (Methocult, Stem Cell Technologies
M3434) by seeding 10,000 cells/well and replating every 7 d. Flow
cytometry analyses were performed by staining cells with PE
anti-hCD4 (BD Pharmigen 555347), APC antimouse Cd11b (BD
53312), and APC-fluo780 antimouse c-Kit (Invitrogen 47-1171-
82) using FACSAria (BD).

Data availability

All sequencing data sets are available at GEO under accession
number GSE151837.
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ANNEX 2

TADs enriched in histone H1.2 strongly overlap with the
B compartment, inaccessible chromatin, and AT-rich

Giemsa bands

Candidate’s contribution: Analysis of the Hi-C
experiments.
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Giemsa staining of metaphase chromosomes results in a characteristic
banding useful for identification of chromosomes and its alterations. We
have investigated in silico whether Giemsa bands (G bands) correlate with
epigenetic and topological features of the interphase genome. Staining of
G-positive bands decreases with GC content; nonetheless, G-negative
bands are GC heterogeneous. High GC bands are enriched in active his-
tone marks, RNA polymerase II, and SINEs and associate with gene rich-
ness, gene expression, and early replication. Low GC bands are enriched in
repressive marks, lamina-associated domains, and LINEs. Histone H1 vari-
ants distribute heterogeneously among G bands: H1X is enriched at high
GC bands and H1.2 is abundant at low GC, compacted bands. According
to epigenetic features and H1 content, G bands can be organized in clusters
useful to compartmentalize the genome. Indeed, we have obtained Hi-C
chromosome interaction maps and compared topologically associating
domains (TADs) and A/B compartments to G banding. TADs with high
H1.2/H1X ratio strongly overlap with B compartment, late replicating, and
inaccessible chromatin and low GC bands. We propose that GC content is
a strong driver of chromatin compaction and 3D genome organization,
that Giemsa staining recapitulates this organization denoted by high-
throughput techniques, and that H1 variants distribute at distinct chro-
matin domains.

Databases
Hi-C data on T47D breast cancer cells have been deposited in NCBI's Gene Expression Omni-
bus and are accessible through GEO Series accession number GSE147627.

Abbreviations

bphs, bands per haploid sequence; G band, Giemsa band; Gneg, negative (unstained) Giemsa bands; Gpos, Giemsa-positive (stained) bands;
LAD, lamina-associated domain; mESCs, mouse embryonic stem cells; NAD, nucleolus-associated domain; PTM, post-translational
modification; RNAPII, RNA-polymerase II; S/IMAR, scaffold or matrix attachment region; TAD, topologically associating domain; TSS,

transcription start site.
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H1 variants within G bands, TADs, and compartments

Introduction

Eukaryotic DNA is packaged into chromatin, whose
repeating structural unit is the nucleosome. Each
nucleosome consists of an octamer of core histones
(H2A, H2B, H3, and H4) around which ~ 147 base
pairs (bp) of DNA are wrapped. Histone HI binds at
both entry/exit sites to the linker DNA at the nucleo-
some, participating in the formation of higher-order
chromatin structures [1]. Unlike core histones, HI pro-
teins are more evolutionary diverse. The human his-
tone H1 family includes seven somatic subtypes (or
variants) (HI1.1 to H1.5, H1.0, and H1X), three testis-
specific (H1t, HIT2, and HILSI), and one oocyte-
specific variant (Hloo) [2-4]. Among somatic variants,
HI1.1-H1.5 variants are expressed in a replication-de-
pendent manner while H1.0 and H1X are replication-
independent. Regarding their patterns of expression,
H1.2 to H1.5 and HIX are ubiquitously expressed,
HI1.1 is restricted to certain tissues, and H1.0 accumu-
lates in terminally differentiated cells.

This large repertoire of H1 variants leads to wonder
whether somatic H1 variants are redundant or show
specific properties in terms of functionality and geno-
mic distribution. Classically, HI has been seen as a
structural component associated with chromatin com-
paction, but in recent years, several evidences support
the idea of HI playing a more dynamic role in chro-
matin regulation [4,5]. Previous studies have shown
that histone HI1 variants are involved in several
nuclear processes including transcription, replication,
genome stability, splicing, or heterochromatin mainte-
nance, among others [6-10].

To fully characterize H1 variants specific functional-
ity, it is important to address their genomic distribu-
tion, due to the growing evidence that chromatin
organization is crucial to genome function. Reports
point to a variant-specific genomic distribution among
cell types. In mouse embryonic stem cells (ESCs), Hlc
and H1d (H1.2 and H1.3 orthologs) were found to be
depleted from high GC, gene-rich regions, and abun-
dant at major satellites [11]. By using DamID technol-
ogy in human IMR90 cells, results showed that H1.2—
HI1.5 was depleted from CpG-dense and regulatory
regions, whereas H1.1 had a distinct profile [12].
Besides, H1.5 was enriched in genic and intergenic
regions in IMR90 cells but not in ESCs, suggesting
that its genomic distribution depends on the differenti-
ation state [13]. In human fibroblasts, mapping of
H1.0 revealed its correlation with GC content and
abundancy at gene-rich chromosomes [14]. In breast
cancer cells, H1.2 was the variant that showed the
most specific pattern. H1.2 was found enriched in low
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GC domains and lamina-associated domains (LADs)
[15]. Moreover, combined depletion of H1.2 and H1.4
leads to the activation of heterochromatic repeats, sup-
porting the role of H1.2 in heterochromatin organiza-
tion [10]. Regarding replication-independent variants,
H1.0 and HIX were more abundant at high GC, gene-
rich chromosomes. H1.0 was also found enriched at
nucleolus-associated domains (NADs) while H1X was
more associated with coding regions and RNA poly-
merase II binding sites [16]. A general feature for all
H1 variants, in all species, is its depletion from the
transcription start site (TSS) of active genes, meaning
that upon transcriptional activation HI is removed
from the TSS of genes.

Nevertheless, although uncovering specific features
for HI variants, data support that all HI variants are
distributed across the whole genome [15]. For this rea-
son, methods to compartmentalize the genome could
be useful to study and compare HI variants genomic
distribution. Due to the complex paradigm of chro-
matin organization, this compartmentalization has to
be addressed by a multi-omics approach.

From a functional point of view, the genome has
classically segregated into euchromatin and hete-
rochromatin. Transcriptionally active euchromatin
present an open state to facilitate accession of tran-
scription machinery, replicates early within S-phase,
and is abundant in SINE repetitive elements and active
histone modifications. On the contrary, closed and
transcriptionally silent heterochromatin is character-
ized by late replication timing, LINEs and inactive his-
tone modifications [17]. Moreover, it is well
established that chromosomes occupy a nonrandom
regions in the nucleus (chromosome territories), where
gene-poor regions are placed at the heterochromatic
nuclear periphery and gene-rich ones to the euchro-
matic interior. Chromosome conformation capture
techniques (such as Hi-C) have revealed the existence
of topologically associating domains (TADs), self-or-
ganized chromatin domains in spatial proximity that
interact more frequently within themselves than with
the rest of the genome [18-20]. These structures are
conserved across species and are relatively stable in
different cell types [18,21]. Hi-C data also lead to the
discovery of the so-called A and B genomic compart-
ments, comprising active and inactive regions, respec-
tively [22]. Independently, other chromatin domains
participating in nucleus organization have been
described, such as aforementioned LADs or NADs
[23,24].

Other layers of chromosome architecture have also
been studied for years. In 1970s, several staining meth-
ods of metaphase chromosomes arised, that is, Giemsa
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staining [25]. Although the precise molecular basis of
Giemsa has remained unknown for decades, it is
widely accepted that staining correlates with AT-rich
sequences and chromatin compaction [26,27]. Giemsa
bands (G bands) have been useful in cytogenetics
allowing detection of chromosomes rearrangements in
diseased cells. However, they have not been much
explored in relation to functional genomics. Staining
of G-positive (Gpos) bands correlates with AT con-
tent; nonetheless, unstained or G-negative (Gneg)
bands, expected to be GC-rich, are as heterogeneous
in its GC or AT content as Gpos.

Here, we used G bands as epigenetic units to investi-
gate the differential distribution of linker histones. We
have in silico investigated how G bands correlate with
epigenetic, accessibility and topological features of the
interphase genome, taking advantage of previously
published ChIP-seq, ATAC-seq, and newly generated
Hi-C data in breast cancer cells. Our results show a
heterogeneous and opposite distribution of histones
H1.2 and H1X within G bands, being H1.2 associated
with low GC bands and HI1X with high GC bands.
We have found a strong correlation between B com-
partment, TADs presenting a high H1.2/H1X ratio,
low GC bands, and compact chromatin. To our
knowledge, this is the first report including an exten-
sive characterization of G bands based on a wide
repertoire of genome-wide data, including H1 variants
abundance or Hi-C experiments, among others. More-
over, the balance between two H1 variants has never
been considered as an epigenetic feature nor related to
genome topology before. Overall, this work represents
a comprehensive attempt to further investigate how
chromatin is organized within the nucleus, integrating
histone H1 variants as putative chromatin organizers.

Results

Characterization of Giemsa bands with
epigenetic features and GC content dependency

Giemsa staining of metaphase chromosomes results in
an alternating dark and light banding pattern that
became useful for identifying individual chromosomes
and their abnormalities in diseased cells (Fig. 1A).
After the sequencing of the human genome and with
the help of a dynamic programming algorithm employ-
ing data from thousands of fluorescence in situ
hybridization experiments, the boundaries of each of
the bands were estimated [28]. The estimated starting
and ending position of each of the Giemsa-positive
bands, classified into four groups according to its
increasing staining intensity (Gpos25-Gposl00), and

H1 variants within G bands, TADs, and compartments

intergenic bands (Gneg), was obtained from the UCSC
human genome database. The number of Gpos bands
ranged from 81 to 121. Gpos bands occupied from
7.6% to 17.6% of the genome and Gneg bands a 46%
(Fig. 1B).

The molecular basis of cytogenetic bands is not well
understood. Banding was thought to correspond to
GC-poor (dark bands) and GC-rich (light bands)
regions. However, Gposl00 bands were consistently
AT-rich, but Gpos25 and particularly Gneg bands
were highly heterogeneous in its GC content (Fig. 1C).
Gneg bands presented a mean GC content intermedi-
ate between Gpos25 and Gpos50, indicating that
banding could not be explained only by the base com-
position. Therefore, we wanted to investigate whether
banding could be explained by epigenetic features such
as core histone marks or linker histone variants.

Darker bands (Gposl00) were longer on average
and have been associated with chromatin condensa-
tion. Accordingly, they contained the lowest gene con-
tent, gene richness, and average gene expression of all
the bands (Fig. 1C), as well as longer introns (data
not shown). Gneg bands presented intermediate fea-
tures. As a consequence, we decided to split the Gneg
bands in four equivalent groups according to their GC
content (Gnegl-4). Gene richness and gene expression
correlated positively with GC content (Fig. 1C).

Replication occurs first at active/open chromatin
and later at compact chromatin. Data on replication
timing for HeLa cells are available, and we used it to
calculate the average replication timing at each G
band. As expected, within G-positive bands, replica-
tion timing was lower (late) at Gposl00 (Fig. 1D).
Within G-negative bands, replication timing correlated
with the GC content; high GC bands replicated the
carliest.

It was previously reported that darker bands are
enriched in LINEs and G-negative bands are enriched
in SINEs [28]. We have calculated, per chromosome,
the percentage of bases in each of the eight band types
that is contained within LINEs and SINEs (Fig. 1E).
The abundance of SINEs correlated with the GC con-
tent, whereas abundance of LINEs correlated with AT
content, more than with the darkness of G bands.

Next, we explored the abundance of core histone
post-translational modifications (PTMs) and transcrip-
tion or chromatin-related proteins (from breast cancer
T47D cells publically available data) at Gneg and
Gpos bands (Fig. 1F). On the one hand, the abun-
dance of PTMs related to gene activation and factors
such as RNA polymerase II (RNAPII), BRD4, or
CTCF decreased accordingly to the GC content, that
is, being high within Gnegl and Gpos25 and low at
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Gneg4 and Gpos100 bands. On the other hand, repres-
sive marks such as H3K27me3 or H3K9me3, as well
as EZH2 methyl transferase and heterochromatin pro-
tein HP1 gamma, did not follow this pattern following
GC content. Instead, they were more abundant than
active marks at Gpos75 and Gpos100 bands, but also
at Gnegd4. The overlap between LADs and G bands
also increased at low GC bands, particularly at
Gpos100 (Fig. 1G), coinciding with H3K9me3 enrich-
ment over active marks.

Scaffold (metaphase) or matrix (interphase) attach-
ment regions (S/MARs) are involved in control of
gene expression, replication, DNA repair, and chro-
matin to chromosome transition. By linking DNA to
the nuclear scaffold, they generate structural and func-
tional loops that span ~ 20-100 kb. S/MARs are rela-
tively short sequences (100-1000 bp long) containing
one or several of these features: AT richness (=~ 70%),
OriC, kinked or curved DNA, TG richness, and topoi-
somerase-II sites [29]. Because of their AT richness, it
was initially proposed that S/MARs were present den-
sely within dark G bands [30]. Mapping of human S/
MARs using ChIP-seq data of 14 S/MAR binding
proteins was recently achieved [31]. These sites were
confirmed to contain the previously described features
including AT richness. Nonetheless, we found that
they were enriched within high GC bands, both Gneg
and Gpos bands (Fig. 1H), as expected for elements
involved in the control of gene expression and replica-
tion. Accordingly, S/MAR density was found to corre-
late with gene density [31]. Moreover, S/MARs also
correlated with retrovirus integration sites [31].
Accordingly, we found that hotspots for retroviral
integration were enriched within high GC bands (data
not shown).

As a consequence of this analysis, Gneg interbands
were seen epigenetically heterogeneous, being its GC
content an important predictive factor of its

H1 variants within G bands, TADs, and compartments

characteristics, but not of its lack of Giemsa staining.
We then hypothesized that Gneg bands surrounding
Gpos bands with a particular GC content could have
similar GC values, forming patches of bands with sim-
ilar features, as shown in Fig. 11. In fact, we deter-
mined that the most abundant neighbors of Gpos25
bands were Gnegl bands, and Gposl00 bands were
preferably surrounded by Gneg4 bands (Fig. 1J). In
conclusion, Giemsa-stained bands were surrounded by
unstained bands of similar GC content, gene content,
and other features, except that were shorter.

Correlation of Giemsa staining with AT content
is enhanced along chromosome condensation

Along chromosome condensation, the initially
observed banding of 850 bands per haploid sequence
(bphs) (prometaphase) gets condensed down to
400 bphs (metaphase) (Fig. 2A) [32]. We predicted
that neighbor Gpos and Gneg bands (at 850 bphs)
with similar GC content would become either dark
(stained) or white (unstained) bands at 400 bphs,
depending on its GC content, as shown in Fig. 2B. As
an example, bands p25.1, p25.3 (Gneg) and p25.2
(Gpos25) of chromosome 3 became band p25 (white,
high GC) at 400 bphs, while bands pl4.1, pl4.3
(Gpos50), and pl4.2 (Gneg) became band pl4 (dark,
low GC) (Fig. 2B). As a consequence, the difference
between GC content at stained versus not-stained
bands was increased at 400 bphs compared with
850 bphs, that is upon chromosome condensation
(Fig. 2C).

Analyzing what proportion of each of the G bands
at 850 bphs became dark or white at 400 bphs, we
obtained that a big proportion of Gneg4 became dark,
and a big amount of Gpos25 and Gpos50 became
white (Fig. 2D). A circular permutation of G bands at
850 bphs confirmed that this observation depends on

Fig. 1. Characterization of Giemsa bands. (A) Ideogram of a human metaphase chromosome showing banding after Giemsa staining. G-
positive bands are classified into four types (Gpos25 to Gpos100) according to increasing staining intensity. Unstained bands or interbands
are called G negative (Gneg). Ideograms are from NCBI's Genome Decoration Page. (B) Table indicating the number of bands of each type
existing in human chromosomes and the percentage of base pair occupancy in the genome. (C) Box plots showing the GC content, base
pair length, gene number content, gene richness (gene number/base pair length), and average gene expression (from Hela cells) of each G
band for each band type. Gneg bands were divided into four equal groups according to GC content. (D) Box plot showing replication timing
at each G band (normalized by band length), for each band type. Hela-S3 public Repli-seq data were used. (E) Box plot showing the
proportion of overlapping base pairs between LINEs or SINEs and each G band, for each band type. (F) Box plots showing abundance of
chromatin-related proteins or histone PTMs at each G band, for each band type. Enrichment was calculated by computing the average
normalized read count of the peaks mapped at each G band. Publically available data from T47D cells were used, except for EZH2 and
H3K27me3 that correspond to Hela cells. (G) Box plot showing overlapping base pairs between LADs and each G band, for each band
type. (H) Box plot showing overlapping base pairs between S/MARs and each G band, for each band type. (I) Browser snapshot of human
chromosome 3 showing the position of Gpos and Gneg bands. (J) Bar plots showing the frequency of Gneg band groups that are neighbors
of Gpos25 or Gpos100 bands.

The FEBS Journal 288 (2021) 1989-2013 © 2020 Federation of European Biochemical Societies 1993

200



H1 variants within G bands, TADs, and compartments N. Serna-Pujol et al.

c 850 bphs 400 bphs
A 8 1.25e-14 B 2.2e-16
81 N -
g {
] 585 3% 5 983 3% 5 5 g i i J—
i s % 4 : 7
S i i
I N NN o 5| —_
T et ib S 5 983 5 85 %8538 2 2 . -
B ® - i .
850 bphs 81 L g i
— Not Stained ~ Stained No\S;nined Smi’ned
[ 3_ Gneg Gpos
2
2 -
8 o D 850 bphs Gbands staining at 400 bphs resolution
o 4
. 8
© | . [
@ p—
T T T T T T T T T T T T T T T T °
PO ity Kl XN ZE T SO XN A PN e S ST L R O} oS S 1
© 8
= 400 bphs g
< | 8 81
~ s
8 9 2
5 § g4
o o z
o <
S o |
@ 8_
o |
@
T T T T T T T T T T T T T L
PR D L A A il
R38BT 2CEoo00ad8i8seaa8 e
555 I 1 2 3 4 25 50 75 100
Gneg Gpos

Fig. 2. Correlation of Giemsa staining with AT content is enhanced along chromosome condensation. (A) Ideograms of human chromosome
3 at 850, 550, and 400 bands per haploid sequence (bphs) resolution. Along metaphase condensation, the number of G bands (resolution)
decreases, and bands are classified just as stained (dark) or unstained (light). Ideograms are from NCBI's Genome Decoration Page. (B)
Representation of GC content of Gpos/stained (dark circle) and Gneg/unstained (light circle) bands along chromosome 3, at 850 and
400 bphs resolution. Clusters of bands at 850 bphs that are merged to a single band at 400 bphs are separated by orange lines. (C)
Box plots showing the GC content of Gneg and Gpos bands at 850 and 400 bphs. The Wilcox test was used to evaluate the significance of
the differences in GC content. (D) Bar plot showing the frequency of bands of each type at 850 bphs that end up stained (dark) or
unstained (white) at 400 bphs.

the actual position of the bands (data not shown). to its GC content (Gneg4 and Gpos25, respectively)
Bands that changed their staining status along conden- are the shortest bands on average (Fig. 1C). Then,
sation and ended stained or not as expected according these bands could be seen as short interbands

Fig. 3. Histone H1 variants distribute heterogeneously among G bands. (A) Browser snapshot of human chromosome 11 showing H1.2 and
H1X input-subtracted ChIP-seq signal from T47D cells and the position of Gpos and Gneg bands. (B) Box plots showing H1.2 and H1X input-
subtracted ChlP-seq abundance within G bands, for each band type. (C) Scatter plots of H1.2 and H1X input-subtracted ChIP-seq abundance
at each Gpos (left) or Gneg (right) band. Pearson’s correlation coefficient is shown as well as P-value. (D) Scatter plots of H1.2 or H1X input-
subtracted ChlP-seq abundance against GC content at each Gneg and Gpos band. Pearson's correlation coefficient is shown as well as P-
value. (E) Box plots showing H1.2 and H1X input-subtracted ChIP-seq abundance within unstained (light) or stained (dark) G bands at 850 or
400 bphs. The Wilcox test was used to evaluate the significance of the differences in H1.2 and H1X enrichment. (F) Box plots showing the
normalized number of H1.0 ChIP-seq enrichment regions from in vitro transformed human skin fibroblasts (GSE66169) within G bands. (G-I)
Abundance of H1 variants at retroviral integration sites and S/MAR protein binding sites. Average, input-subtracted ChIP-seq signal of H1.2
and H1X around the center of S/MARs sites (mapped in [31]) (G), HIV-1 integration sites (H), or around the center of the S/MAR binding
protein sites indicated (l).

1994 The FEBS Journal 288 (2021) 1989-2013 © 2020 Federation of European Biochemical Societies

201



N. Serna-Pujol et al. H1 variants within G bands, TADs, and compartments

HL2 iy ol o iy A e sy B g e R e, A o AR

HIX S ot om i vl e ML BUW N T P — bty el g ataddl
Gniﬂl - — - - . - —

p1ss oz a2 g1 any ans @

Gpos25
Gneg2
Gpos50
Gneg3

3 an2

o1sa o152 ane w2 T

Gpos75 et s w

Gnegd
Gpos100

o2
LIRS L (RN | U O

}NO0I KEB STS PARVA MXEZ ANOS ANO) FSWE COS LNCOWS) APIS 0OB2 ORAS ORSH STX) ATLD PC FORA RELT OMP MAKOING RABN FAT) M6 POGRD CLS SKI NR 1306 LBASKIS  ETSI NTM

B C Gpos Gneg E H1.2 H1X
%) H1.2 vs. HIX H1.2 vs. HIX
=l Pyalue =3976-13 Pvalue = 2.2e-16 2| 11ate-3 | 2| 371711
g o H1.2 corr.coef = -0.368 corr.coef = ~0.505 S s| +
H1X -
8 " 2
@ 4 0008 s g E 2
> 2
o g—m T3
oS 0000 8 L |8
&s § 8] - HE
i 2%
a B 0004 3 o | 67460-18 | 2| 8525e-16
5 “oms L el
7o) x
8 i 0005 0000 0005 <0005 0,000 0,005 0,010 0015 8 9 2
= H1X H1X S| = g =
D H1.2vs. GC H1X vs. GC 8 | 8
. AL LS P.value = 2.2e-16 P.value = 22e-16 =3 <
1.2 3 4 255075100 cortcoel = -0.641 corcost = 0821 ° ~ s L
Gneg Gpos 0000 e gl 9] L <
q
F - Not Stained Not Stained
stained stained
Transformed human skin fibroblasts (H1.0) o
» - G-Band
5 E oo o
) o =
= © Gneg4
£ 0004 © Gpos2s
S /A ® Gposso
= Ey Gpos75
5 @ Gpos100
g 3 40 a5 50 55 =001 35 40 45 50 55
;{_' GC content GC content
<.
S | CEBPB YY1
‘_é il \ i
E H ?
M g
4 L]
G o i i
S/MAR sites HIV integration sites E 7| ]
g 2! H1.2 ) |3 | S
Ls / \ » H1X Y \ :; T e - - . = o g C
; / 4 FOXH1
2 &~ | 2 3 ‘ K Ku autoantigen ' i
Qg I3 W | 9, 3 H1.2
a3 a 7 W\ { I - . » HIX
%= %8 \ 1 " .
e 3 o \ ! f
2y 2z | :
<5 <92 [ ! :
8 o = HIX y )
T L + - - - H - 3
~2000 ~1000 o 1000 2000 -2000 ~1000 o 1000 2000 e o 0 - - - B v 3 -
Relative distance to the center of S/MAR sites (bp)  Relat. dist. to the center of sites (bp) Relative distance to the center of binding sites (bp)
The FEBS Journal 288 (2021) 1989-2013 © 2020 Federation of European Biochemical Societies 1995

202



H1 variants within G bands, TADs, and compartments

inadequately stained initially (850 bphs), that mimic
surrounding, larger bands later (400 bphs), forming
larger patches stained or not according to their GC
content. These results reinforced the notion that
Giemsa staining depends on AT richness, but this is
better seen in highly condensed chromosomes. Still,
correlation is not perfect because, even at 400 bphs,
some stained bands have higher GC content than
some unstained bands (Fig. 2B). Nonetheless, locally,
stained bands always have lower GC than neighbor
unstained bands. This suggests that chromosomes are
partitioned into a small number of large domains of
high or low GC content and, within them, relative dif-
ferences in GC dictate band staining.

Another possibility to explain the lack of correlation
between staining and GC content at 850 bphs could be
that staining was more sensitive to the existence of
long AT tracks than to the average AT content.
Nonetheless, we obtained that AT content and abun-
dance of AT tracks correlated (correlation coeffi-
cient = 0.994, P-value < 0.001), and the number of AT
tracks of different lengths was not more different
between Gpos and Gneg bands than its average AT
content, discarding this hypothesis (data not shown).

In summary, AT content is partially responsible for
the intensity of Giemsa banding of metaphase chromo-
somes and correlates with epigenetic features of chro-
matin already present at interphase chromosomes.

Histone H1 variants in breast cancer cells
distribute heterogeneously among G bands

We have previously reported that histone H1 variants
distribute heterogeneously along the human genome in
T47D breast cancer cells, being H1.2 the variant that
is more abundant within closed and intergenic regions,
and H1X the most abundant within RNA polymerase
II-enriched regions [15,16]. Then, we interrogated
whether the abundance of these two HI1 variants dif-
fered among G bands. In a genome browser, it was
apparent that HI1X was enriched at Gnegl and
Gpos25, while H1.2 was more abundant at Gneg4 and
Gposl100, suggesting a relation with GC content

N. Serna-Pujol et al.

(Fig. 3A). Indeed, HIX was enriched at G bands with
high GC content, while H1.2 was rich at low GC
bands, both G-positive and G-negative (Fig. 3B). As a
consequence, H1.2 and HIX abundance at both types
of G bands correlated inversely (Fig. 3C). The positive
correlation between HIX and the GC content of bands
was stronger than the inverse correlation between H1.2
and GC content (correlation coefficient 0.92 versus
—0.64) (Fig. 3D). Differences in H1 variants abun-
dance at stained versus not-stained G bands were
enhanced at 400 bphs compared with 850 bphs
(Fig. 3E), as it occurred with GC content (Fig. 2C).
HI1.2 was significantly enriched at stained bands, and
HIX was more abundant at nonstained bands.

Parallel to profiling the distribution of endogenous
H1.2 and HIX with variant-specific antibodies, we had
profiled H1.0 and H1.4 C-terminally tagged with the
hemagglutinin (HA) peptide, stably expressed in T47D
cells, with anti-HA antibodies. H1.4-HA and H1.0-HA
distribution was similar to H1X and different to H1.2
[15,16]. We calculated the abundance of these two
HA-tagged variants into G bands. We obtained that
both were enriched toward high GC bands, being
H1.0-HA the one that was more similar to HIX, in
agreement with our previous reports (data not shown).
Moreover, using published data on HI.0 profiling in
human skin fibroblast [14], we determined that H1.0
was enriched at high GC Gpos and Gneg bands as
well (Fig. 3F). Therefore, we decided to focus on
endogenous H1.2 and HIX for further studies, as rep-
resentatives of the different H1 profiles observed.

Because S/MARs and H1X were enriched at high GC
bands in a very similar way (Figs IH and 3B), we com-
pared the abundance of H1.2 and H1X around the cen-
ter of mapped S/MAR sites. HIX was enriched at S/
MAR sites while H1.2 was clearly depleted (Fig. 3G). As
mentioned above, S/MARs correlated with retrovirus
integration sites [31], which were enriched within high
GC bands. Instead, both H1.2 and H1X were found
depleted from putative HIV-1 and HTLV-1 integration
sites, suggesting that retroviruses integrate at Hl-depleted
loci (Fig. 3H and data not shown). This showed that
H1X was not enriched at all features that are enriched

Fig. 4. Clustering of G bands according to H1 variants and epigenetic features. (A) Scatter plots of H1.2 or H1X input-subtracted ChIP-seq
abundance against abundance of the indicated histone marks or chromatin-associated proteins at each Gpos and Gneg band. Pearson’s
correlation coefficient is shown as well as P-value. (B) Heat map and dendrogram of the abundance of H1 variants, histone marks, and
chromatin-associated proteins at Gpos and Gneg bands. Twelve clusters of G bands are shown, ordered from high to low proportion of high
GC content bands (Gneg1 + Gpos25 + Gneg2 + Gpos50). (C) Bar plot showing the proportion of each G band type within the 12 clusters of
bands generated in (B). GC content at clusters is also shown. (D) Box plots showing H1.2 and H1X input-subtracted ChIP-seq abundance
within G bands, for each G bands cluster. (E) Box plots showing abundance of the indicated histone marks or chromatin-associated proteins

within G bands, for each G bands cluster.
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within high GC bands, but functional selectivity exists.
Next, we calculated the abundance of Hls around the
binding sites of the proteins that were used to define S/
MAR [31]. HIX was more abundant than H1.2 at all S/
MAR protein binding sites, but different profiles were
observed (Fig. 31 and data not shown). For CEBPB,
YY1, Ku antigen, and FOXHI, HIX was locally
enriched around the center of the binding site, but not
for the others (CTCF, NMP4, BRIGHT, BRCAI, SAF-
A/hnRNP-U, SATBI, SMARI). H1.2 was depleted from
all tested sites. This was previously observed for RNA
polymerase II [15,16]. All together, these data confirmed
that HIX is present at places where transcription and
replication initiate.

Clustering of G bands according to H1 variants
and epigenetic features

To study the colocalization of the different H1 vari-
ants with epigenetic factors within the G bands, the
abundance of H1.2 and HI1X at Gpos and Gneg bands
in T47D cells was compared with the abundance of
PTMs and chromatin-associated factors (Fig. 4A and
Fig. SIA,B). H1.2 correlated negatively with active
histone marks, such as H3K27ac, H3K4mel, or
H3K36me3, and RNAPII, BRD4, or CTCF. Signifi-
cant negative correlation was also observed between
H1.2 and EZH2, related to transcriptional repression.
The repressive marks H3K9me3 or H3K27me3 showed
no correlation with H1.2 abundance, nor HP1 gamma.
Instead, H1X correlated positively with all histone
marks and chromatin-associated factors tested, except
H3K9me3 and H3K27me3. All these results were

N. Serna-Pujol et al.

similar when the abundance of Hls and PTMs at
Gpos or Gneg bands was used separately (Fig. SIC-F)
and confirms that HI1.2 localizes at inactive G bands
whereas HIX is more abundant at high GC content
bands enriched in active chromatin.

Next, the calculated abundance of H1 variants, core
histone marks, and chromatin-associated factors at
Gpos and Gneg bands was used to cluster the G bands
and, consequently, compartmentalize the human gen-
ome according to epigenetically relevant features
(Fig. 4B). Active marks, RNAPII, CTCF, and HIX
clustered together, as did H3K9me3, H3K27me3, and
EZH2 with H1.2. Next, G bands were clustered into
12 groups with 6 clusters enriched in active epigenetic
features and 6 in repressive marks. Each cluster con-
tained a different proportion of G band types; clusters
were named from 1 to 12 according to decreasing pro-
portion of high GC content bands (Fig. 4C). As
expected, GC content decreased along the defined clus-
ters (see insert in Fig. 4C).

Next, the abundance of H1 variants and epigenetic
features at G bands contained in each of the 12 clus-
ters was calculated (Fig. 4D,E). H1 variants increased
or decreased progressively according to the GC con-
tent of the bands included in each cluster, particularly
H1X, as H1.2 was similarly abundant at clusters 6 to
12. Clusters 1 to 4 were enriched in H1X while clusters
6 to 12 were enriched in H1.2. RNAPII or active his-
tone marks were enriched toward the high GC content
clusters, in particular clusters 1 to 3, but also cluster 8.
Repressive marks or EZH2 was enriched in clusters 6,
7, and 9 to 12. Interestingly, cluster 2 contained pre-
dominantly Gnegl bands and was enriched in H1X,

Fig. 5. Clustering of TADs according to its content in histone H1 variants. (A) Hi-C interaction map of chromosome 11 in T47D cells, at the
resolution of 50 kb. The map is normalized, corrected by decay, and in Log2 scale. (B) Representative IGV snapshot of human chromosome
11 (partial). Tracks refer as follows (from top to bottom): H1.2 and H1X input-subtracted ChIP-seq signal from T47D cells; the calculated
H1.2/H1X ratio (log2) over 100-kb bins; replication timing of the genome from T47D cells (smoothed signal of early/late S-phase read counts
in 5 kb windows); TAD borders obtained by Hi-C in T47D cells; the extension of TADs classified into four groups according to H1.2/H1X
ratio as described in (F-G); the extent of A/B compartments obtained by Hi-C; and the position of Gpos and Gneg bands. (C) Box plot
showing the number of TAD borders within each G band, corrected by band length, for each G band type. (D, E) TADs as homogeneous
units of H1 variants abundance. (D) Distributions of pairwise correlation coefficients of H1 profiles between 100-kb genome bins located
within the same TAD, within consecutive or randomly picked TADs (inter-TADs), or within a similar randomly defined domain (***P < 0.001;
*P < 0.05; Wilcoxon test). (E) Homogeneity score of linker histones enrichment between consecutive subsegments over three successive
TADs. For this analysis, TADs were divided into five subsegments of equal size. The opposite of the absolute difference of the H1 variants
ChIP-Seq signal was calculated for two consecutive subsegments on three consecutive TADs. Higher scores indicate higher similarity
between the consecutive subsegments. The 25th, 50th, and 75th percentiles (black lines from top to bottom, respectively) of the 14
consecutive values were computed genome-wide. Dashed lines correspond to the TADs borders. (F) Scatter plot of H1.2 and H1X ChIP-seq
abundance at each individual TAD. Pearson’s correlation coefficient is shown as well as P-value. TADs corresponding to the four groups
defined in (G) according to H1.2/H1X ratio are differentially colored. (G) Box plot showing the ChIP-seq H1.2/H1X ratio within TADs in the
four groups generated with equal count of TADs in each. (H-J) Box plots showing the base pairs length (H), border strength (I), and
interactions density (J) of TADs belonging to the four groups defined according to H1.2/H1X ratio.
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RNAPII, H3K4mel, also in BRD4 and H3K27ac, but
not other active marks. Cluster 1 was clearly the most
active one with absence of repressive features, while
cluster 6 showed the highest abundance of repressive
features and absence of active ones. Cluster 8 was
enriched in particular features that formed a cluster in
the dendrogram: CTCF, HP1 gamma, and H3K4me2/
3. Cluster 5 was highly enriched in H3K27ac, whereas
it was quite neutral on the rest of active/inactive fea-
tures, including H1.2 and HIX.

In summary, clustering of G bands according to epi-
genetic features and H1 variants content compartmen-
talized the human genome and identified different
types of chromatin units. Interestingly, when clusters
were ordered according to the abundance of high GC
bands or GC content, HIl variants decreased or
increased progressively, something not clearly seen for
the other epigenetic features or proteins, indicating
that histone H1 best correlates with the GC content of
the genome.

Overlap between TADs defined by the abundance
of H1 variants, G banding, A/B compartments,
replication timing, and ATAC-seq accessibility
regions

Chromosome conformation capture techniques, such
as Hi-C [22], allow to detect local and distal contacts
within the genome and to establish the position of bor-
ders flanking the so-called TADs. We performed Hi-C
experiments in T47D cells, and we calculated the posi-
tion of TADs within the genome, obtaining a total of
3247 TADs. Figure SA shows the normalized Hi-C
interaction map of chromosome 11 at the resolution of
50 kb as an example.

The comparison of the positions of TADs and G
bands denoted that often the limits of G bands were
in close proximity to TAD borders (Fig. 5B); there-
fore, we further investigated the coincidences between

N. Serna-Pujol et al.

these two features and in relation to H1 variants abun-
dance. First, we calculated the frequency of TAD bor-
ders that felt into each of the G bands normalized by
their length. Gneg bands and, in general, high GC
bands, showed a higher relative frequency of TAD
borders than Gposl00 (Fig. 5C). Moreover, Gpos100
is longer on average than other G bands (Fig. 1C). As
a consequence, Gneg and high GC Gpos bands are
shorter and contain several short TADs, whereas
Gposl100 (and Gpos75) contains one or a few long
TADs (Fig. 5B).

We observed that shifts on the distribution of HI
variants often coincided also with TAD borders
(Fig. 5B). Before using TADs as units to compare the
distribution of HI.2 and HIX variants, we asked
whether this distribution (calculated within 100-kb
bins) was more homogeneous within the same TAD
than between consecutive TADs, randomly picked
TADs or randomly defined domains. Correlation coef-
ficient between the two HI variants was significantly
higher within the same TAD than any other compar-
ison, suggesting that HI variants were more homoge-
neous within than between TADs and that transitions
between variants occurred preferentially at the borders
(Fig. 5D). Besides, we performed 5000 randomizations
of TAD borders to further confirm whether the rela-
tionship between Hls occupancy depends on these
genomic units. Our results showed that the average
correlation coefficient between the histones was signifi-
cantly higher within the real TAD borders compared
with the distribution of the average correlation coeffi-
cients calculated for the random domains (data not
shown). This hypothesis was additionally tested by
dividing TADs into subsegments and computing a
homogeneity score of linker histones enrichment,
which was higher between intra-TAD subsegments
(Fig. 5E). Given that TADs and G bands tend to
overlap (Fig. 5B), we also performed this analysis for
G bands. We found that linker histones distribution

Fig. 6. Overlap between TAD groups defined by H1.2/H1X ratio, G bands, A/B compartments, ATAC-seq accessibility regions, and
replication timing. (A) Box plot showing overlapping base pairs between TADs classified according to H1.2/H1X ratio (from low, Group 1; to
high, Group 4) and the G bands. (B) Box plot showing the occupancy of H1.2 and H1X variants (input-subtracted ChIP-seq signal) within A/B
compartments. (C) Boxplots showing the average normalized read count of the peaks mapped at A or B compartments of each histone
PTM or chromatin-associated protein indicated. (D) Box plot showing overlapping base pairs between TADs classified according to H1.2/H1X
ratio (Groups 1 to 4) and the A/B compartments (Na = 1098, Ng = 1098). (E) Box plot showing overlapping base pairs between G bands and
the A/B compartments. (F-H) Box plots showing the relative number of ATAC-seq peaks within G bands (F), A/B compartments (G), or
TADs classified according to H1.2/H1X ratio (Groups 1 to 4), normalized by TAD length (H). (l) Profiles of ATAC-seq accessibility and H1.2/
H1X abundance ratio along chromosome 11, calculated within 100 kb bins. (J, M) Scatter plots between ChIP-seq H1.2/H1X abundance
ratio and ATAC-seq accessibility (J) or replication timing (M) within 100-kb bins along chromosome 11. Pearson’s correlation coefficient is
shown as well as P-value. (K, L) Box plot showing the T47D replication timing (ENCODE) (normalized by TAD length) within TADs classified
according to H1.2/H1X ratio (Groups 1 to 4) (K), or within A/B compartments (L).
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was more homogeneous within the same G band than
between consecutive, alternate, or within similar ran-
dom genomic regions (data not shown).

Next, we calculated the abundance of HI1.2 and
HIX within each TAD (Fig. SF). As expected, an

H1 variants within G bands, TADs, and compartments

inverse correlation was observed. The ratio between
HI1.2 and HI1X abundance was calculated for each
TAD and used to generate four equal groups of
TADs, from low to high H1.2/HI1X ratio (Fig. 5G).
TADs with a high H1.2/H1X ratio, presumably more
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compacted, were much larger in average (Fig. SH) and
were enriched in Gpos bands, especially Gposl100
(Fig. 6A). Instead, TADs with the lowest H1.2/HIX
ratio were enriched in high GC bands, mainly Gnegl.
In fact, TADs with similar H1.2/H1X ratios are seen
as clusters that resemble the G bands (Fig. 5B). Long
stretches of TADs with a high H1.2/H1X ratio greatly
overlap with Gpos100 bands and so on. This allows us
to propose that G bands extension and staining corre-
late with the relative abundance of two histone H1
variants with opposite genomic distribution and are
related to the topology of the genome, which has been
proposed to be highly conserved between cell types, as
occurs for G banding.

Hi-C data allow to compute the relative strength of
each TAD border and the relative intra-TAD interac-
tions density in which each TAD is involved. TAD
border strength was slightly higher in TADs with the
lowest H1.2/H1X ratio (Fig. 5I). Those TADs also
presented a major abundance of TADs with a high
interaction density (Fig. 5J). Border strength and inter-
actions density within TADs correlated positively (cor-
relation  coefficient = 0.274,  P-value < 0.001). In
conclusion, TADs with low H1.2/H1X ratio, the GC-
rich ones, are better defined according to their border
strength and present a higher relative number of inter-
actions given their size, as expected from open chro-
matin genome regions. TADs with high HI1.2/HIX
ratio, within AT-rich G bands, are not defined as well

Gneg1 Gpos25 Gneg4 Gpos100
and present less interactions, probably because they
are immersed in closed chromatin regions, as shown GC content High Low
below. Giemsa staining Unstained Positive Unstained Positive
Hi-C experiments also allow to establish a division (Light) (Dark)
of the genome into two compartments, A (active) and  Repetitive SINEs LINEs
B (repressive). We hypothesized that A/B compart- Re'elr,"e”_ts o
ments could also reflect differences in the abundance ':z;agmn ary Late
of H1.2 and HI1X and maybe greatly overlap with the Histone Active Repressive
stretches of TADs defined by the H1.2/HIX ratio or modifications
even with the G bands staining (Fig. 5B). From our Chromatin RNApol Il binding LADs
Hi-C data, we established the A/B compartments and Domains/sites sites, S/MARs
calculated the abundance of the H1 variants in each A~ Gene density Dense Poor
or B compartment fragment. B compartment was  CO°ne expression High Low
A . Chromatin Accessible Compact
greatly enriched in HI1.2, whereas HIX was only accessibilty
slightly increased in A compartment (Fig. 6B). Instead, Histone H1 H1X H1.2
A compartment was enriched in active histone H3 variants (T47D)
marks and transcription factors (Fig. 6C). B compart- Genome A B
ment was highly enriched in the group of TADs con- compartment
taining a high HIL2/HIX ratio. Instead, A TADs Low H1.2/H1X Ratio  High H1.2/H1X Ratio
compartment was enriched in TADs with low H1.2/  TAD length, num.Short, High Long, Low
HI1X ratio (Fig. 6D). As expected, B compartment TTA?)DS;S;[Gband High, High Low, Low
greatly overlapped with the Gpos bands (Gpos75 and strength,
Gpos100), whereas A compartment overlapped with interactions
high GC bands (Gnegl, Gneg2, and Gpos25) density
2002 The FEBS Journal 288 (2021) 1989-2013 © 2020 Federation of European Biochemical Societies
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(Fig. 6E). Moreover, G bands that present a higher
base pair overlap with the B compartment showed a
higher AT content (correlation coefficient = 0.56, P-
value < 0.001).

Next, we used accessibility data of T47D cells previ-
ously obtained by ATAC-seq [10] to calculate its over-
lap with G bands, A/B compartments, and TADs
classified according to HI.2/H1X ratio. High GC con-
tent G bands showed a major density of accessibility
peaks (Fig. 6F). Interestingly, Gpos50, 75, and 100
were particularly deprived of accessibility peaks. As
predicted, A compartment was also enriched in high
accessibility regions compared with B compartment
(Fig. 6G). Moreover, accessibility peaks were enriched
within TADs presenting a low H1.2/H1X ratio, denot-
ing that H1.2-rich TADs are more compact (Fig. 6H).
This was further confirmed by profiling along chromo-
somes the ATAC-seq accessibility and ChIP-seq H1
variants abundance within 100-kb bins; it was evident
that H1X correlates strongly with accessibility, while
H1.2 or the H1.2/H1X ratio correlated negatively with
accessibility (Fig. 61,J and data not shown). This rein-
forces the relationship of HI1.2 and HIX with
repressed and active genomic regions, respectively.

Table 1. Summary of chromatin and topology features of high and
low GC cytobands.
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Finally, we studied whether replication timing corre-
lated with all features described here. We showed
above that high GC cytobands replicated earlier than
low GC bands (Fig. 1D). Replication timing repre-
sented in a browser formed clusters that clearly over-
lapped the TAD clusters defined by H1.2/HIX ratio,
genome compartments, and G bands (Fig. 5B). Late
replicating regions overlapped with TADs enriched in
H1.2 and the B compartment (Fig. 6K,L). A strong
inverse correlation existed between replication timing
and the HI1.2/HIX ratio within 100-kb bins along
chromosomes (Fig. 6M).

In summary, topological domains enriched in H1.2
compared with HIX or other variants correspond to
poorly accessible, late replicating regions that overlap
with the B compartment of the 3D genome and with
the low GC Giemsa bands of the metaphase chromo-
somes (Table 1).

Correlation between epigenetic scores and
chromatin accessibility within G bands clustered
according to H1 variants and epigenetic features

Taking advantage of the topological and accessibility
data available, we further analyzed the (12) G bands
clusters generated to compartmentalize the genome
using histone PTMs, H1 variants, and chromatin pro-
teins (Fig. 4B). First, we calculated the base pair over-
lap between A/B compartments and the G bands
included in each of the 12 clusters. Bands within clus-
ters 1 to 5 with high GC content (abundant Gneg 1,
Gneg2, and Gpos25) and high abundance of H1X and
active marks were located mainly in A compartment.
Bands within clusters 8 to 12 with low GC content
(abundant Gposl100, Gpos75, and Gnegd4) and high
H1.2 abundance showed major overlap with the B
compartment (Fig. 7A).

Further, we represented in a 3D plot the twelve G
bands clusters according to their H1.2/H1X ratio, a
calculated compartment B/A ratio, and a repressive or
heterochromatic ‘epigenetic score’ obtained from the
ratio between the average abundance of repressive ver-
sus active histone marks or chromatin factors
(Fig. 7B). As expected, clusters with high HI1.2/HIX
ratio also showed high B/A compartments ratio and
repressive epigenetic score, that is, clusters 9 to 12.
Nonetheless, this representation denoted particularities
of several clusters that have been described above.
Cluster 6 presented the highest repressive epigenetic
score, and cluster 8 an epigenetic score lower than
expected according to its H1.2/HIX and B/A ratios.
Among the clusters with low HI1.2/H1X and B/A
ratios, that is, 1 to 4, there is some heterogeneity on

H1 variants within G bands, TADs, and compartments

the epigenetic score, being clusters 1 and 3 those show-
ing the highest proportion of active marks (Figs 4E
and 7B,D).

When computing the ATAC-seq accessibility within
the 12 G bands clusters described above, it was
observed that initial clusters enriched in HIX and
located within the A compartment were more accessi-
ble than clusters of bands enriched in H1.2 (Fig. 7C).
Still, the best correlation of accessibility occurred with
the calculated epigenetic score; clusters 1, 3, and 8 pre-
sented the lowest repressive epigenetic score (or the
highest active/euchromatic epigenetic score) and the
highest accessibility (Fig. 7C,D). Pairwise correlations
between the different parameters studied in the 12
clusters of G bands confirmed that the active/euchro-
matic epigenetic score correlated the best with ATAC-
seq accessibility (Spearman’s correlation = 0.76), but
not as well with GC content, A compartment or HIX
(Fig. 7E).

In conclusion, by first dividing the heterogeneous
Gneg bands in four groups according to GC content
and, later, all Giemsa bands into 12 clusters according
to the abundance of H1 variants and other epigenetic
features, we functionally compartmentalized the gen-
ome in a way that allowed to search for correlations
with accessibility and topological data. Each cluster
contained G bands of different types that presented
common features. The GC content within each cluster
was not more homogeneous than inside each of the
five original Giemsa bands categories (Gneg, Gpos25—
100), indicating that GC content was not the main
parameter dictating clustering once epigenetic features
were used. All together, we propose that the clustering
made here including HI1 variants may be useful to
identify and characterize different functional chro-
matin units inside the human genome.

The overlap between H1.2-rich TADs, the B
compartment, and AT-rich G bands is extensive
to mouse ESCs

Finally, we asked whether the correlations described
here were extensive to other cell types or species. Dif-
ferent H1 variants correlate with high or low GC con-
tent in different studies [4,11-16]. Genomic
localization data on H1.2 are not available elsewhere,
except for DamID studies of HI variants in IMR90
human fibroblasts and ChIP-seq of tagged variants in
knock-in mouse ESCs [11,12]. In both cases, HI.2 was
abundant at low GC DNA as in T47D cells. We
obtained available data on mouse ESCs HI ChIP-seq
and Hi-C [11,33], together with the coordinates of
mouse Giemsa bands from UCSC server, to test the

The FEBS Journal 288 (2021) 1989-2013 © 2020 Federation of European Biochemical Societies 2003
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Fig. 7. Correlations between epigenetic scores, H1 variants abundance, and chromatin accessibility within G bands clusters. (A) Proportion
of overlapping base pairs between A/B compartments and the G bands clustered according to histone marks, H1 variants, and chromatin
proteins (Clusters 1 to 12; Fig. 4). (B) 3D plot of G band clusters according to its H1.2/H1X ratio, a calculated B/A compartments ratio, and a
repressive ‘epigenetic score’ obtained from the ratio between the average abundance of repressive versus active histone marks or
chromatin factors. Color scale refers to the B/A compartments ratio, and size of dots refers to the H1.2/H1X ratio. (C) ATAC-seq
accessibility within the twelve G bands clusters. (D) Active/euchromatic epigenetic score within the twelve G bands clusters, calculated as
the inverse of the repressive epigenetic score defined for B, for better comparison with ATAC-seq accessibility. (E) Correlation matrix of the
different parameters studied in the 12 clusters of G bands. The graph shows the pairwise correlation coefficient between the average
within the clusters of the following variables: GC content, ATAC-seq signal, euchromatic and heterochromatic epigenetic scores, H1.2 and
H1X abundances, and A and B compartments overlapping.

Fig. 8. Overlap between TAD groups defined by H1.2 content, G bands, and A/B compartments from mouse ESCs. (A) Box plots showing
the GC content and gene richness (gene number/base pair length) of each mouse G band type. Mouse G-positive bands are classified into
three types (Gpos33 to Gpos100) according to increasing staining intensity. Gneg bands were divided into three equal groups according to
GC content. (B) Box plots showing mouse Myc-H1.2 (H1c) and Flag-H1.3 (H1d) input-subtracted ChIP-seq abundance from mESCs
(GSE46134) within G bands, for each band type. (C) Scatter plot of mouse H1.2 ChIP-seq abundance and GC content at each individual G
band. Pearson’s correlation coefficient is shown as well as P-value. (D) Box plots showing mouse H1.2 ChlP-seq abundance, TAD length,
border strength, and interactions density of TADs (N = 2460) from mouse ESCs (GSE75426) divided into four groups according to their H1.2
content. (E) Box plot showing overlapping base pairs between TADs classified according to mouse H1.2 content (from low, Group 1; to
high, Group 4) and the mouse G bands. (F) Box plot showing the occupancy of mouse H1.2 (input-subtracted ChIP-seq signal) within A/B
compartments obtained by Hi-C in mESCs cells (GSE75426). (G) Box plot showing overlapping base pairs between TADs classified
according to mouse H1.2 content (Groups 1 to 4) and the A/B compartments (Ny = 1367, Ng = 1418). (H) Box plot showing overlapping
base pairs between G bands and the A/B compartments.
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described correlations.
classified into four groups: 85 Gpos33, 44 Gpos66, |
Gpos75, and 83 Gposl00 bands. We divided G-nega-
tive 190 bands into three equal groups according to
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their GC content. Gpos and Gneg bands with the low-
est GC content (Gneg3 and Gposl00) presented the
lowest gene richness (Fig. 8A) and the highest abun-
dance of mouse Hlc (H1.2) and H1d (H1.3) (Fig. 8B).
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A o omne C GC content vs. Hic (mH1.2)
GC content at G bands (mnm9) Gene Richness at G bands (mm9) : within G bands
= - - P.value = 2.2e-16
50 3.0e-05 - o corr.coef = -0.891 Gnegl
48 2.50-05 - H = ° :
5 & 2.0e-05 5 _
z 44 - 5 w ? 4
8 < 1.5e-05 § g
342 & 1.0e-05 T 7 P o
40 © = LS
5.00-06 | | =97
38 - ° |
e 0.0e+00 Lo ©
1 2 33366100 1.2 33366100 S
Gneg  Gpos neg  Gpos -03 -02 -01 00
Hic_mean
D
mTADs mH1.2 content mTADs length mTADs border strength ~ mTADs interact. density
S S it
5 B 2?2 J T
) ? _. g g 5% g <« T
D o = £ 8 -
895 B8] | s :~ B
oo H o - g i s- .E|
=2 < - 3 $°
59 L % l g- }
R ER] 1234 123 a 123 a
TADs groups TADs groups TADs groups TADs groups
E

G bands - TADs groups (Dpnll)

g T g - 2 8 3 §
i JER W o - i @ @ |
o o o o
2 3 3366100 1 2 3 3366100 1 2 3 3366100
Gneg Gpos Gneg Gpos Gneg Gpos
F H
mH1.2 in A/B (Dpnll) A/B comp. - TADs groups (Dpnll) G bands - A/B comp. (Dpnll)
w8 - H
HENE S -
ge &= 8o g% .
?< 2% o | H
3 a8 £ i
5g = - 8 g8
3 2 - - 54
T - HI H
€3 (=] o
gl § i .!E;J --1-! -s 3
o e T Y IR R 3
Compartment S
mpartmen TAD groups °
The FEBS Journal 288 (2021) 1989-2013 ® 2020 Federation of European Biochemical Societies 2005

212



H1 variants within G bands, TADs, and compartments

H1.2 correlated negatively with GC content within G
bands (Fig. 8C). Because HIX was not profiled in
mESCs, we were unable to calculate the H1.2/HIX
ratio. From the wild-type mESCs Hi-C data, we calcu-
lated the location of TADs and A/B compartments
using the same protocol used in T47D cells. Abun-
dance of Hls within individual TADs was calculated
and four groups of TADs were generated according to
the H1.2 content (Fig. 8D). TADs enriched in HI1.2
were longer and presented low border strength and
interactions density (Fig. 8D). TADs with the highest
HI1.2 content (group 4) were enriched at low GC
bands, particularly Gpos100, whereas TADs with the
lowest H1.2 content (group 1) were enriched at Gnegl
bands (Fig. 8E). Abundance of Hls within compart-
ments was also calculated. H1.2 was enriched at the B
compartment (Fig. 8F). Moreover, TADs with a high
H1.2 content were enriched at the B compartment
(Fig. 8G), and this compartment was enriched on low
GC Gpos bands (Fig. 8H). Altogether, these results
confirmed that the overlap between TADs enriched in
histone H1.2 (among others), the B compartment, and
gene-poor, AT-rich Giemsa bands is also observed in
mouse ESCs and we anticipate that it might be, at
least, widely extended. A remaining issue is which
mammalian H1 variants accumulate at high and low
GC compartments, in different cell types, to establish
whether the variant preference is universal or depends
on cell type or differentiation stage, or on HI variants
content. From the data available up to date, H1.2 is
preferentially located at low GC, compacted or inac-
tive regions. Whether H1X or other variants prefer
high GC, active regions, extensively, needs further
studies.

Discussion

It is well established that the eukaryotic genome is
topologically compartmentalized inside the nucleus at
several levels including chromosome territories, active
and inactive compartments, TADs, and loops [34]. Ini-
tial evidences of the nonhomogeneous nature of the
interphase genome came from different physico-chemi-
cal techniques that identified two major forms of chro-
matin, euchromatin and heterochromatin, with distinct
compaction properties and location inside the nucleus,
back to the 1960s. In the 1970s, several staining meth-
ods of metaphase chromosomes identified characteris-
tic and well-conserved bands that later were associated
with different features or sequences of DNA, including
GC content. Here, we have combined available data
on mapping of Giemsa bands and ChIP-seq data on
epigenetic features with our histone HI variants ChIP-
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seq, Hi-C, and ATAC-seq data in breast cancer cells
to fully characterize the overlap between genome com-
partments defined by these classical and state-of-the-
art high-throughput methodologies. By comparing the
location of G bands to chromatin accessibility maps
(ATAC-seq) and the location of the A and B compart-
ments and TADs (Hi-C) classified according to the rel-
ative abundance of different HI variants, we have
found strong correlations that support the biological
relevance of these techniques to establish different
compaction/activity states of the genome compart-
ments. Besides, we demonstrate that genomic proper-
ties of compartments established in the interphase
genome are in agreement with those shown by the
characteristic banding of metaphase chromosomes,
and vice versa. This supports the reversibility of chro-
mosome architecture through the cell cycle, which may
be sustained by the retention of architectural proteins
(CTCF, cohesins) allowing the recovery of the original
interphase chromatin loop structure at the end of
mitosis [35].

In our previous studies, we mapped somatic H1
variants in breast cancer cells to study their specific
genomic distribution. To date, specific ChIP-grade
antibodies were only available for human HI.2 and
HI1X variants, so, for the remaining variants, HA-
tagged H1 variants were overexpressed in the cells [15].
Regarding endogenous H1.2 and H1X, data uncovered
some specific features for both variants. More recently,
we realized that patches of enrichment of HI1.2 and
HI1X greatly overlap with the classical chromosomal
bands resulting from Giemsa staining (G bands). In
this work, we have characterized G bands at several
epigenetic levels to use them as genomic units to com-
partmentalize the genome and evaluate histone H1
variants genomic distribution (Table 1). High GC
bands are enriched in active histone marks, RNA
polymerase II and SINEs, and associate with gene
richness, gene expression, and early replication. Low
GC bands are enriched in repressive histone marks,
LADs, LINEs, and late replication domains. Our
results support a heterogeneous distribution of his-
tones H1.2 and HIX within G bands that is reinforced
at highly condensed chromosomes. Thus, H1.2 was
found enriched in low GC bands whereas HIX was
more abundant at high GC bands. From our data on
HA-tagged HI1 variants or elsewhere data available,
we have shown that H1.0 and H1.4 are also enriched
at high GC bands. Consequently, evaluating the abun-
dance of HI variants within G bands allows to easily
compare the genomic preferences of different variants
within a cell type, or to compare a variant between cell
types.
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We rapidly realized that both G-positive and G-neg-
ative bands were heterogeneous and not highly differ-
entiated among them in all features investigated
initially, including GC content, gene richness, replica-
tion timing, epigenetic marks, and histone H1 variants
content. Gpos bands were already categorized accord-
ing to staining intensity (Gpos25-Gpos100), and this
was inversely correlated to GC content, gene richness,
replication timing, SINEs, S/MARs, active core his-
tone marks, transcription factors, and histone H1X.
When Gneg bands were classified into four groups
according to GC content, we realized they also showed
the same correlations, indicating that all features obey
to the GC content of regional domains of the genome
(Fig. 1). These observations opened a question mark,
as Gneg and Gpos bands with similar GC content and
epigenetic features stained differently, at least at
850 bphs resolution, while historically it was suggested
that Giemsa was staining AT-rich regions [26,27]. To
solve this paradox, others suggested that the banding
pattern may be related to the differences in GC con-
tent between neighboring regions [30]. We observed
that Gneg and Gpos bands that were located close to
each other presented similar GC contents and, upon
chromosome  compaction (400 bphs  resolution),
became stained or remained unstained more consis-
tently with their GC content, that is, neighbor
Gpos100 and Gneg4 became stained, and neighbor
Gpos25 and Gnegl did not. In other words, most of
low GC Gneg bands (Gnegd4) become stained at
400 bphs, while most of high GC Gpos bands
(Gpos25) remain unstained. Thus, the correlation of
staining with AT content is reinforced at 400 bphs
compared with 850 bphs, upon chromosome com-
paction (Fig. 2C,D). Still, Giemsa banding cannot be
explained only by the difference in base composition,
especially within the Gneg bands. Instead, GC content
correlates with almost every epigenetic and topological
feature studied here, specially H1 variants abundance
(discussed below).

One difference between Gpos and Gneg bands hav-
ing a similar GC content was the average band length
(Fig. 1C). Gposl00 and Gpos75 bands were longer
than any Gneg band. Besides, they contained a
reduced number of TAD borders within them, and
those TADs with a high proportion of H1.2 were also
longer than others (Fig. SC,H). As a consequence,
there was a relatively good overlap between Gposl00
bands and TADs with high H1.2 abundance. In addi-
tion, TADs within the B compartment were longer on
average than TADs within the A compartment (data
not shown). From all these observations, we can con-
clude that the domains of repressed or compacted
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chromatin tend to form longer patches than active or
open chromatin. Therefore, heterochromatin is less
compartmentalized than euchromatin, and probably,
compartmentalization (TAD borders) is needed for the
proper regulation of active chromatin and gene expres-
sion occurring inside.

In general, differences between Gpos and Gneg
bands with a similar GC content increased notably
when topological features from the Hi-C data were
analyzed. For instance, Gposl00 bands, but not
Gnegd, highly overlapped with the B compartment
and with TADs enriched in H1.2 (Fig. 6A.E). On the
contrary, Gnegl bands, but not Gpos25, overlapped
with the A compartment and with TADs enriched in
HIX (low H1.2/H1X ratio). As a consequence, Giemsa
staining seems to better correspond to topological and
compaction properties of genome domains.

Still, within Gneg or Gpos bands, topological fea-
tures correlated to some extent with their GC content.
For instance, within Gneg bands that were classified
entirely based on GC content herein, their overlap
with the A compartment, or with the different TAD
groups based on H1.2/H1X ratio, depended greatly on
GC content. Whether GC content is a prior determi-
nant of the epigenetic and topological features of gen-
omes, or the base pair composition of the genome has
evolved as a consequence of the existence of compart-
ments with high or low activity/accessibility, is an
interesting issue that would need further debate.
Assuming that low GC content is favorable for com-
paction, if a region is under functional constraint to
maintain a compact chromatin structure, an increase
in GC content would be selectively disadvantageous or
an increase in AT content would be advantageous.
Alternatively, GC to AT derive through evolution may
occur spontaneously more often at inactive/compact
regions.

We have also described that S/MARs, which in gen-
eral are AT-rich sequences, are densely present in both
Gpos and Gneg high GC bands. DNA molecules that
are rich in AT stretches are flexible and prone to
strand separation, properties needed for S/MAR func-
tions, but these elements do not need to be immersed
in AT-rich bands or domains. Apparently, S/MARs
are short AT-rich stretches within GC-rich environ-
ments such as the high GC cytobands, where gene
expression occurs and replication starts. S/MARs and
HIX follow a similar distribution within G bands, so
it would be interesting to further investigate which is
the involvement of histone HIX in the function of S/
MARs and, in general, in controlling gene expression
and replication. We already reported that HIX is
enriched at RNAPII binding sites [16]. Now, we have
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found that HIX is enriched around S/MAR proteins
binding sites, while H1.2 is deprived.

Another interesting observation we made was that
histones H1.2 and, especially, H1X correlate with the
GC content of G bands, both Gpos and Gneg, more
consistently than any other epigenetic feature we inves-
tigated (i.e., core histone marks, transcription factors,
etc.). This is still clearer when we generated 12 clusters
of G bands according to epigenetic features including
H1 variants. Upon classifying them according to the
decreasing proportion of high GC bands and, conse-
quently, decreasing GC content, H1X also decreased
proportionally and H.2 increased, but the other fea-
tures did not follow a clear pattern across the 12 clus-
ters although there was a tendency. Active marks and
transcription-related proteins accumulated over repres-
sive ones at the initial clusters, and the opposite
occurred toward the final clusters. This behavior may
be due to the fact that histones H1 distribute uni-
formly along chromatin as every nucleosome may con-
tain one linker histone and, consequently, each variant
may paint a particular G band or chromosome
domain uniformly according to its characteristics and
GC content. Transcription factors and most of core
histone marks occupy better defined positions at pro-
moters, enhancers, coding regions, etc., and some vari-
ability may exist within a G band despite having some
general behavior dictated by GC content and location
within chromosome territories, among others. Obvi-
ously not all genes within a G band may be in the
same state, especially because their transcriptional
activity depends on the expression program of each
cell type at every moment of the development or in
response to diverse stimuli. Instead, the nature of G
bands and even chromosome territories seems to be
widely conserved across cell types.

Clustering of G bands according to epigenetic fea-
tures and H1 content was a useful method to compart-
mentalize the genome, similar to previous initiatives
based on epigenetic profiling of the genome divided in
size-defined bins, resulting in defined clusters that were
named the ‘colors’ of chromatin [36,37]. Here, genome
segments (G bands) are much longer but the compart-
mentalization method proposed, although based on
Giemsa staining, indirectly underlies multiple func-
tional properties, including GC content. Further, this
is the first time that HI variants with different distri-
bution have been used as an epigenetic feature. This
method gave rise to several clusters with particular
combinations of epigenetic features that might be func-
tionally relevant and would need further investigation.

Moreover, we represented in a 3-axis diagram the
characteristics of these 12 clusters based on a
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repressive epigenetic score, its H1.2/H1X ratio, and a
calculated compartment B/A ratio that was useful to
identify clusters where the three parameters correlate,
and clusters where some of the parameter deviates
from the expected result, allowing to further identify
and characterize particular regions of the genome.
Therefore, the methods described here allow combin-
ing epigenetic data with topological information to
better investigate the diversity that may be found
within genome compartments. Notably, GC content,
HI variants content, and overlap with A/B compart-
ments showed a strong correlation among clusters,
whereas the epigenetic score (calculated from the
abundance of histone marks and chromatin factors)
presented the best correlation with ATAC-seq accessi-
bility. This suggests that the first parameters may be
related to the division of the genome in the classical
cuchromatin and heterochromatin compartments, and
the second group of parameters may be occurring due
to local changes in chromatin related to genome func-
tions including gene expression.

Our previous studies showed that combined HI
depletion in breast cancer cells causes induction of
repetitive elements, such as satellites [10]. In this last
study, one of the variants depleted was H1.2 that here,
we have found to be enriched in B compartment and
compact TADs, characteristics presumably associated
with heterochromatin. Moreover, Hi-C data in HI tri-
ple knockout ES mouse cells revealed that reduced
levels of histone HI result in altered epigenetic and
topological organization at the most active chromoso-
mal domains [33]. Altogether, these data suggest that
histone HI1 levels are crucial for maintenance of the
global genome topological organization, both at active
and at inactive compartments. Indeed, our data show
that H1.2 and H1X inversely correlate with genome
topology parameters, so it is reasonable to hypothesize
that altering H1 variants homeostasis could have dif-
ferent consequences on genome topology, in a H1-vari-
ant-dependent manner. This work supports the notion
of HI variants functional specificity, not only at the
linear level but also in correspondence with the 3D
genome.

We have found that HI.2/H1X ratio is closely
related to G bands and genome topology. Both G
banding and genome topology are expected to be
highly conserved among different cell types, but this is
not happening with H1 variants distribution. Several
studies point to a cell type-specific distribution of H1
variants [4,11-16], so further research will be needed
to elucidate if H1.2/H1X ratio correlation with G
bands and topology found in breast cancer cells is
maintained across cell types. If not conserved, other
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H1 variants could be responsible for the mentioned
correlation, in a cell type-specific manner. We believe
that an extensive study of the abundance and genome
distribution of all H1 variants in different cell types
would be of great interest to understand H1 function
and specificity in genome organization. In mouse
ESCs, H1.2 and HI.3 present a similar distribution,
enriched at low GC regions [11]. We have shown that
TADs enriched in H1.2 are longer, present low interac-
tions density, and correlate with the B compartment
and AT-rich cytobands, indicating that the model
exposed here is extensive to other cell types and
species.

In conclusion, our study shows that linker histones
are involved in compartmentalization of the genome.
We have detected differences between H1 variants dis-
tribution within G bands, TADs, and A/B compart-
ments that correlate with the epigenetic landscape as
well as with genome sequence properties, such as GC
content or the abundance of repetitive elements.
Therefore, we hypothesize that HI variants are orga-
nized according to a nonrandom clustering of the gen-
ome required to physically delineate regions with
distinct functionalities.

Materials and methods

Cells culturing conditions

Breast cancer T47D-MTVL (carrying one stably integrated
copy of luciferase reporter gene driven by the MMTV
promoter) derivative cells were grown at 37 °C with
5% CO, in RPMI 1640 medium, supplemented with
10% FBS, 2 mm L-glutamine, 100 U-mL~" penicillin, and
100 pg-mL ™" streptomycin, as described previously [38].
These cell lines are a model to study gene expression regu-
lation by steroid hormones and the interplay of chromatin
components and states including histone H1.

G bands characterization

Genome-wide GC content and G bands coordinates at
850 bands per haploid sequence (bphs) resolution were
obtained from the UCSC human genome database. G
bands average GC content was calculated with BEDTools
Map to subsequently split Gneg bands into four subgroups
according to their decreasing GC content. We used in-
house scripts to calculate the G bands percentage of geno-
mic occupancy as well as their average gene content, band
length, gene richness, and gene expression.

LINEs, SINEs, and LADs coordinates were retrieved
from the UCSC server. HeLa-S3 and T47D replication tim-
ing data, S/MARs coordinates and HIV-1 and HTLV-1
integration sites were obtained from the ENCODE,

H1 variants within G bands, TADs, and compartments

MARome [31], and RID [39] databases, respectively. The
overlapping coordinates between G bands and these regions
were calculated with BEDTools Intersect and subsequently
analyzed with in-house R scripts.

Since G bands coordinates at 400 bphs resolution are
not available, we computed their expected starting and end-
ing positions merging the bands at 850 bphs that give rise
to each 400-bphs band according to the available ideo-
grams (as an example, bands p24.1, p24.2, and p24.3 give
rise to band p24). The properties of 400-bphs G bands,
such as average GC content and HI variants enrichment,
were calculated with BEDTools as described previously for
the 850 bphs bands. Next, in order to calculate the propor-
tion of consecutive A or T nucleotides per G band, the
DNA sequences of the human chromosomes were obtained
from the NCBI database. We designed an R script which
iterates along chromosome sequences and subtracts the
fragment corresponding to each G band. It finally calcu-
lates the proportion of 1 to 5 or more consecutive A/T
nucleotides at G bands as well as their total average AT
content.

H1 variants ChiIP-Seq analysis

Histone H1 ChIP-Seq data from T47D included in the
Gene Expression Omnibus (GEO) dataset GSE49334 has
been reprocessed for this study. Single-end reads were qual-
ity-checked via FastQc v0.11.9 (S. Andrews, http://www.b
ioinformatics.babraham.ac.uk/projects/fastqc/) and aligned
to the human GRCh37/hgl9 reference genome using Bow-
TIE2 v2.3.5.1 [40] with default options. Next, samTooLs v1.9
[41] utilities were used to sort the alignments and filter out
the low-quality ones with the flag 3844. Input and H1 vari-
ant genome coverage was calculated with BEDTOOLS v2.28.0
[42]. Genome coverage was normalized by reads per million
and regions with zero coverage were also reported in the
ChIP-Seq annotation (genomecov -ibam -bga -scale
options). Macs2 (Model-based Analysis of ChIP-Seq) v2.1.2
[43] was used to subtract input coverage from HI variants
and to generate signal tracks (bdgemp -m subtract option).
We used BEDTools Map to determine the enrichment of
histone H1 variants within the eight groups of G bands.
ChIP signals around the center of S/MARs and HIV-1/
HTLV-1 integration sites were calculated by using ‘Sitepro’
script of ceas package [44] with normalized input-sub-
tracted-average tags in 50-bp bins in a set window.

PTMs and chromatin-associated proteins analysis

We conducted our epigenetic analysis for T47D cells by
downloading and reprocessing PTMs and chromatin-associ-
ated proteins raw data from the GEO database. GEO acces-
sion numbers are GSE109229 (RNAPolll, BRD4),
GSE41617 (H3K4mel, H3K4me3), GSE120162 (CTCF,
H3K9ac, H3K27ac), GSE63109 (H3K4me2, H3K9me2,
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H3K36me3), GSE64467 (HPly), and GSE29611 (EZH2,
H3K27me3). ChIP-Seq reads were processed as described
[45] with minor modifications. Briefly, reads were aligned to
the reference human genome (GRCh37/hgl9) using BowTIE2
v2.3.5.1 with default parameters. Mapped reads were sorted
and filtered to discard the low-quality ones with sAMTOOLS.
HOMER (Hypergeometric Optimization of Motif EnRich-
ment) v4.11 [46] was used to call peaks using an input from
T47D cells as a control. The *-style histone’ option was speci-
fied for PTMs and the “-style factor’ option for transcription
factors and some specific histone marks which are known to
develop narrow peaks (e.g., H3K4me3 or H3K9ac). The
enrichment of PTMs and chromatin-associated proteins
within G bands was calculated by mapping the normalized
read count onto G bands with BEDTools Map.

Clustering of G bands

We designed an R script to calculate the Pearson’s correla-
tion between H1 variants and the analyzed epigenetic fac-
tors within G bands, to establish the 12 clusters of bands
and to finally characterize them. Specifically, we computed
the clusters’ Gpos and Gneg bands proportion and we used
the previously generated files to study the distribution of
the GC content, the H1 variants, and the epigenetic factors.
The packages pheatmap, ggplot2, and plot3D were used to
visualize the results.

In situ Hi-C analysis

Hi-C libraries were generated from untreated derivative
T47D cells as previously described [47.48]. In brief, adherent
cells were cross-linked with 1% formaldehyde in PBS for
10 min at room temperature and glycine 0.125 M was added
for 5 min at room temperature and for 15 min at 4 °C to
stop the crosslink reaction. Before permeabilization, cells
were treated for 5 min with trypsin. Nuclei digestion was
performed with 400 units of Mbol restriction enzyme. The
ends of restriction fragments were labeled using biotinylated
nucleotides and ligated with T4 DNA ligase. After reversal
of crosslinks, DNA was purified and sheared (Diagenode
BioruptorPico, Seraing, Belgium) to obtain 300-500 bp frag-
ments and ligation junctions were pull down with strepta-
vidin beads. Hi-C libraries were finally amplified, controlled
for quality, and sequenced on an Illumina HiSeq 2500
sequencer (Illumina, Inc., San Diego, CA, USA).

Hi-C data preprocessing, normalization, and
generation of interaction matrices

The analysis of Hi-C data, from FASTQ files mapping to
genome segmentation into A/B compartments and TADs,
was performed using TADBIT software [49]. TADDbit pipeline
starts by performing a quality control on the raw data in
FASTQ format. Next, sequencing reads were mapped to the
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reference genome (GRCh37/hgl9) applying a fragment-
based iterative strategy and using the GEM mapPER [S50].
Mapped reads were filtered to remove those resulting from
unspecified ligations, errors, or experimental artifacts. Specif-
ically, nine different filters were applied using the default
parameters in TADbit: self-circles, dangling ends, errors,
extra dangling ends, over-represented, too short, too long,
duplicated, and random breaks [49]. Hi-C data were normal-
ized with OneD correction [51] at the resolutions of 1 Mb,
500 kb, 100 kb, and 10 kb, to remove Hi-C biases and arti-
facts. Filtered read-pairs were binned at the resolutions of
1 Mb, 500 kb, 100 kb, and 10 kb, applying biases from the
normalization step and decay correction to generate interac-
tion matrices.

Hi-C data on T47D breast cancer cells have been depos-
ited in NCBI's Gene Expression Omnibus and are accessi-
ble through GEO Series accession number GSE147627.

Genome segmentation into topologically
associating domains

We identified TADs at the resolution of 50 kb using TADDbit
with default parameters. TADDbit segments the genome into
constitutive TADs after analyzing contact distribution along
the genome. TADbit employs a BIC-penalized breakpoint
detection algorithm based on probabilistic interaction fre-
quency model that returns the optimal segmentation of the
chromosome [52]. This algorithm leads to a ~ 99% average
genome coverage. In the output, TADbit also describes TADs
border strength and TADs density. TADs border strength is
the algorithm likelihood corresponding to each border (the
higher the strength, the higher the algorithm confidence).
TADs density represents the number of interactions within
each TAD compared with the others (the higher the density,
the higher the number of interactions within the TAD).

Genome segmentation into A/B compartments

We segmented the genome into A/B compartments at
100 kb resolution on OneD-normalized and decay-corrected
matrices, using HOMER software [46]. Briefly, HOMER calcu-
lates correlation between the contact profiles of each bin
against each other and performs principal component anal-
ysis (PCA) on chromosome-wide matrices. Normally, A
compartment is assigned to genomic bins with positive first
principal component (PCI), and B compartment is assigned
to genomic bins with negative PCI.

Computing the overlap between G bands, TADs,
A/B compartments, and ATAC-Seq regions

BEDTools Map was used to calculate the average HI.2
and H1X enrichment within TADs and A/B compartments
while the overlapping coordinates between G bands, TADs,
and A/B compartments were computed with BEDTools
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Intersect. We also computed the H1.2 and HIX abundance
within 100-kb bins to confirm that those located within the
same TAD are more homogeneous in their HI variants
content than bins located within consecutive or alternate
TADs or within similar random domains. Then, we used R
to define four groups of TADs according to their increasing
H1.2/H1X ratio and calculate their average length, border
strength, and interactions density. We also developed a
function to calculate the overlapping base pairs between
two sets of intersected coordinates and therefore calculated
the total overlapping nucleotides between G bands, the
four groups of TADs, and the A/B compartments. This
function was also used for calculating the overlapping base
pairs between A/B compartments and the G bands included
in each of the 12 clusters. The overlapping coordinates
between the ATAC-Seq peaks and the four groups of
TADs were calculated with BEDTools Intersect to subse-
quently compute the average number of peaks per TAD.

ATAC-Seq analysis

We reprocessed our ATAC-Seq data identified by the acces-
sion number GSE100762 as described [53] with slight modifi-
cations. Paired-end sequencing reads were quality-checked via
FAsTQC v0.11.9, trimmed, and subsequently aligned to the
human GRCh37/hgl9 reference genome using BOWTIE2
v2.3.5.1. samTo0LS v1.9 was used to sort and filter out the low-
quality alignments with the flag 1796, remove reads mapped
in the mitochondrial chromosome, and discard those reads
with a MAPQ score below 30. The peak calling was per-
formed with Macs2 v.2.1.2 by specifying the -BAMPE mode.
Filtered BAM files were also used to compute the ATAC-Seq
genome coverage, which was normalized by reads per million
(bedtools genomecov -ibam -bga -scale options). BEDTools
Map was used to compute the average ATAC-Seq signal
within 100-kb genomic bins as well as within G bands.

Analysis of data on mouse ESCs

mESCs GC content, G bands coordinates, and transcript
annotation were obtained from the UCSC database while
data on genome 3D organization and H1 variants distribu-
tion were downloaded from the GEO server. FASTQ files
from Hi-C experiments performed in mESCs (GSE75426)
were processed as described before for human T47D cells
to compute TADs and A/B compartments coordinates.
Processed input-subtracted ChIP-Seq files (GSE46134) were
used to calculate the average abundance of histones Hlc
and H1d within G bands, TADs, and A/B compartments
by using BEDTools utilities.
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Abstract

The ChIP-seq signal of histone modifications at promoters is a good predictor of gene
expression in different cellular contexts, but whether this is also true at enhancers is not
clear. To address this issue, we develop quantitative models to characterize the relationship
of gene expression with histone modifications at enhancers or promoters. We use embry-
onic stem cells (ESCs), which contain a full spectrum of active and repressed (poised)
enhancers, to train predictive models. As many poised enhancers in ESCs switch towards
an active state during differentiation, predictive models can also be trained on poised
enhancers throughout differentiation and in development. Remarkably, we determine that
histone modifications at enhancers, as well as promoters, are predictive of gene expression
in ESCs and throughout differentiation and development. Importantly, we demonstrate that
their contribution to the predictive models varies depending on their location in enhancers or
promoters. Moreover, we use a local regression (LOESS) to normalize sequencing data
from different sources, which allows us to apply predictive models trained in a specific cellu-
lar context to a different one. We conclude that the relationship between gene expression
and histone modifications at enhancers is universal and different from promoters. Our study
provides new insight into how histone modifications relate to gene expression based on
their location in enhancers or promoters.

Author summary

Gene expression can be properly predicted by the ChIP-seq signal of histone modifica-
tions at promoters, but whether this is also true at enhancers is unclear. In this study we
develop predictive models of gene expression that demonstrate the predictive power of
histone modifications at enhancers in the context of mouse embryonic stem cells, during
differentiation, and in animal development. Moreover, by assessing the contribution of
each histone modification, we found that enhancer predictive models and promoter
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predictive models have different histone modification requirement. Therefore, different
histone modifications relate better to enhancer or promoter function(s). Finally, by apply-
ing predictive models trained in a specific cellular context to a different one, we concluded
that the relationship between gene expression and histone modifications at enhancers is
universal.

Introduction

Appropriate regulation of gene expression is necessary for correct development and homeosta-
sis of organisms. Different classes of regulatory genomic regions are coordinated to establish
the appropriate gene transcriptional programs in every cell. These regulatory elements include,
among others, promoters and enhancers [1]. Promoters are non-coding DNA fragments
located in the surroundings of a transcriptional start site (TSS) that initiate gene transcription,
whereas enhancers are distal non-coding DNA fragments that amplify gene expression [1].
DNA is wrapped around histones to form nucleosomes, which are the basic structural unit of
chromatin. Post-translational modifications at histones can affect chromatin function by alter-
ing its structure, for example by facilitating or preventing the accessibility of transcription fac-
tors (TFs) to certain genomic regions [2]. Distinct histone modifications at regulatory
elements are associated with gene activation, such as trimethylation of histone H3 at lysine 4
(H3K4me3) [3-5], and acetylation of histone H3 at lysine 27 (H3K27ac) [6], or with gene
repression, such as trimethylation of histone H3 at lysine 27 (H3K27me3) [7]. In contrast,
monomethylation of histone H3 at lysine 4 (H3K4mel) is a histone modification associated
with enhancers [8]. Combinations of histone modifications can have synergistic or antagonist
effects on gene regulation. Promoters and enhancers are in fact decorated by a particular com-
bination of different histone modifications according to the transcriptional state of their target
gene.

Nowadays, RNA-seq is the main technique to assess gene expression levels, while ChIP-seq
experiments allow to map histone modifications genome-wide. Indeed, much effort has been
made to understand the quantitative relationship between ChIP-seq levels of histone modifica-
tions and gene expression in different cellular contexts [9-15]. However, none of these studies
have introduced epigenetic information of enhancers into the modelling for predicting gene
expression, but rather have focused only on promoters or gene bodies. Indeed, gene expression
has been alternatively modelled using data on chromatin accessibility at promoters in combi-
nation to enhancers, together with information about TFs and chromatin remodelers [16]. In
this regard, it has been recently shown that including information to the promoter predictive
models about chromatin accessibility and the predicted affinity of TF for enhancers can
improve the model performance significantly [17]. However, the independent contribution of
enhancer and promoter information separately has not been evaluated yet. Although ChIP-seq
levels of H3K27ac at enhancers have been modelled with gene expression to (i) obtain predic-
tive models of differential gene expression across tissues and conditions [18], and to (ii) iden-
tify enhancer-promoter associations [19], yet to our knowledge, multiple histone
modifications exclusively at enhancers have not been used to generate predictive models of
gene expression. Therefore, we consider that modelling gene expression from enhancer epige-
netic information might help to understand how the contribution to gene expression differs
between promoters and enhancers and, more broadly, how enhancers function.

Here, we set out to explore the quantitative relationship between histone modifications and
gene expression, focusing on enhancer regions. Our main goal is to decipher which histone
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modifications correlate with enhancer function. To do so, we asked the following questions: (i)
are histone modifications at enhancers predictive of gene expression? (ii) Which histone modi-
fications are more predictive in the enhancer models? (iii) Are the same histone modifications
also important for the promoter predictive models? (iv) Is an enhancer predictive model
learned in a specific cell type useful to predict gene expression in another one? To address
these issues, we developed a novel computational approach based on the combination of chro-
matin segmentation and linear regression to infer gene expression using ChIP-seq data from
histone modifications at enhancers and promoters. To construct proper predictive models, the
full spectrum of active and repressed regions is needed. Therefore, we took advantage of
mouse embryonic stem cells (ESCs) for which active and repressed regulatory regions can be
identified. ESCs contain active enhancers (AEs) and poised (repressed) enhancers (PEs),
which respectively coordinate with active promoters (APs) and bivalent (repressed) promoters
(BPs) to regulate gene expression [20].

We first performed ChIP-seq experiments of several histone modifications to identify all
four types of regulatory regions and to model gene expression in ESCs. Next, as BPs and PEs
can either be activated or remain repressed during later stages of differentiation [20], we have
applied our framework to predict gene expression in “in vitro” and “in vivo” differentiated
cells. Further, we successfully predicted gene expression in a differentiation time point differ-
ent from the one in which the model was built. To overcome potential pitfalls of using infor-
mation from different sources (e.g. cell types, labs, etc.), we applied a normalization approach
based on a local regression (LOESS) method. LOESS normalization has shown to be useful for
normalizing RNA-seq and ChIP-seq data coming from different sources. We found that his-
tone modification levels at enhancers, as well as at promoters, can predict gene expression of
their target genes. Remarkably, we determined that BPs and also PEs are good predictors of
gene expression at later stages of differentiation and development. Notably, we also observed
that histone modifications have different contributions depending on their location at enhanc-
ers or promoters. We propose that the relationship of gene expression and histone modifica-
tions at PEs is universal, as we have successfully predicted gene expression in a specific cell
type using a model previously trained in another one.

Results
Identification of promoters and enhancers in ESCs

We performed ChIP-seq experiments of H3K4me3, H3K27me3, H3K27ac, and H3K4mel in
mouse ESCs to identify the different types of regulatory regions. This set of histone modifica-
tions has been previously used to distinguish between AEs, PEs, APs, and BPs in mouse ESCs
[21,22]. We next generated a 9-state chromatin segmentation model of ESCs using ChIP-seq
data (Fig 1A and 1B). As expected, active states mark transcriptionally active regions, while
repressed states denote transcriptionally repressed regions (Fig 1B; see also our previously pub-
lished RNA-seq data [23]).

To understand the resulting map of states, we calculated the matrix of transition enrich-
ments between all states in the model. The transition value between two different states, x and
, is defined as the number of times that a segment of state y is found after a segment of state x,
as measured from left to right in the linear genome. The enrichment score is defined as the
ratio between the observed number of transitions and the expected number of transitions by
chance. Two groups of states (active, 1-4, and repressed, 6-8) clearly emerged from the global
picture (Fig 1C) (note that state 5 represents a distinct category; see Discussion). The high
enrichment of transitions between states belonging to the same category suggests that they
might mark the same functional regulatory regions, rather than be caused by different
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Fig 1. Identification of repressed and active functional regions in ESCs. (A) State definition of the chromatin segmentation model in ESCs. The
values represent the probability (from 0 to 1) of finding each histone modification (vertical) in genomic segments of states 1 to 9 (horizontal). The
cells of the matrix are colored according to the value of probability they contain inside. Red: states with histone modifications associated to activation
(active, 1-4); dark yellow, H3K4mel -only state (Intermediate, 5); grey, states in which H3K27me3 was present (repressed, 6-8); dark grey, poised
states, in which H3K27me3 colocalized with H3K4me3 and/or H3K4mel (states 6 and 7); light grey, H3K27me3-only regions (state 8); and white,
unmarked state (9). (B) E ple ofa g ic region ¢ ining two d genes (Skap2 and Halr1), which are covered by active states (in red),
and a cluster of repressed genes (HuxA) which are covered by represscd states (in grey). Active chromatin segments integrate the signal of H3K27ac,
H3K4me3, and H3K4mel and lack H3K27me3. Repressed chromatin segments integrate the signal of H3K27me3, H3K4me3, and H3K4mel and
lack H3K27ac. Expression of Skap2 and Halrl, and silencing of HoxA genes, were confirmed by the RNA-seq profiles [23]. Y-axis represents
normalized count of reads by total reads. The screenshot was taken from the UCSC Genome Browser [62]. (C) Enrichment of state transitions (e.g.,
number of observed transitions divided by the number of expected transitions by chance) from the segments of one state (vertical) towards the
segments of another state (horizontal) in the linear chromatin. The cells of the matrix are colored according to the value of enrichment they contain
inside. (D) Expression of genes associated to active promoters (AP; 10,786 genes) or bivalent promoters (BP; 3,459 genes). The dotted line represents
1 FPKM. (E) Top GO biological process (2018 categories) for each list of genes in D.

https://doi.org/10.1371/journal.pcbi.1009368.9001

functional regions separated by the unmarked stated. Visual inspection confirmed that states 1
to 4 marked the same active regulatory regions, revealing that differences in the state definition
are due to differences in the shape of the ChIP-seq peaks (S1A Fig). We also observed that the
repressed states 6 and 7 decorated poised or bivalent regulatory regions (e.g., marked with
H3K27me3, in combination with H3K4me3 and/or H3K4mel), whereas state 8 was generated
by the tail-end of broad peaks of H3K27me3 (S1B Fig). Similarly, state 5 was associated with
the tail-end of broad peaks of H3K4mel in active regions, but it also associated with single
peaks of H3K4mel near active regions (S1A Fig).

Based on these results, we decided to merge the contiguous segments of states 1 to 4 as a list
of potential active regulatory regions, and the segments of states 6 and 7 as a list of potential
poised or bivalent regulatory regions. We reasoned that functional regions should have a mini-
mum length of 600 bp and thus discarded shorter regions, which we considered as background
signal. We also discarded those cases in which an active region and a poised region were con-
tiguous, as this was ambiguous. Promoters were defined as those regions that overlapped by at
least 1 bp to a region + 500 bp around a TSS according to RefSeq [24]. Enhancers were defined
as regions that were not classified as promoters and overlapped by at least 1 bp with a peak of
the enhancer mark p300 [21]. As H3K4me3 can be present in enhancers [25-28], we did not
discard enhancers containing H3K4me3, although this histone modification has been tradi-
tionally only associated with promoters. In total, we found 9,421 APs, 3,344 BPs, 16,904 AEs,
and 2,699 PEs (S1-54 Tables).

Next, we matched our set of promoters to their target genes, using the same parameters as
before (overlap by at least 1 bp to a region + 500 bp around a TSS according to RefSeq [24]).
Using RNA-seq data [23], we confirmed that genes associated with APs are expressed, while
genes associated with BPs are not (Fig 1D). Gene ontology (GO) term enrichment analysis per-
formed with Enrichr [29] confirmed that genes with APs are involved in housekeeping roles,
while genes with BPs are mostly related to development and differentiation (Fig 1E), as is
expected in mouse ESCs. On the other hand, we used available high-throughput chromosome
conformation capture (3C) data of Hi-C [30], to link AEs and PEs with target genes. As inter-
acting enhancers and promoters have been shown to match their chromatin state [31], we
associated an enhancer with the target gene of a promoter when both enhancer and promoter
are in the same category (e.g., both active, or both repressed) and each one overlaps with one
of the two sides of the same Hi-C significant interaction (total of 43,892,155 significant Hi-C
interactions). We confirmed that PEs were significantly enriched in interactions with BPs over
APs (p < 2.2e-16 Exact Binomial Test, observed probability: 0.29, expected probability by
chance: 0.24), whereas AEs were significantly enriched in interactions with APs over BPs
(p < 2.2e-16 Exact Binomial Test, observed probability: 0.80, expected probability by chance:
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0.76). In total, we found 10,786 genes associated to APs, 3,459 genes to BPs, 10,206 genes to
AEs, and 2,526 genes to PEs (S1, S2, S5 and S6 Tables). Likewise, 15,841 AEs and 2,466 PEs
were associated to at least one gene, and 8,931 APs and 2,443 BPs, to at least one enhancer (S5
and S6 Tables).

Development of a predictive model of gene expression using histone
modifications at enhancers

After identifying the set of enhancers and promoters in ESCs, we built the gene expression pre-
dictive models. We first performed additional ChIP-seq experiments for other histone modifi-
cations, in order to have additional variables to predict gene expression. Specifically, we
performed ChIP-seq experiments for trimethylation of histone H3 at lysine 36 (H3K36me3),
ubiquitination of histone H2B (H2Bub), monomethylation of histone H3 at lysine 27
(H3K27mel), dimethylation of histone H3 at lysine 27 (H3K27me2), trimethylation of histone
H4 at lysine 20 (H4K20me3), and dimethylation of histone H3 at lysine 79 (H3K79me2). The
input of our predictive models consisted of the ChIP-seq data of these six histone marks as
well as the four histone marks previously used to define promoters and enhancers (H3K4me3,
H3K4mel, H3K27ac and H3K27me3), together with our previously-published RNA-seq
expression data [23].

Initial studies on gene expression prediction revealed that using two to three histone modi-
fications (rather than larger set) are sufficient to accurately predict gene expression, and do
not find substantial improvements with the addition of other histone modifications into the
models [9-11]. Indeed, follow up publications directly utilize three to four histone modifica-
tions [12, 13]. However, our objective is not only to predict gene expression, but also to assess
histone modification contribution in enhancer predictive models in comparison to promoter
predictive models. Therefore, we used a set of ten histone modifications, each one with differ-
ent properties (associated to activation, associated to repression, broad marks, sharp marks,
etc.). A total of 11,387 protein coding genes previously associated to a promoter (active or
bivalent) and at least one enhancer (active or poised) entered the modelling. We divided the
set of genes into two subsets: training and test. The Pearson’s correlation coefficient (r)
between the measured expression in the test subset and the predicted one was used to assess
performance.

As one of our aims is to compare enhancer predictive models to promoter predictive mod-
els, we needed to build them using the same approach to identify enhancers and promoters so
they are comparable. Therefore, we first generated a predictive model for the promoters identi-
fied using our approach (named Hi-C-all promoter model) to confirm that histone modifica-
tions at these elements are predictive of gene expression. The predictive capacity of promoters
has been previously shown in several cell types from different model organisms, including
ESCs, where promoters were defined as a pre-set distance from a TSS [9-15]. As a control, we
repeated the predictive model learning in a training subset in which expression values were
randomized. We obtained an r-value of 0.81 for the promoter model, and an r-value of -0.07
for the random promoter model (S2A Fig). The low performance of the random promoter
model strongly indicated that the high predictive power of the Hi-C-all promoter model was
not due to random structures in the data. Importantly, the performance of our promoter
model was comparable to previously described predictive models, in which r-values around
0.8 were reported [9-15]. Indeed, Karlic and colleagues obtained an r-value of 0.77 in CD4
+ T-cells in the seminal paper on gene expression prediction from histone modification levels
[9]. Coefficients and p-values of the predictors for all the predictive models generated in this
study can be found in S7 Table.
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Next, we trained a second predictive model of gene expression (the Hi-C-all enhancer
model) using the levels of histone modifications at the previously-defined enhancers as predic-
tors. We obtained a performance in the test subset of r = 0.38 (Fig 2B). Although the r-value of
this model is still modest, this is the first time to our knowledge that enhancers have been
shown to be predictors of gene expression through their histone modification levels. Critically,
when the expression data for learning the model were randomized, the performance was poor
(r=-0.15, Fig 2B).

We hypothesized that the modest performance of the Hi-C-all enhancer model could be
due to some enhancer-promoter associations that were simply regions in close 3D proximity
but not functionally linked. To enrich the set of interactions for functional promoter—enhancer
loops, we applied a more restrictive threshold on the Hi-C significant interactions (FDR = 0
and In(p-value) < -100). We obtained a total of 5,555,844 interactions (8% of the total interac-
tions). We then recalculated the enhancer-promoter-gene associations and obtained 1,846 PEs
associated to 1,382 BPs and to 1,434 target genes, and 11,777 AEs associated to 7,211 APs and
to 8,254 target genes (S8 and S9 Tables). We selected the protein-coding genes included in the
new associations (a total of 8,639 genes) to recalculate the predictive models (hereon in termed
Hi-C-top models) and random models for promoters (Fig 2A) and enhancers (Fig 2B). While
the Hi-C-top promoter model performed similarly to the previous model (r = 0.79 vs. r = 0.81,
respectively), the Hi-C-top enhancer model was significantly improved (r = 0.49 vs. r = 0.38).
This result further confirmed that enhancers, as well as promoters, possess a quantitative rela-
tionship with gene expression.

We now know that an enhancer preferentially interacts with promoters located in the same
topologically associating domain (TAD) rather than those located in neighboring domains
[32]. Moreover, TADs have an average size of around 1 Mb. Therefore, assigning genes to
enhancers located in a distance lower than 1 Mb might seem appropriate. Indeed, when evalu-
ating a new ESC predictive model that associates enhancers to promoters of the same chroma-
tin state that are closer than 1 Mb (1 Mb model; 11,986 protein-coding genes), we achieved a
performance of r = 0.34 (S2C Fig). Nonetheless, that performance is lower than the ESC mod-
els based on Hi-C data that we have built previously (r = 0.38 and r = 0.49 for Hi-C-all and Hi-
C-top enhancer models, respectively). This suggests that matching genes to regulatory ele-
ments by 1 Mb distance leads to some false-positive associations, yet maintaining its predictive
capacity.

Finally, from the Hi-C-top interactions we selected those involving a distal enhancer (> 5
Kb from a TSS, a total of 5,235 AEs and 696 PEs) to confirm that the predictive capacity was
not exclusive of proximal enhancers. We generated a new distal enhancer model (Hi-C-top_
distal; 7,925 protein-coding genes) that properly predicted gene expression with a r = 0.41
(82D Fig).

Enhancers and promoters exhibit similar histone modification patterns. We therefore won-
dered whether the histone modifications mostly contributing to the prediction of expression
were the same ones as well, or whether there were differences in the contributions between the
enhancer and the promoter predictive models. To address this, we assessed variable impor-
tance in the Hi-C-top model for promoters and enhancers. Notably, H3K27me3—a histone
modification associated with transcriptional gene repression—was the prevalent mark in both
classes of regulatory elements (Fig 2C and 2D). In contrast to promoters, in which H3K27me3
has a relatively similar importance as other marks (e.g., H2Bub, H3K4me3, and H3K36me3,
Fig 2C), H3K27me3 in enhancers represented up to 55% of the total importance (Fig 2D).
Therefore, even though promoters and enhancers contribute to predict gene expression mostly
through H3K27me3, this contribution seems to be uniquely driven by H3K27me3 in the
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Fig 2. Performance and variable importance of enhancer and promoter Hi-C-top predictive models in ESCs. Predicted expression of the test subset of genes
calculated by the models versus their measured expression by RNA-seq. Model performances are represented by the Pearson’s correlation (r) between predicted and

measured expression values. (A) Left, the model trained on the promoter regions associated to at least one enhancer using the top significant interactions of Hi-C (Hi-
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C-top promoter model). Right, the performance of the same model after randomizing the expression of the training subset of genes. The color bar represents the density
of dots. (B) Left, the model trained on the enhancer regions associated to at least one promoter using the top significant interactions of Hi-C (Hi-C~top enhancer
model). Right, the performance of the same model after randomizing the expression of the training subset of genes. The color bar represents the density of dots. (C)
Importance of each histone modification used to train the Hi-C-top promoter predictive model. Importance is defined as the contribution of each variable in the linear
regression predictive model and corresponds to the absolute value of the t-statistic for each model parameter. (D) As for C, but for the Hi-C~top enhancer predictive
model. (E) As for B, but the model is trained without H3K27me3 as predictive variable. (F) As for D, but the model is trained without H3K27me3 as predictive variable.

https://doi.org/10.1371/journal.pcbi.1009368.g002

enhancer predictive model and shared by other histone marks in the promoter predictive
model.

Interestingly, H3K27ac—considered the canonical marker of enhancer activation [33]—
had little importance in the enhancer model. H3K27me3 and H3K27ac have antagonistic
effects and are generally mutually exclusive marks since they occur on the same lysine and are
chemically prohibited [34]. Thus, we reasoned that H3K27ac importance was masked by
H3K27me3 presence in the predictive model, as both histone modifications are not indepen-
dent variables. Indeed, when excluding H3K27me3 as a predictive variable, the enhancer
model maintains its predictive capacity (r = 0.36; Fig 2E), and the most important variable is in
fact H3K27ac (Fig 2F). However, in this case, H3K27ac has a relatively similar importance as
H3K27me2. Therefore, H3K27me3 seems more predictive than H3K27ac at enhancers in rela-
tionship with the rest of the histone modifications.

LOESS normalization of ChIP-seq and RNA-seq data from heterogeneous
sources

We next wanted to determine whether enhancers are predictive of gene expression in other
cellular contexts besides ESCs, and whether a predictive model learned in one cell type could
predict gene expression in another. As true colocalization of H3K27me3 with H3K4mel or
p300 in the same DNA fragment has been only studied in ESCs, it is still not clear whether PEs
exist in other developmental scenarios [20]. To address this issue, we took advantage of the
capacity of PEs and BPs to switch into an active state for certain cell types, in a lineage-specific
manner during differentiation from ESCs, while remaining inactive in others [20]. We hypoth-
esized that differentiation data could be used to obtain predictive models exclusively from PEs
and BPs. We focused on several time points for two cell differentiation mouse models: i) car-
diac lineage: mesoderm, cardio precursors, and cardiomyocytes [35]; and ii) neural lineage:
neural precursors and cortical neurons [30].

We downloaded RNA-seq and ChIP-seq data of five histone modifications (H3K27me3,
H3K4me3, H3K27ac, H3K4mel, and H3K36me3) that were available in the literature for both
differentiation models. To remove potential biases (e.g., due to the source of data generation
or to a batch effect), we normalized the sequencing samples of the same feature at all the avail-
able time points. For this, we applied a normalization based on a local regression (LOESS) that
was originally proposed for the pairwise normalization of expression microarrays [36] but gen-
eralized for multiple arrays [37]. LOESS normalization is based on a MA methodology, where
M is the log, ratio of the intensities of the samples, and A is the log, of the average intensity. It
assumes that the intensities of the two samples should be equal, therefore M = 0. Finally, cor-
rections based on a LOESS are applied to obtain a MA plot in where the regression line
approximates M = 0.

We first applied this normalization method over the expression of a set of 20,706 protein-
coding genes in the mouse genome, at each differentiation time point, and ESCs (MA plots of
each differentiation time point against ESCs before and after LOESS normalization are shown
in S3A Fig). As LOESS normalization assumes that expression is equal in all samples, a general
balance in global expression distribution of all time points is expected (S3B Fig). To further
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https://doi.org/10.1371/journal.pcbi.1009368.g003

confirm the normalization efficiency, we tested its performance on two different subsets of
genes: housekeeping genes and bivalent genes. We hypothesized that housekeeping genes
would show a balanced distribution of expression after normalization, while bivalent genes
would increase their expression globally during differentiation (as some of them are activated).
For this, we extracted a list of mouse housekeeping genes across 14 mouse tissues from the lit-
erature [38] to check their expression. We also evaluated the normalization on our list of biva-
lent genes (e.g., those associated to BPs). Indeed, after LOESS normalization, the expression of
housekeeping genes was correctly balanced (Fig 3A), whereas the expression of bivalent genes
maintained the characteristic pattern of increased expression across time (Fig 3B).

We then ran the same normalization method on the ChIP-seq samples for H3K27me3,
H3K4me3, H3K4mel, and H3K36me3 at the same time points (MA plots before and after
LOESS normalization over the full set of bins of 2 Kb at Chr19 are shown in S4 Fig). Similar to
expression data, we evaluated our normalization method for the H3K4me3 and H3K27me3
ChIP-seq levels across differentiation on two different sets of genomic regions: the whole col-
lection of bins of 2 Kb in which the genome is segmented, and the coordinates of our collection
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of BPs. We hypothesized that global ChIP-seq levels of the whole genome would become bal-
anced irrespectively of the particular histone modification analyzed, while BPs should present
a different pattern for H3K4me3 and H3K27me3 (e.g., increase and decrease of signal along
differentiation time points respectively, as a subset of the bivalent genes becomes activated
during time). Indeed, after LOESS normalization, the levels of H3K4me3 along the whole
genome were balanced (Fig 3C), whereas the same histone mark at BPs presented a clear pat-
tern of increase during differentiation (Fig 3D). Notably, for H3K27me3, we observed the
same balance in the levels along the whole genome after LOESS normalization (Fig 3E), while
BPs exhibited a pattern of decreased signal across differentiation, in contrast to that observed
for H3K4me3 (Fig 3F). In all cases, therefore, there is a substantial improvement after applying
this normalization approach, while the analysis solely based on data before normalization
would be misleading.

Poised enhancers and bivalent promoters are good predictors of gene
expression during differentiation

After normalizing the data on expression and histone modifications across differentiation, we
next generated predictive models using PEs and BPs for each differentiation time point. We
used the Hi-C-top interactions involving PEs, BPs, and target genes in ESCs (1,846 PEs and
1,382 BPs associated with 1,434 target genes). From this dataset, a total of 1,063 protein-coding
genes were used in the analysis. As the number of genes is smaller than in the previous gene
sets, we decided to build the models at each cell type from the full set of genes to be evaluated
in the rest of the differentiation time points. This approach has the advantage of allowing us to
check whether the relationship between gene expression and histone marks in PEs is universal.
This would be true if a model trained in a specific cellular context has a good performance in
predicting gene expression in another one. We hypothesized that, as shown previously for pro-
moters and gene bodies [9-11,14], there is a universal relationship between gene expression
and histone modifications at PEs.

As a control, we randomized expression data and calculated predictive models for each
time point. Next, we evaluated the performance of the randomized models on each differentia-
tion dataset. We observed that predictive models for PEs and BPs obtained a significantly
higher performance than randomized controls (Figs 4A, S5 and S6A). Surprisingly, all PE
models achieved the best performance in cardiomyocytes (Table 1), suggesting that cardio-
myocyte gene expression is easier to predict than the gene expression of the other time points.
Moreover, all PE models had similar performances at each time point (Table 1). These obser-
vations are also true for the BP models (Table 2). Taken together, our results indicate that
there is a universal quantitative relationship between gene expression and histone modifica-
tions at PEs and BPs across cardiac and neural differentiation.

In order to confirm the predictive capacity of distal PEs (>5 Kb from a TSS, a total of 696
PEs), we generated new distal PE models (S7 Fig). Indeed, distal PEs maintained the predictive
capacity. In this case, 486 protein-coding genes were included in the modelling.

Finally, we assessed the variable importance of the PE models for identifying differences in
the contribution of each histone modification to the predictive models in different cellular
contexts (Fig 4B). Strikingly, we observed that, in general, the two most important variables
are H3K27me3 and H3K36me3. H3K36me3 was the most important histone modification for
cardiac differentiation, whereas H3K27me3 was the most important for neural differentiation.
In general, H3K27ac followed the above-mentioned histone modifications. H3K4mel had a
relatively low relevance to the predictive models, which suggests that it is involved in delimitat-
ing the enhancer regions rather than in contributing to its function. H3K4me3, which was
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Fig 4. PE models trained in differentiation time points. (A) Performance of each differentiation enhancer model on the rest of the differentiation time points as
compared to performance over random models. Performance is represented as Pearson’s correlation (r) between predicted expression and measured expression.
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Significance was assessed using a paired Student’s f-test between the performance of the models and the performance of the random models paired by the
differentiation test set (****p < 0.0001, ***p < 0.001, “*p < 0.01, “p < 0.05). CM, cardiomyocytes; CN, cortical neurons; CP, cardio precursors; MES, mesoderm;
NPC, neural precursors. (B) Importance of the histone modifications for each differentiation enhancer model. Importance is defined as the contribution of each
variable in the linear regression predictive model and corresponds to the absolute value of the t-statistic for each model parameter.

https://doi.org/10.1371/journal.pcbi.1009368.9004

vastly associated with promoter activity, is accordingly the least informative mark for the pre-
diction of gene expression using PEs, suggesting that H3K4me3 is not associated to enhancer
activity. The variable importance in the BPs showed that H3K27me3, H3K27ac and, impor-
tantly, H3K4me3 were the most informative variables (S6B Fig). Our results suggest that the
quantitative relationship between histone modifications varies according to their location in
PEs or BPs. Critically, even though there is a universal quantitative relationship between histone
modifications and gene expression, this relationship can vary depending on the cellular context.

As for ESCs, we also assessed the effect of H3K27me3 absence over H3K27ac importance in
the current scenario. Therefore, we generated new PE predictive models without H3K27me3
(S8A Fig). Interestingly, H3K27ac was generally the most predictive variable for these predic-
tive models, followed by H3K36me3 (S8B Fig). Therefore, we wondered whether in absence of
H3K27ac, H3K27me3 would be also more important than H3K36me3. Indeed, when generat-
ing new PE models in absence of H3K27ac (S9A Fig), H3K27me3 had the highest importance
in all the cases (S9B Fig). Therefore, H3K27me3 seems the most informative variable for pre-
dicting gene expression from PEs.

The importance of H3K36me3 seen in Fig 4B agrees with the fact that almost 60% of the
PEs that entered the modelling are located within gene bodies. As H3K36me3 is located in the
gene body of active genes [39,40], intragenic enhancers also become marked when the genes
start to be expressed during differentiation. Therefore, we divided PEs into two groups, intra-
genic or intergenic, and built new PE predictive models. Both, intragenic and intergenic mod-
els were capable of predicting gene expression (S10A and S11A Figs). When assessing for
variable importance, we observed that, as expected, H3K36me3 maintained its high contribu-
tion in the intragenic predictive models (S10B Fig). However, H3K36me3 importance was
reduced in the intergenic predictive models (S11B Fig). On the contrary, H3K27me3 main-
tained its importance in both, intergenic and intragenic models. Thus, H3K27me3, and not
H3K36me3, behaves as a truly universal predictor of PE activity.

Poised enhancers and bivalent promoters are good predictors of gene
expression in mouse embryonic tissues

In order to extend our findings from in vitro differentiation to in vivo, we learnt predictive PE
and BP models from mouse developmental stages at different tissues. We downloaded ChIP-

Table 1. Performance of each PE differentiation model at every differentiation time point.

MES Ccp CM NPC | CN

MES model - 0.34 0.42 0.32 0.29

CP model 0.3 - 0.42 0.32 0.29

CM model 0.3 0.34 - 0.31 | 0.28

NPC model | 0.3 0.33 0.39 - | 0.29
CN model 0.3 0.32 0.39 0.32

For each time point of cardiac (MES/CP/CM) and neural (NPC/CN) PE models (rows), the performance of the PE
predictive models is shown for each cell type (columns). The performance values are represented as Pearson’s
correlation (r) between the measured expression and the predicted one. CM, cardiomyocytes; CN, cortical neurons;

CP, cardio precursors; MES, mesoderm; NPC, neural precursors.

https://doi.org/10.1371/journal.pcbi.1009368.t001
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Table 2. Performance of each BP differentiation model at every differentiation time point.

| MES CpP CM NPC CN

MES model - 0.78 0.77 0.66 0.77

CP model 0.74 - 0.79 0.67 0.72

CM model | 0.72 0.78 - 0.65 | 0.71

NPC model 0.71 0.77 0.77 - 0.72
CN model 0.73 0.77 0.78 0.69

For each time point of cardiac (MES/CP/CM) and neural (NPC/CN) BP models (rows), the performance of the BP
predictive models is shown for each cell type (columns). The performance values are represented as Pearson’s
correlation (r) between the measured expression and the predicted one. CM, cardiomyocytes; CN, cortical neurons;

CP, cardio precursors; MES, mesoderm; NPC, neural precursors.

https://doi.org/10.1371/journal.pcbi.1009368.t002

seq data of H3K27me3, H3K27ac, H3K36me3, H3K4me3 and H3K4mel and RNA-seq on
mouse embryos (heart tissue from 10.5 embryonic day, liver tissue from 11.5 embryonic day,
neural tube tissue from 12.5 embryonic day, kidney tissue from 14.5 embryonic day, and lung
tissue from 15.5 embryonic day) from ENCODE [41]. We first normalized the ChIP-seq and
expression data following the LOESS approach. A total of 1,087 protein-coding genes entered
the analysis. We observed that PEs were also predicting gene expression during mouse embryo
development (Fig 5A). Again, when assessing for variable importance, we found that
H3K27me3 was contributing the most, followed by H3K27ac and H3K36me3 (Fig 5B).

Next, we confirmed that BPs were also predicting gene expression during mouse embryo
development (S12A Fig). In this case, the most predictive variable was H3K27ac followed by
H3K27me3 and H3K4me3 (S12B Fig). Therefore, we further confirmed that differences in var-
iable importance between PE models and BP models exist, which suggests that different his-
tone modifications relate better to PE and BP function respectively.

Discussion

To study the full spectrum of active and repressed enhancers, we used ESCs as a model system.
Nevertheless, a third class of enhancers, termed intermediate or primed enhancers, exists in
this cellular context; intermediate enhancers are decorated with H3K4mel but lack both
H3K27ac and H3K27me3 [21,42]. Originally, intermediate enhancers were classified as PEs
[33]; however, more recent publications now use the term PE only for H3K27me3-marked
enhancers [21,22,42-44]. The intermediate enhancer signature was found in our chromatin
state model (state 5). We decided to focus only in AEs and PEs, though, as intermediate
enhancers remain poorly understood, and their target promoters have not been unambigu-
ously identified. In the near future, intermediate enhancers could be introduced in the model-
ling to explore their impact on the performance of the predictions and to discover new
relationships between histone modifications at enhancers and gene expression. However, this
is not a limitation for our differentiation predictive models. Here, enhancers and promoters
are required to be in either a poised or a bivalent state in ESCs, but many will transition
towards an active, or even intermediate state, along cardiac and neural in vitro differentiation,
and along embryo development. Therefore, in the subset of PEs during differentiation, we
have assessed the dynamics of a complete spectrum of enhancers in cardiac (mesoderm/cardio
precursors/cardiomyocytes) and neural (neural precursors/cortical neurons) cells, and in
developmental tissues (heart, liver, neural tube, kidney and lung). However, it is worth men-
tioning that our conclusions likely only apply to this system where PEs have been described.
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Fig 5. PE models trained using developmental stages. (A) Performance of each differentiation PE model on the rest of the developmental stages as compared to the
performance over the random models. Performance is represented as Pearson’s correlation (r) between predicted expression and measured expression. Significance
was assessed using a paired Student’s t-test of the performance of the models or of the random models paired by a differentiation test set (****p < 0.0001,
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“*p <0.001, " p < 0.01, " p < 0.05). (B) Importance of histone modifications for each development PE model. Importance is defined as the contribution of each
variable in the linear regression predictive model and corresponds to the absolute value of the t-statistics for each model parameter. Heart10.5, heart tissue from 10.5
embryonic day; Kidney14.5, kidney tissue from 14.5 embryonic day; Liver11.5, liver tissue from 11.5 embryonic day; Lung15.5, lung tissue from 15.5 embryonic day;
NeuralTube12.5, neural tube tissue from 12.5 embryonic day.

https://doi.org/10.1371/journal.pcbi.1009368.9005

Therefore, further work on PEs in other cellular contexts will be necessary in order to general-
ize our findings.

One could speculate that the ESC enhancer model performance is an artefact of matching
the chromatin state of promoters and enhancers (both active or both repressed). However, as
no expression information is introduced in this step, further conclusions are not affected by
this matching procedure. Moreover, we have confirmed the predictive capacity of PEs in the
differentiation PE models, in which we do not require a coordinated activation of PEs and
BPs. One could argue that the correlation coefficients obtained in the ESC enhancer models
are a mere consequence of the bimodality observed in our scatterplots of gene expression pre-
diction. However, in absence of H3K27me3 as a predictive variable, this bimodality disappears,
and importantly, the correlation between predicted and measured expression is maintained
(r=0.36). Indeed, this correlation denotes the good performance of the model, and therefore,
confirms the predictive power of histone modifications at enhancers. Thus, H3K27me3 could
be the cause of the bimodality, probably because it is the histone modification that better dif-
ferentiates between active and repressed enhancers in ESCs. Interestingly, no bimodality is
observed in the scatterplots of the differentiation predictive models, which further confirms
the predictive power of histone modifications at enhancers.

At the promoter level, the performance of ESCs and differentiation models was very similar
(r=0.79 vs. r =~ 0.75). Our limitation of being only able to use a reduced number of histone
modifications in the differentiation models (an issue that will be easily overcome when more
ChIP-seq datasets are available) could be the reason for the minimal difference in the promoter
models’ performance. Indeed, at the enhancer level, the difference in performance between
ESCs and the differentiation models was higher (r = 0.49 vs. r > 0.3). Other factors besides the
number of ChIP-seq datasets used could explain such a difference: (i) as mentioned before,
enhancers and promoters in the ESC model were required to match their chromatin state,
which could lead to overrating the performance of the ESC enhancer model; (ii) the enhancer-
promoter Hi-C interactions were taken from data published on ESCs. Nevertheless, we pre-
dicted gene expression in cellular contexts distinct from ESCs; (iii) some genes might be spe-
cific for a cell lineage, and their interactions with enhancers might be lost in the other cell
lineages. In these cases, the enhancer and the gene would no longer be related; (iv) enhancer—
promoter interactions relevant for early stages of differentiation might be lost once they have
served their function. This would imply that the enhancer and its target gene are no longer
coordinated. In fact, it has been shown that intensive rearrangement of promoter—enhancer
interactions occurs during differentiation, and that these loops become disrupted when their
target genes are repressed [30,31].

Moreover, one could argue that the linear regression approach used in this study might be a
too generic model, which could be the reason for lower performance of the enhancer models
when compared to promoter models. Thus, we re-analyzed our collection of enhancer-gene
associations in the Hi-C-top dataset with other methodologies, besides linear regression,
which are conceptually more complex. In all cases, although more time-consuming, the per-
formance of these methods did not improve our initial result (Table 3). We believe that the dif-
ference in performance between promoter (including BP) and enhancer (including PE)
models could be due to: (i) the difficulties of assigning enhancers to their target genes genome-
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Table 3. Comparative analysis of other methodologies to predict gene expression in the Hi-C-top dataset.

Model method value in caret R package [45] Performance (r) Most important variable
Neural Network neuralnet 0.48 H3K27me3
Lasso lasso 0.48 ‘ H3K27me3
Random Forest rf 0.44 H3K27me3
Support Vector Machines with Linear Kernel svmLinear 0.48 H3K27me3
Principal Component Analysis per 0.46 ‘ H3K27me3
Linear regression (used in this work) Im 0.49 ‘ H3K27me3

Predictive models were obtained using default parameters. Variable importance was assessed with varlmp function from caret R package [45].

https://doi.org/10.1371/journal.pchi.1009368.t003

wide, which can lead to incorrect associations; and (i) the more complex gene expression reg-
ulation by enhancers, when more than one enhancer-with different levels (or type) of histone
marks-can regulate the same gene.

How to assign enhancers to target genes is still under debate. In this study, we used Hi-C
and matched chromatin states to link enhancers to genes and promoters. A recent study evalu-
ated distinct ways of linking genes to enhancers by modelling gene expression and DNase-seq
data [17]. They showed that expression predictive models using chromatin conformation data,
such as Hi-C, performed better than those using other traditional ways of assigning target
genes, such as the closest-gene method or by distance. The closest-gene method consists of
assigning each enhancer to the nearest TSS. This prevents enhancers from being assigned to
two or more genes but does not take into account that one enhancer can regulate the expres-
sion of more than one gene [46,47]. The distance method consists of assigning an enhancer to
all the genes that are closer than a pre-set number of base pairs. We achieved a performance of
r=0.34 by using 1 Mb distance to assign enhancers to promoters. Although this predictive
model had lower performance than the models based on Hi-C data (r = 0.38 and r = 0.49 for
Hi-C-all and Hi-C-top enhancer models, respectively), it maintained the predictive capacity.
This suggests that in absence of Hi-C data, using 1 Mb distance to assign target genes to
enhancers performs well. Moreover, data from other chromatin capture techniques could be
useful to associate enhancers to promoters as well. Indeed, preliminary results using promoter
capture Hi-C to associate enhancers to promoters improved the performance of our enhancer
predictive models in comparison to those in which Hi-C data was used. We argue that this
gain in the performance of gene expression prediction is likely due to promoter capture Hi-C
enriching for the best interactions.

Apart from 3C techniques, two novel computational methods have been developed to prop-
erly identify enhancer-gene associations using chromatin capture data (such as Hi-C and Hi-
ChIP) and enhancer activity data (such as H3K27ac ChIP-seq and DHS-seq) [19,48]. For
instance, the so-called FOCS inference method provides a map of active enhancer-promoter
associations consistent across several cellular contexts, although no cell-type specific associa-
tions could be detected [48]. Further, the activity-by-contact method identified cell-type spe-
cific associations of active enhancers and genes [19]. However, neither methodology can be
applied to PEs due to the lack of enhancer activity. Indeed, the capacity of PEs to dynamically
predict variable gene expression during differentiation suggests that our approach of assigning
target genes to PEs performs properly in this context.

We have reported differences in the histone modification contribution to the expression
predictive models depending on their location in enhancers or promoters. The different con-
tribution of each histone modification suggests that the epigenetic landscape is different in
enhancers and promoters. For example, although H3K4me3 has been previously shown to be
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located in enhancers [25-28], our results suggest that its presence in enhancers has little associ-
ation to gene expression. Therefore, H3K4me3 does not seem to be a good indicator of
enhancer activity. In contrast, H3K4me3 proved to be key in predicting gene expression from
the differentiation BP models, confirming its relevance in establishing promoter activity.
Moreover, whereas H3K36me3 proved to be important for the differentiation PE models-
mainly those intragenic-, it showed little contribution to the BP ones. Even though there is a
universal relationship between histone modifications and gene expression, we observed that
H3K36me3 is more informative in the cardiac PE models than in the neural PE models. We
reached this conclusion thanks to our LOESS normalization approach, which allowed us to
reduce biases in all datasets used (RNA-seq and ChIP-seq), such that our results were not
influenced by the different origin of data. Without such a normalization, the conclusions
reached would be wrong. However, it is worth mentioning that we assume constancy of ChIP-
seq signal and expression, although they might change in their abundance during differentia-
tion. This problem will be solved in the future with spike-in normalization. Strikingly,
H3K27me3 was found to be the most important histone modification in the majority of pre-
dictive models for enhancers and promoters. This suggests that H3K27me3 plays a key role in
gene regulation, as it is important for both types of regulatory regions. Our results show that
mainly H3K27me3, and also in combination with H3K36me3 and H3K27ac, are sufficient to
predict future gene expression from PEs. In any case, the predictive power of our models will
benefit in the future from the introduction of other histone modifications into the modelling,
which can be extremely useful for identifying unknown quantitative relationships between his-
tone modifications at enhancers and gene expression.

Finally, other types of information could also be introduced in the modelling in the future.
In fact, previous work has modelled gene expression using accessibility data (e.g. DHS-seq)
[14,16,17], and other types of ChIP-seq samples (e.g. TFs or RNA polymerase II) [10,11,13,49].
It would be also interesting to use enhancer RNA (eRNA) data to predict gene expression of
target genes. Promising results have been obtained in predicting eRNA transcription by
modelling GRO-seq and histone modification ChIP-seq at enhancers [50]. Indeed, Pearson’s
correlation between PRO-seq [51] signal and H3K27ac ChIP-seq signal at intergenic enhanc-
ers in ESC is 0.41, which further supports that eRNA expression might be a good predictor,
probably similar to H3K27ac. All this information at enhancers could be integrated into the
modelling to improve the power and, most importantly, to discover new quantitative relation-
ships between gene expression and multiple epigenetic features.

Materials and methods
Cell culture

E14Tg2A ESCs were cultured feeder-free on 15-cm plates coated with 0.1% gelatin. Plates were
coated with gelatin for 15 min at 37°C, and then non-bound gelatin was removed. ESCs were
cultured with Glasgow minimum essential medium (Sigma) supplemented with B-mercap-
toethanol, sodium pyruvate, penicillin-streptomycin, non-essential amino acids, GlutaMAX,
20% fetal bovine serum (Hyclone), and leukemia inhibitory factor (LIF).

Chromatin immunoprecipitation

Cells were grown in 15-cm plates until 70% confluency and crosslinked in 1% formaldehyde in
growth medium for 10 min at room temperature in a shaker. To stop fixation, glycine was
added to a final concentration of 0.125 M and incubated for 5 min at room temperature. Cells
were then washed twice with ice-cold PBS and harvested by gently scrapping plates (on ice) in
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PBS plus protease inhibitors. Cells from two 15-cm plates were pooled together and centri-
fuged at 3,400 x g at 4°C for 5 min. Cell pellets were frozen at -80°C until use.

Chromatin was prepared by resuspending the crosslinked pellet in 1.3 ml ice cold ChIP
buffer [1x volume SDS buffer (100 mM NaCl, 50 mM Tris-HCI pH 8.1, 5 mM EDTA pH 8.0,
and 0.5% SDS) and 0.5 x volume Triton dilution buffer (100 mM NaCl, 100 mM Tris-HCI pH
8.6, 5 mM EDTA pH 8.0, and 5% Triton X-100)] plus proteinase inhibitors. Samples were son-
icated 40 cycles (30 seconds on/30 seconds off) in a Bioruptor Pico (Diagenode) and centri-
fuged at 16,000 x g at 4°C for 20 min to remove the cell debris. To check chromatin size, a 25-
ul aliquot was mixed with 175 pl of PBS plus 5 ul of 20 mg/ml proteinase K, and de-crosslinked
for 5 hat 65°C. DNA was purified using the QIAquick PCR purification kit (Qiagen), quanti-
fied in Nanodrop, and checked by electrophoresis on a 1.2% agarose gel.

ChIP experiments were performed using 30 ug of chromatin (DNA) and 5 pg of antibody in a
final volume of 500 pl ChIP buffer. Aliquots of 5 ul were removed as input material (1%). ChIP
samples were incubated overnight at 4°C on rotation, and then Protein A agarose beads (Diage-
node) (42 pl per ChIP) were blocked 30 min with 0.05% BSA, washed, and added to the ChIP
reaction. Samples were incubated for 2 h at 4°C with rotation. After incubation, beads were
washed three times with 1 ml of low-salt buffer (140 mM NaCl, 50 mM HEPES pH 7.5, and 1%
Triton X-100) and once with 1 ml high-salt buffer (500 mM NaCl, 50 mM HEPES pH 7.5, and
1% Triton X-100). ChIPed material was eluted from the beads in 200 pl freshly prepared elution
buffer (1% SDS, 100 mM NaHCO3) at 65°C in a shaker (1000 rpm) for 1 h. Input samples were
also brought to 200 pl with elution buffer. After addition of 8 pl of 5 M NaCl to the eluted chro-
matin and input samples, samples were de-crosslinked overnight at 65°C. The next day, samples
were treated with proteinase K [1 pl of 20 mg/ml Proteinase K, plus 4 pl 0.5 M EDTA, and 8 pl
Tris-HCl pH 6.5] for 1 h at 45°C. ChIPed DNA and inputs were purified using the QIAquick
PCR purification kit (Qiagen) and eluted in 60 pl. The following antibodies were used in the ChIP
experiments: H3K27me3 (Millipore, #07-449); H3K4me3 (Diagenode, C15410003); H3K4mel
(Abcam, ab8895); H3K27Ac (Millipore, #07-360); H3 (Abcam, Ab1791); H3K36me3 (Abcam,
ab9050); H3K27mel (Active Motif, #61015); H3K27me2 (Cell Signaling, #9728); H3K79me2
(Abcam, ab3594); H2Bub (Cell Signaling, #5546); and H4K20me3 (Abcam, ab9053). Library
preparation for ChIP-seq experiments was performed at the UPF/CRG Genomics Unit. Libraries
were sequenced using Illumina HiSeq2000 sequencer.

Input datasets

Raw files and processed data from experiments performed in this study are available at the
Gene Expression Omnibus (GEO) under the accession number GSE150633. Raw data of mul-
tiple samples from the literature was downloaded and reanalyzed to be included in the study.
RNA-seq data of mouse ESCs was extracted from a previous publication from our lab (GEO
accession number: GSE79606) [23]. ChIP-seq data of p300 in ESCs was obtained via GEO
(GEO accession number: GSE89211) [21]. ChIP-seq data of H3K27me3, H3K4me3, H3K27ac,
H3K4mel, and H3K36me3, and RNA-seq data of cardiac differentiation (mesoderm, cardio-
precursors and cardiomyocytes), were obtained from https://b2b.hci.utah.edu/gnomex/
(accession numbers: 44R and 7R2) [35]. ChIP-seq data of H3K27me3, H3K4me3, H3K27ac,
H3K4mel, and H3K36me3, RNA-seq data of neural differentiation (neural precursors and
cortical neurons), and Hi-C data of ESCs were retrieved from GEO (GEO accession number:
GSE96107) [30]. PRO-seq data of mouse ESC was obtained from a previous publication from
our lab (GEO accession number: GSE99530) [51]. ChIP-seq data of H3K27me3, H3K4me3,
H3K27ac, H3K4mel, and H3K36me3, and RNA-seq of mouse developmental stages (heart tis-
sue from 10.5 embryonic day, liver tissue from 11.5 embryonic day, neural tube tissue from
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Table 4. Information on ChIP-seq experiments produced in this study.

ChIP-seq Total reads Mapped reads Multilocus reads
H2Bub 42268079 32671442 (77.30%) 7633345 (18.06%)
H3K4mel 43515038 35408178 (81.37%) 6365630 (14.63%)
H3K4me3 45129019 34342716 (76.10%) 9253789 (20.51%)
H3K27mel 45349251 26830739 (59.16%) 15003526 (33.08%)
H3K27me2 60609374 44651269 (73.67%) 12963849 (21.39%)
H3K27me3 37386877 26823175 (71.74%) 8234058 (22.02%)
H3K27ac 35210421 25105518 (71.30%) 8368750 (23.77%)
H3K36me3 42562036 28957647 (68.04%) 11123530 (26.13%)
H3K79me2 60011275 43270733 (72.10%) 13458082 (22.43%)
H4K20me3 34180446 16175574 (47.32%) 15452266 (45.21%)
H3 53276040 35997064 (67.57%) 14569719 (27.35%)
Input 41583841 28857996 (69.40%) 10598866 (25.49%)

https://doi.org/10.1371/journal.pcbi.1009368.t004

12.5 embryonic day, kidney tissue from 14.5 embryonic day, lung tissue from 15.5 embryonic
day) were obtained from ENCODE project [41]. The list of ENCODE accession numbers can
be found in S10 Table. When replicates were available, pooling was done except for the ChIP-
seq samples of H3K4me3 of neural precursors (replicate 1 was used) and H3K27ac of neural
precursors (replicate 2 was used).

ChIP-seq analysis

The sequence reads of ChIP-seq data were mapped to the mm10 version of the mouse genome
with the BOWTIE software [52], setting the option-m 1, which eliminates reads that align in
more than one region. The ChIP-seq profiles were obtained using the function buildChIPpro-
file from SeqCode (https://github.com/eblancoga/seqcode). For the p300 ChIP-seq, peak call-
ing against input was performed using MACS [53] with the option—shiftsize 100, which shifts
tags to their midpoint. Information about the total number of reads and read mapping of each
ChlIP-seq experiment produced in this study can be found in Table 4.

Chromatin segmentation

ChromHMM [54] was used to obtain a chromatin segmentation model for ESCs using the
default parameters. The input data were ChIP-seq experiments of H3K4me3, H3K27me3,
H3K27ac, and H3K4mel, using ChIP-seq of H3 as control. First, the function BinarizeBam
was used to binarize the input mapped data. Next, the LearnModel function was ran to learn
different chromatin segmentation models of ESCs, using from 4 to 16 states; the 9-state model
was selected because it showed the higher number of states with no redundancy.

RNA-seq analysis

The pair-end sequence reads of RNA-seq data were mapped to the mm10 version of the
mouse genome with TopHat [55], setting the options—mate-inner-dist 100, which is the
expected mean distance between mate pairs, and -g 1, which eliminates those reads which
align in more than one region. The RNA-seq profiles were obtained using the function build-
ChlIPprofile from SeqCode. The FPKMs (fragments per kilobase of transcript per million
mapped reads) of each gene in the RefSeq catalogue [24] of the mouse genome were calculated
using Cufflinks [56], setting the option—max-bundle-frags 5,000,000, which specifies the max-
imum genomic length for the bundles.
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PRO-seq analysis

The single-end sequence reads of PRO-seq data was mapped to the mm10 version of the mouse
genome with TopHat [55], setting the options—mate-inner-dist 100, which is the expected
mean distance between mate pairs, and -g 1, which eliminates those reads which align in more
than one region. The normalized count of reads of PRO-seq at intergenic enhancers averaged
by the length of the region was calculated by recoverChlIPlevels from SeqCode.

Hi-C analysis

Hi-C data were processed with TADDbit [57]. Briefly, sequencing reads were mapped to the ref-
erence genome (mm10) by applying a fragment-based strategy, which is dependent on the
GEM mapper [58]. Mapped reads were filtered to remove those resulting from unspecified
ligations, errors, or experimental artefacts. Specifically, seven different filters were applied
using the default parameters in TADDbit: self-circles, dangling ends, errors, extra dangling-
ends, over-represented, duplicated, and random breaks [57]. After pooling replicates, Hi-C
data were normalized with OneD correction [59] at 5 kb of resolution to remove known biases.
Significant Hi-C interactions were called with the analyzeHiC function of HOMER software
suit [60], binned at 5 kb of resolution, and with the default p-value threshold of 0.001.

Gene expression predictive model

The regression linear models were built to predict gene expression by adjusting the following
formula:

i~ Byt Bixg+o+Bx, te

where y; is the log, of the FPKMs of gene i, with a pseudo count of 0.1. x;; to x;, are the log,-
normalized count of reads of each ChIP-seq signal at the defined promoters or enhancers aver-
aged by the length of the region calculated by recoverChIPlevels from SeqCode, plus a pseudo
count of 0.1. 3, to 3, are the coefficients that we would like to calculate and € is the error. The
predictive models were trained on protein-coding genes. The set of data was randomly divided
into two subsets, a training subset with the 80% of entries, and a test subset with the remaining
20% of entries. In the case of differentiation, each of the time points was used as training sub-
sets and then the predictive models were evaluated in the rest. A 10-fold cross-validation was
repeat three times to verify that the quantitative relationship between expression and histone
modifications was not specific for a subset of the data. The following functions were used:
trainControl to perform the 10-fold cross-validation, train to train the models, and varImp to
calculate the variable importance, from the R package caret [45]. For models trained on
enhancers, genes were introduced into the dataset as many times as the number of associated
enhancers they had. To evaluate the specificity of our predictive models, we randomly shuffled
the expression values of all the genes in the mouse genome. Thus, for each initial predictive
model a random model was also obtained, where all the values y; were shuffled, maintaining
the values of x;; to x;,, intact. This operation generates a new table of gene expression assign-
ments in which the putative relationship between histone marking and expression of genes (if
any) is completely lost. The random models were next generated following the same procedure
as the models.

LOESS normalization

The FPKMs of all protein-coding genes and ChIP-seq levels of PEs and BPs were normalized
for ESCs, cardiomyocytes, cortical neurons, cardio precursors, mesoderm, and neural
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precursors; and also, for heart tissue from 10.5 embryonic day, liver tissue from 11.5 embry-
onic day, neural tube tissue from 12.5 embryonic day, kidney tissue from 14.5 embryonic day,
and lung tissue from 15.5 embryonic day. To normalize the ChIP-seq levels of H3K27me3,
H3K4me3, H3K27ac, H3K4mel, and H3K36me3 on the PEs and BPs, the genome was first
divided into 2 Kb bins (note that bin size reflects the average size of PEs and BPs). Next, the
count of reads, normalized by total number of reads and averaged by the length, was calculated
with recoverChIPlevels function from SeqCode. Finally, the normalization parameters were
calculated in those bins and applied to the count of reads normalized by the total number of
reads and averaged by the length of PEs and BPs. The normalize.loess function of the R pack-
age affy [61] was used to normalize ChIP-seq data and expression data. Genes and bins with a
0 in any columns were discarded, as it was not possible to determine whether it was due to a
sequencing error or a real absence of signal.

Supporting information

S1 Fig. Functional regions are covered by more than one class of state. (A) Segments of
active states 1-4 cover the same functional regions delimited by peaks of H3K4me3, H3K27ac
and H3K4mel. Differences in the definition of active states are due to the shape of the peaks
over the same functional elements. The screenshot was taken from the UCSC Genome
Browser [62]. (B) Segments of repressed states 6 and 7 denote the sharp peaks of H3K4me3
and H3K4mel found inside broad regions covered by H3K27me3. State 8 corresponds to the
fraction of H3K27me3 peaks that does not overlap with the other two marks. Differences in
the definition of repressed states 6 and 7 are due to the shape of the peaks over the same func-
tional elements. The screenshot was taken from the UCSC Genome Browser [62].

(TIF)

S2 Fig. Performance of enhancer and promoter predictive models in ESCs. Predicted
expression of the test subset of genes calculated by the models versus their measured expres-
sion by RNA-seq. Model performances are represented by the Pearson’s correlation (r)
between predicted and measured expression values. (A) Left, the model trained on the pro-
moter regions associated to at least one enhancer using all significant interactions of Hi-C (Hi-
C-all promoter model). Right, the performance of the same model after randomizing the
expression of the training subset of genes. The color bar represents the density of dots. (B)
Left, the model trained on the enhancer regions associated to at least one promoter using all
the significant interactions of Hi-C (Hi-C-all enhancer model). Right, the performance of the
same model after randomizing the expression of the training subset of genes. The color bar
represents the density of dots. (C) As for B, but using 1 Mb distance to connect enhancers to
promoters. (F) As for B, but using from the Hi-C-top interactions, only distal enhancers (> 5
Kb from a TSS) to generate the model.

(TIF)

S3 Fig. Performance of LOESS normalization in RNA-seq data. (A) MA plot before and
after normalization of expression data at each differentiation time point against ESCs. M rep-
resents the log, ratio of the intensities of the two samples and A is the log, of the average inten-
sity. Intensity is determined in FPKMs. After normalization, the regression line tends to

M = 0. The color bar represents the density of dots. (B) Boxplot of expression of 15,065 pro-
tein-coding genes before and after LOESS normalization. CM, cardiomyocytes; CN, cortical
neurons; CP, cardio precursors; MES, mesoderm; NPC, neural precursors.

(TIF)
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S4 Fig. Performance of LOESS normalization in the ChIP-seq data. MA plots before and
after normalization of each differentiation time point against ESCs. M represents the log, ratio
of the intensities of the two samples, and A is the log, of the average intensity. Intensity corre-
sponds to normalized count of reads by total number of reads of the ChIP-seq samples of (A)
H3K27me3, (B) H3K4me3, (C) H3K27ac, (D) H3K4mel, and (E) H3K36me3. The color bars
represent the density of dots. CM, cardiomyocytes; CN, cortical neurons; CP, cardio precur-
sors; MES, mesoderm; NPC, neural precursors.

(TIF)

S5 Fig. Performance of PE differentiation models. Predicted expression of the test differenti-
ation time points calculated by the models versus their measured expression by RNA-seq.
Model performances are represented by the Pearson’s correlation (r) between predicted and
measured expression values. The color bars represent the density of dots. (A) Model trained in
mesoderm. (B) Model trained in cardio precursors. (C) Model trained in cardiomyocytes. (D)
Model trained in neural precursors. (E) Model trained in cortical neurons. CM, cardiomyo-
cytes; CN, cortical neurons; CP, cardio precursors; MES, mesoderm; NPC, neural precursors.
(TIF)

S6 Fig. BP models trained using differentiation time points. (A) Performance of each differ-
entiation BP model on the rest of the differentiation time points as compared to the perfor-
mance over the random models. Performance is represented as Pearson’s correlation (r)
between predicted expression and measured expression. Significance was assessed using a
paired Student’s t-test of the performance of the models or of the random models paired by a
differentiation test set (****p < 0.0001, ***p < 0.001, “*p < 0.01, *p < 0.05). (B) Importance of
histone modifications for each differentiation BP model. Importance is defined as the contri-
bution of each variable in the linear regression predictive model and corresponds to the abso-
lute value of the t-statistics for each model parameter. CM, cardiomyocytes; CN, cortical
neurons; CP, cardio precursors; MES, mesoderm; NPC, neural precursors.

(TIF)

S7 Fig. Distal PE models trained using differentiation time points. Performance of each dif-
ferentiation BP model on the rest of the differentiation time points as compared to the perfor-
mance over the random models. Performance is represented as Pearson’s correlation (r)
between predicted expression and measured expression. Significance was assessed using a
paired Student’s t-test of the performance of the models or of the random models paired by a
differentiation test set (****p < 0.0001, ***p < 0.001, “*p < 0.01, *p < 0.05). CM, cardiomyo-
cytes; CN, cortical neurons; CP, cardio precursors; MES, mesoderm; NPC, neural precursors.
(TIF)

S8 Fig. PE models trained using differentiation time points without H3K27me3 as predic-
tive variable. (A) Performance of each differentiation model without H3K27me3 as predictive
variable on the rest of the differentiation time points as compared to the performance over the
random models. Performance is represented as Pearson’s correlation (r) between predicted
expression and measured expression. Significance was assessed using a paired Student’s t-test
of the performance of the models or of the random models paired by a differentiation test set
(****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05). (B) Importance of histone modifications
for each differentiation intragenic model. Importance is defined as the contribution of each
variable in the linear regression predictive model and corresponds to the absolute value of the
t-statistics for each model parameter. CM, cardiomyocytes; CN, cortical neurons; CP, cardio
precursors; MES, mesoderm; NPC, neural precursors.

(TIF)
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S9 Fig. PE models trained using differentiation time points without H3K27ac as predictive
variable. (A) Performance of each differentiation model without H3K27ac as predictive vari-
able on the rest of the differentiation time points as compared to the performance over the ran-
dom models. Performance is represented as Pearson’s correlation (r) between predicted
expression and measured expression. Significance was assessed using a paired Student’s ¢-test
of the performance of the models or of the random models paired by a differentiation test set
(****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05). (B) Importance of histone modifications
for each differentiation intragenic model. Importance is defined as the contribution of each
variable in the linear regression predictive model and corresponds to the absolute value of the
t-statistics for each model parameter. CM, cardiomyocytes; CN, cortical neurons; CP, cardio
precursors; MES, mesoderm; NPC, neural precursors.

(TIF)

$10 Fig. Intragenic PE models trained using differentiation time points. (A) Performance
of each differentiation intragenic model on the rest of the differentiation time points as com-
pared to the performance over the random models. Performance is represented as Pearson’s
correlation (r) between predicted expression and measured expression. Significance was
assessed using a paired Student’s t-test of the performance of the models or of the random
models paired by a differentiation test set (****p < 0.0001, ***p < 0.001, “*p < 0.01,

*p < 0.05). (B) Importance of histone modifications for each differentiation intragenic model.
Importance is defined as the contribution of each variable in the linear regression predictive
model and corresponds to the absolute value of the t-statistics for each model parameter. CM,
cardiomyocytes; CN, cortical neurons; CP, cardio precursors; MES, mesoderm; NPC, neural
precursors.

(TIF)

S11 Fig. Intergenic PE models trained using differentiation time points. (A) Performance
of each differentiation intergenic model on the rest of the differentiation time points as com-
pared to the performance over the random models. Performance is represented as Pearson’s
correlation (r) between predicted expression and measured expression. Significance was
assessed using a paired Student’s t-test of the performance of the models or of the random
models paired by a differentiation test set (****p < 0.0001, ***p < 0.001, “*p < 0.01,

*p < 0.05). (B) Importance of histone modifications for each differentiation intergenic model.
Importance is defined as the contribution of each variable in the linear regression predictive
model and corresponds to the absolute value of the t-statistics for each model parameter. CM,
cardiomyocytes; CN, cortical neurons; CP, cardio precursors; MES, mesoderm; NPC, neural
precursors.

(TIF)

S12 Fig. BP models trained using developmental stages. (A) Performance of each differenti-
ation BP model on the rest of the developmental stages as compared to the performance over
the random models. Performance is represented as Pearson’s correlation (r) between predicted
expression and measured expression. Significance was assessed using a paired Student’s ¢-test
of the performance of the models or of the random models paired by a differentiation test set
(****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05). (B) Importance of histone modifications
for each development BP model. Importance is defined as the contribution of each variable in
the linear regression predictive model and corresponds to the absolute value of the t-statistics
for each model parameter. Heart10.5, heart tissue from 10.5 embryonic day; Kidney14.5, kid-
ney tissue from 14.5 embryonic day; Liver11.5, liver tissue from 11.5 embryonic day;

PLOS Computational Biology | https:/doi.org/10.1371/journal.pcbi. 1009368 September 2, 2021 24/29

245



PLOS COMPUTATIONAL BIOLOGY Gene expression prediction from histone modifications

Lungl5.5, lung tissue from 15.5 embryonic day; NeuralTubel2.5, neural tube tissue from 12.5
embryonic day.
(TIF)

S1 Table. List of active promoters and target genes. Coordinates of the identified active pro-
moters and their target genes (genome assembly mm10).
(XLSX)

S2 Table. List of bivalent promoters and target genes. Coordinates of the identified bivalent
promoters and their target genes (genome assembly mm10).
(XLSX)

S3 Table. List of active enhancers. Coordinates of the identified active enhancers (genome
assembly mm10).
(XLSX)

S4 Table. List of poised enhancers. Coordinates of the identified poised enhancers (genome
assembly mm10).
(XLSX)

S5 Table. List of active enhancers, associated active promoters, and target genes (Hi-C-
all). Coordinates of the identified active enhancers (*_e), associated active promoters (*_p),
and target genes (genome assembly mm10). The association was done using all significant Hi-
C interactions (Hi-C-all).

(XLSX)

S6 Table. List of poised enhancers, associated bivalent promoters, and target genes (Hi-C-
all). Coordinates of the identified poised enhancers (*_e), associated bivalent promoters (*_p),
and target genes (genome assembly mm10). The association was done using all significant Hi-
C interactions (Hi-C-all).

(XLSX)

S7 Table. Model predictors. Coefficient and p-value of every predictor in each predictive
model generated in this study.
(XLSX)

S8 Table. List of active enhancers, associated active promoters, and target genes (Hi-C-
top). Coordinates of the identified active enhancers (*_e), associated active promoters (*_p),
and target genes (genome assembly mm10). The association was done using the top significant
Hi-C interactions (Hi-C-top).

(XLSX)

S9 Table. List of poised enhancers, associated bivalent promoters, and target genes (Hi-C-
top). Coordinates of the identified poised enhancers (*_e), associated bivalent promoters (*_p)
and target genes (genome assembly mm10). The association was done using the top significant
Hi-C interactions (Hi-C-top).

(XLSX)

$10 Table. List of ENCODE accession numbers. Accession numbers of the mouse embryo
development data used in this study. Heart10.5, heart tissue from 10.5 embryonic day; Kid-
neyl4.5, kidney tissue from 14.5 embryonic day; Liver11.5, liver tissue from 11.5 embryonic
day; Lungl5.5, lung tissue from 15.5 embryonic day; NeuralTube12.5, neural tube tissue from
12.5 embryonic day.

(XLSX)
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