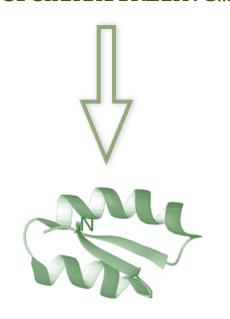
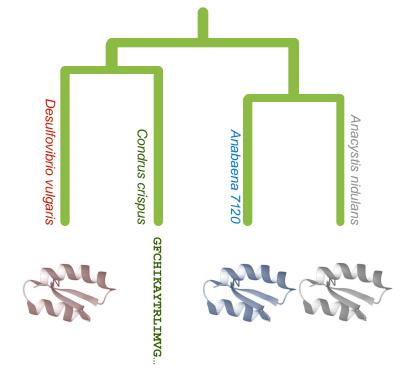
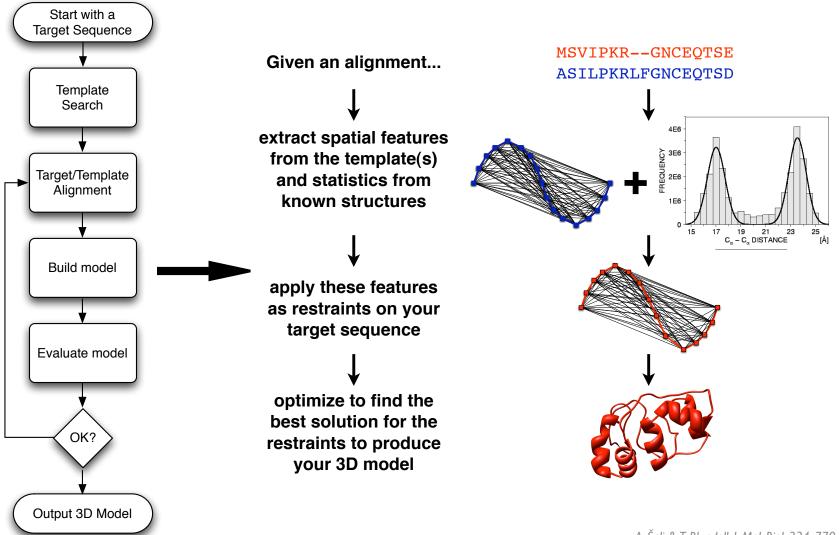

Comparative protein structure models for functional annotation.


Structural Genomics Unit Bioinformatics Department Prince Felipe Resarch Center (CIPF), Valencia, Spain



Principles of protein structure

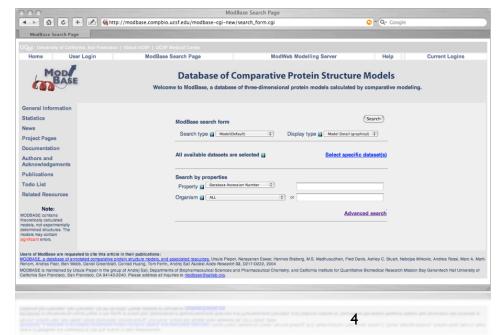
GFCHIKAYTRLIMVG...



Folding (physics) *Ab initio* prediction

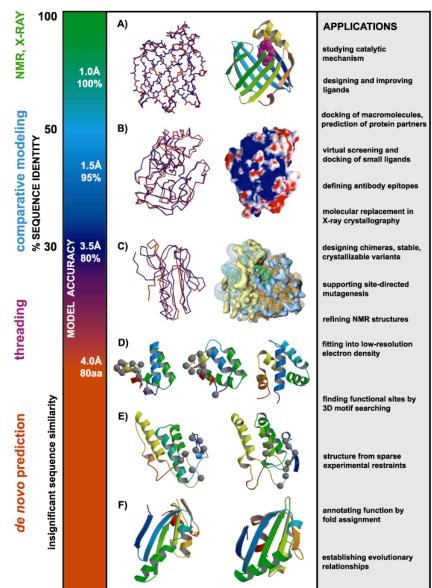
Evolution (rules)
Threading
Comparative Modeling

Comparative modeling by satisfaction of spatial restraints MODELLER



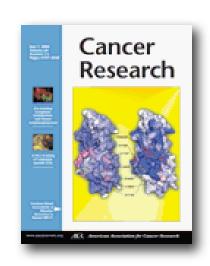
ModBase Statistics

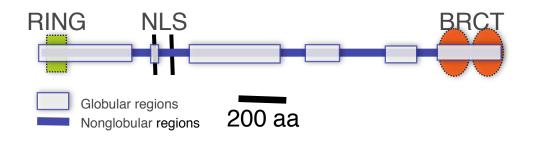
Large-scale modeling of the TrEMBL-SWISSPROT databases


http://www.salilab.org/modbase/

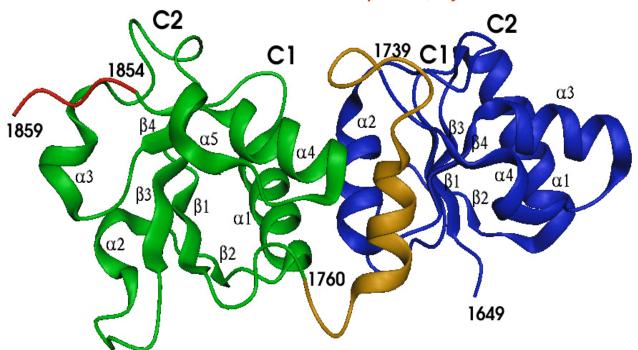
Sequences (total)	1,930,692
Sequences (modeled)	1,084,784
Models	3,094,542

Utility of protein structure models, despite errors





Structural analysis of missense mutations in human BRCA1 BRCT domains


Cannot measure the functional impact of every possible SNP at all positions in each protein! Thus, prediction based on general principles of protein structure is needed.

Human BRCA1 and its two BRCT domains

BRCA1 BRCT repeats, 1jnx

Williams, Green, Glover. Nat.Struct.Biol. 8, 838, 2001

CONFIDENTIAL

BRACAnalysis [™] Comprehensive BRCA1-BRCA2 Gene Sequence Analysis Result

Niecee Singer, MS Strang Cancer Prevention Center 428 E 72nd St

New York, NY 10021

SPECIMEN Specimen Type: Blood

Draw Date: n/a Accession Date: Oct 27, 2000 Report Date: Nov 17, 2000 PATIENT

Name: Date of Birth: Feb 02, 1953 Patient ID: Gender: Female

Accession #: 00019998 Requisition #: 56694

Physician: Fred Gilbert, MD

Test Result

Gene Analyzed BRCA2 BRCA1 Specific Genetic Variant H2116R None Detected

Interpretation

GENETIC VARIANT OF UNCERTAIN SIGNIFICANCE

The BRCA2 variant H2116R results in the substitution of arginine for histidine at amino acid position 2116 of the BRCA2 protein. Variants of this type may or may not affect BRCA2 protein function. Therefore, the contribution of this variant to the relative risk of breast or ovarian cancer cannot be established solely from this analysis. The observation by Myriad Genetic Laboratories of this particular variant in an individual with a deleterious truncating mutation in BRCA2, however, reduces the likelihood that H2116R is itself deleterious.

Authorized Signature:

Brian E. Ward, Ph.D. Laboratory Director Thomas S. Frank, M.O. Medical Director

These test results should only be used in conjunction with the pacent's divices history and any previous analysis of appropriate family manubers. It is strongly recommended that thisse results be communicated to the palent in a sening that includes appropriate counseling. The accompanying Technical Specifications summany describes the analysis, method, performance characteristics, nomenciature, and interpretive criteria of this test. This fest may be considered investigational by some states. This test was developed and its performance characteristics determined by Myrad Genetic Laboratories. Bhus not been reviewed by the U.S. Food and Orug Administration. The FDA has determined that such determine or approval is not necessary.

CONFIDENTIAL

BRACAnalysis [™]
Comprehensive BRCA1-BRCA2 Gene Sequence Analysis Result

Niecee Singer, MS Strang Cancer Prevention Center 428 E 72nd St

New York, NY 10021

SPECIMEN Specimen Type: Blood Draw Date: n/a

Draw Date: Accession Date: Report Date:

Nov 17, 2000

PATIENT

Name: Date of Birth: Feb 02, 1953 Patjent ID: Gender: Female

Gender: Female Accession #: 00019998 Requisition #: 56694

Physician: Fred Gilbert, MD

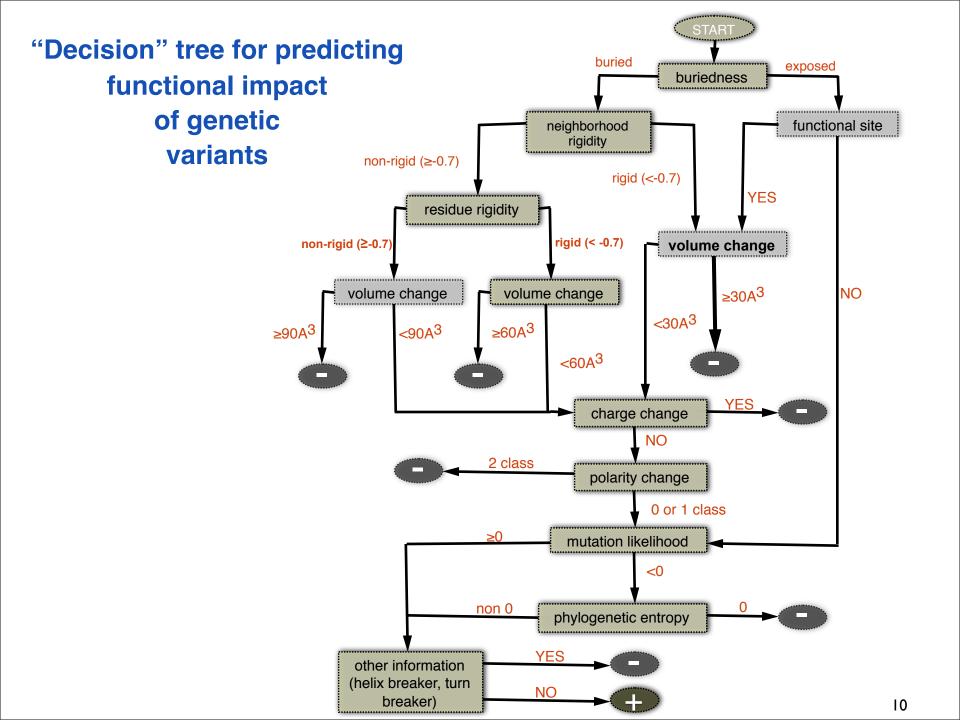
Test Result

Gene Analyzed BRCA2 BRCA1 Specific Genetic Variant H2116R None Detected

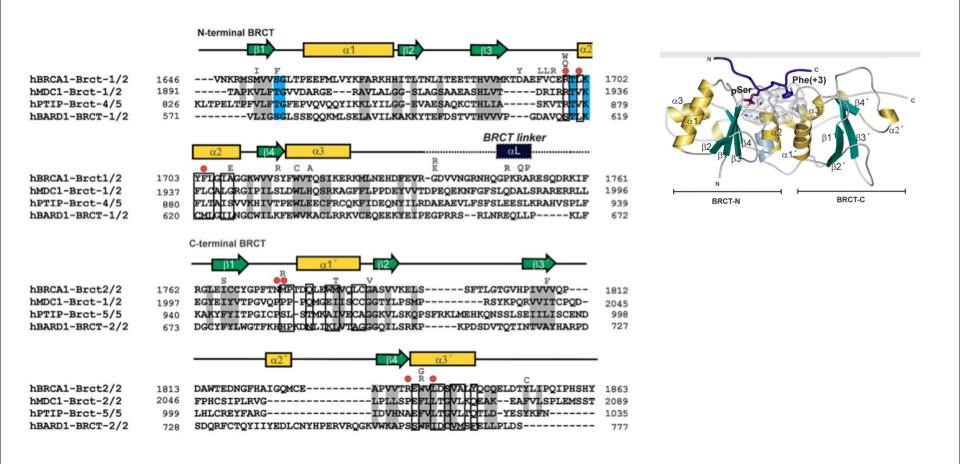
Interpretation

GENETIC VARIANT OF UNCERTAIN SIGNIFICANCE

The BRCA2 variant H2116R results in the substitution of arginine for histidine at amino acid position 2116 of the BRCA2 protein. Variants of this type may or may not affect BRCA2 protein function. Therefore, the contribution of this variant to the relative risk of breast or ovarian cancer cannot be established solely from this analysis. The observation by Myriad Genetic Laboratories of this particular variant in an individual with a deleterious truncating mutation in BRCA2, however, reduces the likelihood that H2116R is itself deleterious.

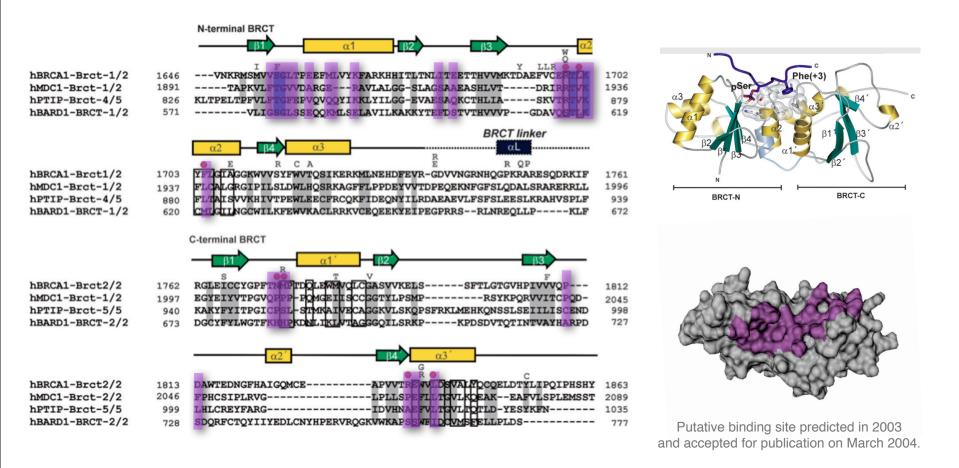

Authorized Signature:

Brian E. Ward, Ph.D. Laboratory Director Thomas S. Frank, M.D. Medical Director

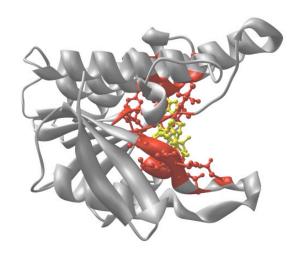

These testresults should only be used in conjunction with the pacent's chrical history and any previous analysis of appropriate family mornibers. It is strongly recommended that thisse results be communicated to the pallertian is setting that includes appropriate counseling. The accommanying Technical Specifications summary describes the analysis, method, performance characteristics, nomenciouse, and interpreting ordinal of this test. This test may be considered investigational by some states. This test was developed and its performance characteristics determined by Myrad Genetic Laboratories. Blues not been reviewed by the U.S. Food and Ortig Administration. The FDA has determined that such determined or approval is not necessary.

Missense mutations in BRCT domains by function

cancer not cancer associated associated F1761S M1652K L1705PS L1657P C1697R 1715NS1 M1775E E1660G R1699W 722FF17 M1775K no transcription H1686Q A1708E L1780P 34LG173 R1699Q S1715R **I1807S** activation 8EG174 K1702E P1749R V1833E M1775R 3RA175 Y1703HF A1843T 2PF1761 1704S V1665M D1692N transcription G1706A M1652I D1733G activation A1669S M1775V P1806A A1823T M1652T W1718S R1751P C1787S V1653M T1720A R1751Q V1833M G1788D L1664P W1837R W1730S G1788V R1758G G1803A F1734S W1837G T1685A L1764P V1804D E1735K S1841N T1685I **I1766S** V1736A V1808A A1843P M1689R P1771L **G1738R** V1809A T1852S D1692Y D1739E T1773S V1809F P1856T F1695L D1739G P1776S V1810G P1859R V1696L D1739Y Q1811R **D1778N** R1699L P1812S D1778G V1741G G1706E N1819S **D1778H** H1746N W1718C M1783T



Putative binding site on BRCA1



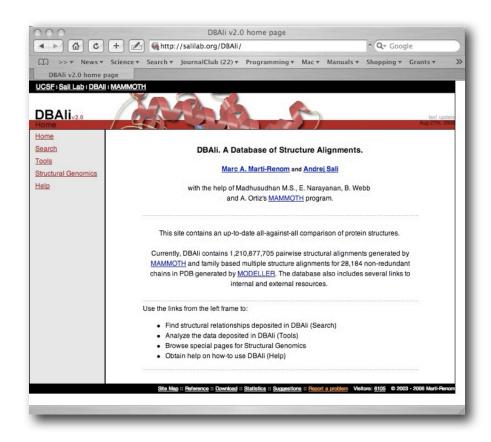
Williams *et al.* 2004 Nature Structure Biology. **June 2004 11**:519 Mirkovic *et al.* 2004 Cancer Research. **June 2004 64**:3790

Putative binding site on BRCA1

Williams *et al.* 2004 Nature Structure Biology. **June 2004 11**:519 Mirkovic *et al.* 2004 Cancer Research. **June 2004 64**:3790

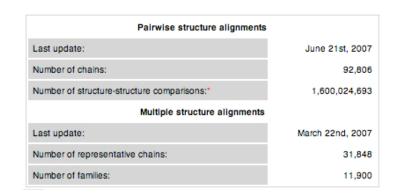
Comparative annotationThe AnnoLite and AnnoLyze programs

For 20% protein structures function is *unknown*


	Structural Genomics*	Traditional methods
Annotaated**	654	28,342
Not Annotaated	506 (43.6%)	6,815 (19,4%)
Total deposited	1,160	35,157

* annotated as STRUCTURAL GENOMICS in the header of the PDB file **annotated with either CATH, SCOP, Pfam or GO terms in the MSD database 36,317 protein structures, as of August 8th, 2006

DBAliv2.0 database

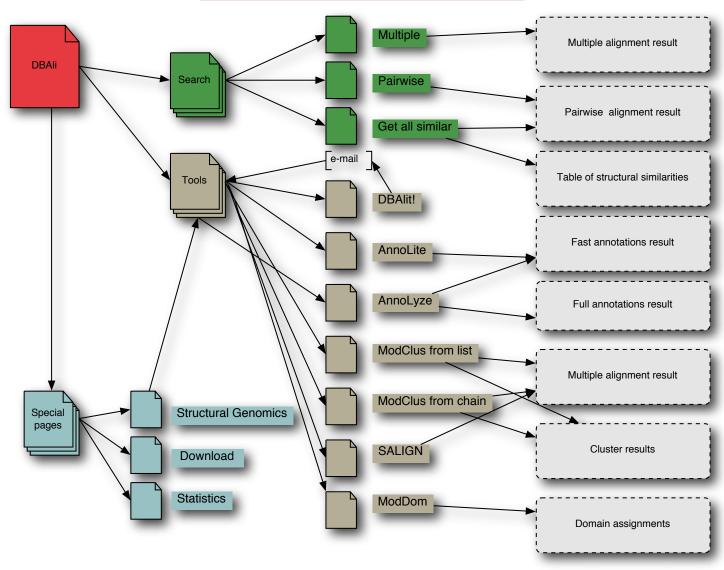

http://bioinfo.cipf.es/squ/services/DBAli/

http://www.salilab.org/DBAli/

- √ Fully-automatic
- ✓ Data is kept up-to-date with PDB releases
- ✓ Tools for "on the fly" classification of families.
- ✓ Easy to navigate
- ✓ Provides tools for structure analysis

Does not provide a stable classification similar to that of CATH or SCOP

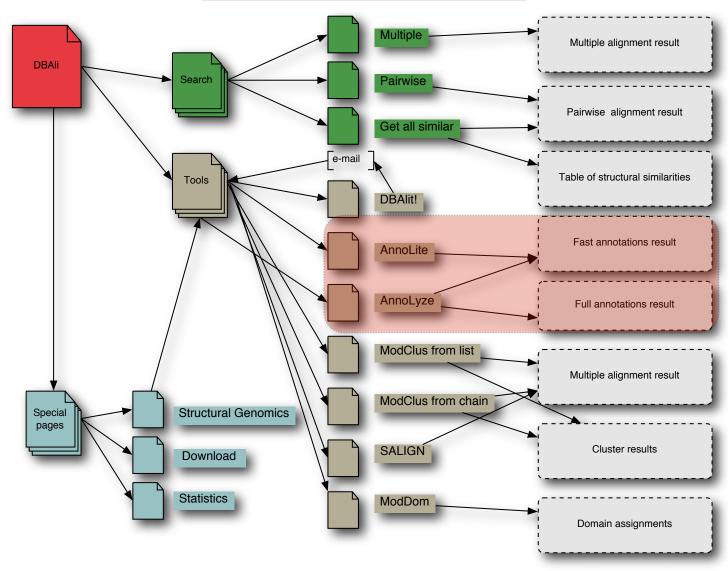
Uses MAMMOTH for similarity detection


- √ VERY FAST!!!
- √ Good scoring system with significance

Ortiz AR, (2002) Protein Sci. 11 pp2606

DBAliv2.0 database

http://bioinfo.cipf.es/squ/services/DBAli/


http://www.salilab.org/DBAli/

DBAliv2.0 database

http://bioinfo.cipf.es/squ/services/DBAli/

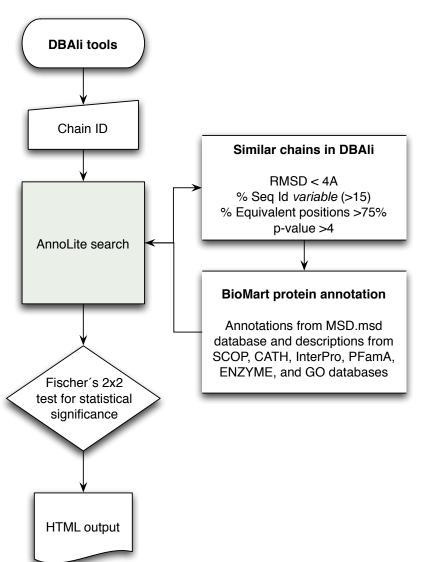
http://www.salilab.org/DBAli/

AnnoLite

	Com	.P-value	Link	Description
		7.5e-99		1,4-Beta-D-Glucan Cellobiohydrolase I, subunit A
SCOP:		0.00	<u>b.29.1.10</u>	Glycosyl hydrolase family 7 catalytic core
PFAM:	•	0.00	PF00840	Glycosyl hydrolase family 7
InterPro:	•	1.3e-99 6.0e-51 1.0e-42	IPR001722 IPR008985 IPR000254	Glycoside hydrolase, family 7 Concanavalin A-like lectin/glucanase Cellulose-binding region, fungal
EC Number:	•	1.2e-44 6.0e-41	3.2.1.91 3.2.1.4	Cellulose 1,4-beta-cellobiosidase. Cellulase.
GO Molecular Function:	•	6.0e-36	0030248	cellulose binding 4
	•	8.4e-36	0016162	cellulose 1,4-beta-cellobiosidase activity 🗧
	•	1.0e-35	0004553	hydrolase activity, hydrolyzing O-glycosyl compounds 🟅
	•	1.4e-30	0008810	cellulase activity 🕹
	•	3.1e-20	0016798	hydrolase activity, acting on glycosyl bonds $ \zeta $
	•	1.0e+0	0016787	hydrolase activity 🕹
GO Biological Process:	•	1.1e-63	0030245	cellulose catabolism 🕻
	•	1.2e-54	0000272	polysaccharide catabolism 🕹
	•	3.6e-20	0005975	carbohydrate metabolism 🟅
GO Cellular Component:	•	1.2e-23	0005576	extracellular region 🕹

- Information annotated in the MSD database.
- High, o medium and low confidence annotations not annotated in the MSD database.
- High, @ medium and @ low confidence annotations already annotated in the MSD database.

Benchmark set


	Number of chains
Initial set*	50,223
FULL annotation**	10,997
Non-redundant set***	1,879

*data from BioMart MSD.3 (release February 2005)

^{**}annotated with CATH, SCOP, Pfam, EC, InterPro, and GO terms in the MSD database

^{**}not two chains can be structurally aligned within 2A, superimposing more than 60% of their C atoms and have a length difference inferior to 30aa

Method

AnnoLite results for chain 1gpi: A based on 44 structural similar chains.

	Con	f. P-value	Link	Description
CATH:	•	7.5e-99	2.70.100.10	1,4-Beta-D-Glucan Cellobiohydrolase I, subunit A
SCOP:	•	0.00	b.29.1.10	Glycosyl hydrolase family 7 catalytic core
PFAM:	•	0.00	PF00840	Glycosyl hydrolase family 7
InterPro:	•	1.3e-99	IPR001722	Glycoside hydrolase, family 7
		6.0e-51	IPR008985	Concanavalin A-like lectin/glucanase
	•	1.0e-42	IPR000254	Cellulose-binding region, fungal
EC Number:	•	1.2e-44	3.2.1.91	Cellulose 1,4-beta-cellobiosidase.
	•	6.0e-41	3.2.1.4	Cellulase.
GO Molecular Function:	•	6.0e-36	0030248	cellulose binding 🛴
	0	8.4e-36	0016162	cellulose 1,4-beta-cellobiosidase activity 🕹
	•	1.0e-35	0004553	hydrolase activity, hydrolyzing O-glycosyl compounds ζ
	•	1.4e-30	0008810	cellulase activity 🗧
	•	3.1e-20	0016798	hydrolase activity, acting on glycosyl bonds ζ
	•	1.0e+0	0016787	hydrolase activity 🟅
GO Biological Process:	•	1.1e-63	0030245	cellulose catabolism 🟅
	•	1.2e-54	0000272	polysaccharide catabolism 🟅
	•	3.6e-20	0005975	carbohydrate metabolism 🟅
GO Cellular Component:	•	1.2e-23	0005576	extracellular region 🟅

- Information annotated in the MSD database.
- Hgh, o medium and low confidence annotations not annotated in the MSD database.
- High, medium and low confidence annotations already annotated in the MSD database.

Scoring function

Fisher's 2x2 contingency test

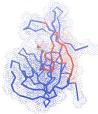
	Non- similar	Similar	Total
Annotated	а	b	a+b
Not Annotated	С	d	c+d
Total	a+c	b+d	n

1b78A SCOP c.51.4.1	Similar	Not similar	Total
Annotated	4	2	6
Not Annotated	0	71,096	71,096
Total	4	71,098	71,102

$$p = \binom{a+b}{a} \binom{c+d}{c} / \binom{n}{a+c}$$
$$= \frac{(a+b)!(c+d)!(a+c)!(b+d)!}{n!a!b!c!d!}$$

$$p = 1.78e^{-19}$$

Sensitivity .vs. Precision


	Optimal cut-off	Sensitivity (%) Recall or TPR	Precision (%)
SCOP fold	1e-6	92.7	88.4
CATH fold	1e-3	95.7	90.1
InterPro	1e-3	88.4	78.2
PFam family	1e-4	90.5	82.8
EC number	1e-4	93.3	79.7
GO Molecular Function	1e-1	84.3	80.9
GO Biological Process	1e-3	85.5	74.8
GO Cellular Component	1e-2	77.6	58.6

Sensitivity =
$$\frac{TP}{TP + FN}$$
 Precision = $\frac{TP}{TP + FP}$

AnnoLyze

<u>d.113.1.1</u>	23.68	0.948		19 20 50 51 52 53 54 55 56 57 58 77 78 79 80 81 82 83 84 85 93 95 97 99 134 135 138 142 145		
Partner	Av. binding site seq. id.	Av. residue conservatio		Residues in predicted binding site (size proportional to the local conservation)		
ACY nherited pa	15. artners:1	87	<u>0.163</u>	23 29 31 37 44 45 81 83 85 94 96 98 103 121 135		
<u>80G</u>	20.	00	0.111	<u>0.111</u> 19 20 21 48 49 51 96 98 136		
	20.			23 29 31 37 44 48 49 83 85 94 96 103 121		
				<u>0.185</u> 48 49 52 62 63 66 67 113 116		

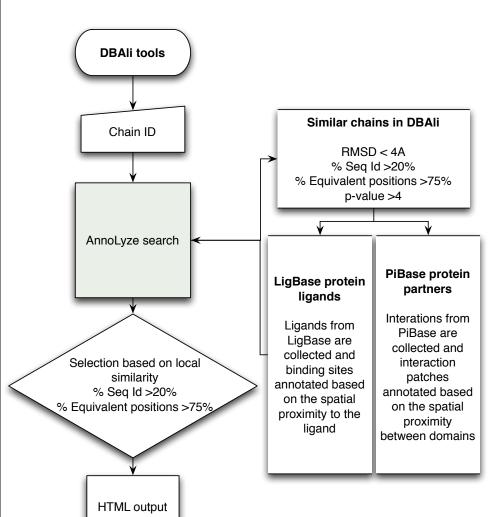
Benchmark

	Number of chains
Initial set*	78,167
LigBase**	30,126
Non-redundant set***	4,948 (8,846 ligands)

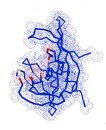
*all PDB chains larger than 30 aminoacids in length (8th of August, 2006)

**annotated with at least one ligand in the LigBase database

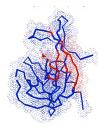
***not two chains can be structurally aligned within 3A, superimposing more than 75% of their C atoms, result in a sequence alignment with more than 30% identity, and have a length difference inferior to 50aa


	Number of chains
Initial set*	78,167
πBase**	30,425
Non-redundant set***	4,613 (11,641 partnerships)

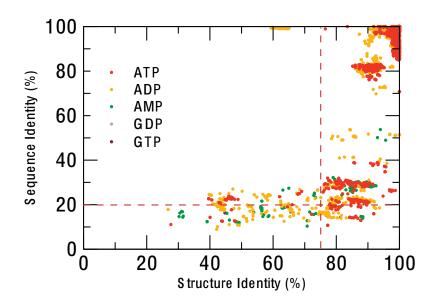
*all PDB chains larger than 30 aminoacids in length (8th of August, 2006)


**annotated with at least one partner in the Base database

***not two chains can be structurally aligned within 3A, superimposing more than 75% of their C atoms, result in a sequence alignment with more than 30% identity, and have a length difference inferior to 50aa


Method

Inherited I	igands: 4		
Ligand	Av. binding site seq. id.	Av. residue conservation	Residues in predicted binding site (size proportional to the local conservation)
MO2	59.03	0.185	48 49 52 62 63 66 67 113 116
CRY	20.00	0.111	23 29 31 37 44 48 49 83 85 94 96 103 121
80G	20.00	<u>0.111</u>	19 20 21 48 49 51 96 98 136
<u>ACY</u>	15.87	0.163	23 29 31 37 44 45 81 83 85 94 96 98 103 121 135



inherited pa	irtners:1		
Partner	Av. binding site seq. id.	Av. residue conservation	Residues in predicted binding site (size proportional to the local conservation)
<u>d.113.1.1</u>	23.68	0.948	19 20 50 51 52 53 54 55 56 57 58 77 78 79 80 81 82 83 84 85 93 95 97 99 134 135 138 142 145

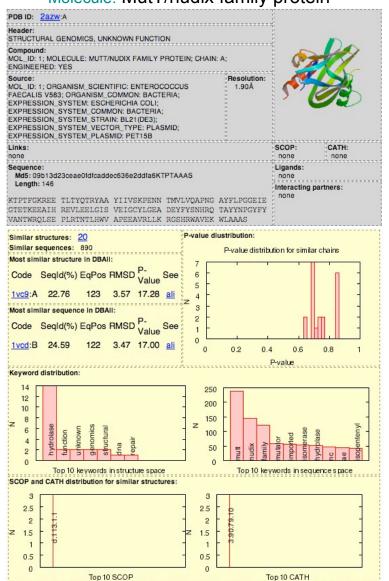
Scoring function

Ligands

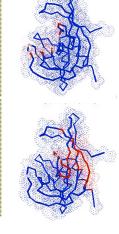
Partners

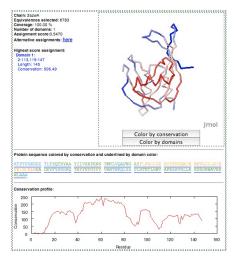
Aloy et al. (2003) J.Mol.Biol. 332(5):989-98.

Sensitivity .vs. Precision


	Optimal cut-off	Sensitivity (%) Recall or TPR	Precision (%)	
Ligands	30%	71.9	13.7	
Partners	40%	72.9	55.7	

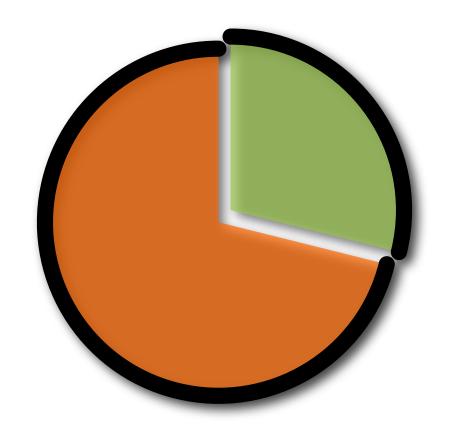
Sensitivity =
$$\frac{TP}{TP + FN}$$
 Precision = $\frac{TP}{TP + FP}$


Example (2azwA)


Structural Genomics Unknown Function

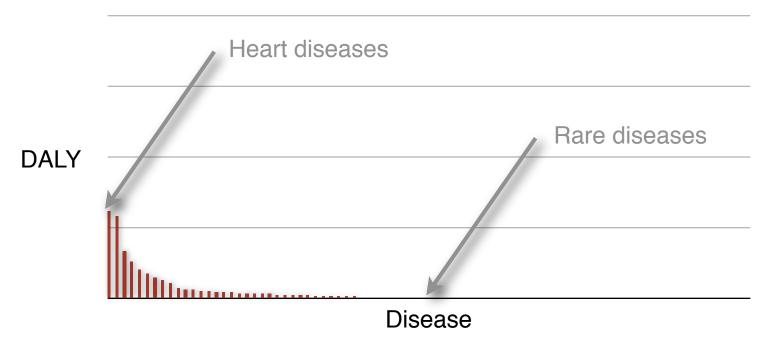
Molecule: MutT/nudix family protein

<u>d.113.1.1</u>	23.68	0.948		19 20 50 51 52 53 54 55 56 57 58 77 78 79 80 81 82 83 84 85 93 95 97 99 134 135 138 142 145		
Partner	Av. binding site seq. id.	Av. residu conservati		Residues in predicted binding site (size proportional to the local conservation)		
nherited partners:1						
ACY	15.	87	0.163	23 29 31 37 44 45 81 83 85 94 96 98 103 121 135		
8OG	20.	00	0.111	19 20 21 48 49 51 96 98 136		
CRY	20.	00	0.111	23 29 31 37 44 48 49 83 85 94 96 103 121		
MO2	59.	03	0.185	48 49 52 62 63 66 67 113 116		
Ligand	Av. bind seq.		Av. residue conservation	Residues in predicted binding site (size proportional to the local conservation)		



	-value	Link	Description
• 1.	.1e-20	3.90.79.10	Nucleoside Triphosphate Pyrophosphohydrolase
• 4.	.20-29	<u>d.113.1.1</u>	MutT-like
• 2.	.0e-74	PF00293	NUDIX domain
• 1.	.9e-65	IPR000086	NUDIX hydrolase
. 2.	.7e-20	IPR003561	Mutator MutT
• 2.	.9e-14	IPR002667	Isopentenyl-diphosphate delta-isomerase
• 1.	.7e-4	3.6.1.17	Bis(5'-nucleosyl)-tetraphosphatase (asymmetrical)
• 4.	.5e-19	0008413	8-oxo-7,8-dihydroguanine triphosphatase activity \checkmark
• 3.	.8e-13	0004452	isopentenyl-diphosphate delta-isomerase activity $\boldsymbol{\zeta}$
• 1.	.9e-6	0016787	hydrolase activity 🕻
• 5.	.4e-3	0004081	bis(5'-nucleosyl)-tetraphosphatase (asymmetrical) activity ζ
• 1.	.90-2	0000287	magnesium ion binding $ \zeta $
• 7.	.70-11	0008299	isoprenoid biosynthesis 🗧
• 1.	.5e-5	0006974	response to DNA damage stimulus 💰
• 1.	.7e-5	0006260	DNA replication 4
• 2.	.4e-5	0006281	DNA repair 🗧
	 4 2 1 2 2 1 4 3 1 5 1 7 1 1 1 	2.06-74 1.96-65 2.76-20 2.96-14 1.76-4 4.56-19 3.86-13 1.96-6 5.46-3 1.96-2	 4.2e-29 d.113.1.1 2.0e-74 PF00293 1.9e-65 PR000086 2.7e-20 PR003661 2.9e-14 PR002667 1.7e-4 3.6.1.17 4.5e-19 0008413 3.8e-13 0004452 1.9e-6 0016787 5.4e-3 0004081 1.9e-2 0000287 7.7e-11 0008299 1.5e-5 0006974 1.7e-5 0006260

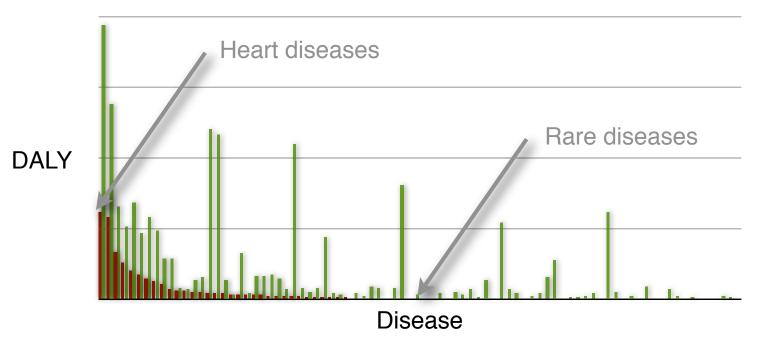
Tropical Disease Initiative (TDI)


Predicting binding sites in protein structure models.

http://www.tropicaldisease.org

Need is High in the Tail

- DALY Burden Per Disease in Developed Countries
- DALY Burden Per Disease in Developing Countries


Disease data taken from WHO, <u>World Health Report 2004</u>
DALY - Disability adjusted life years

DALY is not a perfect measure of market size, but is certainly a good measure for importance.

DALYs for a disease are the sum of the years of life lost due to premature mortality (YLL) in the population and the years lost due to disability (YLD) for incident cases of the health condition. The DALY is a health gap measure that extends the concept of potential years of life lost due to premature death (PYLL) to include equivalent years of 'healthy' life lost in states of less than full health, broadly termed disability. One DALY represents the loss of one year of equivalent full health.

Need is High in the Tail

- DALY Burden Per Disease in Developed Countries
- DALY Burden Per Disease in Developing Countries

Disease data taken from WHO, World Health Report 2004

DALY - Disability adjusted life years

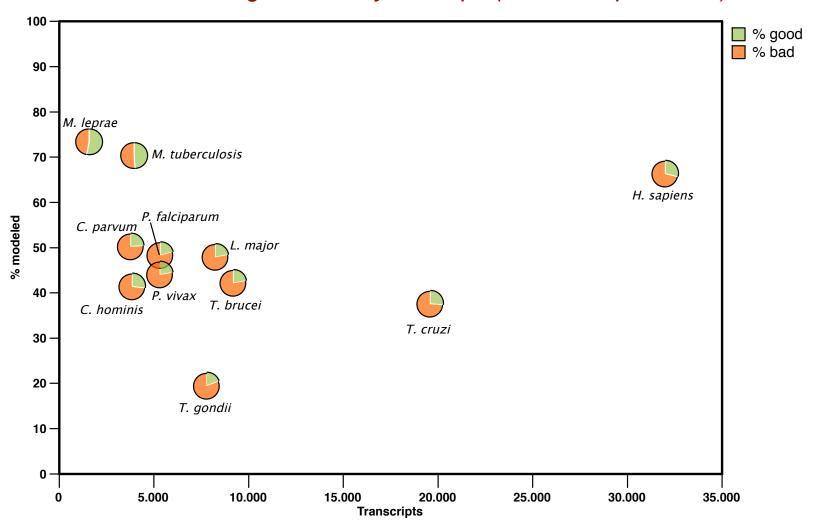
DALY is not a perfect measure of market size, but is certainly a good measure for importance.

DALYs for a disease are the sum of the years of life lost due to premature mortality (YLL) in the population and the years lost due to disability (YLD) for incident cases of the health condition. The DALY is a health gap measure that extends the concept of potential years of life lost due to premature death (PYLL) to include equivalent years of 'healthy' life lost in states of less than full health, broadly termed disability. One DALY represents the loss of one year of equivalent full health.

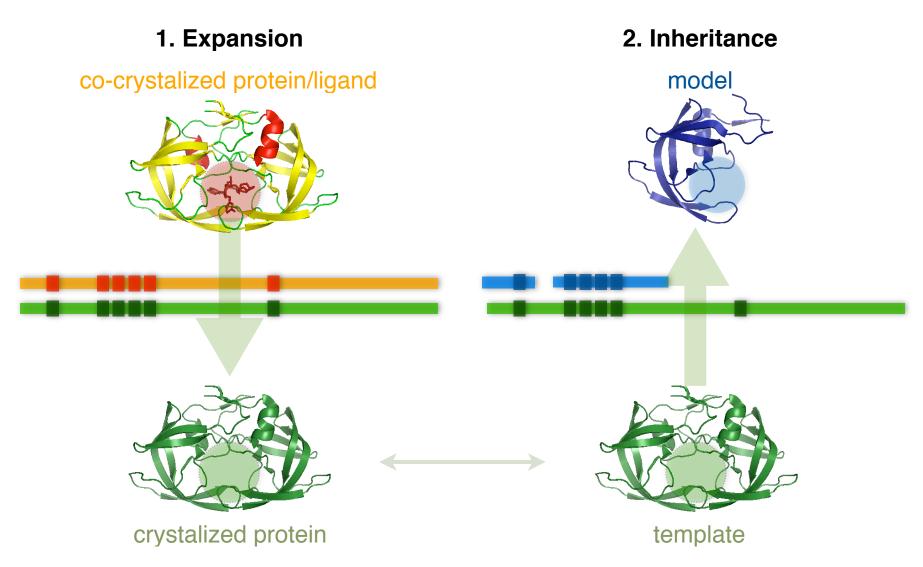
"Unprofitable" Diseases and Global DALY (in 1000's)

Malaria*	46,486
Tetanus	7,074
Lymphatic filariasis*	5,777
Syphilis	4,200
Trachoma	2,329
Leishmaniasis*	2,090
Ascariasis	1,817
Schistosomiasis*	1,702
Trypanosomiasis*	1,525

Trichuriasis	1,006
Japanese encephalitis	709
Chagas Disease*	667
Dengue*	616
Onchocerciasis*	484
Leprosy*	199
Diphtheria	185
Poliomyelitise	151
Hookworm disease	59


Disease data taken from WHO, World Health Report 2004

DALY - Disability adjusted life year in 1000's.


* Officially listed in the WHO Tropical Disease Research disease portfolio.

Modeling Genomes

data from models generated by ModPipe (Eswar, Pieper & Sali)

Comparative docking

Summary table

models with inherited ligands

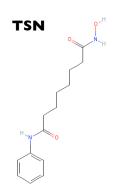
from 16,284 good models, 295 inherited a ligand/substance with at least one compound already approved by FDA and ready to be used from ZINC

	Transcripts	Good	Ligands	Lipinski	Lipinski+ZINC	FDA+ZINC
C. hominis	3,886	886	183	131	28	12 (10)
C. parvum	3,806	949	219	145	30	12 (10)
L. major	8,274	1,845	488	334	84	44 (34)
М. Іергае	1,605	1,321	286	189	39	29 (25)
M. tuberculosis	3,991	2,887	404	285	71	44 (37)
P. falciparum	5,363	1,057	271	191	48	20 (16)
P. vivax	5,342	1,042	267	177	37	18 (15)
T. brucei	921	1,795	440	309	94	46 (36)
T. cruzi	19,607	3,915	730	493	127	62 (52)
T. gondii	7,793	587	174	124	28	8 (7)
TOTAL	60,588	16,284	3,462	2,378	586	295 (242)

Example of inheritance (expansion)

LmjF21.0680 from L. major "Histone deacetylase 2" (model 1)

Template 1t64A a human HDAC8 protein.

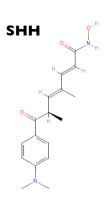


	Origen	Formula	Name	Cov.	Seq, Id. (%)
ZN	X-ray	Zn ²⁺	Zinc ion		
NA	X-ray	Na ⁺	Sodium ion		
CA	X-ray	Ca ²⁺	Calcium ion		
TSN	X-ray	C ₁₇ H ₂₂ N ₂ O ₃	Trichostatin A		
ѕнн	Expanded	C ₁₄ H ₂₀ N ₂ O ₃	Octadenioic acid hudroxyamide phenylamide	100.00	83.8

Example of inheritance (inheritance)

LmjF21.0680 from L. major "Histone deacetylase 2" (model 1)

	Formula	Name	Cov.	Seq, Id. (%)	Residues
TSN	C ₁₇ H ₂₂ N ₂ O ₃	Trichostatin A	100.00	90.9	90 131 132 140 141 167
sнн	C ₁₄ H ₂₀ N ₂ O ₃	Octadenioic acid hudroxyamide phenylamide	100.00	90.9	169 256 263 293 295

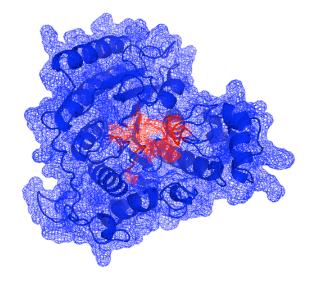


suberoylanilide hydroxamic acid

Pharmacological Action:

Anti-Inflammatory Agents, Non-Steroidal
Antineoplastic Agents
Enzyme Inhibitors
Anticarcinogenic Agents

Inhibits histone deacetylase I and 3


trichostatin A

Pharmacological Action:

Antibiotics, Antifungal
Enzyme Inhibitors
Protein Synthesis Inhibitors

chelates zinc ion in the active site of histone deacetylases, resulting in preventing histone unpacking so DNA is less available for transcription

	LmjF21.0680.1.pdb
Template	It64A
Seq. Id (%)	38.00
MPQS	1.47

Example of inheritance (CDD-Roos-literature)

LmjF21.0680 from L. major "Histone deacetylase 2" (model 1)

Proc. Natl. Acad. Sci. USA Vol. 93, pp. 13143–13147, November 1996 Medical Sciences

Apicidin: A novel antiprotozoal agent that inhibits parasite histone deacetylase

(cyclic tetrapeptide/Apicomplexa/antiparasitic/malaria/coccidiosis)

Sandra J. Darkin-Rattray*†, Anne M. Gurnett*, Robert W. Myers*, Paula M. Dulski*, Tami M. Crumley*, John J. Allocco*, Christine Cannova*, Peter T. Meinke‡, Steven L. Colletti‡, Maria A. Bednarek‡, Sheo B. Singh§, Michael A. Goetz§, Anne W. Dombrowski§, Jon D. Polishook§, and Dennis M. Schmatz*

Departments of *Parasite Biochemistry and Cell Biology, ‡Medicinal Chemistry, and §Natural Products Drug Discovery, Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065

Antimicrobial Agents and Chemotherapy, Apr. 2004, p. 1435–1436 0066-4804/04/\$08.00+0 DOI: 10.1128/AAC.48.4.1435–1436.2004 Copyright © 2004, American Society for Microbiology. All Rights Reserved.

Vol. 48, No. 4

Antimalarial and Antileishmanial Activities of Aroyl-Pyrrolyl-Hydroxyamides, a New Class of Histone Deacetylase Inhibitors

Acknowledgments

COMPARATIVE MODELING Andrej Sali (UCSF)

M. S. Madhusudhan (UCSF)

Narayanan Eswar (UCSF)

Ursula Pieper (UCSF) Nebosja Mirkovic (RU)

PEROXISOMAL PROTEINS

Toni Gabaldón (CIPF)

MODEL ASSESSMENT

David Eramian Min-Yi Shen

FUNCTIONAL ANNOTATION Andrea Rossi Fred Davis

FUNDING

Prince Felipe Research Center Marie Curie Reintegration Grant

STREP EU Grant

Generalitat Valenciana

MODEL ASSESSMENT

Francisco Melo (CU) Alejandro Panjkovich (CU)

STRUCTURAL GENOMICS

Stephen Burley (SGX) John Kuriyan (UCB) NY-SGXRC

MAMMOTH Angel R. Ortiz

FUNCTIONAL ANNOTATION

Fatima Al-Shahrour Joaquin Dopazo

Jeff Friedman (RU)

BIOLOGY

James Hudsped (RU)
Partho Ghosh (UCSD) **Alvaro Monteiro (Cornell U)**Stephen Krilis (St.George H)

Tropical Disease Initiative
Stephen Maurer (UC Berkeley)
Arti Rai (Duke U)
Andrej Sali (UCSF)
Ginger Taylor (TSL)

CCPR Functional Proteomics

Patsy Babbitt (UCSF) Fred Cohen (UCSF) Ken Dill (UCSF) Tom Ferrin (UCSF) John Irwin (UCSF)

Matt Jacobson (UCSF)

Tack Kuntz (UCSF)

Andrej Sali (UCSF)
Brian Shoichet (UCSF)

Chris Voiat (UCSF)

EVA

Burkhard Rost (Columbia U)
Alfonso Valencia (CNB/UAM)

CAMP

Xavier Aviles (UAB)

Urrich Wendt (SANOFI-AVENTIS)

Ernst Meinjohanns (UAB)

Boris Turk (IJS)

Markus Gruetter (UE)

Matthias Wilmanns (EMBL)

Wolfram Bode (MPG)

http://bioinfo.cipf.es/sgu/