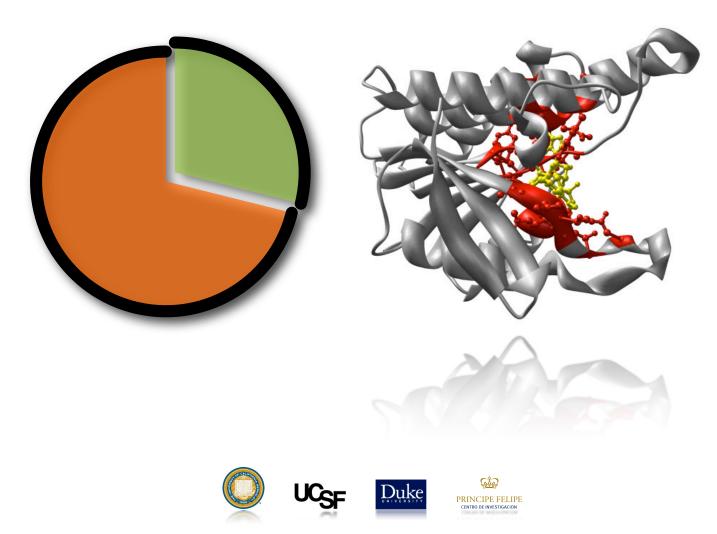
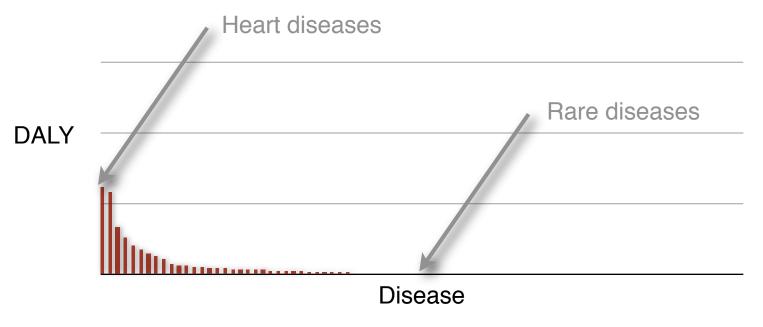

The Tropical Disease Initiative

Comparative docking on protein structure models from ten tropical disease genomes.



Prince Felipe Resarch Center (CIPF), Valencia, Spain

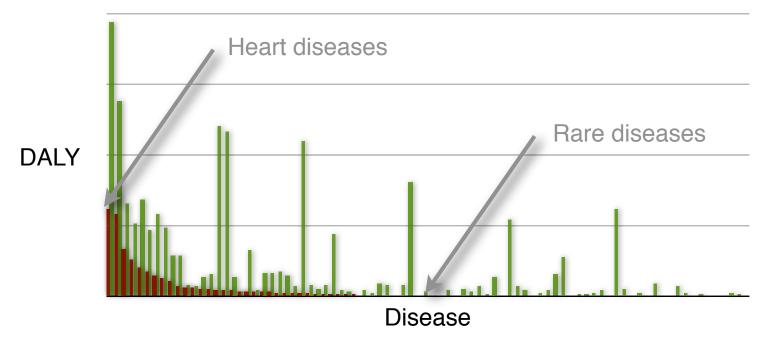
Bioinformatics Department



Predicting binding sites in protein structure models.

Need is High in the Tail

DALY Burden Per Disease in Developed CountriesDALY Burden Per Disease in Developing Countries


Disease data taken from WHO, <u>World Health Report 2004</u> DALY - Disability adjusted life years

DALY is not a perfect measure of market size, but is certainly a good measure for importance.

DALYs for a disease are the sum of the years of life lost due to premature mortality (YLL) in the population and the years lost due to disability (YLD) for incident cases of the health condition. The DALY is a health gap measure that extends the concept of potential years of life lost due to premature death (PYLL) to include equivalent years of 'healthy' life lost in states of less than full health, broadly termed disability. One DALY represents the loss of one year of equivalent full health.

Need is High in the Tail

DALY Burden Per Disease in Developed CountriesDALY Burden Per Disease in Developing Countries

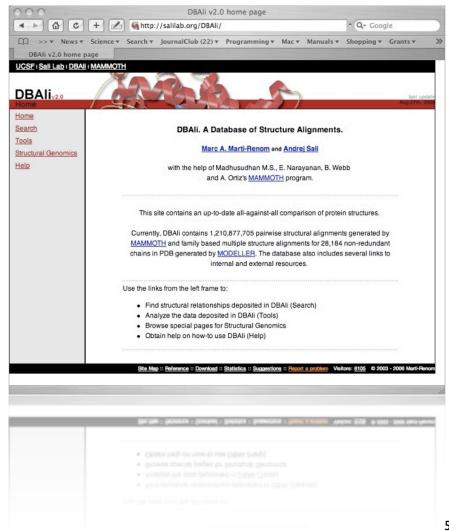
Disease data taken from WHO, <u>World Health Report 2004</u> DALY - Disability adjusted life years

DALY is not a perfect measure of market size, but is certainly a good measure for importance.

DALYs for a disease are the sum of the years of life lost due to premature mortality (YLL) in the population and the years lost due to disability (YLD) for incident cases of the health condition. The DALY is a health gap measure that extends the concept of potential years of life lost due to premature death (PYLL) to include equivalent years of 'healthy' life lost in states of less than full health, broadly termed disability. One DALY represents the loss of one year of equivalent full health.

"Unprofitable" Diseases and Global DALY (in 1000's)

Malaria*	46,486	Trichuriasis	1,006
Tetanus	7,074	Japanese encephalitis	709
Lymphatic filariasis*	5,777	Chagas Disease*	667
Syphilis	4,200	Dengue*	616
Trachoma	2,329	Onchocerciasis*	484
Leishmaniasis*	2,090	Leprosy*	199
Ascariasis	1,817	Diphtheria	185
Schistosomiasis*	1,702	Poliomyelitise	151
Trypanosomiasis*	1,525	Hookworm disease	59


Disease data taken from WHO, World Health Report 2004

DALY - Disability adjusted life year in 1000's.

* Officially listed in the WHO Tropical Disease Research disease portfolio.

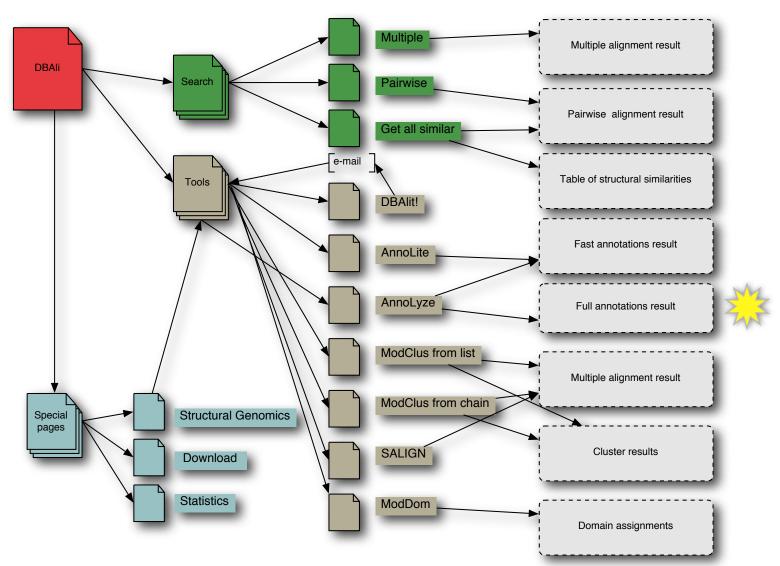
DBAliv2.0 database

http://www.dbali.org

- ✓ Fully-automatic
- ✓ Data is kept up-to-date with PDB releases
- ✓ Tools for "on the fly" classification of families.
- ✓ Easy to navigate
- ✓ Provides tools for structure analysis

Does not provide a stable classification similar to that of CATH or SCOP

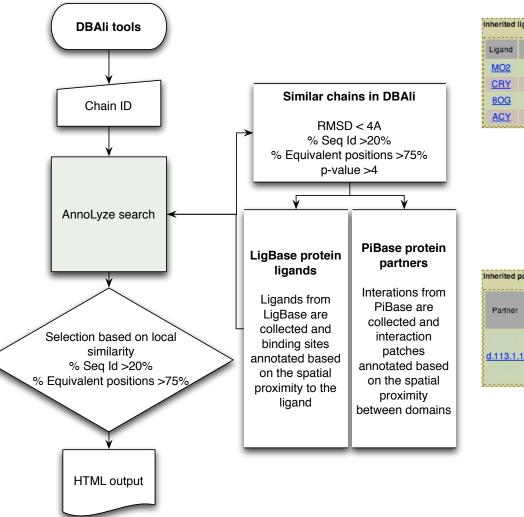
Pairwise structure alignments					
Last update:	October 6th, 2				
Number of chains:	96,				
Number of structure-structure comparisons:*	1,748,371,				
Multiple structure alignments					
Last update:	August 1st, 2				
Number of representative chains:	34,				
Number of families:	12,7				

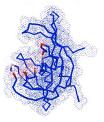

Uses MAMMOTH for similarity detection

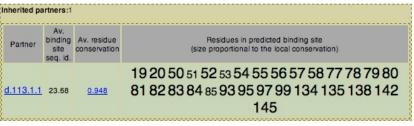
- ✓ VERY FAST!!!
- ✓ Good scoring system with significance

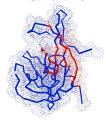
Ortiz AR, (2002) Protein Sci. 11 pp2606 Marti-Renom et al. 2001. Bioinformatics. 17, 746

DBAliv2.0 database

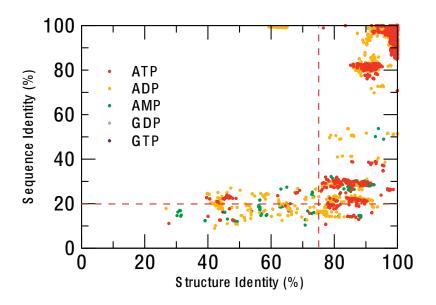

http://www.dbali.org

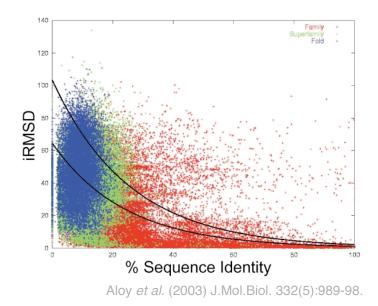

Marti-Renom et al. BMC Bioinformatics (2007) Volume 8. Suppl S4


AnnoLyze


Method

nherited ligands: 4					
Ligand	Av. binding site seq. id.	Av. residue conservation	Residues in predicted binding site (size proportional to the local conservation)		
<u>MO2</u>	59.03	0.185	48 49 52 62 63 66 67 113 116		
CRY	20.00	<u>0.111</u>	23 29 31 37 44 48 49 83 85 94 96 103 121		
<u>80G</u>	20.00	<u>0.111</u>	19 20 21 48 49 51 96 98 136		
ACY	15.87	0.163	23 29 31 37 44 45 81 83 85 94 96 98 103 121 135		




AnnoLyze

Scoring function

Ligands

Partners

Benchmark

	Number of chains		
Initial set*	78,167		
LigBase**	30,126		
Non-redundant set***	4,948 (8,846 ligands)		

*all PDB chains larger than 30 aminoacids in length (8th of August, 2006) **annotated with at least one ligand in the LigBase database

***not two chains can be structurally aligned within 3A, superimposing more than 75% of their Ca atoms, result in a sequence alignment with more than 30% identity, and have a length difference inferior to 50aa

	Number of chains		
Initial set*	78,167		
πBase **	30,425		
Non-redundant set***	4,613 (11,641 partnerships)		

*all PDB chains larger than 30 aminoacids in length (8th of August, 2006)

**annotated with at least one partner in the π Base database

***not two chains can be structurally aligned within 3A, superimposing more than 75% of their Cα atoms, result in a sequence alignment with more than 30% identity, and have a length difference inferior to 50aa

AnnoLyze

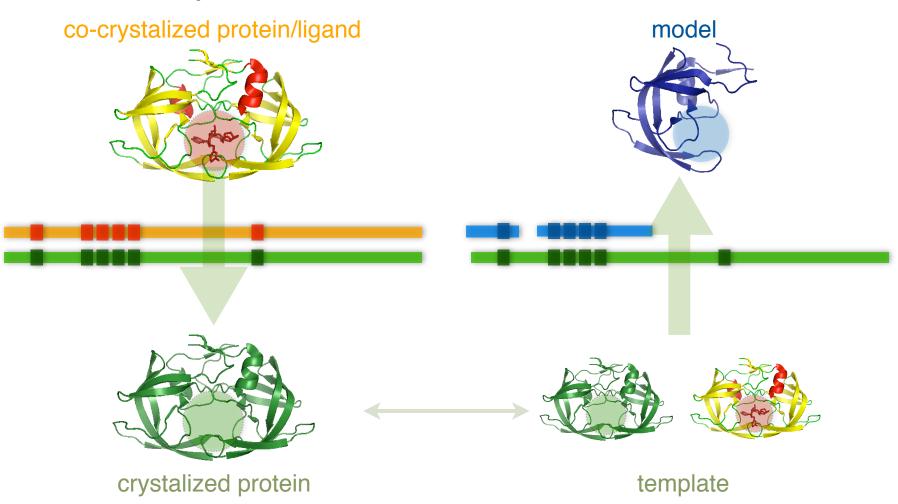
Sensitivity .vs. Precision

	Optimal cut-off	Sensitivity (%) Recall or TPR	Precision (%)
Ligands	30%	71.9	13.7
		Sensitivity =	$\frac{TP}{TP + FN} \text{Precision} = \frac{TP}{TP + FP}$

~90-95% of residues correctly predicted

Modeling Genomes

data from models generated by ModPipe (Eswar, Pieper & Sali)



A good model has MPQS of 1.1 or higher

Comparative docking

2. Inheritance

1. Expansion

Summary table

models with inherited ligands

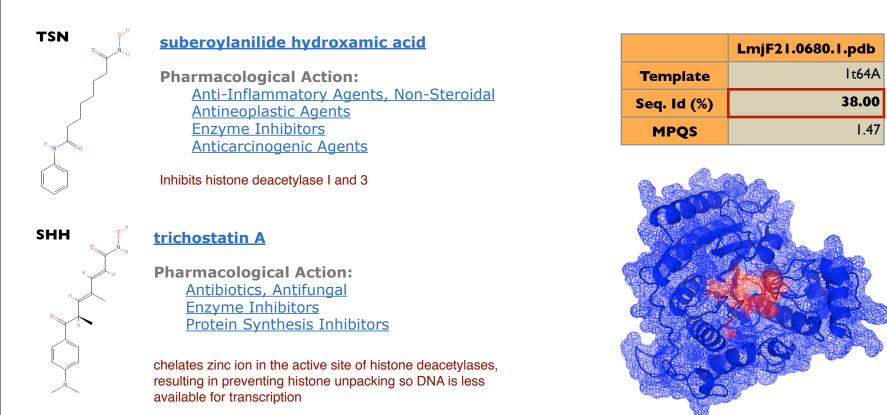

from 16,284 good models, 295 inherited a ligand/substance with at least one compound already approved by FDA and ready to be used from ZINC

	Transcripts	Good	Ligands	Lipinski	Lipinski+ZINC	FDA+ZINC
C. hominis	3,886	886	183	131	28	12 (10)
C. parvum	3,806	949	219	145	30	12 (10)
L. major	8,274	1,845	488	334	84	44 (34)
М. Іергае	I,605	1,321	286	189	39	29 (25)
M. tuberculosis	3,991	2,887	404	285	71	44 (37)
P. falciparum	5,363	1,057	271	191	48	20 (16)
P. vivax	5,342	1,042	267	177	37	18 (15)
T. brucei	921	1,795	440	309	94	46 (36)
T. cruzi	19,607	3,915	730	493	127	62 (52)
T. gondii	7,793	587	174	124	28	8 (7)
TOTAL	60,588	16,284	3,462	2,378	586	295 (242)

Example of inheritance (expansion)

LmjF21.0680 from L. major *"Histone deacetylase 2" (model 1)*

Template 1t64A a human HDAC8 protein.



	Origen	Formula	Name	Cov.	Seq, Id. (%)
ZN	X-ray	Zn ²⁺	Zinc ion		
NA	X-ray	Na *	Sodium ion		
СА	X-ray	Ca ²⁺	Calcium ion		
TSN	X-ray	$C_{17} H_{22} N_2 O_3$	Trichostatin A		
SHH	Expanded	C ₁₄ H ₂₀ N ₂ O ₃	Octadenioic acid hudroxyamide phenylamide	100.00	83.8

Example of inheritance (inheritance)

LmjF21.0680 from L. major "Histone deacetylase 2" (model 1)

	Formula	Name	Cov.	Seq, Id. (%)	Residues
TSN	C ₁₇ H ₂₂ N ₂ O ₃	Trichostatin A	100.00	90.9	90 131 132 140 141 167
SHH	C ₁₄ H ₂₀ N ₂ O ₃	Octadenioic acid hudroxyamide phenylamide	100.00	90.9	169 256 263 293 295

Example of inheritance (CDD-Roos-literature)

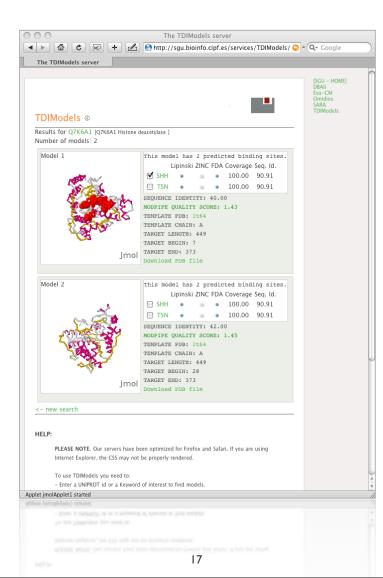
LmjF21.0680 from L. major *"Histone deacetylase 2" (model 1)*

Proc. Natl. Acad. Sci. USA Vol. 93, pp. 13143–13147, November 1996 Medical Sciences

Apicidin: A novel antiprotozoal agent that inhibits parasite histone deacetylase

(cyclic tetrapeptide/Apicomplexa/antiparasitic/malaria/coccidiosis)

Sandra J. Darkin-Rattray^{*†}, Anne M. Gurnett^{*}, Robert W. Myers^{*}, Paula M. Dulski^{*}, Tami M. Crumley^{*}, John J. Allocco^{*}, Christine Cannova^{*}, Peter T. Meinke[‡], Steven L. Colletti[‡], Maria A. Bednarek[‡], Sheo B. Singh[§], Michael A. Goetz[§], Anne W. Dombrowski[§], Jon D. Polishook[§], and Dennis M. Schmatz^{*}


Departments of *Parasite Biochemistry and Cell Biology, [‡]Medicinal Chemistry, and [§]Natural Products Drug Discovery, Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Apr. 2004, p. 1435–1436 0066-4804/04/\$08.00+0 DOI: 10.1128/AAC.48.4.1435–1436.2004 Copyright © 2004, American Society for Microbiology. All Rights Reserved. Vol. 48, No. 4

Antimalarial and Antileishmanial Activities of Aroyl-Pyrrolyl-Hydroxyamides, a New Class of Histone Deacetylase Inhibitors

TDI Models database

http://sgu.bioinfo.cipf.es/services/TDIModels/

Acknowledgments

COMPARATIVE MODELING Andrej Sali M. S. Madhusudhan

Narayanan Eswar Min-Yi Shen Ursula Pieper Ben Webb Maya Topf (Birbeck College)

MODEL ASSESSMENT David Eramian Min-Yi Shen Damien Devos

FUNCTIONAL ANNOTATION Andrea Rossi (Rinat-Pfizer) Fred Davis (Janelia Fram)

FUNDING

Prince Felipe Research Center Generalitat Valenciana STREP UE Grant Marie Curie Reintegration Grant MODEL ASSESSMENT Francisco Melo (CU) Alejandro Panjkovich (CU)

STRUCTURAL GENOMICS Stephen Burley (SGX) John Kuriyan (UCB) NY-SGXRC

MAMMOTH Angel R. Ortiz

FUNCTIONAL ANNOTATION Fatima Al-Shahrour Joaquin Dopazo

BIOLOGY

Jeff Friedman (RU) James Hudsped (RU) Partho Ghosh (UCSD) Alvaro Monteiro (Cornell U) Stephen Krilis (St.George H) Tropical Disease Initiative Stephen Maurer (UC Berkeley) Arti Rai (Duke U) Andrej Sali (UCSF) Ginger Taylor (TSL)

CCPR Functional Proteomics Patsy Babbitt (UCSF) Fred Cohen (UCSF) Ken Dill (UCSF) Tom Ferrin (UCSF) John Irwin (UCSF) Matt Jacobson (UCSF) Tack Kuntz (UCSF) Andrej Sali (UCSF) Brian Shoichet (UCSF) Chris Voigt (UCSF)

EVA Burkhard Rost (Columbia U) Alfonso Valencia (CNB/UAM

CAMP Xavier Aviles (UAB) Hans-Peter Nester (SANOFI) Ernst Meinjohanns (ARPIDA) Boris Turk (IJS) Markus Gruetter (UE) Matthias Wilmanns (EMBL) Wolfram Bode (MPG)

http://bioinfo.cipf.es/sgu/

http://www.tropicaldisease.org