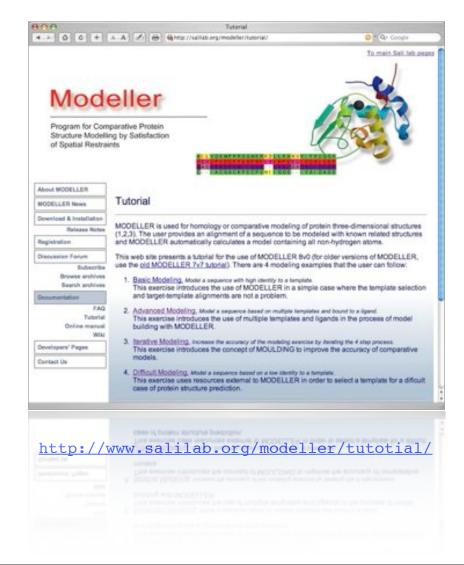
Comparative Protein Structure Prediction

Marc A. Marti-Renom

http://bioinfo.cipf.es/sgu/

Structural Genomics Unit Bioinformatics Department Prince Felipe Resarch Center (CIPF), Valencia, Spain

Program


Intro to comparative protein structure prediction

Template Search

Target – Template Alignment

Model Building

Model Evaluation

Objective

TO LEARN HOW-TO MODEL A 3D-STRUCTURE FROM A SEQUENCE AND A KNOWN STRUCTURE

DISCLAIMER!

Name	Type#	World Wide Web address ^b
DATABASES		
CATH	5	http://www.biochem.ucl.ac.uk/bsm/cath/
DBAII	s	http://www.salilab.org/DBAII/
GenBank	s	http://www.ncbi.nlm.nih.gov/Genbank/GenbankSearch.html
GeneCensus	s	http://bioinfo.mbb.yale.edu/genome
MODBASE	s	http://salilab.org/modbase/
MSD	s	http://www.rcsb.org/databases.html
NCBI	s	http://www.ncbi.nlm.nih.gov/
PDB	S	http://www.rcsb.org/pdb/
PS1	5	http://www.nigms.nih.gov/psi/
Sacch3D	s	http://genome-www.stanford.edu/Sacch3D/
SCOP	5	http://scop.mrc-lmb.cam.ac.uk/scop/
TIGR	s	http://www.tigr.org/tdb/mdb/mdbcomplete.html
TrEMBL	5	http://srs.ebi.ac.uk/
FOLD ASSIGNM	ENT	
123D	s	http://123d.ncifcrf.gov/
3D-PSSM	s	http://www.sbg.bio.ic.ac.uk/~3dpssm/
BIOINBGU	S	http://www.cs.bgu.ac.il/~bloinbgu/
BLAST	S	http://www.ncbi.nlm.nih.gov/BLAST/
DALI	s	http://www2.ebi.ac.uk/dall/
FASS	s	http://bioinformatics.burnham-inst.org/FFAS/index.html
FastA	s	http://www.ebi.ac.uk/fasta3/
FRSVR	S	http://fold.doe-mbi.ucia.edu/
FUGUE	s	http://www-cryst.bloc.cam.ac.uk/~fugue/

http://sgu.bioinfo.cipf.es/home/?page=resources

Programs, servers and databases

http://salilab.org

MODLOOP LS-SNP **PIBASE CCPR** Web Server **Database Web Server Center for Computational** http://salilab.org/LS-SNP http://salilab.org/modloop http://salilab.org/pibase **Proteomics Research** Predicts functional impact Contains structurally defined Models loops in protein http://www.ccpr.ucsf.edu of residue substitution protein interfaces structures **MODBASE DBALI MODWEB MODELLER Database Database Web Server Program** http://salilab.org/modbase http://salilab.org/dbali Fold assignments, alignments http://salilab.org/modweb http://salilab.org/modeller Contains a comprehensive models, model assessments Provides a web interface to Implements most operations set of pairwise and multiple for all sequences related to a **MODPIPE** in comparative modeling structure-based alignments known structure **EVA ICEDB MODPIPE LIGBASE Web Server** Database/LIMS **Program Database** http://salilab.org/eva http://nysgxrc.org Automatically calculates Ligand binding sites and Evaluates and ranks web Tracks targets for structural comparative models of many inheritance (accessible servers for protein structure through MODBASE) genomics by NYSGXRC protein sequences prediction

External Resources

PDB, Uniprot, GENBANK, NR, PIR, INTERPRO, Kinase Resource UCSC Genome Browser, CHIMERA, Pfam, SCOP, CATH

Nomenclature

Homology: Sharing a common ancestor, may have similar or dissimilar functions

Similarity: Score that quantifies the degree of relationship between two sequences.

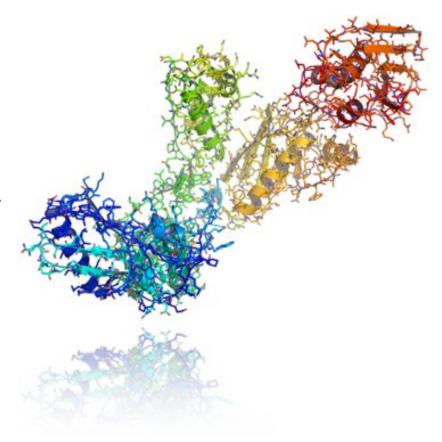
Identity: Fraction of identical aminoacids between two aligned sequences (case of similarity).

Target: Sequence corresponding to the protein to be modeled.

Template: 3D structure/s to be used during protein structure prediction.

Model: Predicted 3D structure of the target sequence.

Nomenclature


Fold: Three dimensional conformation of a protein sequence (usually at domain level).

Domain: Structurally globular part of a protein, which may independently fold.

Secondary Structure: Regular subdomain structures composed by alphahelices, beta-sheets and coils (or loops).

Backbone: Protein structure skeleton composed by the carbon, nitrogen and oxygen atoms.

Side-Chain: Specific atoms identifying each of the 20 residues types.

General References

Protein Structure Prediction:

Marti-Renom et al. Annu. Rev. Biophys. Biomol. Struct. 29, 291-325, 2000. Baker & Sali. Science 294, 93-96, 2001.

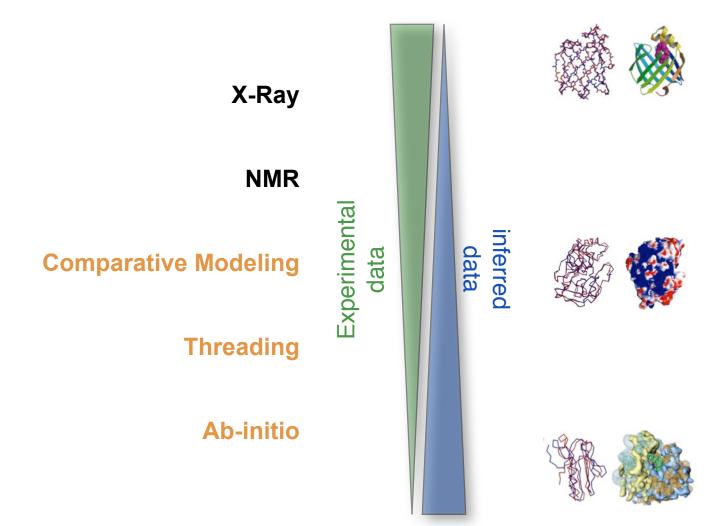
Comparative Modeling:

Marti-Renom et al. Annu. Rev. Biophys. Biomol. Struct. 29, 291-325, 2000. Madhusudhan et al. The Proteomics Protocols Handbook. Ed. Walker. Humana Press Inc., Totowa, NJ. 831-860, 2005.

MODELLER:

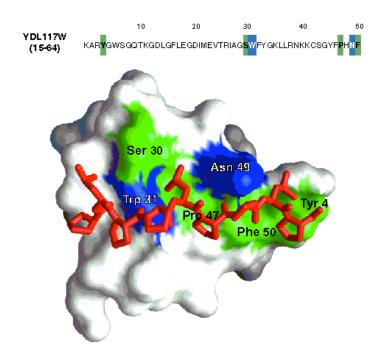
Sali & Blundell. J. Mol. Biol. 234, 779-815, 1993.

Structural Genomics:


Sali. Nat. Struct. Biol. 5, 1029, 1998.
Burley et al. Nat. Genet. 23, 151, 199

Burley et al. Nat. Genet. 23, 151, 1999. Sali & Kuriyan. TIBS 22, M20, 1999.

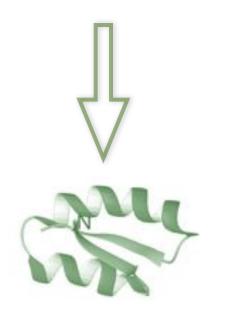
Sanchez et al. Nat. Str. Biol. 7, 986, 2000.

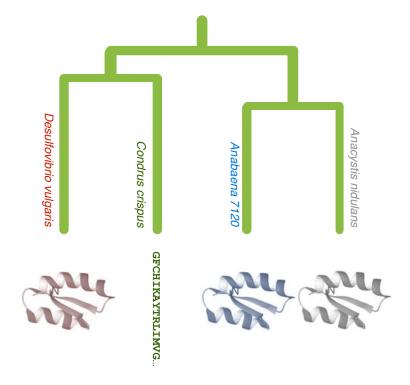

Baker & Sali. Science 294, 93-96, 2001.

protein prediction .vs. protein determination

Why is it useful to know the structure of a protein, not only its sequence?

- The biochemical function (activity) of a protein is defined by its interactions with other molecules.
- The biological function is in large part a consequence of these interactions.
- The 3D structure is more informative than sequence because interactions are determined by residues that are close in space but are frequently distant in sequence.

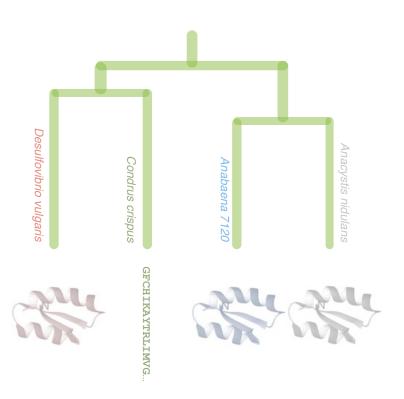



In addition, since evolution tends to conserve function and function depends more directly on structure than on sequence, **structure is more conserved in evolution than sequence**.

The net result is that patterns in space are frequently more recognizable than patterns in sequence.

Principles of protein structure

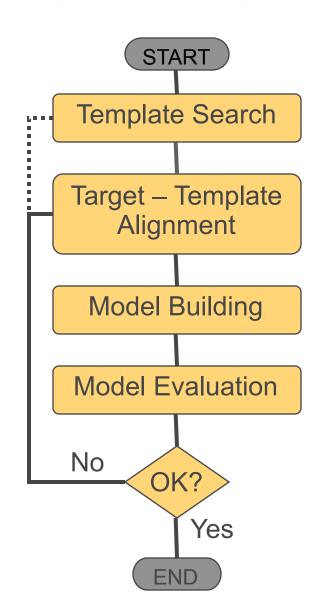
GFCHIKAYTRLIMVG...

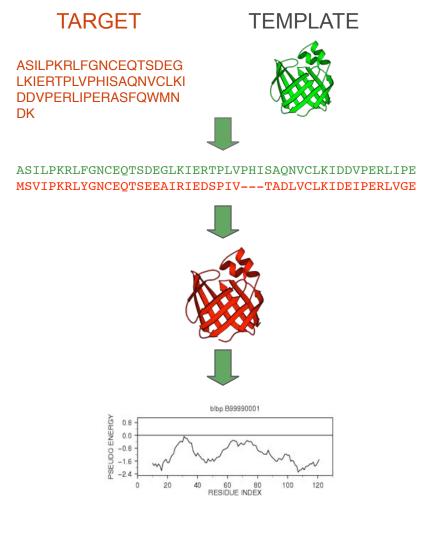


Folding (physics)

Ab initio prediction

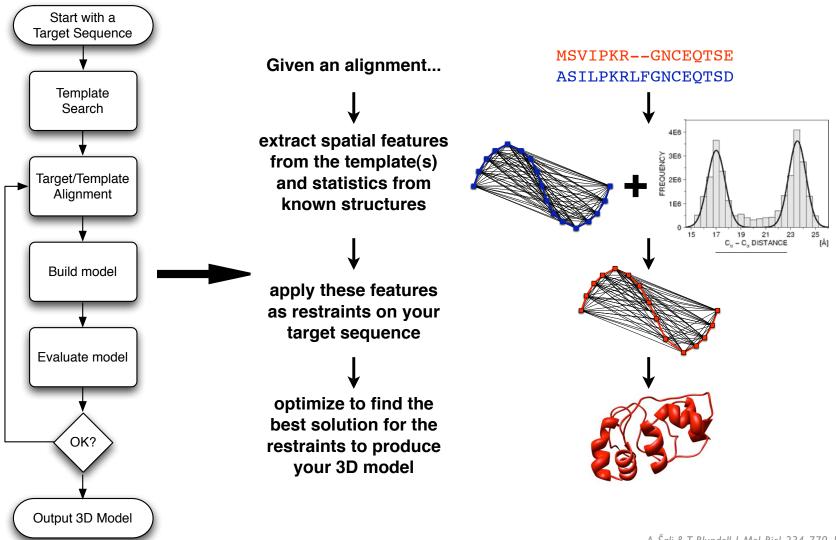
Evolution (rules)


Threading Comparative Modeling



MODELLER

N. Eswar, et al. Comparative Protein Structure Modeling With MODELLER. Current Protocols in Bioinformatics, John Wiley & Sons, Inc., Supplement 15, 5.6.1-5.6.30, 2008.
 M.A. Marti-Renom, et al.. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291-325, 2000.
 A. Sali & T.L. Blundell. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779-815, 1993.
 A. Fiser, R.K. Do, & A. Sali. Modeling of loops in protein structures, Protein Science 9. 1753-1773, 2000.

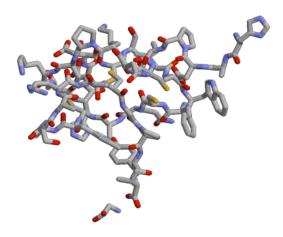

Steps in Comparative Protein Structure Modeling

A. Šali, Curr. Opin. Biotech. 6, 437, 1995.
R. Sánchez & A. Šali, Curr. Opin. Str. Biol. 7, 206, 1997.
M. Marti et al. Ann. Rev. Biophys. Biomolec. Struct., 29, 291, 2000.

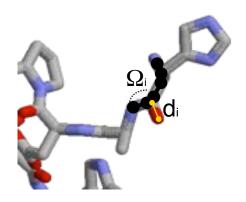
Comparative modeling by satisfaction of spatial restraints MODELLER

A. Šali & T. Blundell. J. Mol. Biol. 234, 779, 1993. J.P. Overington & A. Šali. Prot. Sci. 3, 1582, 1994. A. Fiser, R. Do & A. Šali, Prot. Sci., 9, 1753, 2000.

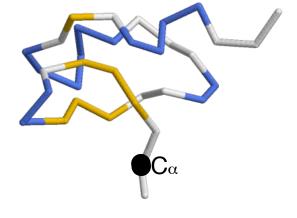
Template Selection

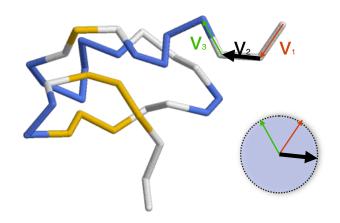

"Structural Space"

Structure-Structure alignments

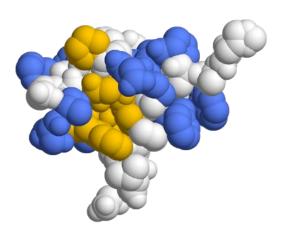

As any other bioinformatics problem...

- Representation
 - Scoring
 - Optimizer

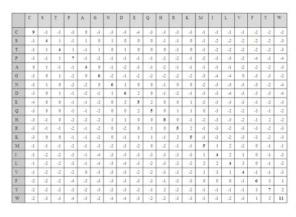

Structures


All atoms and coordinates


Dihedral space or distance space

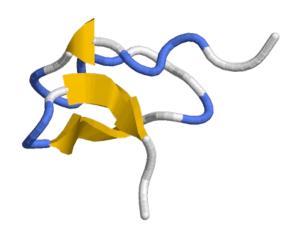

Reduced atom representation

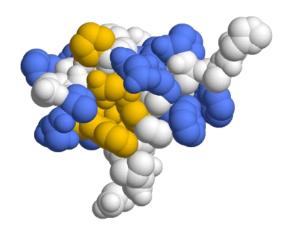
Vector representation


Secondary Structure

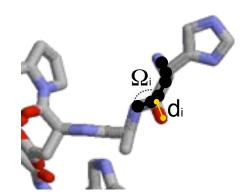
Accessible surface (and others)

Scoring


Raw scores

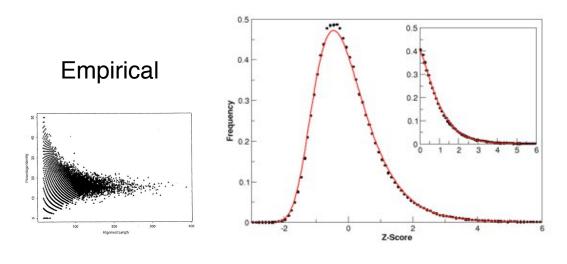

Aminoacid substitutions

$$RMSD(x,y) = \sqrt{\left(\frac{1}{N}\right)\sum_{i=1}^{N} (\left\|\mathbf{x}(i) - \mathbf{y}(i)\right\|^{2})}$$


Root Mean Square Deviation

Secondary Structure (H,B,C)

Accessible surface (B,A [%])

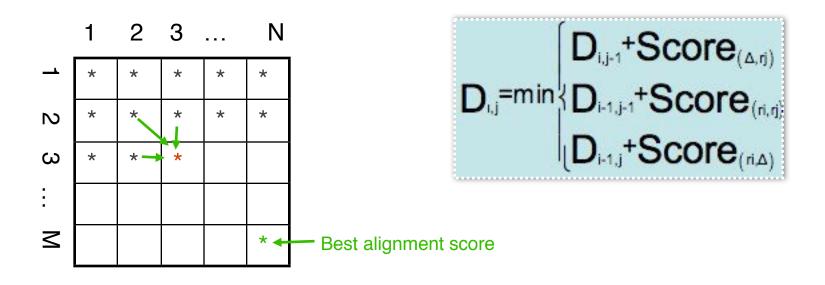


Angles or distances

Scoring

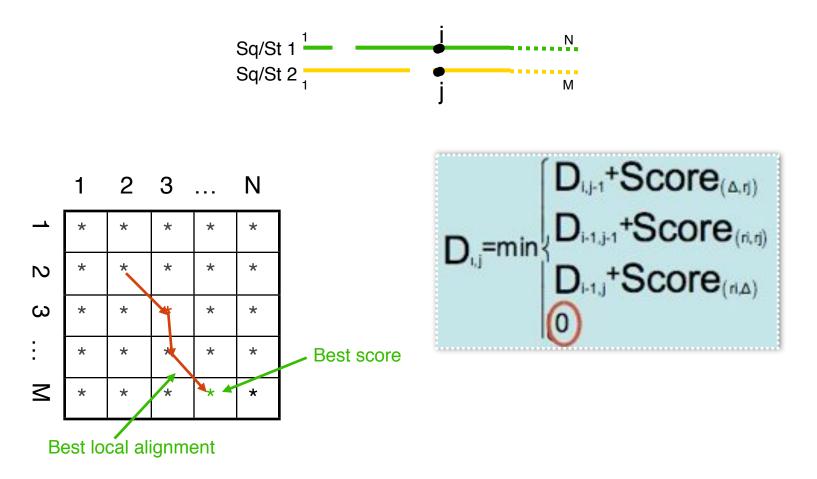
Significance of an alignment (score)

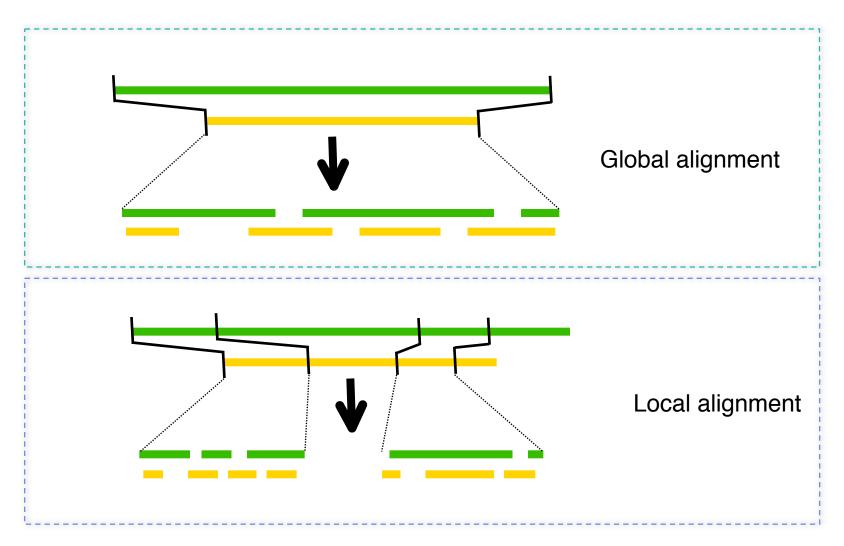
Probability that the optimal alignment of two random sequences/structures of the same length and composition as the aligned sequences/structures have at least as good a score as the evaluated alignment.


Sometimes approximated by Z-score (normal distribution).

Analytic
$$P(s) = e^{-\lambda (s-\mu)}$$

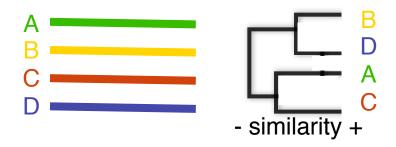
$$P(s \ge x) = 1 - \exp(e^{-\lambda (s-\mu)})$$


Global dynamic programming alignment


Backtracking to get the best alignment

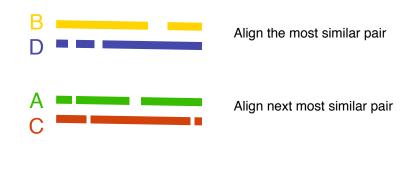
Local dynamic programming alignment

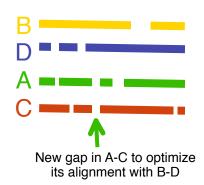
Backtracking to get the best alignment


Global .vs. local alignment

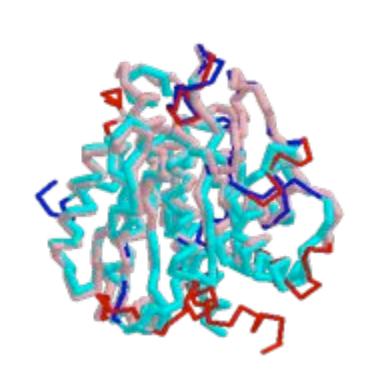
Multiple alignment

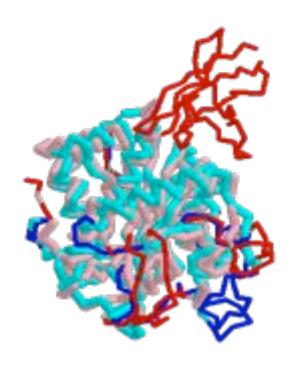
Pairwise alignments


Example – 4 sequences A, B, C, D.


6 pairwise comparisons then cluster analysis

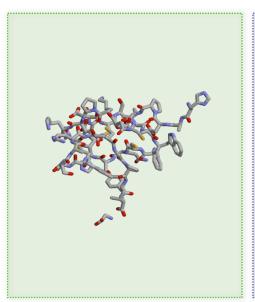
Multiple alignments

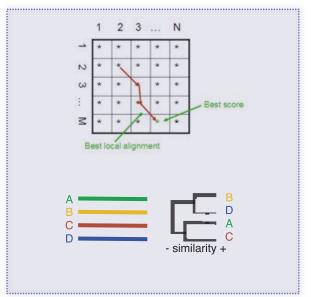

Following the tree from step 1

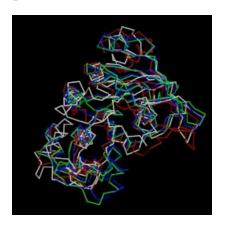


Align B-D with A-C

Coverage .vs. Accuracy




Same RMSD ~ 2.5Å


Coverage ∼90% Cα

Coverage ~75% Cα

Structural alignment by properties conservation (SALIGN-MODELLER)

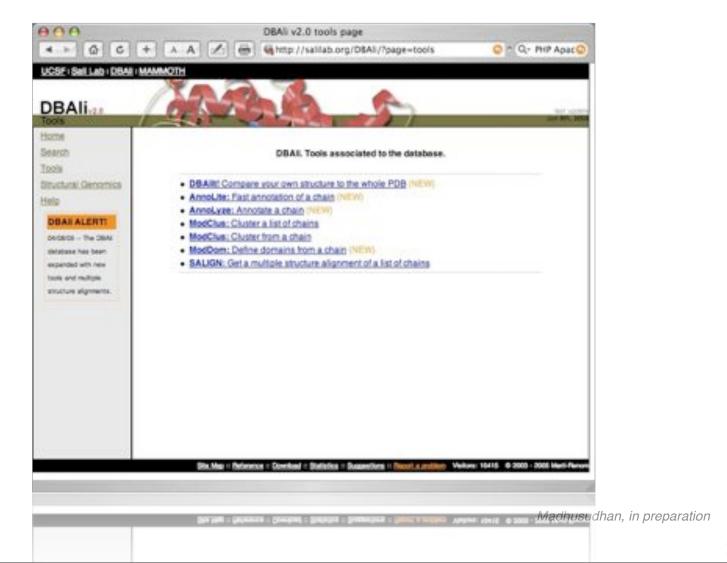
✓ Uses all available structural information
 ✓ Provides the optimal alignment

Computationally expensive

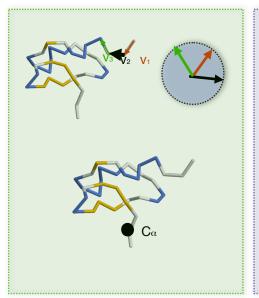
 $RMSD(x, y) = \sqrt{\left(\frac{1}{N}\right)\sum_{i=1}^{N} (\left\|\mathbf{x}(i) - \mathbf{y}(i)\right\|^{2})}$

 $R_{i,j}$

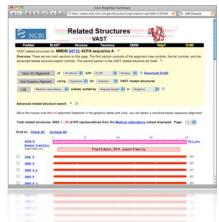
 $D_{,i(3),j(3)}$

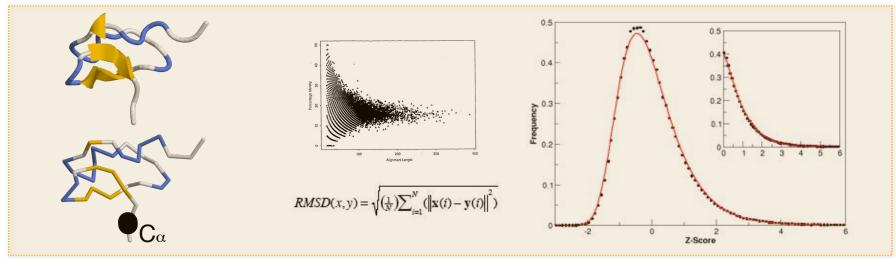

 $S_{i,i}$

 $B_{i,j}$


i,j

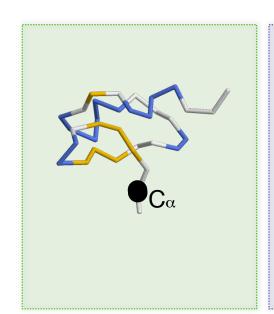
Structural alignment by properties conservation (SALIGN-MODELLER)


http://salilab.org/DBAli


Vector Alignment Search Tool (VAST)

Graph theory search
of similar SSE
Refining by Monte Carlo
at all atom resolution

✓ Good scoring system with significance
Reduces the protein representation

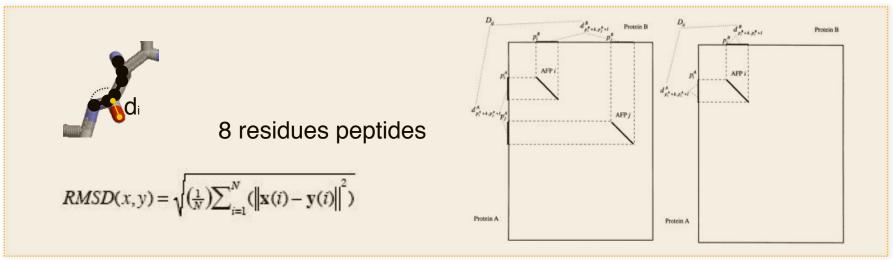


Vector Alignment Search Tool (VAST)

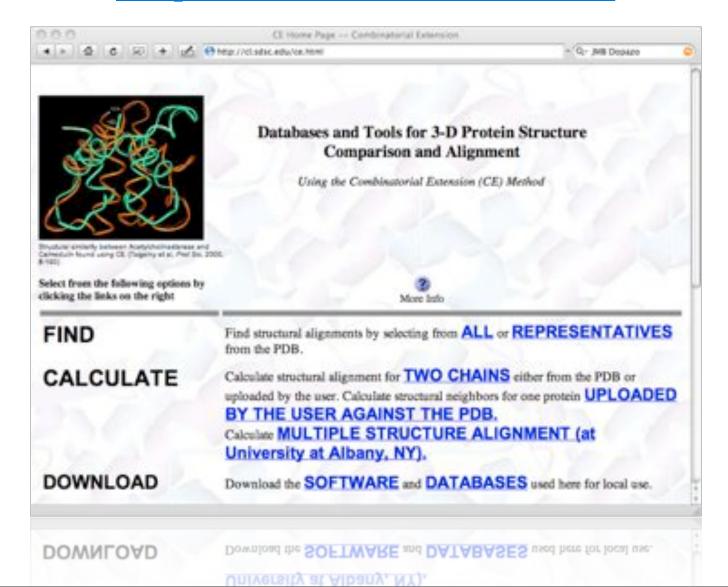
http://www.ncbi.nlm.nih.gov/Structure/VAST/vast.shtml

Incremental combinatorial extension (CE)

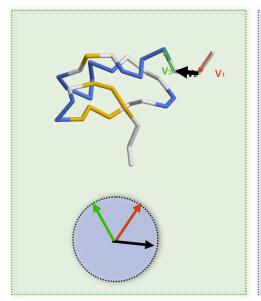
Exhaustive combination of fragments

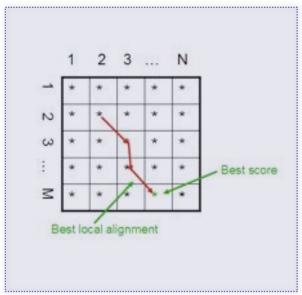

Longest combination of AFPs

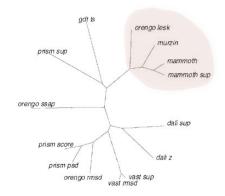
Heuristic similar to PSI-BLAST


- ✓ FAST!
- ✓ Good quality of local alignments

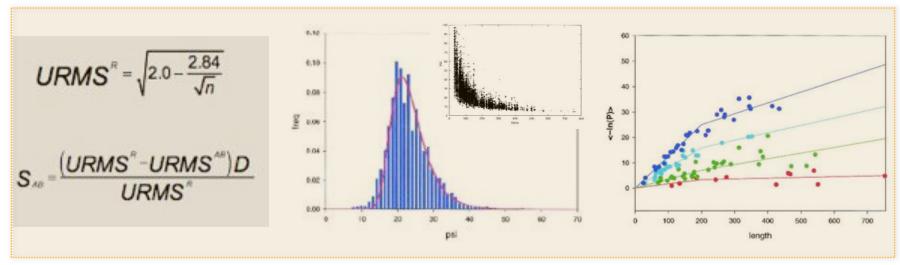
Complicated scoring and heuristics

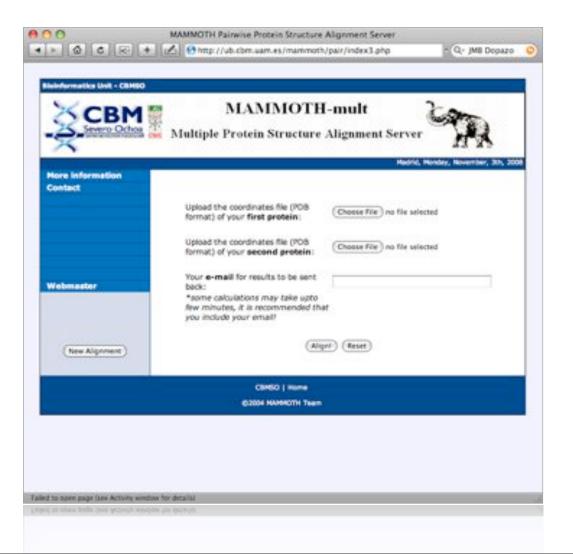



Incremental combinatorial extension (CE)


http://cl.sdsc.edu/ce.html

Matching molecular models obtained from theory (MAMMOTH)




- ✓ VFRY FAST!
- √ Good scoring system with significance

Reduces the protein representation

Matching molecular models obtained from theory (MAMMOTH)

http://ub.cbm.uam.es/mammoth/pair/index3.php

Classification of the structural space

SCOP_{1.73} database

http://scop.mrc-lmb.cam.ac.uk/scop/

List of obsolete entries and their replacements. Authors, Alexey G. Murzin, John-Marc Chandonia, Antonina Andreeva, Dave Howorth, Loredana Lo Conte,

Bartlett G. Ailey, Steven E. Brenner, Tim J. P. Hubbard, and Cyrus Chothia. scop@mrc-lmb.cam.ac.uk Reference: Murzin A. G., Brenner S. E., Hubbard T., Chothia C. (1995). SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536-540. [PDF]

Recent changes are described in: Lo Conte L., Brenner S. E., Hubbard T.J.P., Chothia C., Murzin A. (2002). SCOP database in 2002; refinements accommodate structural genomics. Nucl. Acid Res., 30(1), 264-267. [PDF].

Andreeva A., Howorth D., Brenner S.E., Hubbard T.J.P., Chothia C., Murzin A.G. (2004). SCOP database in 2004: refinements integrate structure and sequence family data. Nucl. Acid Rev. 32:D226-D229. [PDF], and Andreeva A., Howorth D., Chandonia J.-M., Brenner S.E., Hubbard T.J.P., Chothia C., Murzin A.G. (2008). Data growth and its impact on the SCOP database: new developments. Nucl. Acid Res. 36; D419-D425. [PDF].

Access methods

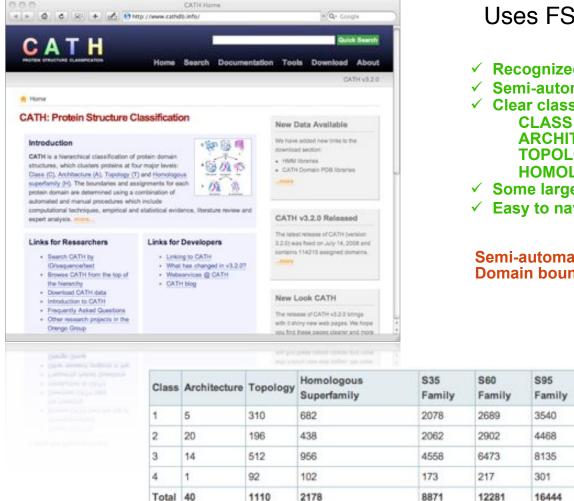
- · Enter scop at the top of the hierarchy
- Keyword search of SCOP entries
- scor parseable files
- All SCOP releases and reclassified entry history
- · pre-SCOP preview of the next release
- · SCOP domain sequences and pdb-style coordinate files (ASTRAL)
- Hidden Markov Model library for SCOP superfamilies (SUPERFAMELY)

- Hidden Markov Model library for SCOP superlamilies (SLPEREAMILY)
- scor domain sequences and pob-sign coordinate fact (ASTRAL)
- . BEE-SCOR DERAMEN OF THE DESY LANSING
- · VI N. II. RECEIVED THE DESCRIPTION COM'S DIRECT.
- SCOL BROKERS ESS.

- ✓ Largely recognized as "standard of gold"
- √ Manually classification
- ✓ Clear classification of structures in:

CLASS FOLD SUPER-FAMILY FAMILY

√ Some large number of tools already available


Manually classification Not 100% up-to-date Domain boundaries definition

Class	Number of folds	Number of superfamilies	Number of families
All alpha proteins	259	459	772
All beta proteins	165	331	679
Alpha and beta proteins (a/b)	141	232	736
Alpha and beta proteins (a+b)	334	488	897
Multi-domain proteins	53	53	74
Membrane and cell surface proteins	50	92	104
Small proteins	85	122	202
Total	1086	1777	3464

Murzin A. G., el at. (1995). J. Mol. Biol. 247, 536-540.

CATH_{3,2} database

http://www.cathdb.info

Uses FSSP for superimposition

- ✓ Recognized as "standard of gold"
- √ Semi-automatic classification
- ✓ Clear classification of structures in:

ARCHITECTURE TOPOLOGY HOMOLOGOUS SUPERFAMILIES

- √ Some large number of tools already available
- ✓ Easy to navigate

Semi-automatic classification **Domain boundaries definition**

S100

6685

7656

16346

31132

445

Family

Domains

23491

29992


58967

1765

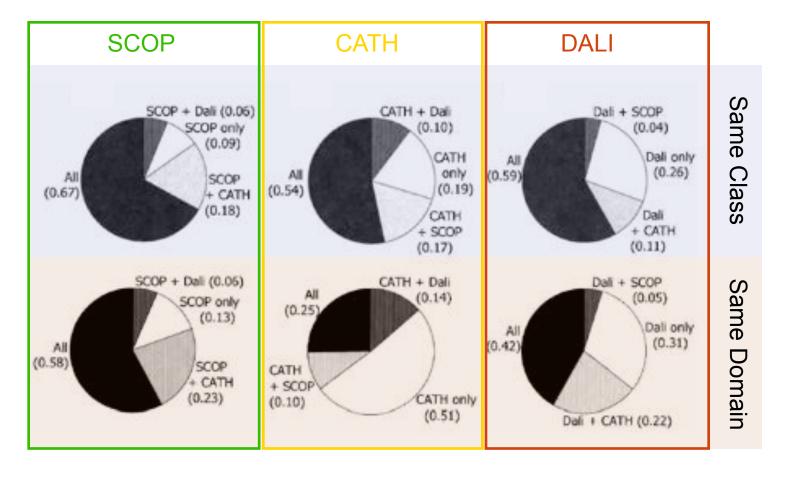
114215

DBAliv2.0 database

http://salilab.org/DBAli/

Uses MAMMOTH for superimposition

- √ Fully-automatic
- ✓ Data is kept up-to-date with PDB releases
- ✓ Tools for "on the fly" classification of families
- ✓ Up-to-date multiple structure alignments
- ✓ Easy to navigate
- ✓ Provides some tools for structure comparison

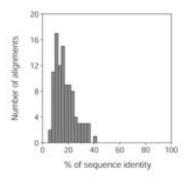

Does not provide a stable classification

Pairwise structure alignment	nts
Last update:	October 6th, 2007
Number of chains:	96,804
Number of structure-structure comparisons;"	1,748,371,897
Multiple structure alignmen	
Last update:	August 1st, 2007
Number of representative chains:	34,637
Number of families:	12,732

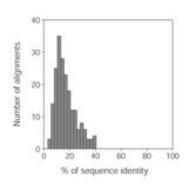
Marti-Renom et al. 2001. Bioinformatics. 17, 746 Marti-Renom et al. 2007. BMC BMC Bioinformatics (2007) 8 (Suppl 4) S4 Marti-Renom et al. 2007. Nucleic Acid Research (2007) 35 W393-W397

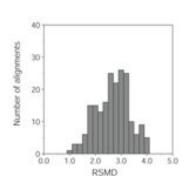
Classification of the structural space Not an easy task!

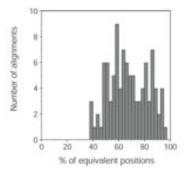
Domain definition AND domain classification

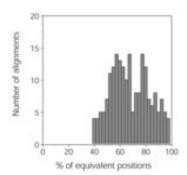

template search and template-target alignment

(pp_scan)


PP_SCAN or profile-profile alignments


A) Traning Set


Number of alignments



RSMD

1.0 2.0 3.0

Seq.-Seq

ALIGN: DP pairwise method

BLAST2SEQ: Local heuristic method

SEA: Local structure prediction method

Prof.-Seq

SAM: HMM method

PSI-BLAST: Local search method that

uses multiple sequence information for one of the

sequences.

LOBSTER: HHM + Phylogeny Method

Prof.-Prof.

CLUSTALW: DP multiple sequence

method.

COMPASS: DP profile-profile method

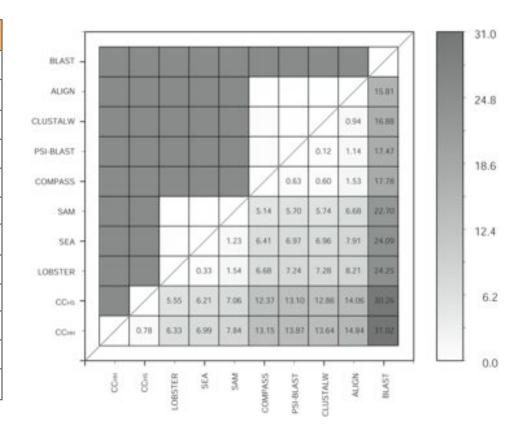
PP_SCAN: DP pairwise method that uses multiple sequence information for both sequences.

PP_SCAN protocols

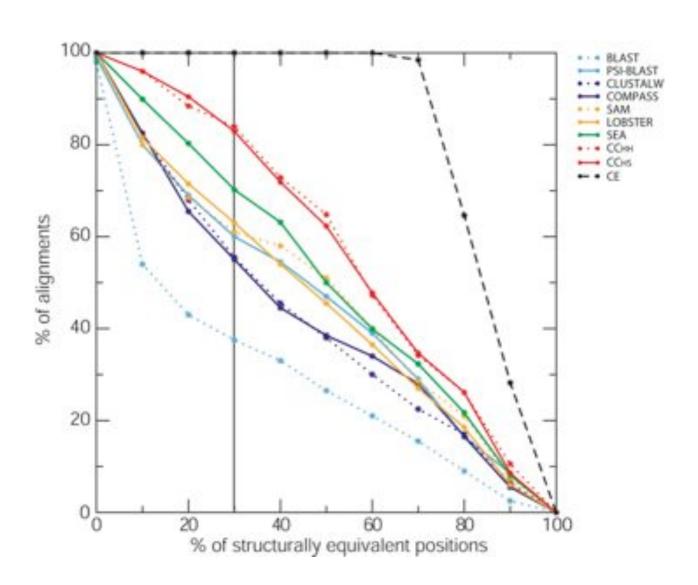
Profile generation

- PSI-Blast (PBP)
- Henikoff & Henikoff (HH)
- Henikoff & Henikoff + Similarity (HS)
- Henikoff & Henikoff substitution matrix (MAT)

Profile comparison


- Correlation coefficient (CC)
- Euclidean distance (ED)
- Dot product (DP)
- Jensen-Shannon distance (JS)
- Average value (Ave)

PP_SCAN protocols accuracy


SALIGN protocol	CE overlap [%]	Shift score
ССРВР	55 ± 23	0.61 ± 0.24
ССнн	56 ± 23	0.61 ± 0.24
ССнѕ	56 ± 24	0.62 ± 0.23
ССмат	51 ± 25	0.55 ± 0.27
ЕДРВР	54 ± 24	0.60 ± 0.25
ЕДнн	54 ± 24	0.59 ± 0.26
EDHs	55 ± 24	0.59 ± 0.26
DР _{РВР}	55 ± 23	0.61 ± 0.24
DРнн	56 ± 23	0.60 ± 0.25
DPHS	55 ± 24	0.61 ± 0.24
JSнн	53 ± 24	0.60 ± 0.24
JS HS	54 ± 24	0.60 ± 0.24
Ачемат	49 ± 26	0.52 ± 0.29
ТОР	62 ± 20	0.67 ± 0.20

PP_SCAN accuracy

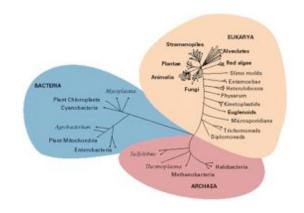
Method	CE overlap	Shift score		
CE	100 ±0	1.00 ± 0.00		
BLAST	26 ± 29	0.32 ± 0.33		
PSI-BLAST	43 ± 31	0.48 ± 0.35		
SAM	48 ± 26	0.50 ± 0.34		
LOBSTER	50 ± 27	0.51 ± 0.32		
SEA	49 ± 27	0.53 ± 0.29		
ALIGN	42 ± 25	0.44 ± 0.28		
CLUSTALW	43 ± 27	0.44 ± 0.31		
COMPASS	43 ± 32	0.49 ± 0.35		
ССнн	56 ± 23	0.61 ± 0.24		
ССнѕ	56 ± 24	0.62 ± 0.24		
ТОР	62 ± 20	0.67 ± 0.20		

PP_SCAN success

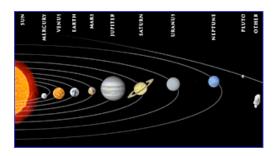
Alignment accuracy (CE overlap)

200 pairwise DBAli alignments

PSI-BLAST (sequence-profile alignment)	43%
SEA (local structure alignment)	49%
PP_SCAN (profile-profile alignment)	56%


model building and model assessment

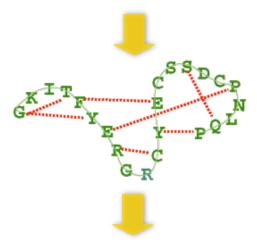
Information about a protein can come from three distinct sources

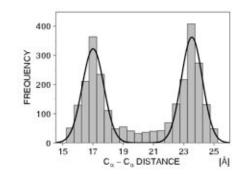


observations

Statistical rules

Laws of physics


Classes of methods for comparative protein structure modeling


- Model building by assembly of rigid bodies core, loops, sidechains.
- Model building by segment matching.
- Model building by satisfaction of spatial restraints.

Comparative modeling by satisfaction of spatial restraints MODELLER

3D GKITFYERGFQGHCYESDC-NLQP... SEQ GKITFYERG---RCYESDCPNLQP...

1. Extract spatial restraints

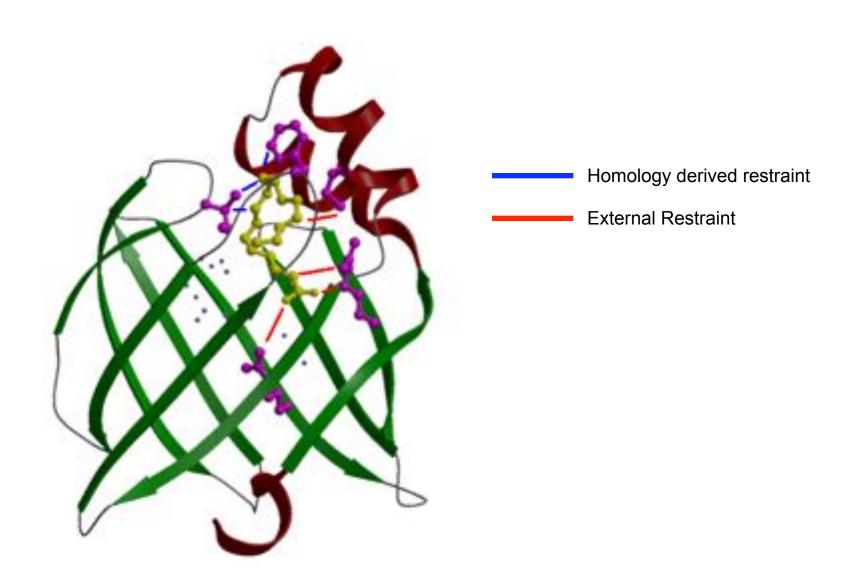
2. Satisfy spatial restraints

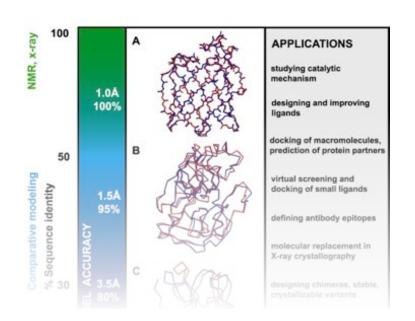
$$F(R) = \prod_{i} p_{i} (f_{i} / I)$$

A. Šali & T. Blundell. J. Mol. Biol. 234, 779, 1993. J.P. Overington & A. Šali. Prot. Sci. 3, 1582, 1994. A. Fiser, R. Do & A. Šali, Prot. Sci., 9, 1753, 2000.

Multiple Templates

Local similarity extracted from closest template


Templates


KSINPIHGDNCEQTSDEGLKIERTPL----QWLKSSICDMRGLIPE

Target

ASILPKRLFGNCEQTSDEGLKIERTPLVPHISAQNVCLKIDDVPERLIPE MSVIPKRLYGNCEQTSEEAIRIEDSPIVRWISAQLVCLKIDEIPERLVGE

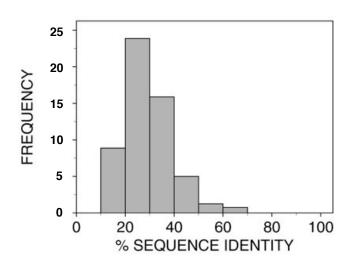
Modeling ligands and using external restraints

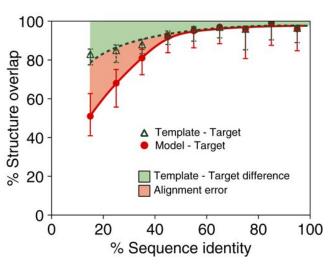
Accuracy and applicability of comparative models

Comparative modeling by satisfaction of spatial restraints Types of errors and their impact

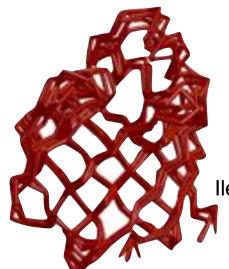
Wrong fold

Miss alignments

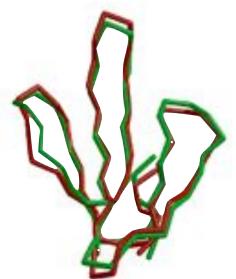

Loop regions

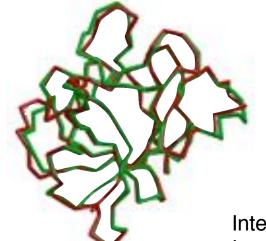


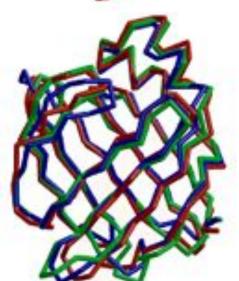
Rigid body distortions



Side-chain packing



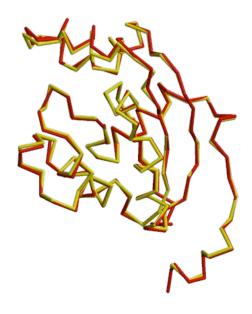

"Biological" significance of modeling errors


NMR – X-RAY Erabutoxin 3ebx Erabutoxin 1era

NMR
Ileal lipid-binding protein
1eal

CRABPII 1opbB **FABP** 1ftpA **ALBP** 1lib 40% seq. id.

X-RAY

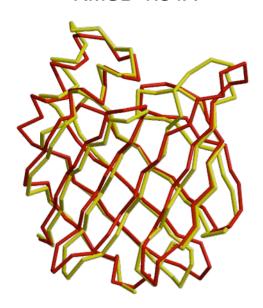

Interleukin 1 β 41bi (2.9Å) Interleukin 1 β 2mib (2.8Å)

Model Accuracy

HIGH ACCURACY

NM23 Seq id 77%

Cα equiv 147/148 RMSD 0.41Å

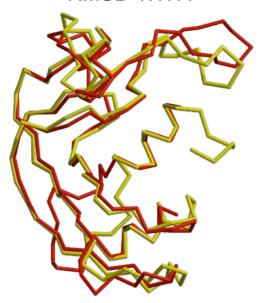


Sidechains Core backbone Loops

MEDIUM ACCURACY

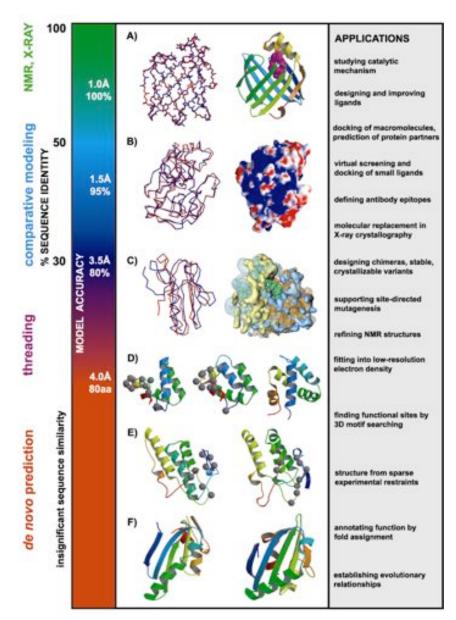
CRABP Seq id 41%

Cα equiv 122/137 RMSD 1.34Å



Sidechains Core backbone Loops Alignment

LOW ACCURACY


EDN Seq id 33%

 $C\alpha$ equiv 90/134 RMSD 1.17Å

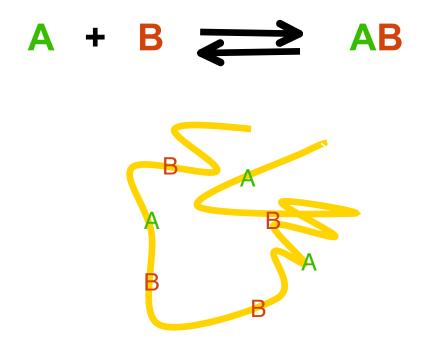
Sidechains
Core backbone
Loops
Alignment
Fold assignment

Utility of protein structure models, despite errors

Model Assessment (PMF)

Scoring

Statistical Potential (inspiration)


$$K = \frac{\begin{bmatrix} AB \end{bmatrix}}{\begin{bmatrix} A \end{bmatrix} \cdot \begin{bmatrix} B \end{bmatrix}}$$

$$\Delta G = -RT \ln(K) = -RT \ln \frac{\begin{bmatrix} AB \end{bmatrix}}{\begin{bmatrix} A \end{bmatrix} \cdot \begin{bmatrix} B \end{bmatrix}}$$

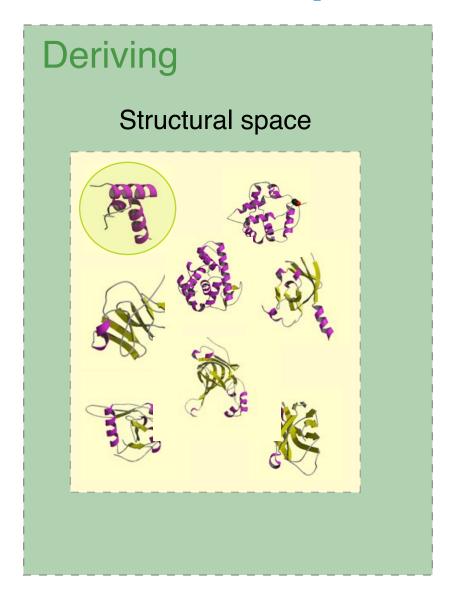
From statistical physics, we know that energy difference between two states (ΔE) and the ratio of their occupancies ($N_1:N_2$) are related [9]:

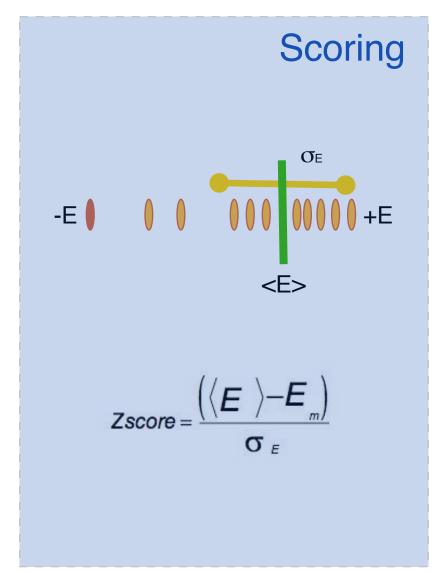
$$\Delta E = -kT \ln \left(\frac{N_1}{N_2} \right)$$
 (1)

in which T is the absolute temperature and k is the Boltzmann's constant. As we are interested in an interaction energy between two amino acid side chains, it would seem natural to define N_1 as the number of interactions between these two residues types in a group of real protein structures, a number which is readily available from simple database analysis. But this number must be compared with the number of interactions in some other system, N_2 , to obtain the energy difference between them.

Tanaka and Sheraga (1975) PNAS, **72** pp3802 Sippl, (1990) J.Mo.Biol. **213** pp859 Godzik, (1996) Structure **15** pp363

Scoring

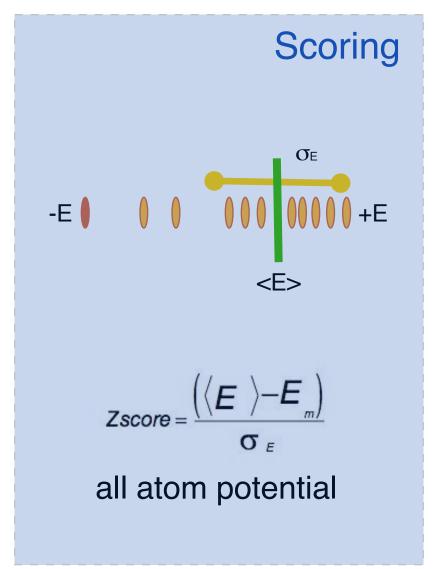

Significance of an alignment (score)


Energy Z-score the model with respect the energy of random models (or rest of decoys).

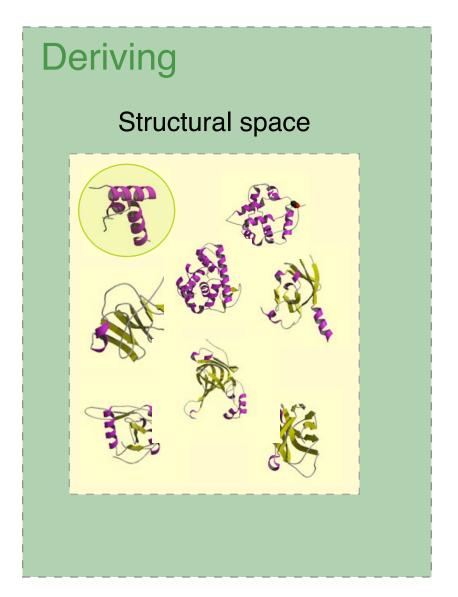
Zscore =
$$\frac{\left(\!\!\left\langle E\right\rangle - E_{m}\right)}{\sigma_{E}}$$

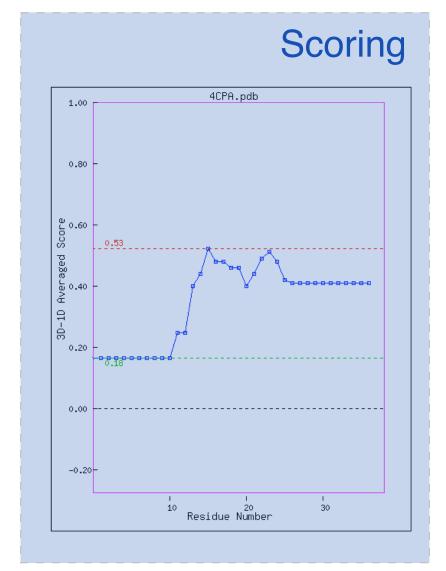
Prosall


http://www.came.sbg.ac.at

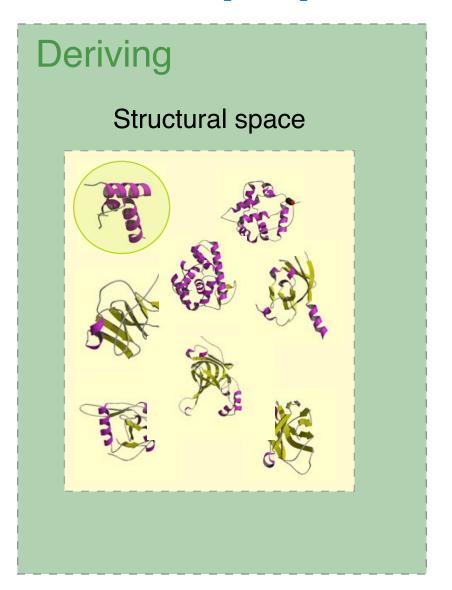


ANOLEA


http://protein.bio.puc.cl/cardex/servers/anolea/

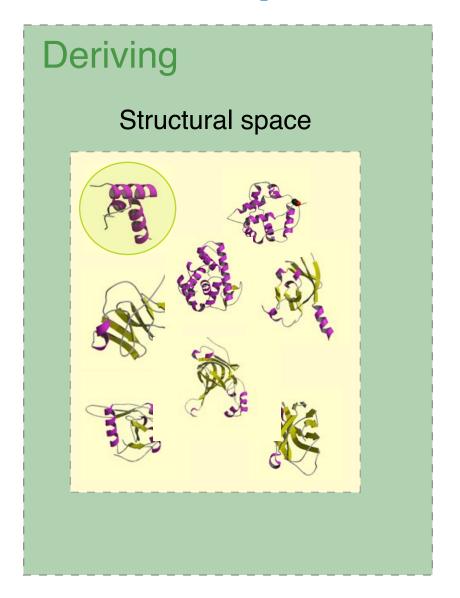


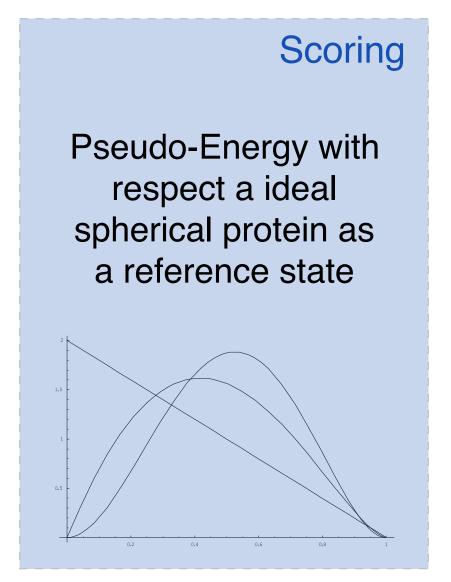
Verify3D


http://nihserver.mbi.ucla.edu/Verify_3D/

DFIRE

http://sparks.informatics.iupui.edu/

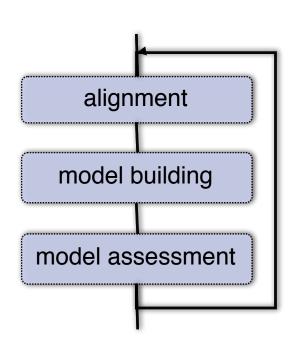


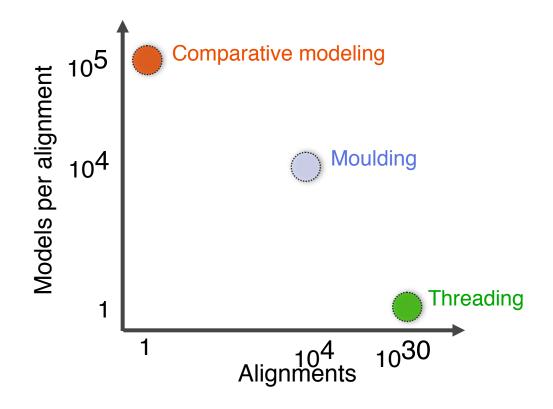

Scoring

Pseudo-Energy with respect a ideal gas-phase reference state

DOPE (MODELLER)

http://www.salilab.org/modeller/





John, Sali (2003). NAR pp31 3982

Moulding: iterative alignment, model building, model assessment

Genetic algorithm operators

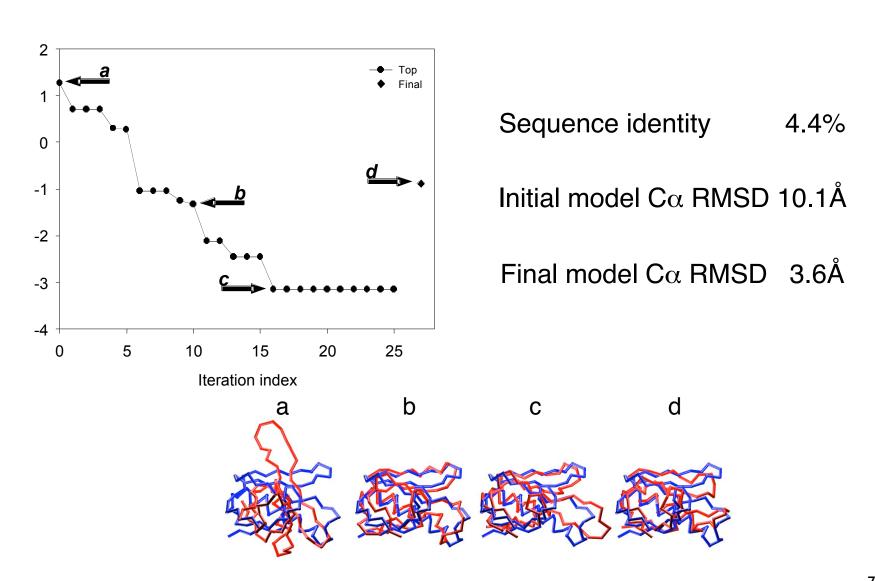
Single point cross-over ...TSSQ-NMK-LGVFWGY... ...TSSQ—NMKLGVFWGY—... ...V—SŠCN——GDLHMKVGV... ...V—SŠCNGDLHMKV——GV... ...TSSONMKLGVFWGY---... ...TSSQNMK——LGVFWGY... ...VSSCN—GDLHMKVGV... ...VSSCNGDLHMKV——GV... Gap insertion ...TSSQN—MKLGVFWGY... ...VSSCNGDLHMKVG—V... ...TSSONMKLGVFWGY... ...VSSCNGDLHMKVGV... ...-T-SSONMKLGVFWGY... ...VSSCNGDLHMKVGV---... Gap shift ...T—S—SONMKLGVFWGY... ...VSSCNGDLHMKVGV—... ...T—SSONMKLGVFWGY... ...VSSCNGDLHMKVGV—... ...—TSSONMKLGVFWGY... ...VSSCNGDLHMKVGV—... ...TS-SQNMKLGVFWGY... ...VSSCNGDLHMKVGV— Also, "two point crossover" and "gap deletion".

Composite model assessment score

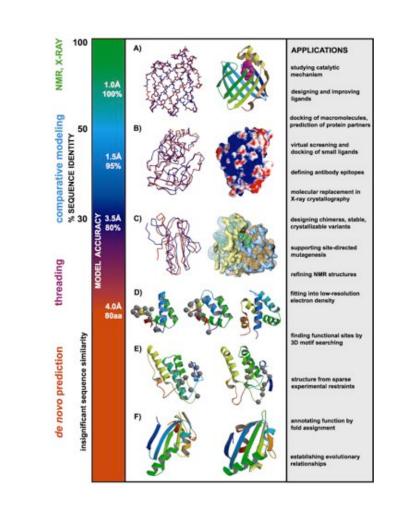
Weighted linear combination of several scores:

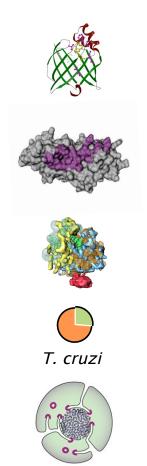
- Pair (P_D) and surface (P_S) statistical potentials;
- Structural compactness (S_C);
- Harmonic average distance score (Ha);
- Alignment score (A_S).

$$Z = 0.17 Z(P_P) + 0.02 Z(P_S) + 0.10 Z(S_C) + 0.26 Z(H_a) + 0.45 (A_S)$$


```
Z(score) = (score-\mu)/\sigma
\mu ... average score of all models
\sigma ... standard deviation of the scores
```

Benchmark with the "very difficult" test set


D. Fischer threading test set of 68 structural pairs (a subset of 19)


Target -template Sequ [%			Initial prediction		Final prediction		Best prediction	
	Sequence identity [%]	Coverage [% aa]	Cα RMSD [Å]	CE overlap [%]	Cα RMSD [A]	CE overlap [%]	Cα RMSD [A]	CE overlap [%]
1ATR-1ATN	13.8	94.3	19.2	20.2	18.8	20.2	17.1	24.6
1BOV-1LTS	4.4	83.5	10.1	29.4	3.6	79.4	3.1	92.6
1CAU-1CAU	18.8	96.7	11.7	15.6	10.0	27.4	7.6	47.4
1COL-1CPC	11.2	81.4	8.6	44.0	5.6	58.6	4.8	59.3
1LFB-1HOM	17.6	75.0	1.2	100.0	1.2	100.0	1.1	100.0
1NSB-2SIM	10.1	89.2	13.2	20.2	13.2	20.1	12.3	26.8
1RNH-1HRH	26.6	91.2	13.0	21.2	4.8	35.4	3.5	57.5
1YCC-2MTA	14.5	55.1	3.4	72.4	5.3	58.4	3.1	75.0
2AYH-1SAC	8.8	78.4	5.8	33.8	5.5	48.0	4.8	64.9
2CCY-1BBH	21.3	97.0	4.1	52.4	3.1	73.0	2.6	77.0
2PLV-1BBT	20.2	91.4	7.3	58.9	7.3	58.9	6.2	60.7
2POR-2OMF	13.2	97.3	18.3	11.3	11.4	14.7	10.5	25.9
2RHE-1CID	21.2	61.6	9.2	33.7	7.5	51.1	4.4	71.1
2RHE-3HLA	2.4	96.0	8.1	16.5	7.6	9.4	6.7	43.5
3ADK-1GKY	19.5	100.0	13.8	26.6	11.5	37.7	7.7	48.1
3HHR-1TEN	18.4	98.9	7.3	60.9	6.0	66.7	4.9	79.3
4FGF-81IB	14.1	98.6	11.3	24.0	9.3	30.6	5.4	41.2
6XIA-3RUB	8.7	44.1	10.5	14.5	10.1	11.0	9.0	34.3
9RNT-2SAR	13.1	88.5	5.8	41.7	5.1	51.2	4.8	69.0
AVERAGE	14.2	85.2	9.6	36.7	7.7	44.8	6.3	57.8

Application to a difficult modeling case1BOV-1LTS

Can we use models to infer function?

What is the physiological ligand of Brain Lipid-Binding Protein?

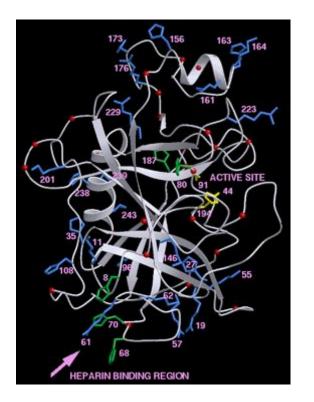

Predicting features of a model that are not present in the template

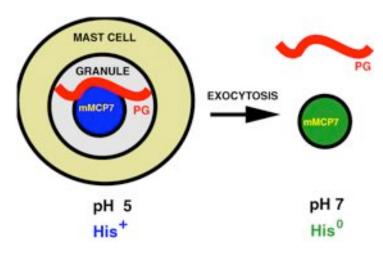
BLBP/oleic acid

BLBP/docosahexaenoic acid

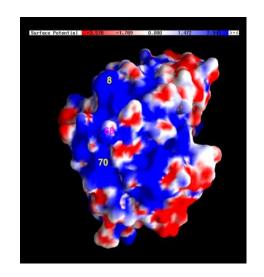
Cavity is not filled

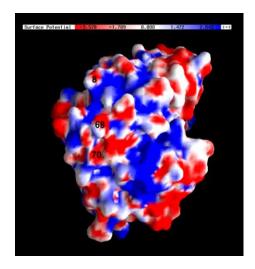
Cavity is filled

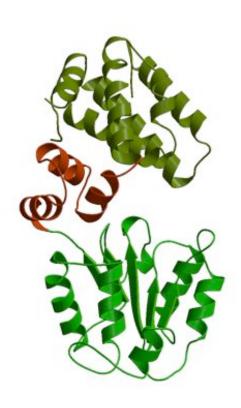



- 1. BLBP binds fatty acids.
 - 2. Build a 3D model.
- 3. Find the fatty acid that fits most snuggly into the ligand binding cavity.

Do mast cell proteases bind proteoglycans? Where? When?


Predicting features of a model that are not present in the template


- 1. mMCPs bind negatively charged proteoglycans through electrostatic interactions
- 2. Comparative models used to find clusters of positively charged surface residues.
- 3. Tested by site-directed mutagenesis.

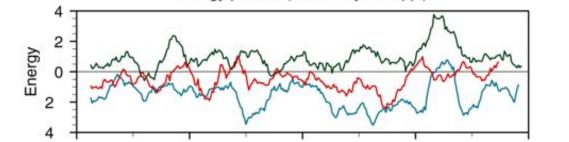


Huang et al. J. Clin. Immunol. **18**,169,1998. Matsumoto et al. J.Biol.Chem. **270**,19524,1995. Šali et al. J. Biol. Chem. **268**, 9023, 1993.

Does RuvB have the same fold as δ ' of E.coli DNA polymerase III?


```
EC d' MRWYPWLRPDFEKLVASYQAGRG----HHALLIQALPGMGDDALIYALSRYLLCQQPQGHKSCGHCRG
RUVB LEEYVGQPQVRSQMEIFIKAAKLRGDALDHLLIFGPPGLGKTTLANIVANEMG------

EC d' CQLMQAGTHPDYYTLAPEKGKATLGVDAVREVTEKLNEAARLGGAKVVWVTDAALLTDAAANALLKTL
RUVB ------SGPVLEKAGDLAAMLTNLEPHDVLFIDEIHRLSPVVEEVLYPAM


EC d' -------EEPPAETWFFLATREPERL--LATLRSRCRLHYLAPPPEQYAVTWLSRE
Ppdp EDYQLDIMIGEGPAARSIKIDLPPFTLIGATTRAGSLTSPLRDRFGIVQRLEFY--QVPDLQYIVSRS

EC d' VTM----SQDALLAALRLSAGSPGAALALFQ-------GDNWQARETLCQALAYSVPSGD--
RUVB ARFMGLEMSDDGALEVARRARGTPRIANRLLRRVRDFAEVKHDGTISADIAAQALDMLNVDAEGFDYM

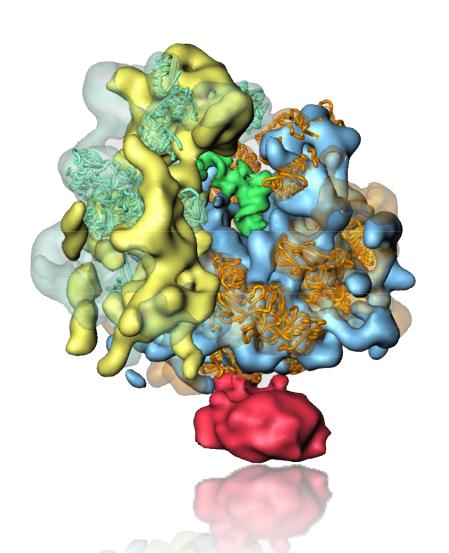
EC d' -WYSLLAALN--HEQAPARLHWLATLLMDALKR/VTNVDVPGLVAELANHL---SPSRLQAILGDVC
RUVB DRKLLLAVIDKFF-GGPVGLDNLAAAIGEERETIE--DVLEPYLIQQGFLQRTPRGRMATTRAWNHFG
```

Ec d' HIREQLMSVAGANRELLITDLLLRIEHYLQPGVVLP
RUVB ITPPEMP-----

Energy profiles (Prosall by M. Sippl)

160

Residue number


80

B. Guenther, et al. Cell 91, 335, 1997. Yamada, K., et al. Proc.Nat.Acad.Sci.USA 98,1442, 2001.

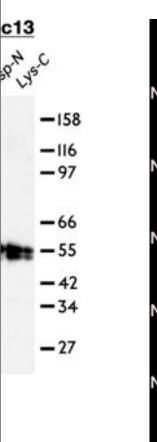
240

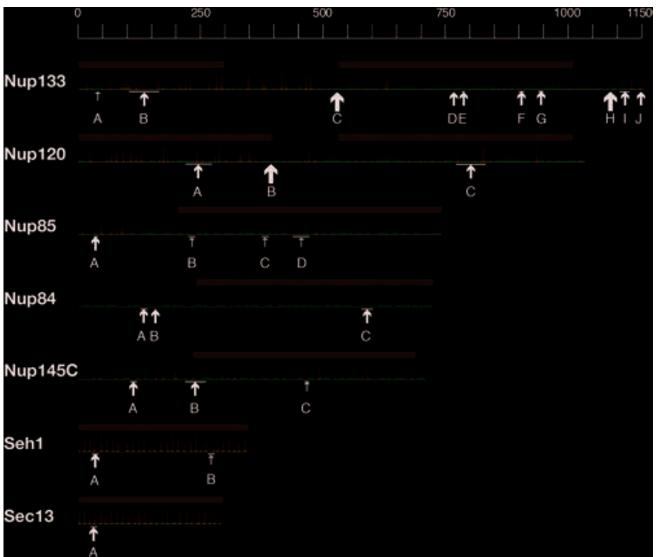
320

S. cerevisiae ribosome

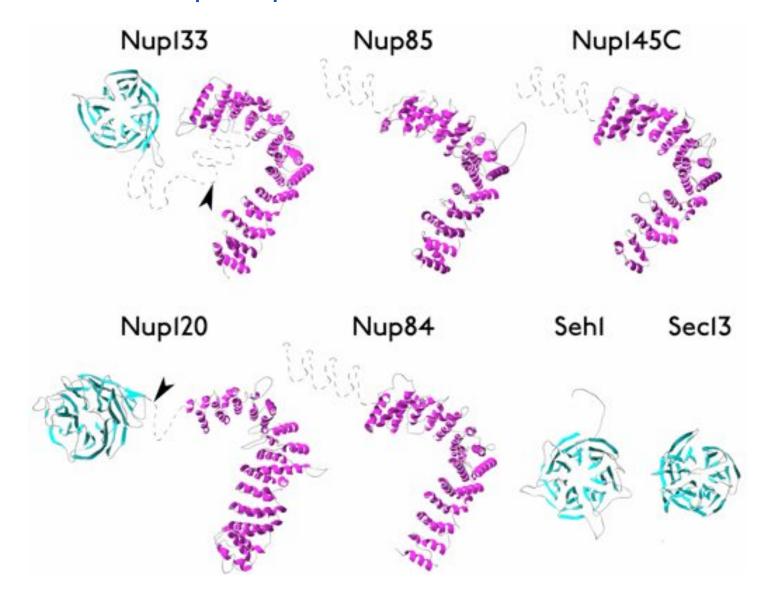
Fitting of comparative models into 15Å cryo-electron density map.

43 proteins could be modeled on 20-56% seq.id. to a known structure.

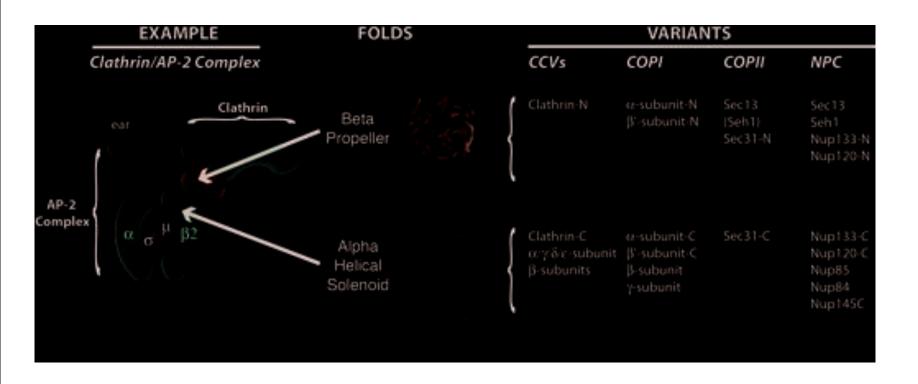

The modeled fraction of the proteins ranges from 34-99%.

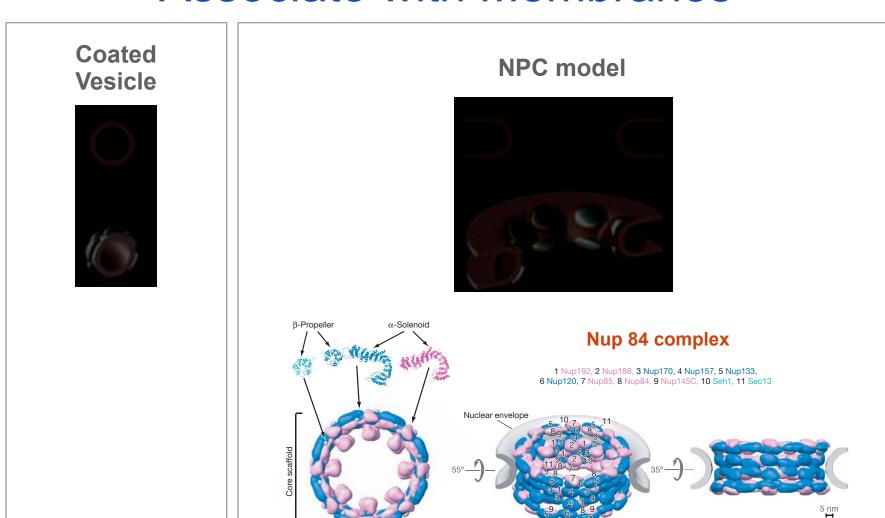

Common Evolutionary Origin of Coated Vesicles and Nuclear Pore Complexes

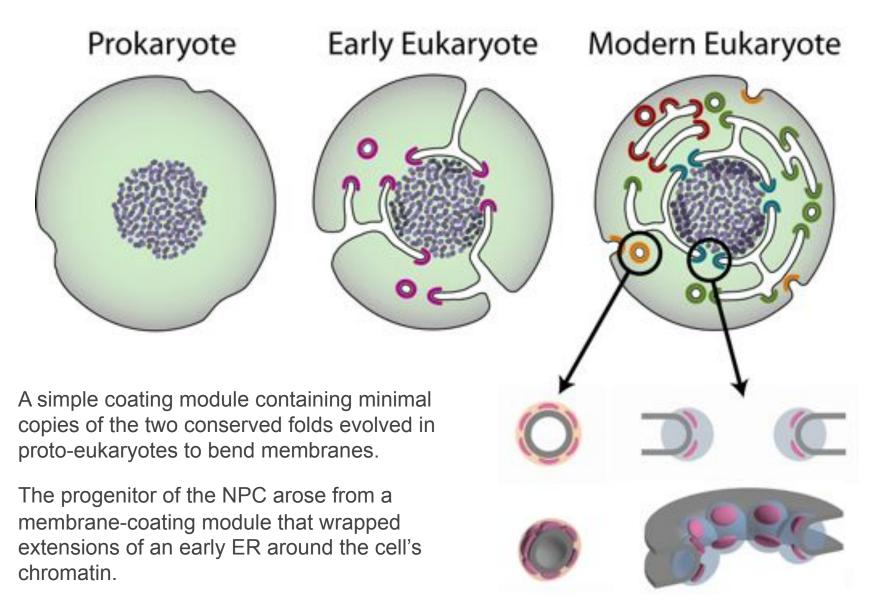
mGenThreader + SALIGN + MOULDER


D. Devos, S. Dokudovskaya, F. Alber, R. Williams, B.T. Chait, A. Sali, M.P. Rout. Components of Coated Vesicles and Nuclear Pore Complexes Share a Common Molecular Architecture. *PLOS Biology* **2(12)**:e380, 2004

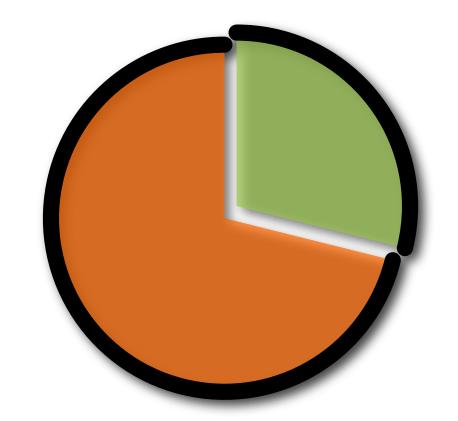
yNup84 complex proteins




All Nucleoporins in the Nup84 Complex are Predicted to Contain β -Propeller and/or α -Solenoid Folds


NPC and Coated Vesicles Share the β -Propeller and α -Solenoid Folds and Associate with Membranes

NPC and Coated Vesicles Both Associate with Membranes

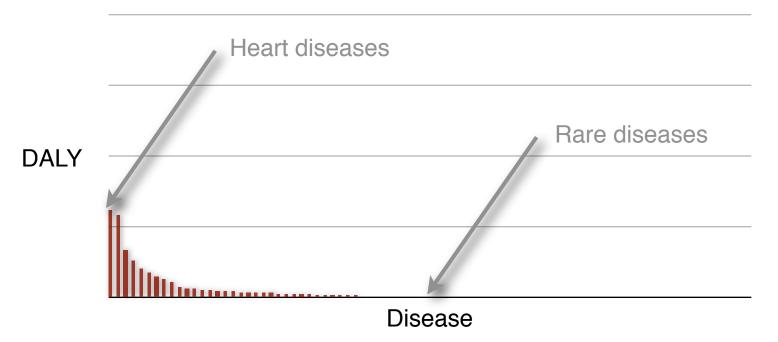


A Common Evolutionary Origin for Nuclear Pore Complexes and Coated Vesicles? The proto-coatomer hypothesis

Tropical Disease Initiative (TDI)

Predicting binding sites in protein structure models.

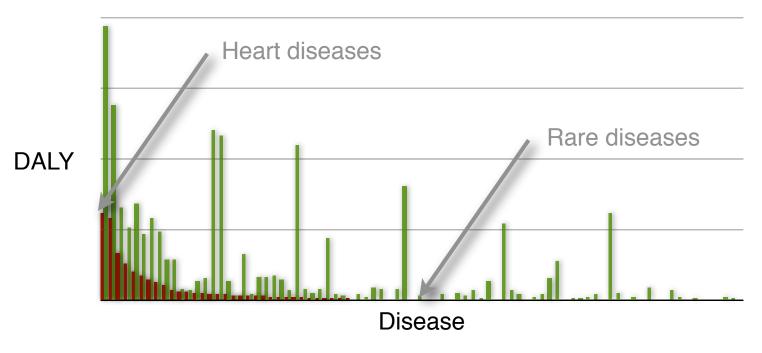
http://www.tropicaldisease.org



Need is High in the Tail

- DALY Burden Per Disease in Developed Countries
- DALY Burden Per Disease in Developing Countries

Disease data taken from WHO, World Health Report 2004


DALY - Disability adjusted life years

DALY is not a perfect measure of market size, but is certainly a good measure for importance.

DALYs for a disease are the sum of the years of life lost due to premature mortality (YLL) in the population and the years lost due to disability (YLD) for incident cases of the health condition. The DALY is a health gap measure that extends the concept of potential years of life lost due to premature death (PYLL) to include equivalent years of 'healthy' life lost in states of less than full health, broadly termed disability. One DALY represents the loss of one year of equivalent full health.

Need is High in the Tail

- DALY Burden Per Disease in Developed Countries
- DALY Burden Per Disease in Developing Countries

Disease data taken from WHO, World Health Report 2004

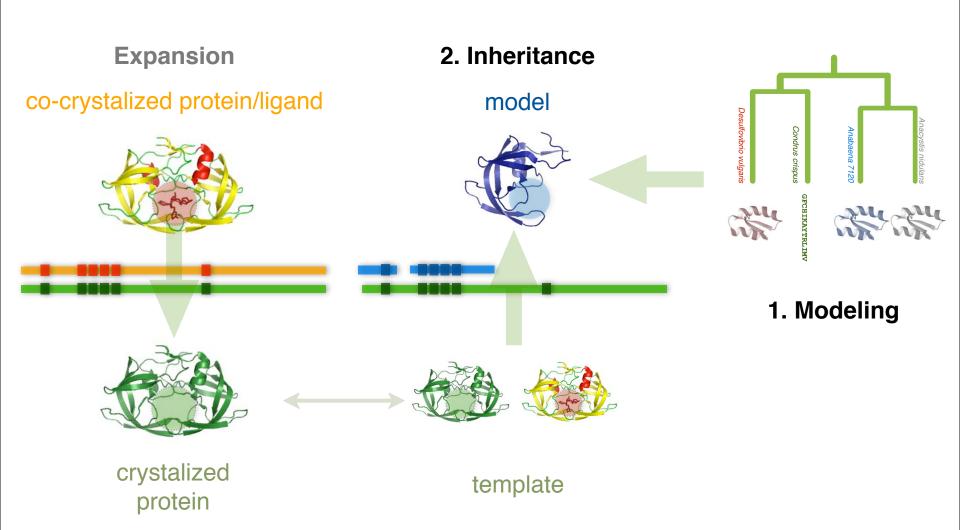
DALY - Disability adjusted life years

DALY is not a perfect measure of market size, but is certainly a good measure for importance.

DALYs for a disease are the sum of the years of life lost due to premature mortality (YLL) in the population and the years lost due to disability (YLD) for incident cases of the health condition. The DALY is a health gap measure that extends the concept of potential years of life lost due to premature death (PYLL) to include equivalent years of 'healthy' life lost in states of less than full health, broadly termed disability. One DALY represents the loss of one year of equivalent full health.

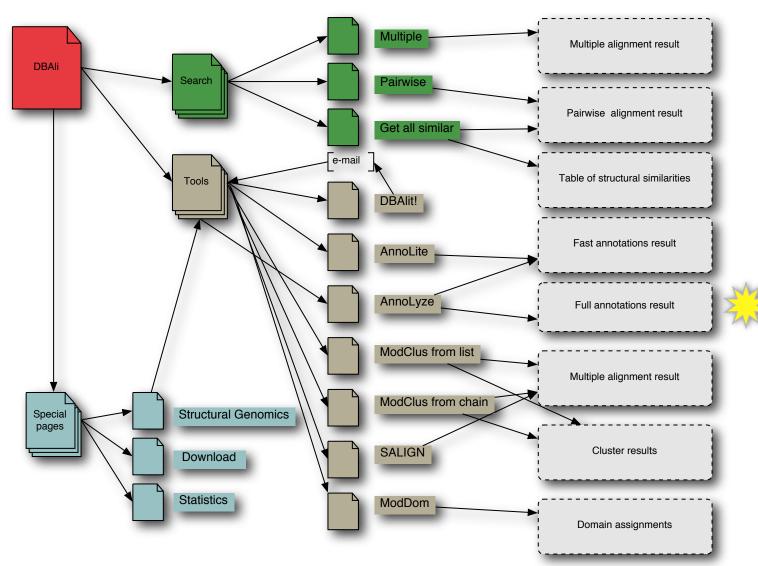
"Unprofitable" Diseases and Global DALY (in 1000's)

Malaria*	46,486
Tetanus	7,074
Lymphatic filariasis*	5,777
Syphilis	4,200
Trachoma	2,329
Leishmaniasis*	2,090
Ascariasis	1,817
Schistosomiasis*	1,702
Trypanosomiasis*	1,525

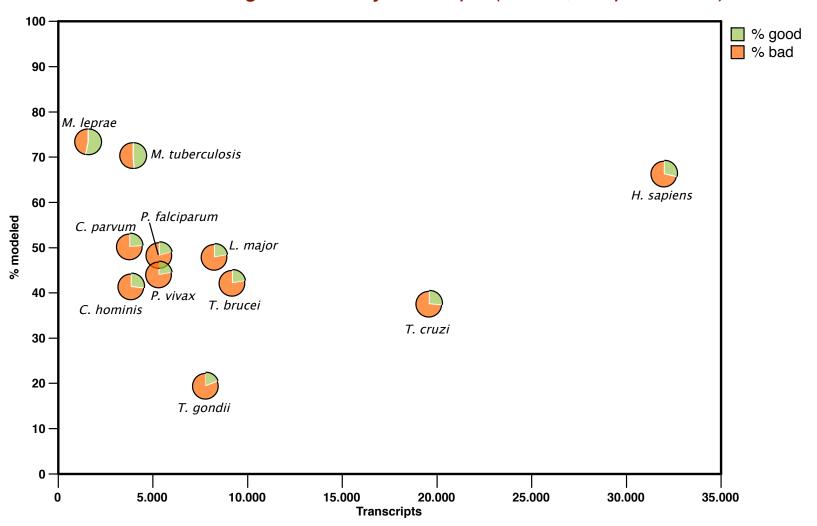

Trichuriasis	1,006
Japanese encephalitis	709
Chagas Disease*	667
Dengue*	616
Onchocerciasis*	484
Leprosy*	199
Diphtheria	185
Poliomyelitise	151
Hookworm disease	59

Disease data taken from WHO, World Health Report 2004

DALY - Disability adjusted life year in 1000's.


* Officially listed in the WHO Tropical Disease Research disease portfolio.

Comparative docking

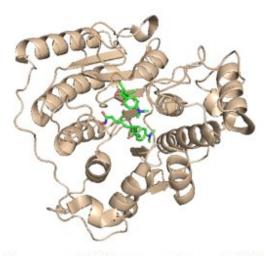

DBAliv2.0 database

http://www.dbali.org

Modeling Genomes

data from models generated by ModPipe (Eswar, Pieper & Sali)

Summary table


models with inherited ligands

29,271 targets with good models, 297 inherited a ligand/substance similar to a known drug in DrugBank

	Transcripts	Modeled targets	Selected models	Inherited ligands	Similar to a drug	Drugs
C. hominis	3,886	1,614	666	197	20	13
C. parvum	3,806	1,918	742	232	24	13
L. major	8,274	3,975	1,409	478	43	20
М. Іергае	1,605	1,178	893	310	25	6
M. tuberculosis	3,991	2,808	1,608	365	30	10
P. falciparum	5,363	2,599	818	284	28	13
P. vivax	5,342	2,359	822	268	24	13
T. brucei	7,793	1,530	300	138	13	6
T. cruzi	19,607	7,390	3,070	769	51	28
T. gondii	9,210	3,900	1,386	458	39	21
TOTAL	68,877	29,271	11,714	3,499	297	143

L. major Histone deacetylase 2 + Vorinostat

Template 1t64A a human HDAC8 protein.

L. major Histone deacetylase 2 + Vorinostat

Literature

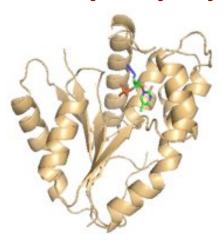
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 13143–13147, November 1996 Medical Sciences

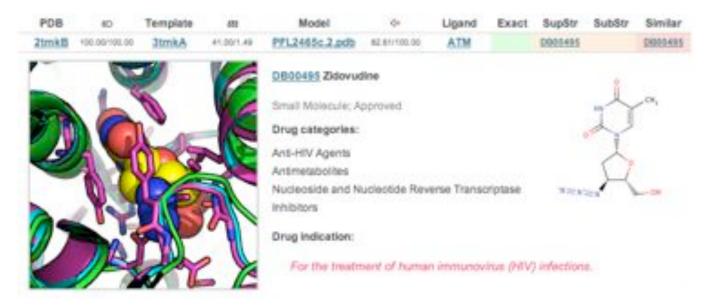
Apicidin: A novel antiprotozoal agent that inhibits parasite histone deacetylase

(cyclic tetrapeptide/Apicomplexa/antiparasitic/malaria/coccidiosis)

Sandra J. Darkin-Rattray*†, Anne M. Gurnett*, Robert W. Myers*, Paula M. Dulski*, Tami M. Crumley*, John J. Allocco*, Christine Cannova*, Peter T. Meinke‡, Steven L. Colletti‡, Maria A. Bednarek‡, Sheo B. Singh§, Michael A. Goetz§, Anne W. Dombrowski§, Jon D. Polishook§, and Dennis M. Schmatz*

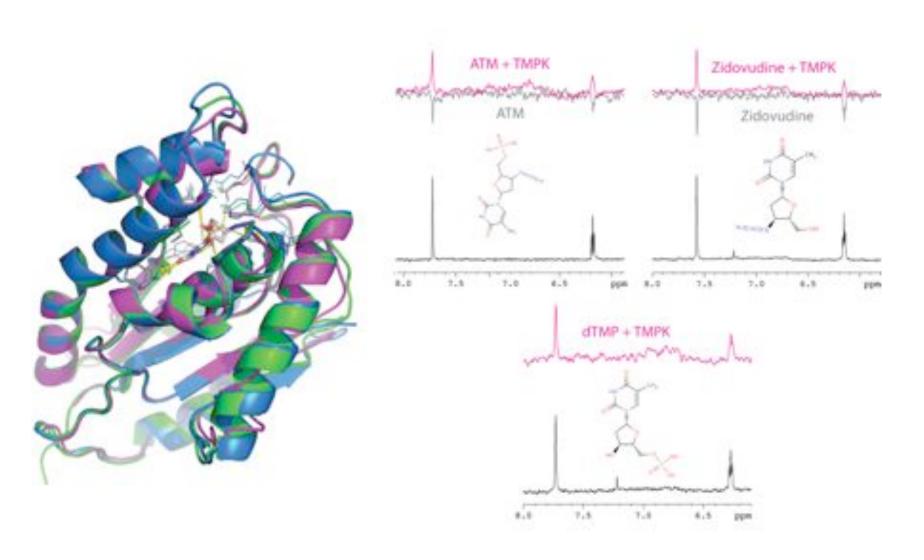
Departments of *Parasite Biochemistry and Cell Biology, ‡Medicinal Chemistry, and §Natural Products Drug Discovery, Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065


Antimicrobial Agents and Chemotherapy, Apr. 2004, p. 1435–1436 0066-4804/04/\$08.00+0 DOI: 10.1128/AAC.48.4.1435–1436.2004 Copyright © 2004, American Society for Microbiology. All Rights Reserved.


Vol. 48, No. 4

Antimalarial and Antileishmanial Activities of Aroyl-Pyrrolyl-Hydroxyamides, a New Class of Histone Deacetylase Inhibitors

P. falciparum tymidylate kinase + zidovudine


Template 3tmkA a yeast tymidylate kinase.

P. falciparum tymydilate kinase + zidovudine

NMR Water-LOGSY experiments

TDI's kernel

http://tropicaldisease.org/kernel

Acknowledgments

Structural Genomics Unit (CIPF)

Marc A. Marti-Renom Emidio Capriotti Davide Baù

Comparative Genomics Unit (CIPF)

Hernán Dopazo

Leo Arbiza

Francisco García

Functional Genomics Unit (CIPF)

Joaquín Dopazo

Fátima Al-Shahrour

José Carbonell

Ignacio Medina

David Montaner

Joaquin Tárraga

Ana Conesa

Toni Gabaldón

Eva Alloza

Lucía Conde

Stefan Goetz

Jaime Huerta Cepas

Marina Marcet

Pablo Minguez

Jordi Burguet Castell

FUNDING

Prince Felipe Research Center Marie Curie Reintegration Grant STREP EU Grant Ministerio de Educación y Ciencia (Spain)

Tropical Disease Initiative

Stephen Maurer (UC Berkeley)

Arti Rai (Duke U)

Andrej Sali (UCSF)

Ginger Taylor (TSL)
Barri Bunin (CDD)

STRUCTURAL GENOMICS

Stephen Burley (SGX) John Kuriyan (UCB) NY-SGXRC

MAMMOTH

Angel R. Ortiz

BIOLOGY

Jeff Friedman (RU)

James Hudsped (RU)

Partho Ghosh (UCSD)

Alvaro Monteiro (Cornell U)

Stephen Krilis (St.George H)

FUNCTIONAL ANNOTATION

Fatima Al-Shahrour Joaquin Dopazo

NMR STRUCTURE BIOLOGY

Antonio Pineda-Lucena Leticia Ortí

Rodrigo Carbajo

COMPARATIVE MODELING

Andrej Sali Narayanan Eswar Ursula Pieper

FUNCTIONAL ANNOTATION

Andrea Rossi Fred Davis

http://bioinfo.cipf.es
http://squ.bioinfo.cipf.es