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Objective

TO UNDERSTAND THAT SNPs HAVE
EFFECTS THAT CAN BE PREDICTED
AND TO LEARN HOW-TO USE
AutoDock FOR DOCKING SMALL
MOLECULES IN THE SURFACE OF A
PROTEIN




Nomenclature

SNP: Single Nucleotide Polymorphism. A single change in the DNA sequence,
which may or may not result in a change in the protein sequence.

Ligand: Structure (usually a small molecule) that binds to the binding site.
Receptor: Structure (usually a protein) that contains the active binding site.

Binding site: Set of aminoacids (residues) that physically interact with the lingad
(usually within 6 Angstroms).
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Single Nucleotide Polymorphism

Single Nucleotide Polymorphism or SNP

is a DNA sequence variation occurring when a single nucleotide - A, T, C, or G - in
the genome differs between members of the species.

Usually one will want to refer to SNPs when the population frequency is = 1%
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SNPs and disease

Single nucleotide polymorphism are the most common type of genetic variations in
human accounting for about 90% of sequence differences (Collins et al., 1998).

Studying SNPs distribution in different human populations can lead to important
considerations about the history of our species (Barbujani and Goldstein, 2004;
Edmonds et al., 2004).

SNPs can also be responsible of genetic diseases (Ng and Henikoff, 2002; Bell, 2004).
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SNP databases
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Evolutionary information for SNP
analysis of p53 protein.

Arbiza et al. Selective pressures at a codon-level predict deleterious mutations in human disease genes.

J Mol Biol (2006) vol. 358 (5) pp. 1390-404
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Deleterious mutabons affecting biclogical fusction of proteins are
constantly being rgected by punfiang selection from he gene pool. The
PO SYTIOMVINOUS S symionvimo s substitution ralte ratio (w) is & measure of
selective pressure on amano acxd replicement mutations for protein-coding
genes. Different mwthods have been developed In order to predict non
svnonvmous changes affecting gene function. However, none has
considered the estimation of selective constraints acting on progesn
resichoes. Here, we have used codon-based maximum Bkddithood models
in order o cstimate the selective pressures on the indivedual améno acd
residues of a well-known model protein: p53. We demonstrate that the
number of restdues under strong punfying sclection in pS3 s much higher
than those that are strictly conserved during the evolution of the species. In
agreement with theooctical expectations, ressdues that have been noted to
be of structural relevance, or in darect assocation with DNA, were among
those showing the highest signals of pundving selection. Conversely, those
changing according 10 a neutral, or swarly neutral mode of evolution, were
observed to be irrclevant for protein function. Finally, using more than 40
Buman disease gones, we demonstrate that resid ues evolving under strong
selective pressures (w<(L1l) are sggnificantly assodated (p<0.01) with
buman disease, We hvpothesaae that non-synonymoass change oo amino
acids showing w<(0.1 will most likdy affect protein function. The
application of this evolutionary prediction at a genoenic scabe will provide
an & priori hypothesis of the phenotypic effect of non-synonymous coding
smgle nucleotide pohmorphisms (SNI's) = the haman genome

© 2006 Elsevier Lad. All rights pescrved

Keynornds: comparative genoeniacs, deleterious mutations, haman Jdseases,
purnfying sclection; codon-based modeds
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Natural selection &
human disease

SNPs can cause alterations of gene function by...

Alterations at expression level
Alternative splicing
Alteration (or loss) of gene product function

. Changes in the stability of the protein
Functionally important residues
Phylogenetic conservation
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Natural selection working at codon level

nsSNP’s functional prediction
JMB 2006; HM 2008, NatGen 2008

Selective Constraints and
Human Disease Genes:
Evolutionary and
Bioinformatics
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Main Question

e Could an estimator of the selective pressures acting at codon level
(w) be used as a predictor of the phenotype effect of SNP’s ?

Site-specific models average dN/dS over

Detecting Positive & Negative Selection lineages but differentiate over sites

Positive

Purifying




p53 evolutionary analysis

Many mutant forms are involved in different types of human cancer
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Table L Summary of p53 damains, mutations and « statistics according to M8 and SLR models
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p53 evolutionary analysis
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Beyond p53...

Disease Proteins,
Immune, Cancer ~ 250 proteins

Table 3. Evaluation of altermative w ..o valises and
mutational freguencies i discase
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Evolution and disease

Capiriotti et al. Use of estimated evolutionary strength at the codon level improves the prediction of disease-related protein mutations in humans.
Hum Mutat (2008) vol. 29 (1) pp. 198-204
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METHODS

Use of Estimated Evolutionary Strength
at the Codon Level Improves the Prediction
of Disease-Related Protein Mutations in Humans

Emidio Capriotti,l Leonardo Arbiza,? Rita Casadio,* Joaquin Dopazo,3 Hernan Dopazo,z*
and Marc A. Marti-Renom'*

'Structural Genomics Unit, Centro de Investigacién Principe Felipe (CIPF), Valencia, Spain; “Pharmacogenomics and Comparative Genomics
Unit, Centro de Investigacién Principe Felipe (CIPF), Valencia, Spain; 3Functional Genomics Unit, Bioinformatics Department, Centro de
Investigacién Principe Felipe (CIPF), Valencia, Spain; *Laboratory of Biocomputing, CIRB/Department of Biology, University of Bologna,
Bologna, Italy

Communicated by David N. Cooper
Predicting the functional impact of protein variation is one of the most
A rapidly growing number of genome-scale studies provide large amounts of experimental data, allowing the
li of rigorous statisti hes for predicting whether a given single point mutation has an impact
on human health. Up until now, existing methods have limited their source data to either protein or gene
information. Novel in this work, we take advantage of both and focus on protein evolutionary information by
using estimated selective pressures at the codon level. Here we introduce a new method (SeqProfCod) to predict
the likelihood that a given protein variant is associated with human disease or not. Our method relies on a
support vector machine (SVM) classifier trained using three sources of information: protein sequence, multiple
protein li and the estimation of selective pressure at the codon level. SeqProfCod has been
benchmarked with a large dataset of 8,987 single point mulaucns from 1,434 human proteins from
SWISS-PROT. It achieves 82% overall accuracy and a i ient of 0.59, indicating that the
estimation of the selective pressure helps in predicting the functional impact of imgle-pomt mutauom
Moreover, this study demonstrates the synergic effect of bining two sources of i for
the functional effects of protein variants: protein file-b: i ion and the 1
estimation of the selective pressures at the codon level. The results of large scale appllcatlon of SeqProfCod
over all annotated point mutations in SWISS-PROT ilable for downl
services/Omidios/; last accessed: 24 August 2007), could be used to support chmcal studies. Hum Mutat
29(1), 198-204, 2008.  © 2007 Wiley-Liss, Inc.
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and human disease have grown rapidly over the past years, in part
due to genomic-scale sequencing efforts [Krawczak et al., 2000;
Sherry et al., 2001; Stenson et al., 2003]. For example, it is now
known that single nucleotide polymorphisms (SNPs) constitute
about the 90% of human protein sequence variability [Collins
et al,, 1998]. Synonymous and nonsynonymous SNPs (nsSNPs)
may occur every ~350bp in coding regions [Cargill et al., 1999]
and about 50% of nsSNPs may be associated 1o pathologies of
it
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for human disease is one of the major challenges in bioi ic

Recently, different methods have been developed for predicting
the effect of single point mutations in humans [Arbiza et al., 2006;
Bao and Cui, 2005; Bao et al., 2005; Capriotti et al., 2006; Chan
et al, 2007; Karchin et al, 2005 Ng and Henikoff, 2003;
Ramensky et al, 2002; Santibanez Koref et al., 2003; Thomas
etal,, 2003b; Yue and Moult, 2006]. In spite of the effort, however,
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Sequence and evolutive -
based predictors

Mutation C->W Sequence Environment Profile Codon

ACDEFGHIKLMNPQRSTVWY ACDEFGHIKLMNPQRSTVWY MR AS ® dS dN

06000000000000000000 0000080000000000000000000

RBF Kernel

. <

‘ Output ‘ O(i) where i = disease or neutral polymorphism

SEQ: Mutation+ Sequence Environment
SEQPROF: Mutation+ Sequence Environment + Profile
SEQCOD Mutation+ Sequence Environment + Codon
OMIDIOS: Mutation+ Sequence Environment + Profile + Codon

Profile: MR and AS sequence profile information
Codon: omega, dS,dN: selective pressure at codon level, synonymous and
non-synonymous rate at branch level.
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Classification results

Mutation Disease Proteins

Single point mutation with
A’* reported effect Al 12,944 3,587

SUJlS%fOt Single point mutation with

reported effect and profile

8,718 3,852 2,538

SeqCod and SegProf methods reach the same level of accuracy of about 79%
and when the two different types of evolutive information are used the resulting
predictor Omidios overcomes the others showing an overall accuracy of 82%

Q2 P[D] Q[D] P[N] Q[N] C

Seq /3 86 72 54 74 0.43

SeqCod 79 87 82 64 74 0.53

SeqProf 79 88 81 63 75 0.54

Omidios 82 89 84 68 /6 0.59

D = Disease related N = Neutral




Omidios method

Omidios has higher accuracy than the previous two methods increasing the
accuracy up to 82% and the correlation coefficient to 0.59.

Q2 P[D] Q[D] PIN] QIN] C
Omidios 88 84 68 /6

Seq
SeqCod
SeqProf

— - SeqProfCod

True Positive Rate
Fraction

Area Omidios = 0.88

| | 1
04 0.6 08

False Positive Rate

Q2: Overall Accuracy C: Correlation Coefficient DB: Fraction of database that are predicted with a reliability > the given threshold

18




Comparison

Omidios results in higher accuracy and correlation than the other available methods
covering the 100% of the dataset (see column %PM).

Omidios results in higher accuracy with respect to SIFT and although the quality of Omidios
is comparable to PANTHER, when our prediction are selected by Rl index the accuracy of
our method is higher than PANTHER.

P[D]
Omidios 89
SIFT 84
PANTHER 87

Omidios
SIFT
PANTHER




Omidios server
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Structural analysis of missense mutations
in human BRCA1 BRCT domains

Mirkovic et al. Structure-based assessment of missense mutations in human BRCA1: implications for breast and ovarian cancer predisposition.
Cancer Res (2004) vol. 64 (11) pp. 3790-7

[CANCER RESEARCH 64, 3790-3797, June 1, 2004]

Structure-Based Assessment of Missense Mutations in Human BRCA1: Implications

for Breast and Ovarian Cancer Predisposition

Nebojsa Mirkovic,! Marc A. Marti-Renom,? Barbara L. Weber,® Andrej Sali,> and Alvaro N. A. Monteiro*®

!Laboratory of Molecular Biophysics, Pels Family Center for Biochemisiry and Siructural Biology, Rockefeller University, New York, New  York: *Departments of
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ABSTRACT

The BRCAI gene from individuals at risk of breast and ovarian cancers
can be screened for the presence of mutations. However, the cancer
association of most alleles carrying missense mutations is unknown, thus
creating significant problems for genetic counseling. To increase our
ability to identify cancer-associated mutations in BRCAI, we set out to use
the principles of protein three-dimensional structure as well as the corre-
lation between the cancer-associated mutations and those that abolish
transcriptional activation. Thirty-one of 37 missense mutations of known
impact on the transcriptional activation function of BRCA1 are readily
rationalized in structural terms. Loss-of-function mutations involve non-
conservative changes in the core of the BRCA1 C-terminus (BRCT) fold
or are localized in a groove that presumably forms a binding site involved
in the transcriptional activation by BRCA1; mutations that do not abolish
transcriptional activation are either conservative changes in the core or
are on the surface outside of the putative binding site. Next, structure-
based rules for predicting of a given mi
mutation were applied to 57 germ-line BRCAI variants of unknown
cancer association. Such a structure-based approach may be helpful in an
integrated effort to identify mutations that predispose individuals to
cancer.

INTRODUCTION

Many germ-line mutations in the human BRCA/I gene are associ-
ated with inherited breast and ovarian cancers (1, 2). This information
has allowed clinicians and genetic counselors to identify individuals at
high risk for developing cancer. However, the disease association of
over 350 missense mutations remains unclear, primarily because their
relatively low frequency and ethnic specificity limit the usefulness of
the population-based statistical approaches to identifying cancer-caus-
ing mutations. To address this problem, we use here the three-
dimensional structure of the human BRCA1 BRCT domains to assess
the transcriptional activation functions of BRCA1 mutants. Our study
is made possible by the recently determined sequences (3-6) and
three-dimensional structures of the BRCA1 homologs (7, 8). In addi-
tion, we benefited from prior studies that attempted to rationalize and
predict functional effects of mutations in various proteins (9-12),
including those of BRCA1 (13, 14).

BRCALI is a nuclear protein that activates transcription and facili-
tates DNA damage repair (15, 16). The tandem BRCT domains at the
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COOH-terminus of BRCA1 are involved in several of its functions,
including modulation of the activity of several transcription factors
(15), binding to the RNA polymerase II holoenzyme (17), and acti-
vating transcription of a reporter gene when fused to a heterologous
DNA-binding domain (18, 19). Importantly, cancer-associated muta-
tions in the BRCT domains, but not benign polymorphisms, inactivate
transcriptional activation and binding to RNA polymerase IT (18-21).
These observations suggest that abolishing the transcriptional activa-
tion function of BRCA1 leads to tumor development and provides a
genetic framework for characterization of BRCA1 BRCT variants.

MATERIALS AND METHODS

The multiple sequence alignment (MSA) of orthologous BRCA1 BRCT
domains from seven species, including Homo sapiens (GenBank accession
number U14680), Pan troglodytes (AF207822), Mus musculus (U68174),
Rattus norvegicus (AF036760), Gallus gallus (AF355273), Canis familiaris
(U50709), and Xenopus laevis (AF416868), was obtained by using program
ClustalW (22) and contains only one gapped position (Supplementary Fig. 1).
According to PSI-BLAST (23), the latter six sequences are the only sequences
in the nonredundant protein sequence database at National Center for Biotech-
nology Information that have between 30% and 90% sequence identity to the
human BRCA1 BRCT domains (residues 1649-1859).

The multiple structure-based alignment of the native structures of the
BRCT-like domains was obtained by the SALIGN command in MODELLER
(Supplementary Fig. 2). It included the experimentally determined structures
of the two human BRCA1 BRCT domains (Protein Data Bank code 1JNX;
Refs. 8, 24), rat BRCA1 BRCT domains (1LOB: Ref. 7), human p53-binding
protein (IKZY: Ref. 7). human DNA-ligase Illa (1IMO: Ref. 25), and human
XRCC1 protein (1CDZ; Ref. 13). Structure variability was defined by the
root-mean-square deviation among the superposed Ca positions, as calculated
by the COMPARE command of MODELLER. The purpose of these calcula-
tions was to gain insight into the variability of surface-exposed residues (left
panel in Fig. 2). In conjunction with observed mutation clustering, these data
may point to putative functional site(s) on the surface of BRCT repeats.

Comparative protein structure modeling by satisfaction of spatial restraints,
implemented in the program MODELLER-6 (26), was used to produce a
three-dimensional model for each of the 94 mutants. The crystallographic
structure of the human wild-type BRCAI BRCT domains was used as the
template for modeling (8). The four residues missing in the crystallographic
structure (1694 and 1817-1819) were modeled de novo (27). All of the models
are available in the BRCA1 model set deposited in our ModBase database of
comparative protein structure models (28).°

For the native structure of the human BRCT tandem repeat and each of the
94 mutant models, a number of sequence and structure features were calcu-
lated. These features were used in the classification tree in Fig. 3 (values for
all 94 ions are given in 'y Tables 1 and 2).

Buriedness. Accessible surface area of an amino acid residue was calcu-
lated by the program DSSP (29) and normalized by the maximum accessible
surface area for the corresponding amino acid residue type. A residue was
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Note: The authors declare that they have no competing financial interests. Supple-
mental data for this article are available at Cancer Research Online (http:
cancerres@aacrjournals.org).

Requests for reprints: Alvaro N. A. Monteiro, H. Lee Moffitt Cancer Center and
Research Institute, MRC 3 West, 12902 Magnolia Drive, Tampa, FL 33612. Phone:
(813) 745-6321; Fax: (813) 903-6847; E-mail: monteian@moffitt.usf.edu.

exposed if its accessible surface area was larger than 40A? and if
its relalwe accessible surface area was larger than 9% and buried otherwise. A
mutation of a more exposed residue is less likely to change the structure and
therefore its function.

© http://salilab.org/modbase/.
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Human BRCA1 and its two BRCT domains
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Williams, Green, Glover. Nat.Struct.Biol. 8, 838, 2001
22




of the BRCAZ protoin  Vanants of Ihis type .

the contnbution of this vanant 1o the relalve 310 ovanan cancer cannot be estabdshed
solely from this analysss. mobnwmayumcmuwamot ths parbcular vanant in an
ndrvidudl with 3 deletonous truncating mulation in BRCAZ, however, reduces the bkethood that H2116R
is itseif deletenous.




Missense mutations in BRCT domains by function
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Putative binding site on BRCAT1
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BIARDI~BRCT~2/2 Putative binding site predicted in 2003

and accepted for publication on March 2004.

Williams et al. 2004 Nature Structure Biology. June 2004 11:519
Mirkovic et al. 2004 Cancer Research. June 2004 64:3790




Supervised learning approach
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Functional Impact of Missense Variants
in BRCA1 Predicted by Supervised Learning

:5,6%
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Many individuals tested for inherited cancer susceptibility at the BRCAT gene locus are discovered to have variants of
unknown clinical significance (UCVs). Most UCVs cause a single amino acid residue (missense) change in the BRCA1
protein. They can be biochemically assayed, but such luations are time-c i and labor-i
Computational methods that classify and suggest explanations for UCV impact on protein function can complement
functional tests. Here we describe a supervised learning approach to classification of BRCAT UCVs. Using a novel
combination of 16 predictive features, the algorithms were applied to retrospectively classify the impact of 36 BRCA1
C-terminal (BRCT) domain UCVs biochemically yed to transactivation function and to blindly classify 54
documented UCVs. Majority vote of three supervised learning algorithms is in agreement with the assay for more than
94% of the UCVs. Two UCVs found deleterious by both the assay and the classifiers reveal a previously uncharacterized

site. Clinici; may soon be able to use computational classifiers such as those described here to
better inform patients. These classifiers can be adapted to other cancer susceptibility genes and systematically applied
to prioritize the growing ber of p | ive loci and variants found by large-scale disease association
studies.
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Introduction

The BRCAI gene encodes a large multifunction protein
involved in cell-cycle and centrosome control, transcriptional
regulation, and in the DNA damage response [1-3]. Inherited
mutations in this gene have been associated with an increased
lifetime risk of breast and ovarian cancer (6-8 times that of
the general population) [4]. There are several thousand
known deleterious BRCAI mutations that result in frame-
shifts andlor premature stop codons, producing a truncated
protein product [5]. In contrast, the functional impact of
most missense variants that result in a single amino acid
residue change in BRCA1 protein is not known. The Breast
Cancer Information Core database (http:/lresearch.nhgri.nih.-
govlbicl), a central repository of BRCAI and BRCA2 mutations
identified in genetic tests, currently contains 487 unique
missense BRCAI variants (April 2006), of which only 17 have
sufficient geneticlepidemiological evidence to be classified as
deleterious (Clinically Important) and 33 as neutral or of little
clinical importance (Not Clinically Important). As genetic
testing for inherited disease predispositions becomes more
commonplace, predicting the clinical significance of missense
variants and other UCVs will be increasingly important for
risk assessment.

Because most UCVs in BRCAT and BRCA2 occur at very low
population frequencies (<0.0001) [6], direct epidemiological
measures, such as familial cosegregation with disease, are
often not sufficiently powerful to identify the variants
associated with cancer predisposition. A promising approach
is to supplement epidemiological and clinical analysis of
UCVs with indirect approaches such as biochemical studies of

. PLoS Computational Biology | www.ploscompbiol.org

protein function and bioinformatics analysis [6-8]. In the
future, physicians and genetic counselors may be able to rely
on all these sources of information about UCVs when
counseling their patients.

Previous bioinformatics analysis of BRCAI UCVs has
depended primarily on measures of evolutionary conserva-
tion in multiple sequence alignments of human BRCAI and
related proteins from other organisms [9-11]. Two groups
have attempted to include information about BRCA1 protein
structure. Williams et al. predicted the impact of 25 missense
variants in BRCA1's C-terminal BRCT domains by consider-
ing both conservation and location of variant amino acid
residues in an X-ray crystal structure [12]. Variants were
predicted deleterious if their properties were similar to
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support vector machine supervised learning
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Features

Feature Category

Feature Description

Structural

Physiochemical differences between wild-type and variant amino acid
residues

Evolutionary conservation of amino acid residues in protein orthologs

Solvent Accessiblity of wild-type amino acid residue (A?)

Solvent Accessibility of wild-type residue normalized by maximum exposed Sol-
vent Accessibility of that residue type in a GLY-X-GLY tripeptide, using values gi-
ven by Rose et al. [80]

Solvent Accessibility of variant residue

Normalized Solvent Accessibility of variant residue

Number of methyl(ene) groups within 6 A of the variant sidechain [81]

Number of unsatisfied spatial restraints in the MODELLER objective function after
in silico mutation and simulated annealing refinement of the variant®

® and ¥ backbone dihedral angles at the mutated position

Whether the mutation results in buried charge

Change in formal charge

Change in volume (A3) [82]

Change in polarity [83]

Grantham difference [37]

Relative entropy estimated by amino acids in the variant’s alignment column [84]
Positional hidden Markov model conservation score based on the probabilities of
the wild-type, variant, and most probable amino acid residue in the variant’s
alignment columnP® [24]

Violated restraints suggest that the mutated sidechain introduced steric clashes or unusual geometries into the protein model. Examples of violated restraints include extreme values of
the Lennard-Jones 6-12 potential [85], bond angle potential, bond length potential, sidechain dihedral angle restraints, and nonbonded restraints. Two thresholds are used to identify

violated restraints yielding two features.

®The probabilities are estimated by a hidden Markov model built with SAM-T2K and the w0.5 script [23].
PHC = log(|p(Wild-type) — p(Variant)|) 4+ log(p(Wild-type)) + log(P(Most Probable)) - log (p(Variant))
The features were computed for 618 TP53 missense variants, 36 BRCA1 BRCT missense variants biochemically characterized in our companion paper [14], and 54 BRCA1 BRCT UCVs found

in BIC.
doi:10.1371/journal.pcbi.0030026.t002
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LS-SNP Large Scale SNP analysis

http://salilab.org/LS-SNP/
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Protein function from structure

ab-initio localization of binding sites

Rossi. Localization of binding sites in protein structures by optimization of a composite scoring function.
Protein Science (2006) vol. 15 (10) pp. 2366-2380
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Localization of binding sites in protein structures by
optimization of a composite scoring function

ANDREA ROSSI, MARC A. MARTI-RENOM, anp ANDREJ SALI
Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, California Institute for Quantitative
Biomedical Research, University of California, San Francisco, California 94143-2552, USA

(REcEIVED March 28, 2006; FINaL REvision July 10, 2006; Acceprep July 11, 2006)

Abstract

The rise in the number of functionally uncharacterized protein structures is increasing the demand
for structure-based methods for functional annotation. Here, we describe a method for predicting the
location of a binding site of a given type on a target protein structure. The method begins by
constructing a scoring function, followed by a Monte Carlo optimization, to find a good scoring patch on
the protein surface. The scoring function is a weighted linear combination of the z-scores of various
properties of protein structure and sequence, including amino acid residue conservation, compactness,
protrusion, convexity, rigidity, hydrophobicity, and charge density; the weights are calculated from a set
of previously identified instances of the binding-site type on known protein structures. The scoring
function can easily incorporate different types of information useful in localization, thus increasing the
applicability and accuracy of the approach. To test the method, 1008 known protein structures were split
into 20 different groups according to the type of the bound ligand. For nonsugar ligands, such as various
nucleotides, binding sites were correctly identified in 55%-73% of the cases. The method is completely
automated (http://salilab.org/patcher) and can be applied on a large scale in a structural genomics
setting.

Keywords: protein function annotation; small ligand binding-site localization

Many protein targets of structural biologists are no longer
chosen because of their function, but rather by their
location in the protein sequence-structure space (Burley
et al. 1999; Brenner 2000, 2001; Sali 2001; Vitkup et al.
2001; Chance et al. 2002; Goldsmith-Fischman and
Honig 2003). Therefore, the number of functionally
uncharacterized protein structures is growing. Of the
36,606 entries in the Protein Data Bank (PDB) (Kouranov
et al. 2006) as of February 23, 2006, 1407 structures were
deposited by structural genomics consortia, 985 (70%)

Reprint requests to: Andrea Rossi or Andrej Sali, Departments of
1 Sciences and Chemistry, California
Institute for Quantitative Biomedical Research, University of California,
San Francisco Byers Hall, Office 503B, 1700 4th Street, San Francisco, CA
94143-2552, USA; e-mail: .0rg Or 8 S org; fax:
(415) 514-4231.
Article published online ahead of print. Article and publication date
are at hip://www.proteinscience.org/cgi/doi/10.1110/ps.062247506.

of which had an unknown function according to the
HEADER record of their PDB files. In contrast, only 174
(0.5%) of the 35,199 protein structures solved outside of
structural genomics had no functional annotations in their
PDB files.

To classify the functions of thousands of uncharacter-
ized protein structures that will become available over the
next few years and millions of comparative models based
on the known structures, automated structure-based func-
tional annotation is required (Wallace et al. 1996, 1997,
Kleywegt 1999; Thornton et al. 2000; Babbitt 2003;
Laskowski et al. 2003). In particular, we need to be able
to identify the locations and types of binding sites on
a given structure, because the binding sites define the
molecular function of a protein.

The most principled computational approach to pre-
dicting the molecular function is to dock a large library of
potential ligands against the surface of the protein. In

Protein Science (2006), 15:1-15. Published by Cold Spring Harbor Laboratory Press. Copyright © 2006 The Protein Socicty




For many protein structures function
IS unknown

Structural Traditional
Genomics* methods

Annotated** 654 28,342

Not

Annotated 506 (43.6%) 6,815 (19.4%)

Total

deposited 1,160 35,157

*annotated as STRUCTURAL GENOMICS in the header of the PDB file
**annotated with either CATH, SCOP, Pfam or GO terms in the MSD database
36,317 protein structures, as of August 8th, 2006




For 20% protein structures function
IS unknown

Structural Traditional
Genomics* methods

Annotated** 654 28,342

Not

Annotated 506 (43.6%) 6,815 (19.4%)

Total

deposited 1,160 35,157

*annotated as STRUCTURAL GENOMICS in the header of the PDB file
**annotated with either CATH, SCOP, Pfam or GO terms in the MSD database
36,317 protein structures, as of August 8th, 2006
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Ligand fingerprints

Protrusion

Compactness Conservation Charge density B-factor coefficient Convexity score Hydrophobicity

-1.266 -2.009 0.447 -0.414 -1.521 -1.388 -0.118
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Protein function from structure

Comparative annotation. AnnoLite and AnnoLyze.

Marti-Renom et al. The AnnoLite and AnnolLyze programs for comparative annotation of protein structures.
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Abstract

Background: Advances in structural biology, including structural genomics, have resulted in a
rapid increase in the number of experimentally determined protein structures. However, about half
of the structures deposited by the structural genomics consortia have little or no information about
their biological function. Therefore, there is a need for tools for automatically and comprehensively
annotating the function of protein structures. We aim to provide such tools by applying
comparative protein structure annotation that relies on detectable relationships between protein
structures to transfer functional annotations. Here we introduce two programs, Annolite and
Annolyze, which use the structural alignments deposited in the DBAIi database.

Description: Annolite predicts the SCOP, CATH, EC, InterPro, PfamA, and GO terms with an
average sensitivity of ~90% and average precision of ~80%. AnnoLyze predicts ligand binding site
and domain interaction patches with an average sensitivity of ~70% and average precision of ~30%,
correctly localizing binding sites for small molecules in ~95% of its predictions.

Conclusion: The Annolite and Annolyze programs for comparative annotation of protein
structures can reliably and automatically annotate new protein structures. The programs are fully
accessible via the Internet as part of the DBAIi suite of tools at http://salilab.org/DBAIi/.

Background We are now faced with assigning, understanding, and
Genomic efforts are providing us with complete genetic ~ modifying the functions of proteins encoded by these
blueprints for hundreds of organisms, including humans.  genomes. This task is generally facilitated by protein 3D
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Benchmark
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Non-redundant set

Initial set-
mTBase
Non-redundant set

Number of chains

78,167
30,126
4,948 (8,846 ligands)

Number of chains

78,167
30,425
4,61 3 (11,641 partnerships)




DBAIi tools
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AnnolLyze

Sensitivity .vs. Precision




Example (2azwA)

Structural Genomics Unknown Function

Molecule: MutT/nudix family protein
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Annolyze
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Docking of small molecules. AutoDock.

Marc A. Marti-Renom

http://bioinfo.cipf.es/squ

Structural Genomics Unit |
Bioinformatics Department
@?@ Prince Felipe Resarch Center (CIPF), Valencia, Spain

PRINCIPE FELIPE

CENTRO DE INVESTIGACION
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DISCLAIMER!

Credit should go to Dr. Ruth Huey and Dr. Garret M. Morris

. S ¢ - * S ’ «h

% AutoDock

)-‘?!_ H N o

http://AutoDock.scripps.edu
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Summary

* INTRO

* DOCKING

« SEARCH METHODS
« EXAMPLE

e AutoDock 4.0 with ADT




What is docking?

Predicting the best ways two molecules interact.

< Obtain the 3D structures of the two molecules
¢ Locate the best binding site (Remember AnnoLyze?)
<& Determine the best binding mode.




What is docking?

Predicting the best ways two molecules interact.

& We need to quantify or rank solutions
& We need a good scoring function for such ranking




What is docking?

Predicting the best ways two molecules interact.

& X-ray and NMR structures are just ONE of the possible solutions
¢ There is a need for a search solution




BIOINFORMATICS (a note)

REPRESENTATION

SCORING
SAMPLING




REPRESENTATION

v A

-/




SCORING

AutoDock 4.0

AGbinding = AGvdW + AG

T AGhbond T AGdesolv + AG

elec tors

AGvdW | -
12-6 Lennard-Jones potential
AG

Coulombic with Solmajer-dielectric
AGhbond

12-10 Potential with Goodford Directionality
AG’desolv

Stouten Pairwise Atomic Solvation Parameters
AG

Number of rotatable bonds

elec

grj= A +

tors

http://AutoDock.scripps.edu/science/equations
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SAMPLING

AutoDock 4.0

¢ Global search algorithms
& Simulated annealing (Goodsell et al. 1990)
< Distributed SA (Morris et al. 1996)
& Genetic Algorithm (Morris et al. 1998)

¢Local search algorithms
&Solis & Wets (Morris et al. 1998)

¢Hybrid global-local search
¢Lamarckian GA (Morris et al. 1998)




PROBLEM!

Very CPU time consuming...

Dihidrofolate reductase with a metotrexate (4dfr.pdb)

N=T360/i

N: number of conformations
I: number of rotable bonds
[: incremental degrees
Metotrexato
10 rofable bonds
30° increments (discrefte)
10'? plausible conformations!




SOLUTION

Use of grid maps!

& Saves lots of time (compared to classical MM/MD)
<& AutoDock uses trilinear interpolation

& Need to map each atom to a grid point

< Limits the search space!




AutoGrid

Use of grid maps!

& Center of grid
& center of ligand
& center of receptor
¢ a selected atom or coordinate
< Grid resolution (spacing)
< default 0.375 Angstroms
< Number of grid points (dimension)

<o use ONLY even numbers
O MAKE SURE ALL LIGAND IS INSIDE GRID AND CAN MOVE!




Spectrum of search

Breadth and level of detall

Search breadth

< Local
& Molecular Mechanics
¢ Intermediate
& Monte Carlo Simulated Annealing
¢ Brownian dynamics
& Molecular Dynamics
< Global
< Docking

Level of detail

& Atom types

<& Bond stretching

< Bon-angle bending

¢ Rotational barrier poyentials

< Implicit solvation
< Polarization

& What is rigid and what is flexible?




Search algorithms

Simulated Annealing

T— Ligand starts at initial state (random or user-
citestn defined)

Perturb

The temperature of the system is reduced with
time and the moves of the atoms are accepted
depending on its energy compared to previous
energy (with a probability proportional to the
temperature!)

Repeat until reaching final solution.




Search algorithms
Genetic Algorithm

Use of a Genetic Algorithm as a sampling method

e Each conformation is described as a set of rotational
angles.

e 64 possible angles are allowed to each of the bond in
the ligand.

e Each plausible dihedral angle is codified in a set of
binary bits (26=64)

e Each conformation is codified by a so called
chromosome with 4 x 6 bits (0 or 1)

111010.010110.001011.010010
D, D,

D= 1x25+ 1x2%+ 1x23 + 0x2? + 1x2' + 0x20 = 58°




Search algorithms
Genetic Algorithm

Population (ie, set of chromosomes or configurations)

011010.010110.011010.010111 < Chromosome
111010.010110.001011.010010

001010.010101.000101.010001
101001.101110.101010.001000
001010.101000.011101.001011

X

Gene




Search algorithms
Genetic Algorithm

Genetic operators...

011010.010110.011010.010111

Single
mutation

\4

011010.011110.011110.010111




Search algorithms
Genetic Algorithm

Genetic operators...

H\
O%O
HoN OH
/O OH
H
HN O
H\
O@MOH
HN O
O——(: :>——\Nl O
/
H
Ho OH

001010.010101.000101.010001
011010.010110.011010.010111

Recombination

001010.010101.011010.010111
011010.010110. 000101.010001




Search algorithms
Genetic Algorithm

Genetic operators...

011010.010110.011010.010111 . . 111110.010010.011110.010101
111010.010110.001011.010010  Migration  101010.110110.011011.011010
001010.010101.000101.010001 » 001010.010101.000101.010001
101001.101110.101010.001000 101101.101010.101011.001100
001010.101000.011101.001011 011010.100000.011001.101011




Search algorithms

Important to consider in AutoDock

Simulated annealing

< Initial temperature
o rtd = 61600 K

& Temperature reduction factor
S rtrf = 0.95 K/cycle

<& Termination criteria
& accepted moves (accs = 25,000)
< rejected moves (rejs = 25,000)
¢ annealing cycles (cycles = 50)

Genetic algorithm

< Population size
& ga pop_size = 300

& Crossover rate
& ga crossover_rate =

<& Mutation rate
¢ ga mutation rate = 0.02

<& Solis and Wets local search (LGA only)
& sw_max_its = 300

<& Termination criteria
¢ ga _num_evals = 25,000 (short)
¢ ga _num_evals = 250,000 (medium)
¢ ga _num_evals = 2,500,000 (large)
¢ ga _num_generations = 27,000




AutoDock Example

Discovery of a novel binding trench in HIV Integrase

Schames, J.R., R.H. Henchman, J.S. Siegel, C.A. Sotriffer, H. Ni, and J.A. McCammon, Discovery of a novel binding trench in HIV integrase. J Med Chem, 2004. 47(8): 1879-81
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ISENTRESS example

*One structure known with 5CITEP
<& Not clear (low resolution)
< Binding near to DNA interacting site
<& Loop near the binding
Docking + Molecular Dynamics
<& AMBER snapshots

<& AutoDock flexible torsions thetetrazolering
and indole ring.

Schames, J.R., R.H. Henchman, J.S. Siegel, C.A. Sotriffer, H. Ni, and J.A. McCammon, Discovery of a novel binding trench in HIV integrase. J Med Chem, 2004. 47(8): 1879-81




ISENTRESS example

Schames, J.R., R.H. Henchman, J.S. Siegel, C.A. Sotriffer, H. Ni, and J.A. McCammon, Discovery of a novel binding trench in HIV integrase. J Med Chem, 2004. 47(8): 1879-81
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ISENTRESS example
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Schames, J.R., R.H. Henchman, J.S. Siegel, C.A. Sotriffer, H. Ni, and J.A. McCammon, Discovery of a novel binding trench in HIV integrase. J Med Chem, 2004. 47(8): 1879-81




ISENTRESS example
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AutoDock

Goodsell, D. S. and Olson, A. J. (1990), Automated Docking of Substrates to Proteins by Simulated Annealing Proteins:Structure, Function and Genetics., 8: 195-202.

Morris, G. M., et al. (1996), Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4 J. Computer-Aided Molecular Design, 10: 293-304.
Morris, G. M., et al. (1998), Automated Docking Using a Lamarckian Genetic Algorithm and and Empirical Binding Free Energy Function J. Computational Chemistry, 19: 1639-1662.
Huey, R., et al. (2007), A Semiempirical Free Energy Force Field with Charge-Based Desolvation J. Computational Chemistry, 28: 1145-1152.



http://www3.interscience.wiley.com/cgi-bin/abstract/114107459/ABSTRACT
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2281083&dopt=Abstract
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2281083&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8877701
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8877701
http://www3.interscience.wiley.com/cgi-bin/abstract/76804/ABSTRACT
http://www3.interscience.wiley.com/cgi-bin/abstract/76804/ABSTRACT
http://www3.interscience.wiley.com/cgi-bin/abstract/114107459/ABSTRACT

AutoDock

Goodsell, D. S. and Olson, A. J. (1990), Automated Docking of Substrates to Proteins by Simulated Annealing Proteins:Structure, Function and Genetics., 8: 195-202.

Morris, G. M., et al. (1996), Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4 J. Computer-Aided Molecular Design, 10: 293-304.
Morris, G. M., et al. (1998), Automated Docking Using a Lamarckian Genetic Algorithm and and Empirical Binding Free Energy Function J. Computational Chemistry, 19: 1639-1662.
Huey, R., et al. (2007), A Semiempirical Free Energy Force Field with Charge-Based Desolvation J. Computational Chemistry, 28: 1145-1152.
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AutoDock 4.0

Where to get help...
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AutoDock 4.0

Alternatives

Progressive building FLEXX

DOCK

Conformational search — | mimumsa | SROW
COBRA GroupBUILD

LUDI

[ (] [ (] (] WIZRAD

Binding site description ﬁ GRID LEGEND
SPROUT

BUILDER

Genetic algorithms | GoLD | GENSTAR
‘ Others

Virtual screening

i AutoDOCK
/‘ MCSS
: CONCEPTS
Molecular dynamcis

CAVEAT
FOUNDATION
Databases CLIX
NEWLEAD
LEAPFROG




AutoDock 4.0

Why AutoDock over others

4.000 O AutoDock |
O AutoDock 2.2
< AutoDock 2.4
O AutoDock 3
O AllVersions
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AutoDock 4.0

Why AutoDock over others

ADAM
SANDOCK T
0.5% Sof Sousa, S.F.,, Fernandes, P.A. & Ramos, M.J. (2006)

“'L‘;‘%UL" \! Docking Protein-Ligand Docking: Current Status
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Number of Citations

AutoDock 4.0

Why AutoDock over others

Most Common Docking Programs
2002

Docking Programs - Trends

W AutoDock

B DOCK
FlexX

m GOLD

W ICM

Program

Sousa, S.F., Fernandes, P.A. & Ramos, M.J. (2006)
Protein-Ligand Docking: Current Status
and Future Challenges Proteins, 65:15-26



AutoDock 4.0

AutoDock and ADT

AutoDock

< 1990

& Number crunching (CPU expensive)

< Command-line!

& C& C++ compiled

AutoDock Tools

& 2000

¢ Visualizing set-up

< Graphical user interphase

¢ Python interpreter




AutoDock 4.0

Practical considerations

What problem does AutoDock solve?
Flexible ligands (4.0 flexible protein).

What range of problems is feasible?

Depends on the search method:
LGA> >> S5A>>

S/ 1 can output trajectories, I < about 8 torsions.
[LGA : D < about 8-32 torsions.

When is AutoDock not suitable?
No 3D-structures are available;
Modelled structure of poor quality;
"1'oo many (32 torsions, 2048 atoms, 22 atom types);
‘T'arget protein too flexible.




AutoDock 4.0

Using AutoDock step-by-step

Set up ligand PDBQT —using ADT's “Ligand” menu

OPTIONAL.: Set up flexible receptor PDBQ'T'—using
ADT’s “Flexible Residues” menu

Set up macromolecule & grid maps—using ADT's “Grid”
menu

Pre-compute AutoGrid maps for all atom types in your set of
ligands—using "autogrid4”

Perform dockings of ligand to target—using “autodock4”,
and in parallel if possible.

Visualize AutoDock results—using AD'l's "Analyze” menu

Cluster dockings—using “analysis” DPEF command in
“autodocky4” or AD'I’s "Analyze™ menu for parallel docking
results.




AutoDock 4.0

Things to know before using AutoDock

Ligand:
Add all hydrogens, compute Gasteiger charges, and merge
non-polar H; also assign AutoDock 4 atom types
Ensure total charge corresponds to tautomeric state
Choose torsion tree root & rotatable bonds

Macromolecule:

Add all hydrogens, compute Gasteiger charges, and merge
non-polar H; also assign AutoDock 4 atom types

Assign Stouten atomic solvation parameters

Optionally, create a flexible residues PDBQ'T in addition to
the rigid PDBQ'T file

Compute AutoGrid maps




AutoDock 4.0

Good we have AutoDock Tools (ATD)

http://autodock.scripps.edu/resources/adt/
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AutoDock 4.0

Good we have a nice tutorial

®
l @ ‘")La Sapienza
“07 Universita degli Studi di Roma

LORPUTING

http://cassandra.bio.uniromal.it/

Universita di Pisa

Molecular Modeling & Virtual Screening Laboratory

Dipartimento di Scienze Farmaceutiche

http://www.mmyvsl.farm.unipi.it/

Molecular Docking Tutorial

by

Rino Ragno (RCMD)
Anna Tramontano (BIOCOMPUTING)
Adriano Martinelli (MMVSL)
Tiziano Tuccinardi (MMVSL)

The Use of Chimera, AutoDock Tools 1.4.4 and Autodock 4.0.1 as
Tools to Study Histone Deacetylase (HDAC) Enzymes Inhibitors

VI European WorkShop in Drug Design
June 3-10 2007
Certosa di Pontignano (Siena — Italia)

http://rcmd-server.frm.uniromal.it/fcmd-portal/
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