Comparative Protein Structure Prediction

Marc A. Marti-Renom

Structural Genomics Unit Bioinformatics Department Prince Felipe Resarch Center (CIPF), Valencia, Spain

Wednesday, January 12, 2011

Objective

TO LEARN HOW-TO MODEL A 3D-STRUCTURE FROM A SEQUENCE AND A KNOWN STRUCTURE

DISCLAIMER!

Name	Туре	World Wide Web address
DATABASES		
CATH	s	http://www.biochem.ucl.ac.uk/bsm/cath/
DBAII	s	http://www.salilab.org/DBAII/
GenBank	s	http://www.ncbi.nlm.nih.gov/Genbank/GenbankSearch.html
GeneCensus	s	http://bioinfo.mbb.yale.edu/genome
MODBASE	s	http://salilab.org/modbase/
MSD	s	http://www.ebi.ac.uk/msd/
NCBI	s	http://www.ncbi.nlm.nih.gov/
PDB	s	http://www.rcsb.org/pdb/
PSI	s	http://www.nigms.nih.gov/psi/
Sacch3D	s	http://genome-www.stanford.edu/Sacch3D/
SCOP	s	http://scop.mrc-lmb.cam.ac.uk/scop/
TIGR	s	http://www.tigr.org/tdb/mdb/mdbcomplete.html
TrEMBL	s	http://srs.ebi.ac.uk/
FOLD ASSIGN	IENT	
123D	s	

http://sgu.bioinfo.cipf.es/home/?page=resources

Programs, servers and databases

http://salilab.org

Nomenclature

Homology: Sharing a common ancestor, may have similar or dissimilar functions

Similarity: Score that quantifies the degree of relationship between two sequences.

Identity: Fraction of identical aminoacids between two aligned sequences (case of similarity).

Target: Sequence corresponding to the protein to be modeled.

Template: 3D structure/s to be used during protein structure prediction.

Model: Predicted 3D structure of the target sequence.

Nomenclature

Fold: Three dimensional conformation of a protein sequence (usually at domain level).

Domain: Structurally globular part of a protein, which may independently fold.

Secondary Structure: Regular subdomain structures composed by alphahelices, beta-sheets and coils (or loops).

Backbone: Protein structure skeleton composed by the carbon, nitrogen and oxygen atoms.

Side-Chain: Specific atoms identifying each of the 20 residues types.

protein prediction .vs. protein determination

Why is it useful to know the structure of a protein, not only its sequence?

- The biochemical function (activity) of a protein is defined by its interactions with other molecules.
- ♦ The biological function is in large part a consequence of these interactions.
- The 3D structure is more informative than sequence because interactions are determined by residues that are close in space but are frequently distant in sequence.

In addition, since evolution tends to conserve function and function depends more directly on structure than on sequence, **structure is more conserved in evolution than sequence**.

The net result is that patterns in space are frequently more recognizable than patterns in sequence.

Principles of protein structure

GFCHIKAYTRLIMVG...

Folding (physics)

Ab initio prediction

Evolution (rules) Threading Comparative Modeling

D. Baker & A. Sali. Science 294, 93, 2001.

Steps in Comparative Protein Structure Modeling

A. Šali, Curr. Opin. Biotech. 6, 437, 1995.
R. Sánchez & A. Šali, Curr. Opin. Str. Biol. 7, 206, 1997.
M. Marti et al. Ann. Rev. Biophys. Biomolec. Struct., 29, 291, 2000.

Steps in Comparative Protein Structure Modeling

Template Search

Sequence-Sequence search BLAST http://www.ncbi.nlm.nih.gov/blast/

Profile-Sequence search **PSI-BLAST** <u>http://www.ncbi.nlm.nih.gov/blast/</u>

Profile-Profile search

pp_scan mod9v8

Sequence-Structure search GenThreader http://bioinf.cs.ucl.ac.uk/psipred/

Target-Template Alignment

Sequence-Sequence search BLAST http://www.ncbi.nlm.nih.gov/blast/

Profile-Sequence search **PSI-BLAST** <u>http://www.ncbi.nlm.nih.gov/blast/</u>

Profile-Profile search

pp_scan mod9v8

Sequence-Structure search GenThreader http://bioinf.cs.ucl.ac.uk/psipred/

Wednesday, January 12, 2011

Model Building

Model Evaluation

Classical potential of mean force PROSA-WEB

https://prosa.services.came.sbg.ac.at

Protein conformation free energies DFIRE http://sparks.informatics.iupui.edu/yueyang/DFIRE/dDFIRE-service

Discrete optimized protein energy assess_dope mod9v8

Stereochemistry (<u>not necessary</u> but useful) **PROCHECK**

http://www.ebi.ac.uk/thornton-srv/software/PROCHECK/

Accuracy and applicability of comparative models

Comparative modeling by satisfaction of spatial restraints Types of errors and their impact

Marti-Renom etal. Ann Rev Biophys Biomol Struct (2000) 29, 291

"Biological" significance of modeling errors

NMR – X-RAY Erabutoxin 3ebx Erabutoxin 1era

NMR Ileal lipid-binding protein 1eal

CRABPII 1opbB FABP 1ftpA ALBP 1lib 40% seq. id.

X-RAY Interleukin 1β 41bi (2.9Å) Interleukin 1β 2mib (2.8Å)

Model Accuracy

HIGH ACCURACY

NM23 Seq id 77%

Cα equiv 147/148 RMSD 0.41Å

Sidechains Core backbone Loops

MEDIUM ACCURACY

CRABP Seq id 41%

Cα equiv 122/137 RMSD 1.34Å

Sidechains Core backbone Loops Alignment

Sidechains Core backbone Loops Alignment Fold assignment

X-RAY / MODEL

Marti-Renom et al. Annu.Rev.Biophys.Biomol.Struct. 29, 291-325, 2000.

LOW ACCURACY

EDN Seq id 33%

 $C\alpha$ equiv 90/134 RMSD 1.17Å

Utility of protein structure models, despite errors

D. Baker & A. Sali. Science 294, 93, 2001.

Modeling genes

What is the physiological ligand of Brain Lipid-Binding Protein?

Predicting features of a model that are not present in the template

1. BLBP binds fatty acids.

2. Build a 3D model.

3. Find the fatty acid that fits most snuggly into the ligand binding cavity.

Do mast cell proteases bind proteoglycans? Where? When?

Predicting features of a model that are not present in the template

- 1. mMCPs bind negatively charged proteoglycans through electrostatic interactions
- 2. Comparative models used to find clusters of positively charged surface residues.
- 3. Tested by site-directed mutagenesis.

Huang *et al. J. Clin. Immunol.* **18**,169,1998. Matsumoto *et al. J.Biol.Chem.* **270**,19524,1995. Šali *et al. J. Biol. Chem.* **268**, 9023, 1993.

S. cerevisiae ribosome

Fitting of comparative models into 15Å cryoelectron density map.

43 proteins could be modeled on 20-56% seq.id. to a known structure.

The modeled fraction of the proteins ranges from 34-99%.

C. Spahn, R. Beckmann, N. Eswar, P. Penczek, A. Sali, G. Blobel, J. Frank. Cell 107, 361-372, 2001.

Common Evolutionary Origin of Coated Vesicles and Nuclear Pore Complexes

mGenThreader + *SALIGN* + *MOULDER*

D. Devos, S. Dokudovskaya, F. Alber, R. Williams, B.T. Chait, A. Sali, M.P. Rout. Components of Coated Vesicles and Nuclear Pore Complexes Share a Common Molecular Architecture. *PLOS Biology* **2(12)**:e380, 2004

yNup84 complex proteins

Wednesday, January 12, 2011

All Nucleoporins in the Nup84 Complex are Predicted to Contain β -Propeller and/or α -Solenoid Folds

NPC and Coated Vesicles Share the β -Propeller and α -Solenoid Folds and Associate with Membranes

NPC and Coated Vesicles Both Associate with Membranes

Alber et al. The molecular architecture of the nuclear pore complex. Nature (2007) vol. 450 (7170) pp. 695-701

A Common Evolutionary Origin for Nuclear Pore Complexes and Coated Vesicles? The proto-coatomer hypothesis

Tropical Disease Initiative (TDI) *Predicting binding sites in protein structure models.*

http://www.tropicaldisease.org

Need is High in the Tail

DALY Burden Per Disease in Developed CountriesDALY Burden Per Disease in Developing Countries

DALY is not a perfect measure of market size, but is certainly a good measure for importance.

DALYs for a disease are the sum of the years of life lost due to premature mortality (YLL) in the population and the years lost due to disability (YLD) for incident cases of the health condition. The DALY is a health gap measure that extends the concept of potential years of life lost due to premature death (PYLL) to include equivalent years of 'healthy' life lost in states of less than full health, broadly termed disability. One DALY represents the loss of one year of equivalent full health.

Need is High in the Tail

DALY Burden Per Disease in Developed CountriesDALY Burden Per Disease in Developing Countries

DALYs for a disease are the sum of the years of life lost due to premature mortality (YLL) in the population and the years lost due to disability (YLD) for incident cases of the health condition. The DALY is a health gap measure that extends the concept of potential years of life lost due to premature death (PYLL) to include equivalent years of 'healthy' life lost in states of less than full health, broadly termed disability. One DALY represents the loss of one year of equivalent full health.

"Unprofitable" Diseases and Global DALY (in 1000's)

Malaria*	46,486	Trichuriasis	1,006
Tetanus	7,074	Japanese encephalitis	709
Lymphatic filariasis*	5,777	Chagas Disease*	667
Syphilis	4,200	Dengue*	616
Trachoma	2,329	Onchocerciasis*	484
Leishmaniasis*	2,090	Leprosy*	199
Ascariasis	1,817	Diphtheria	185
Schistosomiasis*	1,702	Poliomyelitise	151
Trypanosomiasis*	1,525	Hookworm disease	59

Disease data taken from WHO, <u>World Health Report 2004</u> DALY - Disability adjusted life year in 1000's.

* Officially listed in the WHO Tropical Disease Research disease portfolio.

Comparative docking

DBAliv2.0 database

http://www.dbali.org

Marti-Renom et al. BMC Bioinformatics (2007) Volume 8. Suppl S4
Modeling Genomes

data from models generated by ModPipe (Eswar, Pieper & Sali)

Summary table

models with inherited ligands

29,271 targets with good models, 297 inherited a ligand/substance similar to a known drug in DrugBank

	Transcripts	Modeled targets	Selected models	Inherited ligands	Similar to a drug	Drugs
C. hominis	3,886	1,614	666	197	20	13
C. parvum	3,806	1,918	742	232	24	13
L. major	8,274	3,975	1,409	478	43	20
M. leprae	1,605	1,178	893	310	25	6
M. tuberculosis	3,991	2,808	1,608	365	30	10
P. falciparum	5,363	2,599	818	284	28	13
P. vivax	5,342	2,359	822	268	24	13
T. brucei	7,793	1,530	300	138	13	6
T. cruzi	19,607	7,390	3,070	769	51	28
T. gondii	9,210	3,900	1,386	458	39	21
TOTAL	68,877	29,271	11,714	3,499	297	143

Wednesday, January 12, 2011

L. major Histone deacetylase 2 + Vorinostat

Template 1t64A a human HDAC8 protein.

PDB	ED	Template	653	Model	0	Ligand	Exact	SupStr	SubStr	Similar
1c3sA	83.33/80.00	1t64A	36.00/1.47	LmjF21.0680.1.pdb	90.91/100.00	SHH	DB02546	DB02546	DB02546	DB02546

DB02546 Vorinostat

Small Molecule; Approved; Investigational

Drug categories:

Anti-Inflammatory Agents, Non-Steroidal Anticarcinogenic Agents Antineoplastic Agents Enzyme Inhibitors

Drug indication:

For the treatment of cutaneous manifestations in patients with cutaneous T-cell lymphoma who have progressive, persistent or recurrent disease on or following two systemic therapies.

L. major Histone deacetylase 2 + Vorinostat

Literature

Proc. Natl. Acad. Sci. USA Vol. 93, pp. 13143–13147, November 1996 Medical Sciences

Apicidin: A novel antiprotozoal agent that inhibits parasite histone deacetylase

(cyclic tetrapeptide/Apicomplexa/antiparasitic/malaria/coccidiosis)

Sandra J. Darkin-Rattray^{*†}, Anne M. Gurnett^{*}, Robert W. Myers^{*}, Paula M. Dulski^{*}, Tami M. Crumley^{*}, John J. Allocco^{*}, Christine Cannova^{*}, Peter T. Meinke[‡], Steven L. Colletti[‡], Maria A. Bednarek[‡], Sheo B. Singh[§], Michael A. Goetz[§], Anne W. Dombrowski[§], Jon D. Polishook[§], and Dennis M. Schmatz^{*}

Departments of *Parasite Biochemistry and Cell Biology, [‡]Medicinal Chemistry, and [§]Natural Products Drug Discovery, Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Apr. 2004, p. 1435–1436 0066-4804/04/\$08.00+0 DOI: 10.1128/AAC.48.4.1435–1436.2004 Copyright © 2004, American Society for Microbiology. All Rights Reserved. Vol. 48, No. 4

Antimalarial and Antileishmanial Activities of Aroyl-Pyrrolyl-Hydroxyamides, a New Class of Histone Deacetylase Inhibitors

P. falciparum tymidylate kinase + zidovudine

Template 3tmkA a yeast tymidylate kinase.

PDB	C0	Template	655	Model	•	Ligand	Exact	SupStr	SubStr	Similar
2tmkB	100.00/100.00	3tmkA	41.00/1.49	PFL2465c.2.pdb	82.61/100.00	ATM		DB00495		DB00495
		Z		DB00495 Zidovud	line				ŝ	
		1		Small Molecule; Ap	pproved				HN II	CH,
		N		Drug categories:						
				Anti-HIV Agents					1	
\sim				Antimetabolites					$\left(\right)$	
				Nucleoside and Nu	ucleotide Rev	erse Transc	riptase	"N ITE N		
		TR		Inhibitors						
07			γ	Drug indication:						
			2 🎽	For the treatm	ent of humai	n immunovi	rus (HIV)) infection	5.	

P. falciparum tymydilate kinase + zidovudine

NMR Water-LOGSY and STD experiments

Leticia Ortí, Rodrigo J. Carbajo, and Antonio Pineda-Lucena

TDI's kernel

http://tropicaldisease.org/kernel

TDI's kernel

http://tropicaldisease.org/kernel

L. Orti et al., Nat Biotechnol 27, 320 (Apr, 2009).

CORRESPONDENCE

A kernel for the Tropical Disease Initiative

To the Editor:

2

Ö.

Identifying proteins that are good drug targets and finding drug leads that bind to them is generally a challenging problem. It is particularly difficult for neglected tropical diseases, such as malaria and tuberculosis, where research resources are relatively scarce¹. Fortunately, several developments mprove our ability to deal with drug discovery for neglected diseases: first, the sequencing of many complete genomes of organisms that cause tropical diseases; improve our abuilty to dea with drug discovery for neglected diseases; first, the sequencing of many complete genomes of organisms that cause tropical diseases; molecule binding sites on the second, the determination of a large number of protein structures; third, the creation of compound libraries, including already-approved drugs; and fourth, the availability of linked 297 proteins from improved bioinformatics analysis, including ten pathogen genomes with Improved boundomaines analyses, including methods for comparative protein structure modeling, kinding site identification, virtual ligand screening and drug design. Therefore, we are now in a position to increase the odds links, if proven experimentally, of identifying high-quality drug targets and drug leads for neglected tropical diseases. Here we encourage a collaboration among Ascentrists to engage in drug discovery for tropical discovers y providing a kernel for the Topical Discovers indivise (Tripical discovers for the Topical Discovers Indivise (Tripical discovers) for www.tropicaldiscoses orgi², As the Linux kernel did for one system or the topical Discovers of the iropical Disease initiative (1D), http:// www.tropicaldisease.org/)². As the Linux kernel did for open source code development, spectroscopy, validating one we suggest that the TDI kernel may help overcome a major stumbling block, in this case, for open source drug discovery: the absence of a critical mass of preexisting work Supplementary Data online). It is difficult to assess the accuracy of our computational that volunteers can build on incrementally. predictions based on this limited This kernel complements several other initiatives on neglected tropical diseases^{1–5}, including collaborative web portals (e.g., http://www.thesynapticleap.org/), public-

Table 1 TDI kernel genomes

3,886

3,806

8,274

1,605

5,342 7.793

9.210

Transcripts^b Modeled targets^c Similar^d

1.409

1,608

893

010

300

1.386

13

Organism^a

l eishmania mainr

Incondium faicle

320

Nycobacterium leprae

ama brucei

private partnerships (e.g., http:/ www.mmv.org/) and private foundations (e.g., http://www. the Tropical Disease Initiative gatesfoundation.org/): for an This are browing version 1.5 (2008/05/0-0" the TOX Rend. undated list of initiatives see the TDI website above. The TDI kernel was derived with our software pipeline6,7 for predicting structures of protein Noor - Land Exert Suddy Seday Senior The same has an the same of th 0.0000 D Figure 1 TDI kernel snapshot of the web page for the Plasmodium disciparum thymiciyate kinase target (http:// topicalistases.org/kernel(gi44:10). Our computational pipeline predicted that thymiciyate kinase from *P* faciparum binds 2014 (3 stacks 2 deoxythymidine 5 monophosphate), a supra-structure of the abdouctine drug approved for the treatment of the information of the abdouctine treatment of the information with the information of the information of the information of the information with the information of the information of the information of the information with the information of the information of the information of the information with the information of the information of the information of the information with the information of the information of the information of the information with the information of the information of the information of the information with the information of the information of the information of the information with the information of was experimentally validated by one-dimensional Water-LOGSY of our predictions (Fig. 1 and and saturation transfer difference¹⁰ NMR experiments.

open source context, where results are made experimental testing. Thus, we encourage available with limited or no restrictions other investigators to donate their expertise and facilities to test additional predictions. We hope the testing will occur within the A freely downloadable version of the TDI kernel is available in accordance with the

Science Commons protocol for implementing pen access data (http://scienceco

org/projects/publishing/open-access-data-protocol/), which prescribes standard academic attribution and facilitates tracking Exact^e of work but imposes no other restrictions. We do not seek intellectual property rights in the actual discoveries based on the TDI kernel, in the hope of reinvigorating drug discovery for neglected tropical diseases8 By minimizing restrictions on the data, including viral terms that would be inherited by all derivative works, we hope to attract as many eyeballs as we possibly can to use and improve the kernel Although many of the drugs in the kernel are proprietary under diverse types of rights, we believe that the existence of public domain pairs of targets and compounds will reduce the royalties that patent owners can charge and sponsors must pay. This should decrea the large sums of money governments and

VOLUME 27 NUMBER 4 APRIL 2009 NATURE BIOTECHNOLOGY

L. Orti et al., PLoS Negl Trop Dis 3, e418 (2009).

OPEN @ ACCESS Freely available on line

PLOS NEGLECTED

A Kernel for Open Source Drug Discovery in Tropical Diseases

Leticia Orti^{1,2}, Rodrigo J. Carbajo², Ursula Pieper³, Narayanan Eswar³³, Stephen M. Maurer⁴, Arti K. Rai⁵, Ginger Taylor⁶, Matthew H. Todd⁷, Antonio Pineda-Lucena², Andrej Sali³, Marc A. Marti-Renom¹

Surget: usy of preserve in toose, antitotion primedul (Lange and Lange an

Abstract

Background: Convertional absent-based drug development incentives work bady for the developing workd, where commercial markets are usually small to non-existent. For this reacout, the tad teach has seen extensive discussion, however, one of the most pointing aretures—pero source drug discussion; however, prior the discussion set of the second seco

Anebodydogy/Dringdof /Findingo: Here, we use a comparational pipeline (cr. II) comparative structure modeling of target proteins, III) predicting the bolazitation (farget biodycajate con their surfaces, and III) assessing the similary of target ligands to known drugs. Our kennel currently contain 143 and 297 protein targets from ten pathoen genomes that are predicted to bind a known drug or a nodecule similar to a known durg, respectively. The kennel provides a source of potential drug targets and drug candidate around which an online gene source community can nucleate. Unity MMR spectroscopy we have experimentally tested our predictions for two of the surgets; confirming one and invalidating the other.

Conclusions/Significance: The TDI kernel, which is being offered under the Creative Commons attribution share-alike license for free and unrestricted use, can be accessed on the World Wide Web at http://www.tropicaldieease.org. We hope that the kernel will facilitate collaborative efforts towards the discovery of new drugs against parakites that cause tropical diseases.

Citation: Orti L, Carbajo RJ, Pieper U, Eswar N, Maurer SM, et al. (2009) A Kernel for Open Source Drug Discovery in Tropical Diseases. PLoS Negl Trop Dis 3(4):

Editor: Timothy G. Geary, McGill University, Canada Received December 29, 2008; Accepted March 23, 2009; Published April 21, 2009

Copyright: © 2009 Otti et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits a use, distribution, and reproduction in any medium, provided the original author and source are credited.

Facility (MAR 4 admostleges the segrent time a Special Monstand de Education y Cluck gave (EDUCID 4005); A 4 standouleges the segrent time is Special Family Segrent from 3 Special Monstand and Lance (March 1001 CARCER); CLUC ADMOSS, 101 Admostleges the segrent time is beyond to the Lance (V cluck) and the CLUCK admostleges the segrent time is beyond to the Lance (V cluck) and the CLUCK admostleges the segrent time is beyond to the Lance (V cluck) and the CLUCK admostleges the segrent time is beyond to the Lance (V cluck) and the CLUCK admostleges the segrent time is beyond to the Lance (V cluck) and the CLUCK admostleges the segrent time is beyond to the Lance (V cluck) and the CLUCK admostleges the segrent time is beyond to the Lance (V cluck) and the CLUCK admostleges the segrent time is been admostleges to the segrent time is a thread segrent to the cluck admostleges the segrent time is admostleges to the cluck admostleges the segrent time is admostleges to the cluck admostleges the segrent time is admostleges to the cluck admostleges the segrent time is admostleges to the cluck admostleges the segrent time is admostleges to the cluck admostleges to the cluck admostleges to the cluck admostleges to the cluck admostleges the segrent time is admostleges to the cluck admostleges to the cluck admostleges the cluck admostleges to the cluck admostlege

Competing Interests: The authors have declared that no competing interests exist. * E-mail: sali@salilab.org (AS); mmarti@cipf.es (MAM-R)

P Current address: DuPont Knowledge Center, Hyderabad, India

There is a lack of high-quality protein drug targets and drug leads for neglected diseases [1,2]. Formanely, many genomes of anglected diseases [1,2]. Formanely, many genomes discovery [7]. Forminal molecular production of the subserver discovery [8], information by iterativity potential molecular production of the subserver discovery [8], information by iterativity potential molecular production of the subserver discovery [8], information by iterativity potential molecular production of the subserver discovery [8], and the subserver discovery [8], information by iterativity potential molecular production of the discovery [8], and there is no subserver discovery [8], information by iterativity potential molecular production of the discovery [8], and there is no subserver discovery [8], there, we are discover discovery [8], and there is no subserver discovery [8], there is a subserver discovery [8], and there is no subserver discovery [8], there is a subserver discovery [8], and there is no subserver discovery [8], there is a subserver discovery [8], and there is no subserver discovery [8], there is a subserver discovery [8], and there is no subserver discovery [8], there is a subserver discovery [8], and there is no subserver discovery [8], there is a subserver discovery [8], and there is no subserver discovery [8], there is a subserver discovery [8], and there is no subserver discovery [8], there is a subserver discovery [8], and there is no subserver discovery [8], there is a subserver discovery [8], and there is no subserver discovery [8], there is a subserver discovery [8], and there is no subserver discovery [8], there is a subserver discovery [8], and there is no subserver discovery [8], there is a subserver discovery [8], and there is no subserver discovery [8], there is a subserver discovery [8], and there is no subservery [8], and there is no subserver discovery [8], and there is n oncovery. Atomic-resolution structures can incluster that stars. In the absence of an experimentally determined structure, comparative modeling can provide useful models for sequences that are detectably related to known protein structures [3,4]. Approximately half of known protein sequences contain domains that can be currently predicted by comparative modeling [5,6]. This coverage

on large-scale predicts protein structures, their ligand bunding sites and known drugs that interact with them. As a proof of principle we applied the pipeline to the genomes of ten organisms that cause tropical diseases ("target genomes"). We also experimentally tested two predicted drug-target interactions using Nuclear Magnetic

(), www.plosntds.org

April 2009 | Volume 3 | Issue 4 | e418

the management

Wednesday, January 12, 2011

Acknowledgments

http://sgu.bioinfo.cipf.es
http://tropicaldisease.org
http://integrativemodeling.org

COMPARATIVE MODELING Andrej Sali M. S. Madhusudhan Narayanan Eswar Min-Yi Shen Ursula Pieper Ben Webb Maya Topf (Birbeck College)

MODEL ASSESSMENT David Eramian Min-Yi Shen Damien Devos

FUNCTIONAL ANNOTATION Andrea Rossi (Rinat-Pfizer) Fred Davis (Janelia Fram)

FUNDING

Prince Felipe Research Center **Ministerio de Educación y Ciencia** STREP UE Grant Marie Curie Reintegration Grant MODEL ASSESSMENT Francisco Melo (CU) Alejandro Panjkovich (CU)

NMR Antonio Pineda-Lucena Leticia Ortí Rodrigo J. Carbajo

MAMMOTH Angel R. Ortiz

FUNCTIONAL ANNOTATION Fatima Al-Shahrour Joaquin Dopazo

BIOLOGY

Jeff Friedman (RU) James Hudsped (RU) Partho Ghosh (UCSD) Alvaro Monteiro (Cornell U) Stephen Krilis (St.George H)

Tropical Disease Initiative Stephen Maurer (UC Berkeley) Arti Rai (Duke U) Andrej Sali (UCSF) Ginger Taylor (TSL) Matthew Todd (U Sydney)

CCPR Functional Proteomics Patsy Babbitt (UCSF) Fred Cohen (UCSF) Ken Dill (UCSF) Tom Ferrin (UCSF) John Irwin (UCSF) Matt Jacobson (UCSF) Tack Kuntz (UCSF) Andrej Sali (UCSF) Brian Shoichet (UCSF) Chris Voigt (UCSF)

EVA Burkhard Rost (Columbia U) Alfonso Valencia (CNB/UAM)

CAMP

Xavier Aviles (UAB) Hans-Peter Nester (SANOFI) Ernst Meinjohanns (ARPIDA) Boris Turk (IJS) Markus Gruetter (UE) Matthias Wilmanns (EMBL) Wolfram Bode (MPG)

Comparative Protein Structure Prediction MODELLER tutorial

\$>mod9v8 model.py

Marc A. Marti-Renom

Structural Genomics Unit Bioinformatics Department Prince Felipe Resarch Center (CIPF), Valencia, Spain

Obtaining MODELLER and related information

MODELLER (9v8) web page

http://www.salilab.org/modeller/

- Download Software (Linux/Windows/Mac/Solaris)
- ♦ HTML Manual
- ♦ Join Mailing List

Using MODELLER

- No GUI! 😕
- Controlled by command file 88
- Script is written in PYTHON language ③
- You may know Python language is simple <a>©©

Using MODELLER

• INPUT:

- Target Sequence (FASTA/PIR format)
- Template Structure (PDB format)
- Python file

• OUTPUT:

- Target-Template Alignment
- Model in PDB format
- Other data

Modeling of BLBP Input

Target: Brain lipid-binding protein (BLBP)
BLBP sequence in PIR (MODELLER) format:

>P1;blbp

sequence:blbp::::::::

VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSIDDRNCKSVVRLDG DKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA*

```
# Example for: alignment.align()
# This will read two sequences, align them, and write the alignment
# to a file:
log.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file='1hms')
aln.append_model(mdl, align_codes='1hms')
aln.append(file='blbp.seq', align_codes=('blbp'))
# The as1.sim.mat similarity matrix is used by default:
aln.align(gap_penalties_1d=(-600, -400))
aln.write(file='blbp-1hms.ali', alignment_format='PIR')
aln.write(file='blbp-1hms.pap', alignment_format='PAP')
```

```
# Example for: alignment.align()
# This will read two sequences, align them, and write the alignment
# to a file:
log.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file='1hms')
aln.append_model(mdl, align_codes='1hms')
aln.append(file='blbp.seq', align_codes=('blbp'))
# The as1.sim.mat similarity matrix is used by default:
aln.align(gap_penalties_1d=(-600, -400))
aln.write(file='blbp-1hms.ali', alignment_format='PIR')
aln.write(file='blbp-1hms.pap', alignment_format='PAP')
```

```
# Example for: alignment.align()
# This will read two sequences, align them, and write the alignment
# to a file:
log.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file='lhms')
aln.append_model(mdl, align_code:='lhms')
aln.append(file='blbp.seq', align_codes=('blbp'))
# The as1.sim.mat similarity matrix is used by default:
aln.align(onp_penaltion_id=(-600, -400))
aln.write(file='blbp-lhms.ali', alignment_format='PIR')
aln.write(file='blbp-lhms.pap', alignment_format='PAP')
```

```
# Example for: alignment.align()
# This will read two sequences, align them, and write the alignment
# to a file:
log.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file='thms')
aln.append_model(mdl, align_codes='llpms')
aln.append(file='blbp.seq', align_codes=('tibp'))
# The asl.sim.mat similarity matrix is used by default:
aln.align(gap_penalties_ld=(-600, -400))
aln.write(file='blbp-lhms.ali', alignment_format='PIR')
aln.write(file='blbp-lhms.pap', [alignment_format='PAP')
```

Modeling of BLBP STEP 1: Align blbp and 1hms sequences *Output*

>P1;1hms
<pre>structureX:1hms: 1 : : 131 : :undefined:undefined:-1.00:-1.00</pre>
VDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTFKNTEISFKLGVEFDETTA
DDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLILTLTHGTAVCTRTYEKE*
>P1;blbp
sequence:blbp: : : : : : : 0.00: 0.00
VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSI
DDRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA*

Modeling of BLBP STEP 1: Align blbp and 1hms sequences *Output*

>P1;1hms
<pre>structureX:1hms: 1 : : 131 : :undefined:undefined:-1.00:-1.00</pre>
VDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTFKNTEISFKLGVEFDETTA
DDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLILTLTHGTAVCTRTYEKE*
>P1;blbp
sequence:blbp: :: :: :: 0.00: 0.00
VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSI
DDRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA*

Modeling of BLBP STEP 1: Align blbp and 1hms sequences *Output*

_aln.pos	1	o :	20	30	40	50	60
1hms	VDAFLGTWK	LVDSKNFDD	YMKSLGVGF	ATRQVASMTK	PTTIIEKNGD	ILTLKTHSTF	KNTEISFKLGV
blbp					PTVIISQEGGI	KVVIRTQCTF:	KNTEINFQLGE
_consrvd	**** ***	* ** *** *	*** *****	**** **	** ** *	* **	**** * **
aln.p	70	80	90	100	110	120	130
1hms	EFDETTADD	RKVKSIVTL	DGGKLVHLQI	WDGQETTLV	RELIDGKLIL	ILTHGTAVCT	RTYEKE
blbp	EFEETSIDD	RNCKSVVRL	DGDKLIHVQI	WDGKETNCT	REIKDGKMVV	TLTFGDIVAV	RCYEKA
_consrvd	** ** **	* ** * *	** ** * *	**** **	** *** *	*** * *	* ***

```
# Homology modelling by the automodel class
from modeller.automodel import * # Load the automodel class
log.verbose()
                                     # request verbose output
env = environ()
                                     # create a new MODELLER environment
# directories for input atom files
env.io.atom files directory = './:../atom files'
a = automodel(env,
             alnfile = 'blbp-1hms.ali', # alignment filename
             knowns = '1hms',
                                           # codes of the templates
             sequence = 'blbp')
                                            # code of the target
a.starting model= 1
                                 # index of the first model
a.ending model = 1
                                 # index of the last model
                                  # (determines how many models to calculate)
                                  # do the actual homology modelling
a.make()
```

```
# Homology modelling by the automodel class
from modeller.automodel import * # Load the automodel class
log.verbose()
                                     # request verbose output
env = environ()
                                     # create a new MODELLER environment
# directories for input atom files
env.io.atom files directory = './:../atom files'
a = automodel(env,
             alnfile = 'blbp-1hms.ali', # alignment filename
             knowns = '1hms',
                                          # codes of the templates
             sequence = 'blbp') # code of the target
a.starting model= 1
                               # index of the first model
a.ending model = 1
                                 # index of the last model
                                  # (determines how many models to calculate)
                                  # do the actual homology modelling
a.make()
```

```
# Homology modelling by the automodel class
from modeller.automodel import * # Load the automodel class
log.verbose()
                                  # request verbose output
env = environ()
                                   # create a new MODELLER environment
# directories for input atom files
env.io.atom files directory = './:../atom_files'
a = automodel(env)
             lnfile = 'blbp-lhms.ali', # alignment filename
                                       # codes of the templates
              # index of the first model
a.starting model= 1
a.ending model = 1
                              # index of the last model
                                # (determines how many models to calculate)
                                # do the actual homology modelling
a.make()
```

PDB file Can be viewed with Chimera http://www.cgl.ucsf.edu/chimera/ Rasmol http://www.openrasmol.org PyMol

Model file → blbp.B9990001.pdb

http://www.salilab.org/modeller/tutorial/

http://salilab.org/modweb

000		ModWeb Server		
	https://modbase.compbio.ucsf.edu/scg	gi/modweb.cgi	c	Qr Google
		ModWeb Server		
	• Sali Lab Home • ModWeb • Mo	dLoop • ModBase • IMP • ModP	ipe • LS-SNP •	
Help - User Lo	gin ModBase Datasets for User: Anony	mous Contact News Curren	t ModWeb queue · ModWeb Home ·	
News:	ModWeb: A	Server for Protein S Welcome to the new ModWeb (old		
New <u>Chimera</u> - Modeller Module for interactive modeling!	General Information		Calculate Models (Reset)	
 In Chimera's daily build starting Sept 15, 2010 	Name Email address			
Additional functionality for registered users:	Modeller license key (Not necessary for ModBase updates)			
Template based modeling Access to all user's	Dataset name (optional) Availability 🖬	Add to academic dataset		
ModWeb datasets • Email notification for User's ModBase updates	Input data a			
Developers: Eswar Narayanan Ursula Pieper Ben Webb	or upload sequences file (FASTA Format)	Choose File no file selected Calculate Models Reset		
Acknowledgements: David Eramian	Model selection criteria	Best scoring model	Longest well scoring model	
Mailur S. Madhusudhan Marc A. Marti-Renom Min-Yi Shen Andrej Sali	Other options 🖬	Very Fast	GUpload models to ModBase	
Min-Yi Shen Andrej Sali				
David Eramian Maliur S. Madhusudhan Marc A. Marti-Renom	Other options		Upload models to ModBase	
www.endew.euro	Model selection criteria	Best scoring model	Longest well scoring model	

Wednesday, January 12, 2011

MODBASE

http://salilab.org/modbase

Search Pag						
Ionse User Lo		e Search Page		Indelling Server	Help	Current Login
Mod		base of Complete, a database of the		rotein models calcu		
eneral Information						
tatistics	ModBase se	arch form				Search
roject Pages	Search to	ype 🖬 Model(Default)		Display type	Wooded Chefted Corr	in lands
ocumentation	Dearch ty	the real according and	-	resteat the main	room orean (gr	the second second
uthors and cknowledgements	All available	datasets are selected	a		Select spi	cific dataset(s)
ublications						
odo List	Search by pr	roperties				
elated Resources	Property #	ALL				
Note: ODBASE contains control experimental annund experimental annund shuchures. Th		ALL				wanced search
dels may contain						

Model Details

MOD	Home	User Login	ModBase Se	sarsh Page	ModWeb Modelling Server	Help
BASE					Curre	nt Logins
Sequence Infor						
	se Link K	P43632 (K1254	HUMAN (
Organism 🖬		Home supiers		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		1000
Annotation		killer cell immur	sogiobulin-like recep soviet 8) (rikat-Bide	stor 2ds4 precursor io58 natural killer (r (mhc class ide nk cell receptor) (nal cell receptor clone cl-39) (p58 nk	hunal killer
Sequence Lengt	h	304	and the set of the set of the set		and the second of the second se	
Model Informat						
			Sequence Model Co	overage 🖬		
X	2	R	Sequence Identity E-Value Model Score Targel Region Protein Langth	88.00% 26-43 1.00 27-221 304		
X	3	R	E-Value Model Score Target Region	2e-43 1.00 27-221		
X		R	E-Value Model Score Target Region Protein Length Template PDB	28-43 1.00 27-221 304		
	ter can	F	E-Value Model Score Target Region Protein Length Template PDB Code Template Region	28-43 1.00 27-321 304 1:82 6-200		
	ter cur	F	E-Value Model Scone Target Region Protein Langth Template PDB Code Template Region Dataset	28-43 1.00 27-321 304 1:82 6-200		

Sequence Overview

Segld Fold Ricord	Г	Q8G8A6	hypothetical protein	Pseudomonas aeruginosa	3738
Segid Fold Ricord	Г	Q8G9W1	hypothetical protein	Escherichia coli	1140
Segid Fold History	Г	Q8CY62	hypothetical protein spr1965	Streptococcus pneumoniae, Streptococcus pneumoniae	1038

Model Overview

55.	• Γ	<u>Q8G8C7</u>	hypothetical protein	<u>Pseudomonas</u> aeruginosa	4996	2089-2158	70	37.00	7e-14	1.00	1dnyA	8-78
翻	• -	Q8G8C7	hypothetical protein	<u>Pseudomonas</u> aeruginosa	4996	492-1017	526	36.00	1e-82	1.00	<u>1amuA</u>	19-529
Ster.	• □	Q8G9W1	hypothetical protein	Escherichia coli	1140	349-1135	787	35.00	0	1.00	<u>1r9dA</u>	6-783

Pieper et al. (2004) Nucleic Acids Research 32, D217-D222

"take home" message

Download...

http://salilab.org/modeller/download installation.html

http://172.24.76.30/files

PLEASE... REGISTER TO GET A LICENSE! MODELIRANJE