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Structure determination
Integrative Modeling Platform

http://www.integrativemodeling.org
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Alber et al. Nature (2007) vol. 450 (7170) pp. 683-94

Biomolecular structure determination
2D-NOESY data

Chromosome structure determination
5C data
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5C technology
Detecting up to millions of interactions in parallel

http://my5C.umassmed.edu
Dostie et al. Genome Res (2006) vol. 16 (10) pp. 1299-309
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Human α-globin domain
ENm008 genomic structure and environment
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ENCODE Consortium. Nature (2007) vol. 447 (7146) pp. 799-816

The ENCODE data for ENm008 region was obtained from the UCSC Genome Browser tracks for: RefSeq annotated 
genes, Affymetrix/CSHL expression data (Gingeras Group at Cold Spring Harbor), Duke/NHGRI DNaseI 
Hypersensitivity data (Crawford Group at Duke University), and Histone Modifications by Broad Institute ChIP-seq 
(Bernstein Group at Broad Institute of Harvard and MIT).
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K562GM12878
Cluster #2
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The “Chromatin Globule” model
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Münkel et al. JMB (1999)

of the genome inferred from Hi-C. More gen-
erally, a strong correlation was observed between
the number of Hi-C readsmij and the 3D distance
between locus i and locus j as measured by FISH
[Spearman’s r = –0.916, P = 0.00003 (fig. S3)],
suggesting that Hi-C read count may serve as a
proxy for distance.

Upon close examination of the Hi-C data, we
noted that pairs of loci in compartment B showed
a consistently higher interaction frequency at a
given genomic distance than pairs of loci in com-
partment A (fig. S4). This suggests that compart-
ment B is more densely packed (15). The FISH
data are consistent with this observation; loci in
compartment B exhibited a stronger tendency for
close spatial localization.

To explore whether the two spatial compart-
ments correspond to known features of the ge-
nome, we compared the compartments identified
in our 1-Mb correlation maps with known genetic
and epigenetic features. Compartment A correlates
strongly with the presence of genes (Spearman’s
r = 0.431, P < 10–137), higher expression [via
genome-wide mRNA expression, Spearman’s
r = 0.476, P < 10–145 (fig. S5)], and accessible
chromatin [as measured by deoxyribonuclease I
(DNAseI) sensitivity, Spearman’s r = 0.651, P
negligible] (16, 17). Compartment A also shows
enrichment for both activating (H3K36 trimethyl-
ation, Spearman’s r = 0.601, P < 10–296) and
repressive (H3K27 trimethylation, Spearman’s
r = 0.282, P < 10–56) chromatin marks (18).

We repeated the above analysis at a resolution
of 100 kb (Fig. 3G) and saw that, although the
correlation of compartment A with all other ge-
nomic and epigenetic features remained strong
(Spearman’s r > 0.4, P negligible), the correla-
tion with the sole repressive mark, H3K27 trimeth-
ylation, was dramatically attenuated (Spearman’s
r = 0.046, P < 10–15). On the basis of these re-
sults we concluded that compartment A is more
closely associated with open, accessible, actively
transcribed chromatin.

We repeated our experiment with K562 cells,
an erythroleukemia cell line with an aberrant kar-
yotype (19). We again observed two compart-
ments; these were similar in composition to those
observed in GM06990 cells [Pearson’s r = 0.732,

Fig. 4. The local packing of
chromatin is consistent with the
behavior of a fractal globule. (A)
Contact probability as a function
of genomic distance averaged
across the genome (blue) shows
a power law scaling between
500 kb and 7 Mb (shaded re-
gion) with a slope of –1.08 (fit
shown in cyan). (B) Simulation
results for contact probability as
a function of distance (1 mono-
mer ~ 6 nucleosomes ~ 1200
base pairs) (10) for equilibrium
(red) and fractal (blue) globules.
The slope for a fractal globule is
very nearly –1 (cyan), confirm-
ing our prediction (10). The slope
for an equilibrium globule is –3/2,
matching prior theoretical expec-
tations. The slope for the fractal
globule closely resembles the slope
we observed in the genome. (C)
(Top) An unfolded polymer chain,
4000 monomers (4.8 Mb) long.
Coloration corresponds to distance
from one endpoint, ranging from
blue to cyan, green, yellow, or-
ange, and red. (Middle) An equi-
librium globule. The structure is
highly entangled; loci that are
nearby along the contour (sim-
ilar color) need not be nearby in
3D. (Bottom) A fractal globule.
Nearby loci along the contour
tend to be nearby in 3D, leading
to monochromatic blocks both
on the surface and in cross sec-
tion. The structure lacks knots.
(D) Genome architecture at three
scales. (Top) Two compartments,
corresponding to open and closed
chromatin, spatially partition the
genome. Chromosomes (blue, cyan,
green) occupy distinct territories.
(Middle) Individual chromosomes
weave back and forth between
the open and closed chromatin
compartments. (Bottom) At the
scale of single megabases, the chromosome consists of a series of fractal globules.
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be essential for coregulated gene activation at this particular 
locus. To our knowledge, this study is the !rst to report two new 
CTCF-mediated phenomena, namely the ability to form loops 
via heteromultimerization and the ability to form transcription-
ally functional loops in response to cytokine treatment (Figure 
3). Promoter-XL9 loop formation is dependent on a complex 
formed by CTCF, the coactivator CIITA, and the RFX transcrip-
tion factor bound to a protein complex (containing CREB, NF-Y, 
and RFX) assembled at the proximal promoter. Knockdown of 
any of these three factors (e.g., CIITA, RFX, or CTCF) abolishes 
long-range interactions. In order to study the interplay between 
loops and transcription, the authors use non-MHC-expressing 
epithelial cells as a model system in which the CIITA transacti-
vating factor is not expressed and the HLA-DRB1/DQA1 regu-
latory region is in a relatively linear conformation and transcrip-
tionally silent. Upon stimulation with IFN , kinetic experiments 
indicate that CIITA is expressed prior to the concurrent forma-
tion of CTCF-based contacts with divergent gene promoters 
and initiation of HLA-DRB1 and HLA-DQA1 gene expression. 
Genetic studies will be necessary to determine if this interac-
tion is a cause or a consequence of transcriptional activation.

The unique nature of these contacts, between an intergenic 
enhancer and a promoter, suggests that CTCF may not be 
functioning as a canonical EB insulator at this locus in vivo. 
Nevertheless, we cannot rule out the possibility that CTCF is 
blocking inappropriate regulatory elements contained within 
the larger 4 Mb MHC-II locus. A full characterization of all pos-
sible enhancer sequences, CTCF-binding sites, and physical 
contacts throughout this region will be necessary to determine 
the structure and role(s) for these physical interactions. On the 
basis of multiple CTCF-binding sites identi!ed by genome-
wide studies, it is tempting to speculate that the entire MHC-II 
domain assembles into an active chromatin hub reminiscent of 
the -globin locus.

Overall, data from these three developmentally regulated 
genes suggest that CTCF may predominantly function in spa-
tial organization of chromatin topology via loop formation, with 
insulation and/or downstream effects on transcription a sec-
ondary consequence of the genomic context of the endoge-
nous locus. We note that the models described here are limited 
by their two-dimensional representation and do not re"ect the 
possible topological con!gurations adopted within the three-
dimensional space of the nucleus. Nonetheless, this evidence 
supports the hypothesis that the sequence of the CTCF-bind-
ing site and the spatial positioning of each consensus with 
respect to genes and other regulatory elements would dictate 
the types of CTCF-based chromatin loop structures formed 
(Figures 4A–4D). Mechanistic models to explain how looping 
between CTCF insulators mediates downstream effects on 
transcription are an active area of investigation and have been 
reviewed elsewhere (Gaszner and Felsenfeld, 2006).

More than Loops…A Nuclear Web?
Recent evidence supports a much larger role for chromosome 
intermingling between territories than previously thought, and 
it may not be a coincidence that CTCF-binding sites have been 
implicated in many of the interchromosomal contacts identi-
!ed to date. Ohlsson and colleagues used a strategy termed 

Figure 4. Potential Classes of CTCF-Mediated Contacts
Experimental evidence for certain subclasses of CTCF loops exists (A–F), 
whereas others can be hypothesized based on genome-wide distribution 
patterns (G–L). (A) Anchoring via direct attachment to subnuclear structures 
such as the nucleolus and/or nuclear matrix; (B) transcriptional regulation via 
contact between intergenic locus control region and promoter-proximal regu-
latory element; (C) active chromatin hub around multiple coregulated genes 
via contact between multiple distal CTCF-binding sites; (D) monoallelic gene 
expression via allele-speci!c contacts between multiple imprinted regulatory 
elements; (E) X chromosome inactivation or monoallelic gene expression via 
interchromosomal contacts between regulatory elements in trans; (F) global 
nuclear organization via demarcation of lamina-associated domains (LADs); 
(G) RNA polymerase II pausing and/or termination via intragenic contacts be-
tween introns and exons; (H) RNA processing or transcriptional reinitiation 
via a single gene 5 -3  loop; (I) alternative promoter selection via contact be-
tween two insulator elements demarcating transitions in chromatin structure; 
(J) boundary/barrier loops to demarcate independently regulated chromatin 
domains containing a coregulated gene-dense cluster via contact between 
two insulator elements; (K) enhancer blocking loops that topologically sepa-
rate inappropriate enhancer-promoter interactions via contact between two 
insulator elements; (L) Interchromosomal translocations via contacts between 
two regulatory elements in trans. Green ovals, enhancers; purple squares, 
CTCF consensus sites.

PolII
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Eraf

Factory

in-out position of active genes, relative to factories, was related to
differential positioning relative to the chromosome territory. To test
this, we assessed the position of the infrequently transcribed gene Uros
relative to the chromosome 7 territory (Supplementary Fig. 2 online).
Although Uros is actively transcribed only 29% of the time, it was
found outside its chromosome territory in 79% of cases. In contrast,
the inactive gene Fgfr2 was outside the chromosome territory in only
19% of cases (Supplementary Fig. 2 online). These results confirm
that expressed genes are often located outside chromosome territories
and inactive genes are more often inside chromosome territories. But
these data do not show a correlation between positioning relative to
the chromosome territory and the on-off transcriptional behavior of
active genes. Instead, our data suggest that genes with transcriptional
potential are preferentially located outside chromosome territories,
but this alone is not sufficient for transcription.

RNAP II factories are limiting in vivo
We noticed that the number of RNAP II foci in erythroid cells was
markedly lower than that reported for fibroblast-like cell lines. Figure 6
shows deconvoluted, projected images derived from 3D image stacks
showing all the RNAP II transcription factories in single cell nuclei

from various tissues. We found that erythroid cells had, on average,
only 100–300 RNAP II foci per nucleus. Many other tissue types
have equivalent numbers of RNAP II foci, suggesting that erythroid
cells do not have abnormally low numbers of RNAP II foci.
In contrast, limited-passage mouse embryonic fibroblasts (MEFs)
have a much greater number and higher density of RNAP II foci,
similar to previous reports for HeLa and fibroblast cell lines. We
conclude that the number of transcription factories in tissues is far
more restricted than indicated by previous estimates from cultured
cells. It is, perhaps, not surprising that colocalization of transcribed
genes was not observed in a recent study using cultured fibroblast-like
cells27. Our data indicate that erythroid and other differentiated or
committed tissue types have a limited number of available transcription
sites. Coupled with estimates from expressed-sequence tag databases,
which show that erythroid cells express at least 4,000 genes (data not
shown), we conclude that many genes are obliged to seek out and
share the same factory.

3C analysis
Finally, we corroborated the colocalization of transcribed alleles by a
completely independent method. 3C generates a population-average
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Figure 6 Comparison of RNAP II foci in several tissue types and MEFs. (a) Deconvoluted maximum-intensity projections of image stacks of nuclei
immunostained for RNAP II. E10, embryonic blood; E14, fetal liver erythroid; AS, adult anemic spleen erythroid; Sp, normal adult spleen; Th, adult thymus;
Br, fetal brain. Scale bar, 10 mm. (b) Numbers of RNAP II foci counted for each nucleus shown in a.

Figure 5 Actively transcribed genes colocalize to
shared transcription factories. (a) Single optical
section of a triple-label DNA immuno-FISH on
erythroid cell, showing Hbb (green), Eraf (red)
and RNAP II foci (blue). The merged and
separate channels of the signals are shown in the
side panels. On the left of the main panel, an
Hbb signal alone associates with an RNAP II
focus. On the right, two colocalizing signals
associate with the same RNAP II focus. Scale
bar, 5 mm. (b) A separate optical section of the
same cell showing the second Eraf allele, which
does not associate with an RNAP II focus.
(c) Box and whiskers plot of the distributions of
3D measurements of the separation distance
between Hbb and Eraf loci (n ¼ 84), divided into
RNAP II–associated versus nonassociated.
(d) Triple-label RNA immuno-FISH on erythroid
cell showing Hbb-b1 (red), Eraf (green) and
RNAP II (blue). Left panels, colocalized trans-
cription signals associating with the same RNAP
II focus. Right panels, separate transcription
signals associating with distant RNAP II foci.

1068 VOLUME 36 [ NUMBER 10 [ OCTOBER 2004 NATURE GENETICS

ART I C LES

©
2

0
0

4
 N

a
tu

re
 P

u
b

li
s

h
in

g
 G

ro
u

p
  

h
tt

p
:/

/w
w

w
.n

a
tu

re
.c

o
m

/n
a
tu

re
g

e
n

e
ti

c
s

Osborne et al. Nat Genet (2004)

NATURE STRUCTURAL & MOLECULAR BIOLOGY VOLUME 18 NUMBER 1 JANUARY 2011 107

T E C H N I C A L  R E P O R T S

We developed a general approach that combines chromosome 
conformation capture carbon copy (5C) with the Integrated 
Modeling Platform (IMP) to generate high-resolution three-
dimensional models of chromatin at the megabase scale. 
We applied this approach to the ENm008 domain on human 
chromosome 16, containing the a-globin locus, which is 
expressed in K562 cells and silenced in lymphoblastoid cells 
(GM12878). The models accurately reproduce the known 
looping interactions between the a-globin genes and their 
distal regulatory elements. Further, we find using our approach 
that the domain folds into a single globular conformation in 
GM12878 cells, whereas two globules are formed in K562 
cells. The central cores of these globules are enriched for 
transcribed genes, whereas nontranscribed chromatin is more 
peripheral. We propose that globule formation represents a 
higher-order folding state related to clustering of transcribed 
genes around shared transcription machineries, as previously 
observed by microscopy.

Currently, efforts are directed at producing high-resolution genome 
annotations in which the positions of functional elements or specific 
chromatin states are mapped onto the linear genome sequence1. 
However, these linear representations do not indicate functional or 
structural relationships between distant elements. For instance, recent 
insights suggest that widely spaced functional elements cooperate to 
regulate gene expression by engaging in long-range chromatin loop-
ing interactions. The three-dimensional (3D) organization of chromo-
somes is thought to facilitate compartmentalization2,3, chromatin 
organization4 and spatial sequestration of genes and their regulatory 
elements5–7, all of which may modulate the output and functional 
state of the genome. A general approach for determining the spatial 
organization of chromatin can aid in the identification of long-range 
relationships between genes and distant regulatory elements as well as 
in the identification of higher-order folding principles of chromatin 
in general.

Chromosome conformation capture (3C)-based assays use formalde-
hyde cross-linking followed by restriction digestion and intramolecular  

ligation to study chromatin looping interactions7–12. 3C-based assays 
have been used to show that specific elements such as promoters, 
enhancers and insulators are involved in the formation of chromatin 
loops5,7,13–16. The frequencies at which loci interact reflect chromatin 
folding7,17, and thus comprehensive chromatin interaction data sets 
can help researchers build spatial models of chromatin.

Previously, chromatin conformation has been modeled using 
 polymer models8,18 and molecular-dynamics simulations19, which 
have proven valuable for understanding general features of chromatin  
fibers, including flexibility and compaction20,21. However, such methods 
only partially leverage the current wealth of experimental data on chro-
matin folding. Recently, experimentally driven approaches, in combi-
nation with computational modeling, have resulted in low-resolution  
models for the topological conformation of the immunoglobulin 
heavy chain22, the HoxA23 loci and the yeast genome24. However, 
those methods were limited by the resolution and completeness of the 
input experimental data22, by insufficient model representation, scor-
ing and optimization23, or by limited analysis of the 3D models24.

To overcome such limitations, we developed a new approach that 
couples high-throughput 5C experiments9 with the IMP25. We applied 
this approach to determine the higher-order spatial organization of 
a 500-kilobase (kb) gene-dense domain located near the left telo-
mere of human chromosome 16 (Fig. 1a). Embedded in this cluster 
of ubiquitously expressed housekeeping genes is the tissue-specific  

-globin locus that is expressed only in erythroid cells. This 500-kb 
domain corresponds to the ENm008 region extensively studied by the 
ENCODE pilot project (Fig. 1b)1.

The -globin locus has been used widely as a model to study the 
mechanism of long-range and tissue-specific gene regulation15,26–30. 
The -globin genes are upregulated by a set of functional elements 
characterized by the presence of DNase I–hypersensitive sites (HSs) 
located 33 to 48 kb upstream of the  gene. One of these elements, HS40, 
is considered to be of particular importance31,32. This element can act 
as an enhancer in reporter constructs and its deletion greatly affects 
activation of the -globin genes33. HS40 is bound by several erythroid  
transcription factors including GATA factors and NF-E2 (ref. 34). 
Notably, previous 3C studies have demonstrated direct long-range  

1Structural Genomics Unit, Bioinformatics and Genomics Department, Centro de Investigación Príncipe Felipe, Valencia, Spain. 2Program in Gene Function and 
Expression, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA. 3Department of 
Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA. 4These authors contributed equally to this work. Correspondence should be 
addressed to J.D. (job.dekker@umassmed.edu) or M.A.M.-R. (mmarti@cipf.es).
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The three-dimensional folding of the -globin gene 
domain reveals formation of chromatin globules
Davide Baù1,4, Amartya Sanyal2,4, Bryan R Lajoie2,4, Emidio Capriotti1, Meg Byron3, Jeanne B Lawrence3,  
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©
 2

01
1 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
  A

ll 
ri

gh
ts

 r
es

er
ve

d.

Baù et al.  (2011) Nat Struct Mol Biol 18:107-14
Baù, D., and Marti-Renom, M.A. (2011). Chromosome Res 19:25-35.
Sanyal, A., et al. (2011). Current Opinion in Cell Biology 23:325–33 .

Monday, July 18, 2011



The 3D architecture of Caulobacter Crescentus
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 169 5C primers on + strand
 170 5C primers on – strand

 28,730 chromatin interactions ~13Kb

The 3D architecture of Caulobacter Crescentus
4,016,942  bp & 3,767 genes
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3D model building with the 5C + IMP approach
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Genome organization in Caulobacter crescentus
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Moving the parS sites 400 Kb away from Ori
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Moving the parS sites results in whole genome rotation!

15

0.0

0.5

1.1

1.7

2.1

2.5

3.0

3.5

4.0

M
in

us
 P

ro
be

 G
en

om
e 

Po
sit

io
n 

(m
bp

)

0.0 0.5 1.1 1.6 2.1 2.5 3.1 3.6 4.0

Plus Probe Genome Position (mbp)

-7.5 x 10-1

-2.81 x 10-1

1.88 x 10-1

6.56 x 10-1

1.12 x 100

1.59 x 100

2.06 x 100

2.53 x 100

3 x 100

5C interaction Z-scores

500 nm

Arms	
  are	
  STILL	
  helical

ParS	
  sites

Wild-­‐type

ET166

Monday, July 18, 2011



Moving the parS sites results in whole genome rotation!
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PLoS CB Outlook
Marti-Renom MA, Mirny LA (2011) PLoS Comput Biol 7(7): e1002125.

Review

Bridging the Resolution Gap in Structural Modeling of 3D
Genome Organization
Marc A. Marti-Renom1*, Leonid A. Mirny2

1 Structural Genomics Laboratory, Bioinformatics and Genomics Department, Centro de Investigación Prı́ncipe Felipe, Valencia, Spain, 2Harvard-MIT Division of Health

Sciences and Technology, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America

Abstract: Over the last decade, and especially after the
advent of fluorescent in situ hybridization imaging and
chromosome conformation capture methods, the avail-
ability of experimental data on genome three-dimensional
organization has dramatically increased. We now have
access to unprecedented details of how genomes
organize within the interphase nucleus. Development of
new computational approaches to leverage this data has
already resulted in the first three-dimensional structures
of genomic domains and genomes. Such approaches
expand our knowledge of the chromatin folding princi-
ples, which has been classically studied using polymer
physics and molecular simulations. Our outlook describes
computational approaches for integrating experimental
data with polymer physics, thereby bridging the resolu-
tion gap for structural determination of genomes and
genomic domains.

This is an ‘‘Editors’ Outlook’’ article for PLoS
Computational Biology

Recent experimental and computational advances are
resulting in an increasingly accurate and detailed characterization
of how genomes are organized in the three-dimensional (3D) space
of the nucleus (Figure 1) [1]. At the lowest level of chromatin
organization, naked DNA is packed into nucleosomes, which
forms the so-called chromatin fiber composed of DNA and
proteins. However, this initial packing, which reduces the length of
the DNA by about seven times, is not sufficient to explain the
higher-order folding of chromosomes during interphase and
metaphase. It is now accepted that chromosomes and genes are
non-randomly and dynamically positioned in the cell nucleus
during the interphase, which challenges the classical representa-
tion of genomes as linear static sequences. Moreover, compart-
mentalization, chromatin organization, and spatial location of
genes are associated with gene expression and the functional status
of the cell. Despite the importance of 3D genomic architecture,
we have a limited understanding of the molecular mechanisms that
determine the higher-order organization of genomes and its
relation to function. Computational biology plays an important
role in the plethora of new technologies aimed at addressing this
knowledge gap [2]. Indeed, Thomas Cremer, a pioneer in study-
ing nuclear organization using light microscopy, recently high-
lighted the importance of computational science in complement-
ing and leveraging experimental observations of genome organi-
zation [2]. Therefore, computational approaches to integrate
experimental observations with chromatin physics are needed to
determine the architecture (3D) and dynamics (4D) of genomes.
We present two complementary approaches to address this

challenge: (i) the first approach aims at developing simple polymer
models of chromatin and determining relevant interactions (both

physical and biological) that explain experimental observations; (ii)
the second approach aims at integrating diverse experimental
observations into a system of spatial restraints to be satisfied,
thereby constraining possible structural models of the chromatin.
The goal of both approaches is dual: to obtain most accurate 3D
and 4D representation of chromatin architecture and to under-
stand physical constraints and biological phenomena that determine
its organization. These approaches are reminiscent of the protein-
folding field where the first strategy was used for characterizing
protein ‘‘foldability’’ and the second was implemented for modeling
the structure of proteins using nuclear magnetic resonance and
other experimental constraints. In fact, our outlook consistently
returns to the many connections between the two fields.

What Does Technology Show Us?

Today, it is possible to quantitatively study structural features of
genomes at diverse scales that range from a few specific loci,
through chromosomes, to entire genomes (Table 1) [3]. Broadly,
there are two main approaches for studying genomic organization:
light microscopy and cell/molecular biology (Figure 2). Light
microcopy [4], both with fixed and living cells, can provide images
of a few loci within individual cells [5,6], as well as their dynamics
as a function of time [7] and cell state [8]. On a larger scale, light
microscopy combined with whole-chromosome staining reveals
chromosomal territories during interphase and their reorganiza-
tion upon cell division. Immunofluorescence with fluorescent
antibodies in combination with RNA, and DNA fluorescence in
situ hybridization (FISH) has been used to determine the co-
localization of loci and nuclear substructures.
Using cellular and molecular biology, novel chromosome

conformation capture (3C)-based methods such 3C [9], 3C-on-
chip or circular 3C (the so-called 4C) [10,11], 3C carbon copy
(5C) [12], and Hi-C [13] quantitatively measure frequencies of
spatial contacts between genomic loci averaged over a large
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Abstract

One of the major genomics challenges is to better understand how correct gene expression is
orchestrated. Recent studies have shown how spatial chromatin organization is critical in the
regulation of gene expression. Here, we developed a suite of computer programs to identify
chromatin conformation signatures with 5C technology http://Dostielab.biochem.mcgill.ca. We
identified dynamic HoxA cluster chromatin conformation signatures associated with cellular
differentiation. Genome-wide chromatin conformation signature identification might uniquely
identify disease-associated states and represent an entirely novel class of human disease
biomarkers.
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The 3D Structure of the Immunoglobulin
Heavy-Chain Locus: Implications
for Long-Range Genomic Interactions
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SUMMARY

The immunoglobulin heavy-chain (Igh) locus is orga-
nized into distinct regions that contain multiple vari-
able (VH), diversity (DH), joining (JH) and constant
(CH) coding elements. How the Igh locus is structured
in 3D space is unknown. To probe the topography of
the Igh locus, spatial distance distributions were de-
termined between 12 genomic markers that span the
entire Igh locus. Comparison of the distance distribu-
tions to computer simulations of alternative chro-
matin arrangements predicted that the Igh locus is
organized into compartments containing clusters of
loops separated by linkers. Trilateration and triple-
point angle measurements indicated the mean rela-
tive 3D positions of the VH, DH, JH, and CH elements,
showed compartmentalization and striking confor-
mational changes involving VH and DH-JH elements
during early B cell development. In pro-B cells, the
entire repertoire of VH regions (2 Mbp) appeared to
have merged and juxtaposed to the DH elements,
mechanistically permitting long-range genomic in-
teractions to occur with relatively high frequency.

INTRODUCTION

It is well-established that higher order chromatin organization
plays a pivotal role in genome function (Cremer and Cremer,
2001). Formore thana century, the organization of chromosomes
and its functional implications in eukaryotes have been exten-
sively studied using light microscopy (Rabl, 1885; Bover, 1909).
Electron micrographs of chromosome spreads have suggested
the presence of loops, with sizes of !90 kbp, that interact with
a postulated nuclear matrix and aggregate during mitosis into

rosettes containing!18 loops, resulting in!100 rosettes per av-
erage chromosome (Paulson and Laemmli, 1977; Paulson, 1988;
Pienta and Coffey, 1984). Similar rosette-like structures have
been detected in interphase cells (Okada and Commings, 1979).
As a first approach to resolving chromosome conformation,

fluorescence in situ hybridization studies, measuring spatial dis-
tances in interphase nuclei between genomic markers as a func-
tion of genomic separation, suggested a random walk behavior
(Trask et al., 1991). However, confinement of chromosome
arms and bands to territories indicated the presence of spatial
constraints. More recent observations showed that the spatial
distance depends on the genomic distance according to a power
law with exponents of 0.5 below and 0.32 above a genomic sep-
aration of 4 Mbp (Trask et al., 1993; Warrington and Bengtsson,
1994; Sachs et al., 1995;Münkel and Langowski, 1998). The con-
straints and the scaling behavior suggested a Random-Walk/
Giant-Loop (RW/GL) configuration (Sachs et al., 1995; Yokota
et al., 1995). In the RW/GL model, the 30 nm fiber forms 2 to 5
Mbp loops that are attached to a polymer backbone. The back-
bone and the chromatin fiber within the loops follow random
walk dynamics. However, distance measurements between
genetic markers with genomic separations of less than 4 Mbp
were incompatible with the RW/GL model, but were consistent
with another topology, named the Multi-Loop-Subcompartment
(MLS) model (Münkel and Langowski, 1998; Knoch, 2002). The
MLS model proposes that the 30 nm fiber is folded into rosettes
of small loops, connected by linkers of variable sizes.
Recently computer models have been developed to evaluate

and test experimental results, designs and hypotheses about the
three-dimensional genome organization (Knoch et al., 2000;
Knoch, 2002). Beyond supporting the chromatin organization
into chromosome territory, arm and band domains, these simula-
tionsmay reveal how the local, global anddynamic characteristics
ofcell nuclei are inter-connected (Knochetal., 2000;Knoch,2002).
How genes are regulated by spatial rearrangement has been

a topic of intensive study. In prokaryotes, transcriptional
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Comprehensive Mapping of Long-Range
Interactions Reveals Folding Principles
of the Human Genome
Erez Lieberman-Aiden,1,2,3,4* Nynke L. van Berkum,5* Louise Williams,1 Maxim Imakaev,2
Tobias Ragoczy,6,7 Agnes Telling,6,7 Ido Amit,1 Bryan R. Lajoie,5 Peter J. Sabo,8
Michael O. Dorschner,8 Richard Sandstrom,8 Bradley Bernstein,1,9 M. A. Bender,10
Mark Groudine,6,7 Andreas Gnirke,1 John Stamatoyannopoulos,8 Leonid A. Mirny,2,11
Eric S. Lander,1,12,13† Job Dekker5†
We describe Hi-C, a method that probes the three-dimensional architecture of whole genomes by
coupling proximity-based ligation with massively parallel sequencing. We constructed spatial proximity
maps of the human genome with Hi-C at a resolution of 1 megabase. These maps confirm the
presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes.
We identified an additional level of genome organization that is characterized by the spatial segregation
of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the
chromatin conformation is consistent with a fractal globule, a knot-free, polymer conformation that
enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus.
The fractal globule is distinct from the more commonly used globular equilibrium model. Our results
demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.

The three-dimensional (3D) conformation of
chromosomes is involved in compartmen-
talizing the nucleus and bringing widely

separated functional elements into close spatial
proximity (1–5). Understanding how chromosomes
fold can provide insight into the complex relation-
ships between chromatin structure, gene activity,
and the functional state of the cell. Yet beyond the
scale of nucleosomes, little is known about chro-
matin organization.

Long-range interactions between specific pairs
of loci can be evaluated with chromosome con-
formation capture (3C), using spatially constrained
ligation followed by locus-specific polymerase
chain reaction (PCR) (6). Adaptations of 3C have
extended the process with the use of inverse PCR
(4C) (7, 8) or multiplexed ligation-mediated am-
plification (5C) (9). Still, these techniques require
choosing a set of target loci and do not allow
unbiased genomewide analysis.

Here, we report a method called Hi-C that
adapts the above approach to enable purification
of ligation products followed by massively par-
allel sequencing. Hi-C allows unbiased identifi-
cation of chromatin interactions across an entire
genome.We briefly summarize the process: cells
are crosslinked with formaldehyde; DNA is di-
gested with a restriction enzyme that leaves a 5′
overhang; the 5′ overhang is filled, including a
biotinylated residue; and the resulting blunt-end
fragments are ligated under dilute conditions that
favor ligation events between the cross-linked
DNA fragments. The resulting DNA sample con-
tains ligation products consisting of fragments
that were originally in close spatial proximity in
the nucleus, marked with biotin at the junction.
A Hi-C library is created by shearing the DNA
and selecting the biotin-containing fragments
with streptavidin beads. The library is then ana-
lyzed by using massively parallel DNA sequenc-
ing, producing a catalog of interacting fragments
(Fig. 1A) (10).

We created a Hi-C library from a karyotyp-
ically normal human lymphoblastoid cell line
(GM06990) and sequenced it on two lanes of
an Illumina Genome Analyzer (Illumina, San
Diego, CA), generating 8.4million read pairs that
could be uniquely aligned to the human genome
reference sequence; of these, 6.7 million corre-
sponded to long-range contacts between seg-
ments >20 kb apart.

We constructed a genome-wide contact matrix
M by dividing the genome into 1-Mb regions
(“loci”) and defining thematrix entrymij to be the
number of ligation products between locus i and
locus j (10). This matrix reflects an ensemble
average of the interactions present in the original
sample of cells; it can be visually represented as
a heatmap, with intensity indicating contact fre-
quency (Fig. 1B).

We tested whether Hi-C results were repro-
ducible by repeating the experiment with the same
restriction enzyme (HindIII) and with a different
one (NcoI).We observed that contact matrices for
these new libraries (Fig. 1, C and D) were
extremely similar to the original contact matrix
[Pearson’s r = 0.990 (HindIII) and r = 0.814
(NcoI); P was negligible (<10–300) in both cases].
We therefore combined the three data sets in
subsequent analyses.

We first tested whether our data are consistent
with known features of genome organization (1):
specifically, chromosome territories (the tendency
of distant loci on the same chromosome to be near
one another in space) and patterns in subnuclear
positioning (the tendency of certain chromosome
pairs to be near one another).

We calculated the average intrachromosomal
contact probability, In(s), for pairs of loci sepa-
rated by a genomic distance s (distance in base
pairs along the nucleotide sequence) on chromo-
some n. In(s) decreases monotonically on every
chromosome, suggesting polymer-like behavior
in which the 3D distance between loci increases
with increasing genomic distance; these findings
are in agreement with 3C and fluorescence in situ
hybridization (FISH) (6, 11). Even at distances
greater than 200Mb, In(s) is always much greater
than the average contact probability between dif-
ferent chromosomes (Fig. 2A). This implies the
existence of chromosome territories.

Interchromosomal contact probabilities be-
tween pairs of chromosomes (Fig. 2B) show
that small, gene-rich chromosomes (chromosomes
16, 17, 19, 20, 21, and 22) preferentially interact
with each other. This is consistent with FISH
studies showing that these chromosomes fre-
quently colocalize in the center of the nucleus
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A three-dimensional model of the yeast genome
Zhijun Duan1,2*, Mirela Andronescu3*, Kevin Schutz4, SeanMcIlwain3, Yoo Jung Kim1,2, Choli Lee3, Jay Shendure3,
Stanley Fields2,3,5, C. Anthony Blau1,2,3 & William S. Noble3

Layered on top of information conveyed by DNA sequence and
chromatin are higher order structures that encompass portions of
chromosomes, entire chromosomes, and even whole genomes1–3.
Interphase chromosomes are not positioned randomly within the
nucleus, but instead adopt preferred conformations4–7. Disparate
DNA elements co-localize into functionally defined aggregates or
‘factories’ for transcription8 and DNA replication9. In budding
yeast,Drosophila andmany other eukaryotes, chromosomes adopt
a Rabl configuration, with arms extending from centromeres adja-
cent to the spindle pole body to telomeres that abut the nuclear
envelope10–12. Nonetheless, the topologies and spatial relationships
of chromosomes remain poorly understood. Here we developed a
method to globally capture intra- and inter-chromosomal inter-
actions, and applied it to generate a map at kilobase resolution of
the haploid genome of Saccharomyces cerevisiae. The map recapi-
tulates known features of genome organization, thereby validating
the method, and identifies new features. Extensive regional and
higher order folding of individual chromosomes is observed.
Chromosome XII exhibits a striking conformation that implicates
the nucleolus as a formidable barrier to interaction between DNA
sequences at either end. Inter-chromosomal contacts are anchored
by centromeres and include interactions among transfer RNA
genes, among origins of early DNA replication and among sites
where chromosomal breakpoints occur. Finally, we constructed a
three-dimensional model of the yeast genome. Our findings pro-
vide a glimpse of the interface between the form and function of a
eukaryotic genome.

Chromosome conformation capture (3C) and its derivatives have
been used to detect long-range interactions within and between chro-
mosomes13–20. We developed a method for identifying chromosomal
interactions genome-wide by coupling chromosome conformation
capture-on-chip (4C)14 andmassively parallel sequencing (Fig. 1 and
Supplementary Methods). Because all 3C-based technologies are
encumbered by low signal-to-noise ratios18,21, we established the
method’s reliability by assessing: (1) random intermolecular ligations
from each of five control libraries (Fig. 2a, Supplementary Tables 1
and 2 and Supplementary Methods); (2) restriction site-based biases
(Fig. 2b, Supplementary Figs 1 and 2 and Supplementary Table 3); (3)
reproducibility between independent sets of experimental libraries
that differed in DNA concentration at the 3C step, which critically
influences signal-to-noise ratios (Supplementary Table 1, Fig. 2b and
c and Supplementary Fig. 2); (4) consistency between theHindIII and
EcoRI libraries (Supplementary Figs 3–5 and Supplementary Tables
4–8), and (5) a set of 24 chromosomal interactions using conven-
tional 3C (Fig. 2d, Supplementary Fig. 6). These results show that our
method is reliable and robust (detailed in Supplementary Methods).
We established yeast genome architecture features using interactions
from the HindIII libraries at a false discovery rate (FDR) of 1%, and

confirmed them with interactions from the EcoRI libraries at the
same threshold.

From our HindIII libraries, we identified 2,179,977 total interac-
tions at an FDR of 1%, corresponding to 65,683 interactions between
distinct pairs of HindIII fragments. We used these data to generate
conformational maps of all 16 yeast chromosomes. The overall pro-
pensity of HindIII fragments to engage in intra-chromosomal inter-
actions varied little between chromosomes, ranging from 436
interactions per HindIII fragment on chromosome XI to 620 inter-
actions per HindIII fragment on chromosome IV (Supplementary
Table 9). These results indicate broadly similar densities of self-
interaction (intra-chromosomal interaction) between chromosomes
and indicate that the density of self-interaction does not vary with
chromosome size (Supplementary Fig. 7).

Some large segments of chromosomes showed a striking propen-
sity to interact with similarly sized regions of the same chromosome.
For example, two regions on chromosome III (positions 30–90 kilo-
bases (kb), and 105–185 kb) showed an excess of interactions (Fig. 3

*These authors contributed equally to this work.
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2. RE1 cutting
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Figure 1 | Schematic depiction of the method. Our method relies on the 4C
procedure by using cross-linking, two rounds of alternating restriction
enzyme (RE) digestion (6-bp-cutter RE1 for the 3C-step digestion and 4-bp-
cutter RE2 for the 4C-step digestion) and intra-molecular ligation. At step 7,
each circle contains the 6-bp restriction enzyme recognition site originally
used to link the two interacting partner sequences (RE1).Diverging from4C,
we relinearize the circles using RE1, then sequentially insert two sets of
adaptors, one of which permits digestion with a type IIS or type III
restriction enzyme (such as EcoP15I). Following EcoP15I digestion,
fragments are produced that incorporate interacting partner sequence at
either end, which can be rendered suitable for deep sequencing (see
Supplementary Methods).
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We developed a general approach that combines chromosome 
conformation capture carbon copy (5C) with the Integrated 
Modeling Platform (IMP) to generate high-resolution three-
dimensional models of chromatin at the megabase scale. 
We applied this approach to the ENm008 domain on human 
chromosome 16, containing the a-globin locus, which is 
expressed in K562 cells and silenced in lymphoblastoid cells 
(GM12878). The models accurately reproduce the known 
looping interactions between the a-globin genes and their 
distal regulatory elements. Further, we find using our approach 
that the domain folds into a single globular conformation in 
GM12878 cells, whereas two globules are formed in K562 
cells. The central cores of these globules are enriched for 
transcribed genes, whereas nontranscribed chromatin is more 
peripheral. We propose that globule formation represents a 
higher-order folding state related to clustering of transcribed 
genes around shared transcription machineries, as previously 
observed by microscopy.

Currently, efforts are directed at producing high-resolution genome 
annotations in which the positions of functional elements or specific 
chromatin states are mapped onto the linear genome sequence1. 
However, these linear representations do not indicate functional or 
structural relationships between distant elements. For instance, recent 
insights suggest that widely spaced functional elements cooperate to 
regulate gene expression by engaging in long-range chromatin loop-
ing interactions. The three-dimensional (3D) organization of chromo-
somes is thought to facilitate compartmentalization2,3, chromatin 
organization4 and spatial sequestration of genes and their regulatory 
elements5–7, all of which may modulate the output and functional 
state of the genome. A general approach for determining the spatial 
organization of chromatin can aid in the identification of long-range 
relationships between genes and distant regulatory elements as well as 
in the identification of higher-order folding principles of chromatin 
in general.

Chromosome conformation capture (3C)-based assays use formalde-
hyde cross-linking followed by restriction digestion and intramolecular  

ligation to study chromatin looping interactions7–12. 3C-based assays 
have been used to show that specific elements such as promoters, 
enhancers and insulators are involved in the formation of chromatin 
loops5,7,13–16. The frequencies at which loci interact reflect chromatin 
folding7,17, and thus comprehensive chromatin interaction data sets 
can help researchers build spatial models of chromatin.

Previously, chromatin conformation has been modeled using 
 polymer models8,18 and molecular-dynamics simulations19, which 
have proven valuable for understanding general features of chromatin  
fibers, including flexibility and compaction20,21. However, such methods 
only partially leverage the current wealth of experimental data on chro-
matin folding. Recently, experimentally driven approaches, in combi-
nation with computational modeling, have resulted in low-resolution  
models for the topological conformation of the immunoglobulin 
heavy chain22, the HoxA23 loci and the yeast genome24. However, 
those methods were limited by the resolution and completeness of the 
input experimental data22, by insufficient model representation, scor-
ing and optimization23, or by limited analysis of the 3D models24.

To overcome such limitations, we developed a new approach that 
couples high-throughput 5C experiments9 with the IMP25. We applied 
this approach to determine the higher-order spatial organization of 
a 500-kilobase (kb) gene-dense domain located near the left telo-
mere of human chromosome 16 (Fig. 1a). Embedded in this cluster 
of ubiquitously expressed housekeeping genes is the tissue-specific  

-globin locus that is expressed only in erythroid cells. This 500-kb 
domain corresponds to the ENm008 region extensively studied by the 
ENCODE pilot project (Fig. 1b)1.

The -globin locus has been used widely as a model to study the 
mechanism of long-range and tissue-specific gene regulation15,26–30. 
The -globin genes are upregulated by a set of functional elements 
characterized by the presence of DNase I–hypersensitive sites (HSs) 
located 33 to 48 kb upstream of the  gene. One of these elements, HS40, 
is considered to be of particular importance31,32. This element can act 
as an enhancer in reporter constructs and its deletion greatly affects 
activation of the -globin genes33. HS40 is bound by several erythroid  
transcription factors including GATA factors and NF-E2 (ref. 34). 
Notably, previous 3C studies have demonstrated direct long-range  
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The three-dimensional folding of the -globin gene 
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