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Structure determination

Integrative Modeling Platform
http://www.integrativemodeling.org

Alber et al. Nature (2007) vol. 450 (7170) pp. 683-94

o Biomolecular structure determination
L b 2D-NOESY data

Chromosome structure determination
5C data
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5C technology

Detecting up to millions of interactions in parallel
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Integrative Modeling

http://www.integrativemodeling.org
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Human a-globin domain

ENmMOO8 genomic structure and environment

ENCODE Consortium. Nature (2007) vol. 447 (7146) pp. 799-816
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The ENCODE data for ENmOQOQ0S8 region was obtained from the UCSC Genome Browser tracks for: RefSeq annotated
genes, Affymetrix/CSHL expression data (Gingeras Group at Cold Spring Harbor), Duke/NHGRI DNasel
Hypersensitivity data (Crawford Group at Duke University), and Histone Modifications by Broad Institute ChlP-seq
(Bernstein Group at Broad Institute of Harvard and MIT).
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The “Chromatin Globule” model
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The 3D architecture of Caulobacter Crescentus

4,016,942 bp & 3,767 genes
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The 3D architecture of Caulobacter Crescentus
4,016,942 bp & 3,767 genes
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5C interaction matrix
ELLIPSOID for Caulobacter cresentus
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3D model building with the 5C + IMP approach
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Genome organization in Caulobacter crescentus

Resolution of Arms are helical
chromosomes
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Moving the sites 400 Kb away from Ori

ParB | PopZ

Wild-type ET166

|4

Monday, July 18, 2011



Moving the sites results in whole genome rotation!
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Moving the sites results in whole genome rotation!
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sites initiate Chromosome arms are
compact chromatin domain equidistant to the cell center
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From Sequence to Function

Genome architecture in Caulobacter
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Bridging the Resolution Gap in Structural Modeling of 3D

Genome Organization

Marc A. Marti-Renom’*, Leonid A. Mirny?
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Abstract: Over the last decade, and especially after the
advent of fluorescent in situ hybridization imaging and
chromosome conformation capture methods, the avail-
ability of experimental data on genome three-dimensional
organization has dramatically increased. We now have
access to unprecedented details of how genomes
organize within the interphase nucleus. Development of
new computational approaches to leverage this data has
already resulted in the first three-dimensional structures
of genomic domains and genomes. Such approaches
expand our knowledge of the chromatin folding princi-
ples, which has been classically studied using polymer
physics and molecular simulations. Our outlook describes
computational approaches for integrating experimental
data with polymer physics, thereby bridging the resolu-
tion gap for structural determination of genomes and
genomic domains.

This is an ‘‘Editors’ Outlook’ article for PLoS
Computational Biology

Recent  experimental and computational advances are
resulting in an increasingly accurate and detailed characterization
of how genomes are organized in the three-dimensional (3D) space
of the nucleus (Figure 1) [1]. At the lowest level of chromatin
organization, naked DNA is packed into nucleosomes, which
forms the so-called chromatin fiber composed of DNA and
proteins. However, this initial packing, which reduces the length of
the DNA by about seven times, is not sufficient to explain the
higher-order folding of chromosomes during interphase and
metaphase. It is now accepted that chromosomes and genes are
non-randomly and dynamically positioned in the cell nucleus
during the interphase, which challenges the classical representa-
tion of genomes as linear static sequences. Moreover, compart-
mentalization, chromatin organization, and spatial location of
genes are associated with gene expression and the functional status
of the cell. Despite the importance of 3D genomic architecture,
we have a limited understanding of the molecular mechanisms that
determine the higher-order organization of genomes and its
relation to function. Computational biology plays an important
role in the plethora of new technologies aimed at addressing this
knowledge gap [2]. Indeed, Thomas Cremer, a pioneer in study-
ing nuclear organization using light microscopy, recently high-
lighted the importance of computational science in complement-
ing and leveraging experimental observations of genome organi-
zation [2]. Therefore, computational approaches to integrate
experimental observations with chromatin physics are needed to
determine the architecture (3D) and dynamics (4D) of genomes.

physical and biological) that explain experimental observations; (ii)
the second approach aims at integrating diverse experimental
observations into a system of spatial restraints to be satisfied,
thereby constraining possible structural models of the chromatin.
The goal of both approaches is dual: to obtain most accurate 3D
and 4D representation of chromatin architecture and to under-
stand physical constraints and biological phenomena that determine
its organization. These approaches are reminiscent of the protein-
folding field where the first strategy was used for characterizing
protein “foldability” and the second was implemented for modeling
the structure of proteins using nuclear magnetic resonance and
other experimental constraints. In fact, our outlook consistently
returns to the many connections between the two fields.

What Does Technology Show Us?

Today, it is possible to quantitatively study structural features of
genomes at diverse scales that range from a few specific loci,
through chromosomes, to entire genomes (Table 1) [3]. Broadly,
there are two main approaches for studying genomic organization:
light microscopy and cell/molecular biology (Figure 2). Light
microcopy [4], both with fixed and living cells, can provide images
of a few loci within individual cells [5,6], as well as their dynamics
as a function of time [7] and cell state [8]. On a larger scale, light
microscopy combined with whole-chromosome staining reveals
chromosomal territories during interphase and their reorganiza-
tion upon cell division. Immunofluorescence with fluorescent
antibodies in combination with RNA, and DNA fluorescence in
situ hybridization (FISH) has been used to determine the co-
localization of loci and nuclear substructures.

Using cellular and molecular biology, novel chromosome
conformation capture (3C)-based methods such 3C [9], 3C-on-
chip or circular 3C (the so-called 4C) [10,11], 3C carbon copy
(5C) [12], and Hi-C [13] quantitatively measure frequencies of
spatial contacts between genomic loci averaged over a large
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