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Summary

« CONCEPTS (10%)
= Data groups
= Stages
= Advantages

« EXAMPLES (remaining!)
= Proteins
= Complexes of proteins
= Genomes
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DISCLAIMER!

IVIP

Integrative Modeling Platform

http://integrativemodeling.org
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Stages

Stage 1: Gathering Information. Information is collected in the form of data
from wet lab experiments, as well as statistical tendencies such as atomic
statistical potentials, physical laws such as molecular mechanics force fields, and
any other feature that can be converted into a score for use to assess features of a
structural model.

Stage 2: Choosing How To Represent And Evaluate Models. The
resolution of the representation depends on the quantity and resolution of the
available information and should be commensurate with the resolution of the
final models: different parts of a model may be represented at different
resolutions, and one part of the model may be represented at several different
resolutions simultaneously. The scoring function evaluates whether or not a given
model is consistent with the input information, taking into account the
uncertainty in the information.

Stage 3: Finding Models That Score Well. The search for models that score
well is performed using any of a variety of sampling and optimization schemes
(such as the Monte Carlo method). There may be many models that score well if
the data are incomplete or none if the data are inconsistent due to errors or
unconsidered states of the assembly.

Stage 4: Analyzing Resulting Models and Information. The ensemble of
good-scoring models needs to be clustered and analyzed to ascertain their
precision and accuracy, and to check for inconsistent information. Analysis can
also suggest what are likely to be the most informative experiments to perform in
the next iteration.

Integrative modeling iterates through these stages until a satisfactory model is
built. Many iterations of the cycle may be required, given the need to gather more
data as well as to resolve errors and inconsistent data.
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Advantages

Using New Information. Integrative modeling makes it easy to take advantage
of new information and new types of information, resulting in a low barrier for
using incremental information that is generally not applied to structure
characterization. Even when a single data type is relatively uninformative,
multiple types can give a surprisingly complete picture of an assembly [9,10].

Maximizing Accuracy, Precision and Completeness. Integrative models fit
multiple types of information, and can thus be more accurate, precise, and
complete than models based on the individual sources.

Understanding and Assessing the Models. By exhaustively sampling the
space of models fitting the information, integrative modeling can find all models
fitting the information, not only one. A full sampling of the models of a structure
can improve the understanding of its function [49]. Because the data are encoded
in scoring functions and the full set of models can be found, integrative modeling
facilitates assessing the input information and output models in terms of
precision and accuracy.

Planning Experiments. Integrative modeling provides feedback to guide
future experiments, by computationally testing the impact of hypothetical
datasets. As a result, experiments can be chosen to best improve our knowledge
of the assembly.

Understanding and Assessing Experimental Accuracy. Data errors present
a challenge for all methods of model building. Integrative modeling can detect
inconsistent data as no models will exist that fit all the data. In addition,
integrative modeling facilitates the application of more sophisticated methods for
error estimation, such as Inferential Structure Determination [16].
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“Toy” example...

6. &°
BE  wile

s

% Retd Rpba and AnpT b @

= i.as 4 W
g [} P
w Rpb1d Rpb it and Rbpi2 H -~

5 &

Q

j- o
=

Rpbi0 Rpbi1 and Rbpi2
comparative models EM density map
(from ModBase) (from EMDB)

Collection of experimental and
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(from BioGRID)
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representation and scoring

Sampling of good scoring
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Analyze space of found
configurations
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“Real” examples

PROTEINS

COMPLEXES

GENOMES
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PROTEINS
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Principles of protein structure
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D. Baker & A. Sali. Science 294, 93, 2001.
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Comparative modeling by satisfaction of spatial restraints

Start with a
Target Sequence

MSVIPKR--GNCEQTSE

Given an alignment...
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Template
Search l l
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d known structures
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Build model q l
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Evaluate model l
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optimize to find the
best solution for the
restraints to produce
your 3D model

Output 3D Model

[
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Utility of protein structure models, despite errors
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D. Baker & A. Sali. Science 294, 93, 2001.
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What is the physiological ligand of Brain
Lipid-Binding Protein?
Predicting features of a model that are not present in the template

BLBP/oleic acid BLBP/docosahexaenoic acid

Cavity is not filled Cavity is filled

Ligand binding

1. BLBP binds fatty acids.

2. Build a 3D model.

3. Find the fatty acid that fits
most snuggly into the ligand
binding cavity.
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Predicting features of a model that are not present in the template

1. mMCPs bind negatively charged MAST CELL N o R
proteoglycans through electrostatic m PG
Interactions o EXOCYTOSIS
m _»

2. Comparative models used to find clusters
of positively charged surface residues.
3. Tested by site-directed mutagenesis.

pH 5 pH7
His™ His

/HF.PARIN BINDING REGION
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Common Evolutionary Origin of Coated Vesicles
and Nuclear Pore Complexes

mGenThreader + SALIGN + MOULDER
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vyNup84 complex proteins
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All Nucleoporins in the Nup84 Complex are Predicted to
Contain p-Propeller and/or a-Solenoid Folds
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NPC and Coated Vesicles Share the p-Propeller and o-
Solenoid Folds and Associate with Membranes

EXAMPLE FOLDS VARIANTS
Clathrin/AP-2 Complex CCVs corI corll NPC
Clathrin f Clathrin-N o-subunit-N  Sec13 Sec13
ear - -~ — Beta B'-subunit-N  (Seh1) Seh1
— Propeller s Sec31-N Nup133-N
/ K_/ - Nup120-N
{
AP-2
Compl '
plex m
o [32 f Clathrin-C o-subunit-C Sec31-C Nup133-C
A'Pha o/y/d/e-subunit  B'-subunit-C Nup120-C
I Hellcall { B-subunits B-subunit Nup85
Solenoid Y-subunit Nup84
\ Nup145C
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NPC and Coated Vesicles Both Associate
with Membranes

Coated
Vesicle NPC model

O x JN =

B-Propeller a-Solenoid

/ \ 7\ Nup 84 complex
d S K ont
WY gé . F ok 1 Nup192, 2 Nup188, 3 Nup170, 4 Nup157, 5 Nup133,
5 S il 6 Nup120, 7 Nup85, 8 Nup84, 9 Nup145C, 10 Seh1, 11 Sec13

Core scaffold

Alber et al. The molecular architecture of the nuclear pore complex. Nature (2007) vol. 450 (7170) pp. 695-701
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A Common Evolutionary Origin for
Nuclear Pore Complexes and Coated Vesicles?

Prokaryote Early Eukaryote ~ Modern Eukaryote

A simple coating module containing minimal

copies of the two conserved folds evolved in /O
proto-eukaryotes to bend membranes. \ =¥

The progenitor of the NPC arose from a
membrane-coating module that wrapped
extensions of an early ER around the cell’s
chromatin.
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Tropical Disease Initiative (TDI)
Predicting binding sites in protein structure models.

http://www. tropicaldisease.orq
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Need is High in the Tall

B DALY Burden Per Disease in Developed Countries
B DALY Burden Per Disease in Developing Countries

Heart diseases

Rare diseases
DALY

Disease
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Need is High in the Tall

B DALY Burden Per Disease in Developed Countries
B DALY Burden Per Disease in Developing Countries

Heart diseases

Rare diseases
DALY

.

Disease
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“Unprofitable” Diseases
and Global DALY (in 1000’s)

46,486 1,006
7,074 709
5,777 667
4,200 616
2,329 4184
2,090 199
1,702 151
1,525 59

Disease data taken from WHO, World Health Report 2004
DALY - Disability adjusted life year in 1000’s.
* Officially listed in the WHO Tropical Disease Research disease portfolio.
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Comparative docking

Expansion 2. Inheritance

co-crystalized protein/ligand model
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Modelin

g Genomes

100
[] % good
|:| % bad
90 —
80 —
M. lefrae
70 — O M. tuberculosis
60 — H. sapiens
P. falciparum

% C. parvum P
8 50— O L. major
: O
" O

40 — O P. vivax _

C. hominis T. brucei
T. cruzi
30 —
O
T. gondii
10 —
0 | | | | | |
0 5.000 10.000 15.000 20.000 25.000 30.000 35.000

Transcripts

A good model has MPQS of 1.0 or higher
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Summary table

29,271 targets with good models, 297 inherited a ligand/substance
similar to a known drug in DrugBank

Transcripts Modeled targets Selected models Inherited ligands Similar to a drug Drugs
C. hominis 3,886 1,614 666 |97 20 I3
C. parvum 3,806 1,918 742 232 24 13
L. major 8,274 3,975 1,409 478 43 20
M. leprae 1,605 1,178 893 310 25 6
M. tuberculosis 3,991 2,808 1,608 365 30 10
P. falciparum 5,363 2,599 818 284 28 13
P. vivax 5,342 2,359 822 268 24 13
T. brucei 7,793 1,530 300 138 13 6
T. cruzi 19,607 7,390 3,070 769 51 28
T. gondii 9,210 3,900 1,386 458 39 21
TOTAL 68,877 29,271 11,714 3,499 297 143
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L. major Histone deacetylase 2 + Vorinostat
Template 1t64A a human HDACS8 protein.

PDB © Template (55 Model G Ligand Exact SupStr SubStr Similar
1c3sA  83.3380.00 1t64A 36.0001.47 Lm|F21.0680.1.pdb 90.91/100.00 SHH DB02546 DB02546 DB02546 DB02546

’(f . DB02546 Vorinostat @

Small Molecule; Approved, Investigational

Drug categories:

Anti-Inflammatory Agents, Non-Steroidal

Anticarcinogenic Agents )R
Antineoplastic Agents

Enzyme Inhibitors

Drug indication:

For the treatment of cutaneous manifestations in patients with
cutaneous T-cell lymphoma who have progressive, persistent or
recurrent disease on or following two systemic therapies.
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L. major Histone deacetylase 2 + Vorinostat

Proc. Natl. Acad. Sci. USA
Vol. 93, pp. 13143-13147, November 1996
Medical Sciences

Apicidin: A novel antiprotozoal agent that inhibits
parasite histone deacetylase

(cyclic tetrapeptide /Apicomplexa /antiparasitic/malaria/coccidiosis)

SANDRA J. DARKIN-RATTRAY*T, ANNE M. GURNETT*, ROBERT W. MYERS*, PAULA M. DULSKI*,

TaMI M. CRUMLEY*, JOHN J. ALLOCcCcO*, CHRISTINE CANNOVA*, PETER T. MEINKE*, STEVEN L. COLLETTI¥,
MARIA A. BEDNAREKE, SHEO B. SINGHS, MICHAEL A. GOETZS, ANNE W. DOMBROWSKIS,

JoN D. POLISHOOKS, AND DENNIS M. SCHMATZ*

Departments of *Parasite Biochemistry and Cell Biology, ¥Medicinal Chemistry, and $Natural Products Drug Discovery, Merck Research Laboratories,
P.O. Box 2000, Rahway, NJ 07065

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Apr. 2004, p. 1435-1436 Vol. 48, No. 4
0066-4804/04/$08.00+0 DOI: 10.1128/AAC.48.4.1435-1436.2004
Copyright © 2004, American Society for Microbiology. All Rights Reserved.

Antimalarial and Antileishmanial Activities of Aroyl-Pyrrolyl-Hydroxyamides, a
New Class of Histone Deacetylase Inhibitors
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P. falciparum tymidylate kinase + zidovudine

Template 3tmkA a yeast tymidylate kinase.

PDB (lw] Template (I Model (e Ligand Exact SupStr SubStr Similar

2tmkB 10000/100.00  3tmkA 4100149 PFL2465c.2.pdb  82.61/100.00 ATM DB00495 DB00495

DB00495 Zidovudine
CH

Small Molecule; Approved H.‘)Jm/ .
Drug categories: . /J\ .
Anti-HIV Agents A~
Antimetabolites S /
Nucleoside and Nucleotide Reverse Transcriptase N=N=p "'-',,’_ H
Inhibitors

Drug indication:

For the treatment of human immunovirus (HIV) infections.
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P. falciparum tymydilate kinase + zidovudine

NMR Water-LOGSY and STD experiments

ww

WM

ATM

i S

80 78 76 74 72 70 68 66 64 78 76 74 72 70 68 66 64 62 ppm

T T T T T T T
78 76 74 72 7.0 6.8 6.6 6.4 ppm

Leticia Orti, Rodrigo J. Carbajo, and Antonio Pineda-Lucena
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TDI’'s kernel

http://tropicaldisease.org/kernel

800 TOI Kernel database » Q9CUS9
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COMPLEXES

multiple data types
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S. cerevisiae ribosome

Fitting of comparative models
iInto 15A cryo- electron
density map.

43 proteins could be modeled
on 20-56% seq.id. to a known
structure.

The modeled fraction of the

proteins ranges from
34-99%.

C. Spahn, R. Beckmann, N. Eswar, P. Penczek, A. Sali, G. Blobel, J. Frank. Cell 107, 361-372, 2001.
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The NPC

FG Nup Filaments

-

Cytoplasmic
Ring

Inner Spoke
Ring

Outer (Lumenal)
Ring

Nuclear

Nuclear
Ring uclea

Envelope
Spoke

Alber, F., Dokudovskaya, S., Veenhoff, L. M., Zhang, W., Kipper, J., Devos, D., Suprapto, A., et al. (2007). Nature, 450(7170), 695—-701
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Representation

T N!|N? |k {B}} ro|T N |N?! |k |{B}} n, r

125 | @@ 3.0 15 9 | 15
Nup192 1] 1

3 - - 2 2 | 15

Nup1 0 1 -

125 | 3.0 3 ; 1 ;
Nup188 1] 1

3 - ; 4 , 7 | 15

125 | @ 2.9 1,5 12 | 13
Nup170 1] 1 —

3 - ) 2 - 3 | 13

Nsp1 2 2

125 |oaa 25 3 - y ;
Nup157 1] 1

3 ) ; 4 . 9 | 13

12,5 id 2.7 12,5 2 | 2.1
Nup133 | 1 | 1 Glet 1] o —

3 - - 3 ; 1 -

125 | o 26 15 | casa 4 | 16
Nup120 1] 1

3 ; - | Nup60 o | 1 [23 [, 1 | 16

125 | gse 2.0 4 o0 3 | 16
Nup85 1] 1

3 - - 15 | osse 4 | 16

12,5 2.0 2 - 2 | 16
Nup84 1| 1 e Nup59 1 1 oo

3 - - 3 ; 1 -

125 |9 2.3 4 oo 2 | 16
Nup145C | 1 | 1

3 - - 15 | ose 3 | 18
Seh1 1| 1 (1235 |a 22 |Nup57 1 1 (23 ° 1 | 18
Sec13 111 [1235 |@ 2.1 4 %0 2 | 18
Gle2 111 [1235 |@ 2.3 15 | oss 3 | 17

125 | @2 24 |Nup53 1 1 (23 o 1 | 17
Nic96 2 | 2

3 - - 4 0 2 | 17
Nup82 1 1

3 - ; 2,3 o 1 | 15
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Scoring

Data generation

Data interpretation

Method Experiments Restraint Rc Ro Ry Functional form of activated feature restraint
S @ Protein-protein:
= g. g Protein excluded volume Violated for f < f,. fis the distance between two beads, f, is the sum of the bead radii,
g ] restraint . . 1,864 and o is 0.01 nm.
o 8 g. 1,863/2 Applied to all pairs of particles in representation x=1:
5 2 B™ = {B;‘" 0.5, r,i)}
©
S
-
[
s n
o a8 Membrane-surface location:
'g 3 2 Violated if f# f,. fis the distance between a protein particle and the closest point on the
° g g - - 48 NE surface (half-torus), f, = 0 nm, and c is 0.2 nm. Applied to particles:
= oz o . B = {B,™ (6,5,7.1)| 7 € (Ndo1,Pom152,Pom34) }
- » Surface localization restraint
c
© - -
» Pore-side volume location:
o 'g R Violated if f < f,. fis the distance between a protein particle and the closest point on the
® < E 3 - - 64 NE surface (half-torus), f, = 0 nm, and o is 0.2 nm. Applied to particles:
g s 8o % B" = {37:” O,s,7,0)| 7 E(Ndcl,Pom152,Pom34)}
Z o ¢
e o g 3 g Perinuclear volume location:
£ ™ 35 g 3 Violated if > f,,, fis the distance between a protein particle and the closest point on
K] g = - - 80 the NE surface (half-torus), f, = 0 nm, and ¢ is 0.2 nm. Applied to particles:
] * B = (B (6.5, 7.0)7 € (Pom152)}
c I h int Complex diameter
g omplex shape restrain Violated if f < f,. fis the distance between two protein particles representing the largest
= diameter of the largest complex, f, is the complex maximal diameter D=19.2-R, where
g 3 1 164 1 R is the sum of both particle radii, and o is 0.01 nm. Applied to particles of proteins in
s ¥ " composite Cys:
E % - B™ = {BJ"" (0.5,7,i)| T €Cy, }
SE
3T
°g @ -
° X ] Protein chain restraint Protein chain
:I>:~ L4 ® Violated if f# f,. fis the distance between two consecutive particles in a protein, f, is
U?’ - - 1,680 the sum of the particle radii, and o is 0.01 nm. Applied to particles:
4 p— B={B (0.s.1.)|x=1}
Z-axial position
> Violated for f < f,. fis the absolute Cartesian Z-coordinate of a protein particle, f, is the
g- 456 lower bound defined for protein type 7, and o is 0.1 nm. Applied to particles:
8 N N B={B(0s.7.)lx=1j=1}
2 g Protein | lizati traint Violated for f > f,. fis the absolute Cartesian Z-coordinate of a protein particle, f, is the
© ©o rotein localization restrain 456 upper bound defined for protein type 7, and o is 0.1 nm. Applied to particles:
£ t B={B (0.5..i)|x=1j=1}
c Qo
o o Radial position
= ° Violated for f < f,. fis the radial distance between a protein particle and the Z-axis in a
3 g’ 456 plane parallel to the X and Y axes, f, is its lower bound defined for protein type z, and
w 3 cis 0.1 nm. Applied to particles:
o S ; ; B={B(0s.ri)lx=1j=1}
c
=1 - Violated for f > f,. fis the radial distance between a protein particle and the Z-axis in a
£ plane parallel to the X and Y axes, f, is its upper bound defined for protein type 7, and
E 456 o is 0.1 nm. Applied to particles:
B={B(0s.5.0)lx=1j=1}
Protein interaction restraint
- i) z Protein contact
© ‘g, g Violated for f > f,. fis the distance between two protein particles, f, is the sum of the
T @® t ' 20 112 20 particle radii multiplied by a tolerance factor of 1.3, and o is 0.01 nm. Applied to
R H p oo
> 3 particle:
ow® ® é R B={B (6,5,7.i)|x € (2,4,9),0 € (1,2,3)}
A
Competitive binding restraint Protein contact
]
2 Z Violated for f > f,. fis the distance between two protein particles, f, is the sum of the
c o oy particle radii multiplied by a tolerance factor of 1.3, and ¢ is 0.01 nm. Applied to :
o g ( 1 132 4
E 8 4 B= {B;‘ (.9,5, z,i)| 0 e(1,2,3),x €(2,4,6),7 = (Nup82, Nic96, Nup49, Nup57)}
£ - ¢
3 n — n
Q » Protein proximity restraint
> Q Z
= § - Protein proximity
£ - Violated for f > f,. fis the distance between two protein particles, f, is the maximal
E 3 692 25,348 692 diameter of a composite complex, and o is 0.01 nm. Applied to particles:
8 _ B={B (0.5.7.0)| 0 (12.3).x € (2.4,9)}
3 ¢
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Optimization

Restraints

(7))
C
O
© 300
-
Ko
= 0.60 - =
£ _ S 200
= —
4+ (]
& o 100
+ 0.44 - -
(@) >
O Z
0.36 0
100 108 106 104 102 0 0 2,000 4,000
Score Score
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Integrating data

> L]
+ + +
Nuclear envelope Immuno-EM Ultracentrifugation Overlay assays
pore volume Nucleoporin stoichiometry  Affinity purifications
NPC symmetry
b
Nup82
> L]
+ +
Single composite All additional composites Nuclear envelope pore volume
Nucleoporin stoichiometry Ultracentrifugation
NPC symmetry Immuno-EM

Alber, F., Dokudovskaya, S., Veenhoff, L. M., Zhang, W., Kipper, J., Devos, D., Suprapto, A., et al. (2007). Nature, 450(7170), 695—-701
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Cytoplasmic

Ring

Inner Spoke

The STRUCTURE of NPC

FG nucleoporins

FG Nup Filaments

Outer (Lumenal)

Ring Ring
Nuclear Nuclear
Ring Envelope

Alber, F., Dokudovskaya, S., Veenhoff, L. M., Zhang, W., Kipper, J., Devos, D., Suprapto, A., et al. (2007). Nature, 450(7170), 695—-701

Outer rings Linker nucleoporins

Membrane rings

Cytoplasm R L [
Nucleoplasm / S ) H
& L 5nm
Nup84 Nup133 Nup82\ /Ni096
Nup85\ / Sec13 78
\
Spoke Nup82 Nic96

Nup120 /

Pom152

Nup157 Nup192

Ndc1  pom34

Nup188

Nup159
Nup170 Nup42 Nsp1
Nup53 Nup59
) Nup100 Nup53
Nup116
Nsp1
Nsp1 Nupt” Nup49
Nup49 P Nup145N
° Nsp1 N 60 Nups7
Nup57 P up
Nup145N
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Simple genomes

Complex genomes
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Experiments
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Biomolecular structure determination
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Integrative Modeling

http://www.integrativemodeling.org
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The 3D architecture of Caulobacter Crescentus
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Ori

5C interaction matrix

ELLIPSOID for Caulobacter cresentus
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3D model building with the 5C + IMP approach
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Genome organization in Caulobacter crescentus
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Moving the parS sites 400 Kb away from Ori
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Moving the parS sites results in whole genome rotation!
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Genome architecture in Caulobacter
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From Sequence to Function
5C+ IMP
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PLOS COMPUTATIONAL BIOLOGY

Bridging the Resolution Gap in Structural Modeling of 3D

Genome Organization

Marc A. Marti-Renom'*, Leonid A. Mirny?

1 Structural Genomics Laboratory, and Genomics D

Centro de Investigacién Principe Felipe, Valencia, Spain, 2 Harvard-MIT Division of Health

Sciences and Technology, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America

Abstract: Over the last decade, and especially after the
advent of fluorescent in situ hybridization imaging and
chromosome conformation capture methods, the avail-
ability of experimental data on genome three-dimensional
organization has dramatically increased. We now have
access to unprecedented details of how genomes
organize within the interphase nucleus. Development of
new computational approaches to leverage this data has
already resulted in the first three-dimensional structures
of genomic domains and genomes. Such approaches
expand our knowledge of the chromatin folding princi-
ples, which has been classically studied using polymer
physics and molecular simulations. Our outlook describes
computational approaches for integrating experimental
data with polymer physics, thereby bridging the resolu-
tion gap for structural determination of genomes and
genomic domains.

This is an “Editors’ Outlook” article for PLoS
Computational Biology

Recent  experimental and  computational —advances — are
resulting in an increasingly accurate and detailed characterization
of how genomes are organized in the three-dimensional (3D) space
of the nucleus (Figure 1) [1]. At the lowest level of chromatin
organization, naked DNA is packed into nucleosomes, which
forms the so-called chromatin fiber composed of DNA and
proteins. However, this initial packing, which reduces the length of
the DNA by about seven times, is not sufficient to explain the
higher-order folding of chromosomes during interphase and
metaphase. It is now accepted that chromosomes and genes are
non-randomly and dynamically positioned in the cell nucleus
during the interphase, which challenges the classical representa-
tion of genomes as linear static sequences. Moreover, compart-
mentalization, chromatin organization, and spatial location of
genes are associated with gene expression and the functional status
of the cell. Despite the importance of 3D genomic architecture,
we have a limited understanding of the molecular mechanisms that
determine the higher-order organization of genomes and its
relation to function. Computational biology plays an important
role in the plethora of new technologies aimed at addressing this
knowledge gap [2]. Indeed, Thomas Cremer, a pioneer in study-
ing nuclear organization using light microscopy, recently high-
lighted the importance of computational science in complement-
ing and leveraging experimental observations of genome organi-
zation [2]. Therefore, computational approaches to integrate
experimental observations with chromatin physics are needed to
determine the architecture (3D) and dynamics (4D) of genomes.
We present two complementary approaches to address this
challenge: (i) the first approach aims at developing simple polymer
models of chromatin and determining relevant interactions (both

PLoS Computational Biology | www.ploscompbiol.org

physical and biological) that explain experimental observations; (ii
the second approach aims at integrating diverse experimental
observations into a system of spatial restraints to be satisfied,
thereby constraining possible structural models of the chromatin.
The goal of both approaches is dual: to obtain most accurate 3D
and 4D representation of chromatin architecture and to under-
stand physical constraints and biological phenomena that determine
its organization. These approaches are reminiscent of the protein-
folding field where the first strategy was used for characterizing
protein “foldability” and the second was implemented for modeling
the structure of proteins using nuclear magnetic resonance and
other experimental constraints. In fact, our outlook consistently
returns to the many connections between the two fields.

What Does Technology Show Us?

Today, it is possible to quantitatively study structural features of
genomes at diverse scales that range from a few specific loci,
through chromosomes, to entire genomes (Table 1) [3]. Broadly,
there are two main approaches for studying genomic organization:
light microscopy and cell/molecular biology (Figure 2). Light
microcopy [4], both with fixed and living cells, can provide images
of a few loci within individual cells [5,6], as well as their dynamics
as a function of time [7] and cell state [8]. On a larger scale, light
microscopy combined with whole-chromosome staining reveals
chromosomal territories during interphase and their reorganiza-
tion upon cell division. Immunofluorescence with fluorescent
antibodies in combination with RNA, and DNA fluorescence in
situhybridization (FISH) has been used to determine the co-
localization of loci and nuclear substructures.

Using cellular and molecular biology, novel chromosome
conformation capture (3C)-based methods such 3C [9], 3C-on-
chip or circular 3C (the so-called 4C) [10,11], 3C carbon copy
(5C) [12], and Hi-C [13] quantitatively measure frequencies of
spatial contacts between genomic loci averaged over a large
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