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Stages
atomic, coarse-grained, or hierarchical
representations. It is straightforward to
represent a protein at any resolution, from
fully flexible atomic models (one particle
per atom), to rigid bodies, to coarse-
grained models consisting of only one or
a few particles for the whole protein (see
Figure 1 for a worked-through example,
structural modeling of the human RNA
polymerase II [10]). Different parts of the
model can be represented differently, as
dictated by the available information.
Each particle has associated attributes,
such as coordinates, radius, atom type,
rigid body composition, residue informa-
tion, and mass. If the attributes already in
IMP are not sufficient, new attributes can
be created and used similarly to the
predefined ones. For example, for coarse-
grained small angle X-ray scattering
(SAXS) scoring, a scattering factor attri-
bute could be associated with the particles
representing amino acid residues.

Candidate models are evaluated by a
scoring function composed of terms
called restraints, each of which measures
how well a model agrees with the
information from which the restraint
was derived. The restraints encode both
what is known about structures in general
and what is known about this particular
structure. Thus, a candidate model that
scores well is consistent with all used
information. The precision and accuracy
of the resulting model increases with the
amount and quality of information that is
encoded in the restraints. IMP’s ever-
growing set of scoring function types
includes ones for SAXS profiles [11],
proteomics data [9], EM images and
density maps [10,12], NMR spectroscopy
[2], the CHARMM force-field [13],
alignment with related structures [14],
and a variety of statistical potentials [15].
IMP has been designed to make it easy
for others to develop, use, and distribute
new restraints. Other research groups
are currently implementing restraints
for various mass spectrometry measure-
ments, SAXS, 5C data [3], and atomic
structure prediction.

For experimental data, the scoring is
generally implemented using a ‘‘forward
model’’ [16], which simulates the mea-
surements on the basis of the candidate
model and then compares the simulated
measurements to the actual measure-
ments. For example, to evaluate the fit to
an EM density map, a restraint uses the
coordinates, radii, and masses of a set of
particles representing the assembly to
simulate its density map and then evalu-
ates the cross-correlation with the exper-
imental map.

Box 1. The Four Stages of the Integrative Modeling Cycle.

Stage 1: Gathering Information. Information is collected in the form of data
from wet lab experiments, as well as statistical tendencies such as atomic
statistical potentials, physical laws such as molecular mechanics force fields, and
any other feature that can be converted into a score for use to assess features of a
structural model.

Stage 2: Choosing How To Represent And Evaluate Models. The
resolution of the representation depends on the quantity and resolution of the
available information and should be commensurate with the resolution of the
final models: different parts of a model may be represented at different
resolutions, and one part of the model may be represented at several different
resolutions simultaneously. The scoring function evaluates whether or not a given
model is consistent with the input information, taking into account the
uncertainty in the information.

Stage 3: Finding Models That Score Well. The search for models that score
well is performed using any of a variety of sampling and optimization schemes
(such as the Monte Carlo method). There may be many models that score well if
the data are incomplete or none if the data are inconsistent due to errors or
unconsidered states of the assembly.

Stage 4: Analyzing Resulting Models and Information. The ensemble of
good-scoring models needs to be clustered and analyzed to ascertain their
precision and accuracy, and to check for inconsistent information. Analysis can
also suggest what are likely to be the most informative experiments to perform in
the next iteration.

Integrative modeling iterates through these stages until a satisfactory model is
built. Many iterations of the cycle may be required, given the need to gather more
data as well as to resolve errors and inconsistent data.

Box 2. Advantages of the Integrative Structure Modeling
Approach.

Using New Information. Integrative modeling makes it easy to take advantage
of new information and new types of information, resulting in a low barrier for
using incremental information that is generally not applied to structure
characterization. Even when a single data type is relatively uninformative,
multiple types can give a surprisingly complete picture of an assembly [9,10].

Maximizing Accuracy, Precision and Completeness. Integrative models fit
multiple types of information, and can thus be more accurate, precise, and
complete than models based on the individual sources.

Understanding and Assessing the Models. By exhaustively sampling the
space of models fitting the information, integrative modeling can find all models
fitting the information, not only one. A full sampling of the models of a structure
can improve the understanding of its function [49]. Because the data are encoded
in scoring functions and the full set of models can be found, integrative modeling
facilitates assessing the input information and output models in terms of
precision and accuracy.

Planning Experiments. Integrative modeling provides feedback to guide
future experiments, by computationally testing the impact of hypothetical
datasets. As a result, experiments can be chosen to best improve our knowledge
of the assembly.

Understanding and Assessing Experimental Accuracy. Data errors present
a challenge for all methods of model building. Integrative modeling can detect
inconsistent data as no models will exist that fit all the data. In addition,
integrative modeling facilitates the application of more sophisticated methods for
error estimation, such as Inferential Structure Determination [16].
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NPC, although no fold information (except for the transmembrane
domains) was used in the generation of the structure.
Experimental data not used in the calculation of the model. Finally,
our structure can be most directly tested by comparing it to experi-
mentally determined data that were not included in the structure
calculation. First, our structure is robust, in the sense that omission
of a randomly chosen subset of 10% of the protein interaction data
still results in structures with contact frequencies essentially identical
to those derived from the complete data set. Second, the shape of our
NPC structure37 strongly resembles the published electron micro-
scopy maps of the NPC5,38–42, even though these data were not used
here (Supplementary Fig. 22). Third, the diameter of the transport
channel in our structure is ,38 nm (excluding the FG-repeat

regions), in good agreement with the experimentally reported maxi-
mal diameter of transported particles43. Fourth, Nup133, which has
been experimentally shown to interact with highly curved mem-
branes via its ALPS-like motif, is adjacent to the nuclear envelope
in our structure44. Moreover, three of the four additional scaffold
nucleoporins that are predicted to contain the ALPS-like motif are
also close to the nuclear envelope. Finally, perhaps the best example is
that of the Nup84 complex. Our configuration for this complex
(Fig. 5b)37 is completely consistent with previous results13,14,30.
Specifically, Nup85 and Seh1 form a dimer that together with
Nup120 forms the trimeric ‘head’ of the complex, consistent with
the top two arms of the ‘Y’-shaped Nup84 complex (Fig. 5b)14.
Similarly, Nup145C, Nup84, Sec13 and Nup133 form the ‘tail’ in
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Figure 10 | Ensemble interpretation in terms of protein positions, contacts
and configuration. a, Localization volumes of all 456 proteins in the NPC
(excluding the FG-repeat regions) in four different views. The diameter of
the transport channel and the NPC are also indicated. The proteins are
colour-coded according to their assignment to the six NPC modules37.
b, Contact frequencies for all pairs of proteins. The contact frequency of a
pair of protein types is the fraction of structures in the ensemble that
contains at least one protein contact between any protein instances of the
two types. c, Contact frequencies between proteins in composite 40. Proteins
are nodes connected by edges with the observed contact frequency as the
edge weight (indicated by its thickness). Edges that are part of the maximal
spanning tree are shown by thick blue lines; the maximal spanning tree is the

spanning tree that maximizes the sum of the edge weights. All edges with a
statistically significant reduction in contact frequency from their initial
values implied by the composite data alone (P-value , 1023; Supplementary
Information) are indicated by dotted lines with contact frequencies shown in
red. d, Protein adjacencies for the whole NPC, with proteins as nodes and
edges connecting proteins that are determined to be adjacent to each other.
The edge weight is the observed contact frequency. e, Configuration of the
proteins in composite 40. The location of a protein corresponds to the
average position of the beads representing non-FG repeats of the protein.
f, Configuration of Nic96 and the NPC scaffold proteins. g, Localization
volume of Nic96 and the NPC scaffold proteins37.
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pair of protein types is the fraction of structures in the ensemble that
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spanning tree that maximizes the sum of the edge weights. All edges with a
statistically significant reduction in contact frequency from their initial
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edges connecting proteins that are determined to be adjacent to each other.
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“Toy” example...

experimental lab, through direct adoption
by an experimental lab, or by experimen-
talists modifying existing integrative mod-
eling applications. To facilitate widespread
adoption, we have developed the Integra-
tive Modeling Platform (IMP) software
package.

A Platform for Integrative
Modeling

The IMP software package facilitates

the writing of integrative modeling appli-

cations; the development of new model

representations, scoring functions, sam-

pling schemes, and analysis methods; and
the distribution of integrative modeling
applications.

In IMP, models are encoded as collec-
tions of particles, each representing a piece
of the system. Depending on the data
available, particles can be used to create

Figure 1. Integrative structure modeling of the human RNA Polymerase II [10]. The first round of modeling was performed using only the
2nm EM density map of the assembly from EMDB [51] and subunit comparative models from ModBase [47], on the basis of the crystallographic structures
of the yeast RNAPII proteins. The data were found to be insufficient to uniquely resolve the structure. To overcome this challenge, protein interaction
networks extracted from BioGrid [48] were added. The addition of these data resulted in a single structure. The scripts are available as part of IMP.
doi:10.1371/journal.pbio.1001244.g001
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still results in structures with contact frequencies essentially identical
to those derived from the complete data set. Second, the shape of our
NPC structure37 strongly resembles the published electron micro-
scopy maps of the NPC5,38–42, even though these data were not used
here (Supplementary Fig. 22). Third, the diameter of the transport
channel in our structure is ,38 nm (excluding the FG-repeat

regions), in good agreement with the experimentally reported maxi-
mal diameter of transported particles43. Fourth, Nup133, which has
been experimentally shown to interact with highly curved mem-
branes via its ALPS-like motif, is adjacent to the nuclear envelope
in our structure44. Moreover, three of the four additional scaffold
nucleoporins that are predicted to contain the ALPS-like motif are
also close to the nuclear envelope. Finally, perhaps the best example is
that of the Nup84 complex. Our configuration for this complex
(Fig. 5b)37 is completely consistent with previous results13,14,30.
Specifically, Nup85 and Seh1 form a dimer that together with
Nup120 forms the trimeric ‘head’ of the complex, consistent with
the top two arms of the ‘Y’-shaped Nup84 complex (Fig. 5b)14.
Similarly, Nup145C, Nup84, Sec13 and Nup133 form the ‘tail’ in
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Figure 10 | Ensemble interpretation in terms of protein positions, contacts
and configuration. a, Localization volumes of all 456 proteins in the NPC
(excluding the FG-repeat regions) in four different views. The diameter of
the transport channel and the NPC are also indicated. The proteins are
colour-coded according to their assignment to the six NPC modules37.
b, Contact frequencies for all pairs of proteins. The contact frequency of a
pair of protein types is the fraction of structures in the ensemble that
contains at least one protein contact between any protein instances of the
two types. c, Contact frequencies between proteins in composite 40. Proteins
are nodes connected by edges with the observed contact frequency as the
edge weight (indicated by its thickness). Edges that are part of the maximal
spanning tree are shown by thick blue lines; the maximal spanning tree is the

spanning tree that maximizes the sum of the edge weights. All edges with a
statistically significant reduction in contact frequency from their initial
values implied by the composite data alone (P-value , 1023; Supplementary
Information) are indicated by dotted lines with contact frequencies shown in
red. d, Protein adjacencies for the whole NPC, with proteins as nodes and
edges connecting proteins that are determined to be adjacent to each other.
The edge weight is the observed contact frequency. e, Configuration of the
proteins in composite 40. The location of a protein corresponds to the
average position of the beads representing non-FG repeats of the protein.
f, Configuration of Nic96 and the NPC scaffold proteins. g, Localization
volume of Nic96 and the NPC scaffold proteins37.
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Principles of protein structure
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Comparative modeling by satisfaction of spatial restraints

A. Šali & T. Blundell. J. Mol. Biol. 234, 779, 1993.
J.P. Overington & A. Šali. Prot. Sci. 3, 1582, 1994.
A. Fiser, R. Do & A. Šali, Prot. Sci., 9, 1753, 2000.

Start with a 
Target Sequence

Template 
Search

Target/Template 
Alignment

Build model

Evaluate model

OK?

Output 3D Model

MSVIPKR--GNCEQTSE

ASILPKRLFGNCEQTSD
Given an alignment...

extract spatial features

from the template(s)

and statistics from

known structures

apply these features

as restraints on your 

target sequence

optimize to find the 

best solution for the

restraints to produce 

your 3D model

Thursday, February 16, 12



Utility of protein structure models, despite errors

D. Baker & A. Sali. Science 294, 93, 2001.
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What is the physiological ligand of Brain 
Lipid-Binding Protein?

L. Xu, R. Sánchez, A. Šali, N. Heintz, J. Biol. Chem. 271, 24711, 1996.

BLBP/docosahexaenoic acidBLBP/oleic acid

Ligand binding 
cavity

Cavity is not filled Cavity is filled

1. BLBP binds fatty acids.

2. Build a 3D model.

3. Find the fatty acid that fits 
most snuggly into the ligand 

binding cavity.

Predicting features of a model that are not present in the template
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Do mast cell proteases bind proteoglycans? Where? When? 

1. mMCPs bind negatively charged 
proteoglycans through electrostatic 

interactions
2. Comparative models used to find clusters 

of positively charged surface residues.
3. Tested by site-directed mutagenesis..

Huang et al. J. Clin. Immunol. 18,169,1998.
Matsumoto et al. J.Biol.Chem. 270,19524,1995.
Šali et al. J. Biol. Chem. 268, 9023, 1993.

Native mMCP-7 at pH=5 (His+) Native mMCP-7 at pH=7 (His0)

Predicting features of a model that are not present in the template
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Common Evolutionary Origin of Coated Vesicles 
and Nuclear Pore Complexes

mGenThreader + SALIGN + MOULDER

D. Devos,  S. Dokudovskaya,  F. Alber,  R. Williams,  B.T. Chait,  A. Sali,  M.P. Rout.  
Components of Coated Vesicles and Nuclear Pore Complexes Share a Common Molecular Architecture. 
PLOS Biology 2(12):e380, 2004
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yNup84 complex proteins

assignment (helix, strand, other). This agreement is the
maximum possible level of consistency, given the approx-
imately 75% accuracy of the secondary structure prediction
methods (Koh et al. 2003).

Finally, we provide direct biochemical evidence in support
of our fold assignments, using proteolytic mapping of domain
boundaries and loop locations in the seven nups (see Figure
2). Tagged nups were purified from yeast extracts and
incubated with the endoproteinases Asp-N (which hydrolyzes
peptide bonds at the amino side of aspartic acid) or Lys-C
(which hydrolyzes peptide bonds at the carboxylic side of
lysines) while still attached to the magnetic beads via their
proteolytically resistant tags. After digestion, proteolytic
fragments that remained attached to the beads were

separated by SDS-PAGE, and cleavage sites were determined
either by molecular weight estimation of the fragments or by
amino-terminal Edman sequencing (Table 2). The regions
predicted to form b-propellers were, as expected, extremely
resistant to proteolysis (see Figure 2) (Kirchhausen and
Harrison 1984; Saxena et al. 1996). On the whole, the
predicted a-solenoid regions were also resistant to proteol-

Table 1. Nup84 Subcomplex Proteins are Composed of Two Fold Types

yNup Size (Number of Residues) Modeled fragment Fold Percentage Identitya Z-scoreb

Nup133 1,157 1–300 b-propeller 10 –8.0
Nup133 1,157 601–1,141 a-solenoid 8 –9.5
Nup120 1,037 1–398 b-propeller 7 –6.9
Nup120 1,037 531–1,011 a-solenoid 10 –8.6
Nup85 744 203–744 a-solenoid 10 –11.8
Nup84 726 301–726 a-solenoid 9 –10.9
Nup145C 712 234–690 a-solenoid 13 –10.4
Seh1 349 1–349 b-propeller 16 –5.7
Sec13 297 1–297 b-propeller 6 –4.8

A list of the best scoring models for domains in the proteins of the Nup84 subcomplex in yeast. For Nup84, Nup85 and Nup145C, about 200 amino-terminal residues were
not modeled. However, secondary structure predictions, hydropathy profiles, and threading of the yeast proteins and their homologs suggest that most of the unmodeled
portion of these proteins also adopt the solenoid fold. For Nup120 and Nup133, we were unable to model, respectively, 133 and 299 amino-terminal residues. Secondary
structure predictions suggest extensions or variations to the typical b-propeller and the a-solenoid folds.
aPercentage identity between the aligned sequence of the nup and its template.
bZ-score of the comparative model based on the alignment indicated by percentage identity (number of residues) (Melo et al. 2002) (Tables S1–S6).
DOI: 10.1371/journal.pbio.0020380.t001

Figure 2. Proteolytic Domain Map of the Yeast Nup84 Subcomplex
Proteins

Immunoblots of limited proteolysis digests for Protein A-tagged
versions of each of the seven nups in the yNup84 subcomplex. Each
protein is detected via its carboxyl-terminal tag; thus, all the
fragments visualized are amino-terminal truncations (except for the
full length proteins, which are indicated by arrowheads). The
fragments of the Asp-N and Lys-C protease digests depicted in
Figure 2 are labeled with letters (A, B, C. . .) that correspond to those
in Table 2, and the terminal Protein A fragments are labeled with an
X (the Protein A tag is resistant to proteolysis). The sizes of marker
proteins are indicated in kilodaltons (kDa) to the right of the gel.
DOI: 10.1371/journal.pbio.0020380.g002

Figure 3. Predicted Secondary Structure Maps of the Nup84 Subcomplex
Proteins

Thin horizontal lines represent the primary sequence of each
protein; secondary structure predictions are shown as columns above
each line for b-strands (b-propellers; cyan) and a-helices (a-solenoids;
magenta). The height of the columns is proportional to the
confidence of the secondary structure prediction (McGuffin et al.
2000). The modeled regions are indicated above each sequence by
horizontal dark bars, corresponding to the models in Figure 1.
Proteolytic cleavage sites are identified by small, medium, and large
arrows for weak, medium, and strong susceptibility sites, respectively.
Where necessary, uncertainties in the precise cleavage positions are
indicated above the arrows by horizontal bars.
DOI: 10.1371/journal.pbio.0020380.sg003
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All Nucleoporins in the Nup84 Complex are Predicted to 
Contain β-Propeller and/or α-Solenoid Folds 
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NPC and Coated Vesicles Share the β-Propeller and α-
Solenoid Folds and Associate with Membranes

The lack of detectable sequence similarity between the
proteins in the yNup84/vNup107–160 subcomplex and the
coated vesicles is not surprising. Sequence comparisons of a-
solenoid- and b-propeller-containing proteins suggest that
these folds arose just before or around the time of the origin
of eukaryotes, then rapidly duplicated and diversified
(Cingolani et al. 1999; Smith et al. 1999; Andrade et al.
2001b). Both folds consist of repetitive structures, so the
functional constraints on an individual repeat are weak,
compared with the whole fold domain. It has been proposed
that the robustness of these folds with respect to changes in
their sequences permits their component repeats to individ-
ually lose their sequence similarity, eventually allowing the
proteins they comprise to drift into new functions (Malik et

al. 1997; Smith et al. 1999; Andrade et al. 2001a; Andrade et al.
2001b). Moreover, the lack of detectable sequence similarity
for members of the same fold family is not necessarily an
indicator of convergent evolution; obvious sequence similar-
ities are often lost during long periods of evolution (e.g., FtsZ
and tubulin or MreB and actin [Amos et al. 2004]). The
divergent pathway is also consistent with the conservation
among members of the syntaxin family (key components of
the vesicular transport machinery), which points to a similar
early origin and rapid diversification of the eukaryotic
endomembrane system (Dacks and Doolittle 2002; Dacks
and Field 2004). Based on these observations, we propose a
single evolutionary origin for the structures maintaining both
the endomembrane systems and the nucleus (Figure 5) over
models suggesting separate or even endosymbiotic origins for
these structures.
The current protocoatomer hypothesis posits that a simple

coating module containing minimal copies of the two
conserved folds evolved in protoeukaryotes as a mechanism
to bend membranes into sharply curved sheets and invagi-
nated tubules (Figure 5). The ability to so manipulate cell
membranes represented a major evolutionary innovation
that allowed, among other possibilities, the elaboration of
internal membranes, phagotrophy, and endosymbiosis (May-
nard Smith and Szathmâary 1997); the importance of this
ability is underscored by the presence of numerous types of
membrane-curving devices in modern eukaryotes. As with
clathrin, the flexibility of the a-solenoid in this simple module
enabled the formation of curved membranes of various sizes.
In addition, the a-solenoid repeat structure, together with the
repeats in the b-propeller fold, provided the coating module
with a large binding area. These features allowed the
membrane-curving module to polymerize and form a coat,
as well as to interact with other membrane-associated
proteins. The endomembranes and their membrane-coating
modules subsequently evolved to become more elaborate and
specialized, with the partitioning of different functions into
separate, interconnected compartments such as the ER, the
Golgi, and the nucleus (Figure 5), each with their own
specialized set of coating modules.
In conclusion, we suggest that the progenitor of the NPC

arose from a membrane-coating module that wrapped
extensions of an early ER around the cell’s chromatin. In

Figure 4. The Nup84 Complex and Coated
Vesicles Share a Common Architecture

A diagram showing the organization of
the clathrin/AP-2 coated vesicle complex
is shown at left; the positions of clathrin
and the adaptin AP-2 large subunits (a,
b2 plus ‘‘ear’’ domains) and small sub-
units (r, l) are indicated. b-propeller
regions are colored cyan, a-solenoid
regions are colored magenta, and sample
ribbon models for each fold are shown in
the center. The variants of each fold that
are found as domains in major compo-
nents of the three kinds of vesicle-coat-
ing complexes and the yNup84
subcomplex are listed on the right. The

-N and -C indicate amino-terminal and carboxyl-terminal domains, respectively. The classification of these domains is based on X-ray
crystallography data (clathrin, a-adaptin, b2-adaptin [PDB codes 1gw5, 1bpo, 1b89 (ter Haar et al. 1998; Collins et al. 2002)]), by the detailed
homology modeling presented here (yNup84 complex proteins; ySec13 also in Saxena et al. [1996]), or by sequence homology or unpublished
secondary structure prediction and preliminary analyses (COPI I (sec31) complex proteins [Schledzewski et al. 1999], Sec31).
DOI: 10.1371/journal.pbio.0020380.g004

Figure 5. Proposed Model for the Evolution of Coated Vesicles and
Nuclear Pore Complexes

Early eukaryotes (left) acquired a membrane-curving protein module
(purple) that allowed them to mold their plasma membrane into
internal compartments and structures. Modern eukaryotes have
diversified this membrane-curving module into many specialized
functions (right), such as endocytosis (orange), ER and Golgi trans-
port (green and brown), and NPC formation (blue). This module
(pink) has been retained in both NPCs (right bottom) and coated
vesicles (left bottom), as it is needed to stabilize curved membranes in
both cases.
DOI: 10.1371/journal.pbio.0020380.g005
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Attachment at the nuclear pore membrane

The membrane rings form a discrete region of the NPC, containing
the three pore membrane proteins Pom152, Pom34 and Ndc1. It is
the core scaffold’s inner rings that interact with the membrane
rings, thus anchoring the NPC to the pore membrane (Fig. 2). A
component of the membrane rings (Pom152) homo-oligomerizes
at its C terminus to form the ring that equatorially bounds the
NPC in the perinuclear lumen14. This luminal portion consists of
the C-terminal part of Pom152, containing domains predicted to
assume the cadherin fold18. Members of the cadherin family are
transmembrane receptors that form homophilic binding interfaces29,
probably accounting for the oligomeric luminal ring. Perhaps the
NPC carries the remnants of an ancient transmembrane receptor,
still attached to its vesicle-coating complex.

Transport factor docking sites and nucleocytoplasmic transport

The transport function of the NPC appears to be mediated mainly by
the FG nucleoporins. The FG-repeat regions within each FG nucleo-
porin provide the NPC’s docking sites for transport factor–cargo
complexes1,30–33. The FG nucleoporins and especially their unstruc-
tured FG-repeat regions are the least specified part of our structure.
Nevertheless, we can still draw conclusions concerning the locali-
zation of the FG-repeat regions by using a simplified representa-
tion14. Because these regions can adopt many different possible
configurations in our calculations, on averaging they produce a cloud
of low density surrounding their structurally resolved attachment
sites, collectively filling and surrounding the central channel and
extending into the nucleoplasm and cytoplasm (Figs 1 and 4). This
spatial distribution of FG-repeat regions is consistent with ‘virtual
gating’ models explaining the mechanism of nucleocytoplasmic
transport6,31, in which the FG-repeat density represents an effective
exclusion filter for macromolecular particles that do not contain FG-
repeat binding sites, but is permeable to transport factors that do
possess these sites2,6,31,34–39. Thus, the cloud of FG-repeat regions

forms a zone of selectivity around and across the NPC. The cloud
thins radially from the walls of the central channel to the Z-axis,
limiting the effective diameter of the central channel (Figs 1 and 4).
In our structure, this diameter is less than 10 nm, similar to the
maximal size of particles that can freely diffuse between the nucleo-
plasmic and cytoplasmic compartments2. Actively transporting
cargo–transport factor complexes can displace this diffuse cloud,
with the very largest pushing the cloud to the sides of the central
channel up to the channel’s maximum diameter of ,38 nm.

Nic96 and Nup82 provide anchor points for most of the FG
nucleoporins, with connections also being made to the inner ring
(Fig. 2). The FG nucleoporins can be divided into three groups
according to their localization in the NPC: those that are attached
mainly or exclusively to the cytoplasmic or nucleoplasmic side of
the NPC, and those attached symmetrically on both sides (Fig. 4)6.
The distributions of these groups of FG-repeat regions overlap
heavily, consistent with the observed long reach of the individual
FG-repeat regions40,41. The overlap suggests that a transport factor
attached to one FG nucleoporin can readily exchange with many
other surrounding FG nucleoporins, thus facilitating rapid transit
across the NPC.

In contrast to most of the FG nucleoporins, a few transport factor
binding sites (in particular Nup53 and Nup59) also face the pore
membrane such that they are readily accessible to membrane pro-
teins, as has been previously suggested42. These nucleoporins could
mediate the transport of transmembrane proteins, in agreement with
recent studies showing that active transport is responsible for the
translocation of integral membrane proteins from the outer to the
inner nuclear membrane43,44.

Modular duplication in the evolution of the NPC

A striking pattern is revealed when wemap the nucleoporins into our
NPC structure based on their previously assigned fold types18. We
find that each spoke can be divided into two parallel columns, in
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1 Nup192, 2 Nup188, 3 Nup170, 4 Nup157, 5 Nup133,
6 Nup120, 7 Nup85, 8 Nup84, 9 Nup145C, 10 Seh1, 11 Sec13

Figure 3 | The core scaffold as a membrane-coating complex. We show
here the outer and inner ring nucleoporins comprising the core scaffold. The
linker nucleoporins, FG nucleoporins and membrane ring are omitted for
clarity. At the top of the left panel are shown the fold types comprising the
nucleoporins of the core scaffold: Nup84, Nup85, Nup145C, Nup188 and
Nup192 consist mainly of a-solenoid folds (pink); Sec13 and Seh1 are
composed of b-propeller folds (cyan); Nup120, Nup133, Nup157 and
Nup170 contain both N-terminal b-propeller folds and C-terminal
a-solenoid folds (blue), an arrangement shared with clathrin and Sec31.
Each of these nucleoporins is present in 16 copies to make the full

176-nucleoporin core scaffold, which is shown in three views related by the
indicated rotation around an axis parallel with the NPC’s equatorial plane.
The localization volumes of all the a-solenoid nucleoporins (pink), all
b-propeller nucleoporins (cyan), and all clathrin-like nucleoporins (blue)
are indicated. The clathrin-like nucleoporins appear to be located at the
outer surface of the core scaffold, adjacent to the surface of the nuclear
envelope’s pore membrane. Numbers on the middle panel indicate the
approximate positions of each nucleoporin. The scale bar indicates the
standard deviation of the distance between a pair of neighbouring proteins
in the 1,000 best-scoring configurations14.
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NPC model

NPC and Coated Vesicles Both Associate 
with Membranes

Nup 84 complex

Coated
Vesicle

The lack of detectable sequence similarity between the
proteins in the yNup84/vNup107–160 subcomplex and the
coated vesicles is not surprising. Sequence comparisons of a-
solenoid- and b-propeller-containing proteins suggest that
these folds arose just before or around the time of the origin
of eukaryotes, then rapidly duplicated and diversified
(Cingolani et al. 1999; Smith et al. 1999; Andrade et al.
2001b). Both folds consist of repetitive structures, so the
functional constraints on an individual repeat are weak,
compared with the whole fold domain. It has been proposed
that the robustness of these folds with respect to changes in
their sequences permits their component repeats to individ-
ually lose their sequence similarity, eventually allowing the
proteins they comprise to drift into new functions (Malik et

al. 1997; Smith et al. 1999; Andrade et al. 2001a; Andrade et al.
2001b). Moreover, the lack of detectable sequence similarity
for members of the same fold family is not necessarily an
indicator of convergent evolution; obvious sequence similar-
ities are often lost during long periods of evolution (e.g., FtsZ
and tubulin or MreB and actin [Amos et al. 2004]). The
divergent pathway is also consistent with the conservation
among members of the syntaxin family (key components of
the vesicular transport machinery), which points to a similar
early origin and rapid diversification of the eukaryotic
endomembrane system (Dacks and Doolittle 2002; Dacks
and Field 2004). Based on these observations, we propose a
single evolutionary origin for the structures maintaining both
the endomembrane systems and the nucleus (Figure 5) over
models suggesting separate or even endosymbiotic origins for
these structures.
The current protocoatomer hypothesis posits that a simple

coating module containing minimal copies of the two
conserved folds evolved in protoeukaryotes as a mechanism
to bend membranes into sharply curved sheets and invagi-
nated tubules (Figure 5). The ability to so manipulate cell
membranes represented a major evolutionary innovation
that allowed, among other possibilities, the elaboration of
internal membranes, phagotrophy, and endosymbiosis (May-
nard Smith and Szathmâary 1997); the importance of this
ability is underscored by the presence of numerous types of
membrane-curving devices in modern eukaryotes. As with
clathrin, the flexibility of the a-solenoid in this simple module
enabled the formation of curved membranes of various sizes.
In addition, the a-solenoid repeat structure, together with the
repeats in the b-propeller fold, provided the coating module
with a large binding area. These features allowed the
membrane-curving module to polymerize and form a coat,
as well as to interact with other membrane-associated
proteins. The endomembranes and their membrane-coating
modules subsequently evolved to become more elaborate and
specialized, with the partitioning of different functions into
separate, interconnected compartments such as the ER, the
Golgi, and the nucleus (Figure 5), each with their own
specialized set of coating modules.
In conclusion, we suggest that the progenitor of the NPC

arose from a membrane-coating module that wrapped
extensions of an early ER around the cell’s chromatin. In

Figure 4. The Nup84 Complex and Coated
Vesicles Share a Common Architecture

A diagram showing the organization of
the clathrin/AP-2 coated vesicle complex
is shown at left; the positions of clathrin
and the adaptin AP-2 large subunits (a,
b2 plus ‘‘ear’’ domains) and small sub-
units (r, l) are indicated. b-propeller
regions are colored cyan, a-solenoid
regions are colored magenta, and sample
ribbon models for each fold are shown in
the center. The variants of each fold that
are found as domains in major compo-
nents of the three kinds of vesicle-coat-
ing complexes and the yNup84
subcomplex are listed on the right. The

-N and -C indicate amino-terminal and carboxyl-terminal domains, respectively. The classification of these domains is based on X-ray
crystallography data (clathrin, a-adaptin, b2-adaptin [PDB codes 1gw5, 1bpo, 1b89 (ter Haar et al. 1998; Collins et al. 2002)]), by the detailed
homology modeling presented here (yNup84 complex proteins; ySec13 also in Saxena et al. [1996]), or by sequence homology or unpublished
secondary structure prediction and preliminary analyses (COPI I (sec31) complex proteins [Schledzewski et al. 1999], Sec31).
DOI: 10.1371/journal.pbio.0020380.g004

Figure 5. Proposed Model for the Evolution of Coated Vesicles and
Nuclear Pore Complexes

Early eukaryotes (left) acquired a membrane-curving protein module
(purple) that allowed them to mold their plasma membrane into
internal compartments and structures. Modern eukaryotes have
diversified this membrane-curving module into many specialized
functions (right), such as endocytosis (orange), ER and Golgi trans-
port (green and brown), and NPC formation (blue). This module
(pink) has been retained in both NPCs (right bottom) and coated
vesicles (left bottom), as it is needed to stabilize curved membranes in
both cases.
DOI: 10.1371/journal.pbio.0020380.g005
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The lack of detectable sequence similarity between the
proteins in the yNup84/vNup107–160 subcomplex and the
coated vesicles is not surprising. Sequence comparisons of a-
solenoid- and b-propeller-containing proteins suggest that
these folds arose just before or around the time of the origin
of eukaryotes, then rapidly duplicated and diversified
(Cingolani et al. 1999; Smith et al. 1999; Andrade et al.
2001b). Both folds consist of repetitive structures, so the
functional constraints on an individual repeat are weak,
compared with the whole fold domain. It has been proposed
that the robustness of these folds with respect to changes in
their sequences permits their component repeats to individ-
ually lose their sequence similarity, eventually allowing the
proteins they comprise to drift into new functions (Malik et

al. 1997; Smith et al. 1999; Andrade et al. 2001a; Andrade et al.
2001b). Moreover, the lack of detectable sequence similarity
for members of the same fold family is not necessarily an
indicator of convergent evolution; obvious sequence similar-
ities are often lost during long periods of evolution (e.g., FtsZ
and tubulin or MreB and actin [Amos et al. 2004]). The
divergent pathway is also consistent with the conservation
among members of the syntaxin family (key components of
the vesicular transport machinery), which points to a similar
early origin and rapid diversification of the eukaryotic
endomembrane system (Dacks and Doolittle 2002; Dacks
and Field 2004). Based on these observations, we propose a
single evolutionary origin for the structures maintaining both
the endomembrane systems and the nucleus (Figure 5) over
models suggesting separate or even endosymbiotic origins for
these structures.
The current protocoatomer hypothesis posits that a simple

coating module containing minimal copies of the two
conserved folds evolved in protoeukaryotes as a mechanism
to bend membranes into sharply curved sheets and invagi-
nated tubules (Figure 5). The ability to so manipulate cell
membranes represented a major evolutionary innovation
that allowed, among other possibilities, the elaboration of
internal membranes, phagotrophy, and endosymbiosis (May-
nard Smith and Szathmâary 1997); the importance of this
ability is underscored by the presence of numerous types of
membrane-curving devices in modern eukaryotes. As with
clathrin, the flexibility of the a-solenoid in this simple module
enabled the formation of curved membranes of various sizes.
In addition, the a-solenoid repeat structure, together with the
repeats in the b-propeller fold, provided the coating module
with a large binding area. These features allowed the
membrane-curving module to polymerize and form a coat,
as well as to interact with other membrane-associated
proteins. The endomembranes and their membrane-coating
modules subsequently evolved to become more elaborate and
specialized, with the partitioning of different functions into
separate, interconnected compartments such as the ER, the
Golgi, and the nucleus (Figure 5), each with their own
specialized set of coating modules.
In conclusion, we suggest that the progenitor of the NPC

arose from a membrane-coating module that wrapped
extensions of an early ER around the cell’s chromatin. In

Figure 4. The Nup84 Complex and Coated
Vesicles Share a Common Architecture

A diagram showing the organization of
the clathrin/AP-2 coated vesicle complex
is shown at left; the positions of clathrin
and the adaptin AP-2 large subunits (a,
b2 plus ‘‘ear’’ domains) and small sub-
units (r, l) are indicated. b-propeller
regions are colored cyan, a-solenoid
regions are colored magenta, and sample
ribbon models for each fold are shown in
the center. The variants of each fold that
are found as domains in major compo-
nents of the three kinds of vesicle-coat-
ing complexes and the yNup84
subcomplex are listed on the right. The

-N and -C indicate amino-terminal and carboxyl-terminal domains, respectively. The classification of these domains is based on X-ray
crystallography data (clathrin, a-adaptin, b2-adaptin [PDB codes 1gw5, 1bpo, 1b89 (ter Haar et al. 1998; Collins et al. 2002)]), by the detailed
homology modeling presented here (yNup84 complex proteins; ySec13 also in Saxena et al. [1996]), or by sequence homology or unpublished
secondary structure prediction and preliminary analyses (COPI I (sec31) complex proteins [Schledzewski et al. 1999], Sec31).
DOI: 10.1371/journal.pbio.0020380.g004

Figure 5. Proposed Model for the Evolution of Coated Vesicles and
Nuclear Pore Complexes

Early eukaryotes (left) acquired a membrane-curving protein module
(purple) that allowed them to mold their plasma membrane into
internal compartments and structures. Modern eukaryotes have
diversified this membrane-curving module into many specialized
functions (right), such as endocytosis (orange), ER and Golgi trans-
port (green and brown), and NPC formation (blue). This module
(pink) has been retained in both NPCs (right bottom) and coated
vesicles (left bottom), as it is needed to stabilize curved membranes in
both cases.
DOI: 10.1371/journal.pbio.0020380.g005
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Tropical Disease Initiative (TDI)
Predicting binding sites in protein structure models.
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Need is High in the Tail
DALY Burden Per Disease in Developed Countries
DALY Burden Per Disease in Developing Countries

Disease data taken from WHO, World Health Report 2004
DALY - Disability adjusted life years

DALY is not a perfect measure of market size, but is certainly a good measure for importance.
DALYs for a disease are the sum of the years of life lost due to premature mortality (YLL) in the population and the years lost due to disability (YLD) for incident cases of the health condition. The DALY is a health 

gap measure that extends the concept of potential years of life lost due to premature death (PYLL) to include equivalent years of 'healthy' life lost in states of less than full health, broadly termed disability. One 
DALY represents the loss of one year of equivalent full health.
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“Unprofitable” Diseases
and Global DALY (in 1000’s)

Disease data taken from WHO, World Health Report 2004
DALY - Disability adjusted life year in 1000’s.

*  Officially listed in the WHO Tropical Disease Research disease portfolio.

Malaria* 46,486

Tetanus 7,074

Lymphatic filariasis* 5,777

Syphilis 4,200

Trachoma 2,329

Leishmaniasis* 2,090

Ascariasis 1,817

Schistosomiasis* 1,702

Trypanosomiasis* 1,525

Trichuriasis 1,006

Japanese encephalitis 709

Chagas Disease* 667

Dengue* 616

Onchocerciasis* 484

Leprosy* 199

Diphtheria 185

Poliomyelitise 151

Hookworm disease 59
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Summary table
models with inherited ligands

Transcripts Modeled targets Selected models Inherited ligands Similar to a drug Drugs

C. hominis 3,886 1,614 666 197 20 13

C. parvum 3,806 1,918 742 232 24 13

L. major 8,274 3,975 1,409 478 43 20

M. leprae 1,605 1,178 893 310 25 6

M. tuberculosis 3,991 2,808 1,608 365 30 10

P. falciparum 5,363 2,599 818 284 28 13

P. vivax 5,342 2,359 822 268 24 13

T. brucei 7,793 1,530 300 138 13 6

T. cruzi 19,607 7,390 3,070 769 51 28

T. gondii 9,210 3,900 1,386 458 39 21

TOTAL 68,877 29,271 11,714 3,499 297 143

29,271 targets with good models, 297 inherited a ligand/substance 
similar to a known drug in DrugBank
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L. major Histone deacetylase 2 + Vorinostat 
Template 1t64A a human HDAC8 protein. 
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Antimalarial and Antileishmanial Activities of Aroyl-Pyrrolyl-Hydroxyamides, a
New Class of Histone Deacetylase Inhibitors

Members of the genus Leishmania are parasitic protozoans
that infect about two million people per annum (5), and they
are emerging as serious opportunistic infective agents in hu-
man immunodeficiency virus-infected patients (4). Malaria
parasites are responsible for 1.5 to 2.7 million deaths annually,
primarily in Africa (10). The effort to find new antimalarial
agents is still a high priority given the increasing malaria emer-
gency largely due to multidrug-resistant Plasmodium falcipa-
rum strains. The histones of P. falciparum have recently been
proposed as targets for drug treatment of blood stage parasites
(6). They also play an important role in chromatin remodeling
in trypanosomatids, which include Leishmania species and try-
panosomes (3).

Apicidin, a cyclic tetrapeptide isolated from Fusarium spp.,
was reported to block the in vitro development of apicom-
plexan parasites by inhibiting parasite (including Plasmodium
species) histone deacetylase (HDAC) (6). Another HDAC
inhibitor, suberoyl bishydroxamic acid, showed an in vivo cy-
tostatic effect against the acute murine malaria Plasmodium
berghei, and one round of treatment with the compound failed
to select for resistant mutations (1).

Recently, Mai et al. reported a novel series of hydroxamate
compounds, namely, 3-(4-aroyl-1H-pyrrol-2-yl)-N-hydroxy-2-
propenamides, acting as HDAC inhibitors in the range of low
micromolar-submicromolar concentrations (7, 8). The aim of
the present study was to investigate the in vitro antimalarial
and antileishmanial activities of lead compound 1 and some
analogues (compounds 2 to 10) to identify potential chemical
tools with selective toxicity for protozoa.

The antimalarial activity of compounds 1 to 10 (Table 1) was
determined in vitro for chloroquine-sensitive (CQS) (D6,
Sierra Leone) and chloroquine-resistant (CQR) (W2, Indo-
china) strains of P. falciparum. Growth of cultures of P. falci-

parum was determined by a parasite lactate dehydrogenase
assay using Malstat reagent (9). Chloroquine was used as the
positive control, while dimethyl sulfoxide was tested as the
negative control. Suberoylanilide hydroxamic acid (SAHA)
and trichostatin A (TSA), two well-known HDAC inhibitors,
were also tested. Antileishmanial activity of compounds 1 to 10
(Table 1) was tested on a transgenic cell line of Leishmania
donovani promastigotes expressing firefly luciferase (assay with
Steady Glo reagent; Promega, Madison, Wis.) obtained from
Dr. Rafael Balana-Fouce, University of Leon, Leon, Spain.
Pentamidine was tested as a reference drug together with
SAHA and TSA. All the compounds were simultaneously
tested for cytotoxicity on Vero (monkey kidney fibroblast) cells
by a Neutral Red assay (2).

Among compounds 1 to 10, only compound 7 showed anti-
malarial activity against P. falciparum strains; however, its 50%
inhibitor concentration (IC50) values were 22- to 100-fold
higher than those of chloroquine and 4.8- to 8.5-fold and 33- to
93-fold higher than those of SAHA and TSA, respectively.
Compounds 1 to 4 showed little Plasmodium inhibition activity
(Table 1). This biological behavior of compounds 1 to 10 re-
sembles their corresponding anti-HDAC effect against maize
HD2 (compound 7, IC50 " 0.1 #M; compounds 1 to 4, IC50 "
2 to 4 #M; compounds 5, 6, and 8 to 10, low-level activity or
totally inactivity) (7, 8), thus confirming an inhibiting action of
compound 7 and, to a lesser extent, of compounds 1 to 4 on
parasite HDAC enzymes.

Surprisingly, the majority of compounds 1 to 10 were found
endowed with interesting anti-Leishmania activity (in this case,
activity not directly related to their anti-HD2 action) (Table 1).
Compounds 2 and 3, the most potent of the series, were as
active as pentamidine, slightly less potent than TSA, and $10-
fold more potent than SAHA. Interestingly, compounds 2 and

TABLE 1. Antimalarial and antileishmanial activities of compounds 1 to 10

Compound Compounda
IC50 (#g/ml) for P. falciparumb: IC (#g/ml) for L. donovani Cytotoxicity

(#g/ml)D6 (CQS) W2 (CQR) IC50 IC90

1 1 $4.8 (46) $4.8 (45) 2.4 11.3 NCc

2 2 $4.7 (19) $4.7 (34) 1.7 5.4 NC
3 5 $4.7 (35) $4.7 (49) 1.6 5.1 NC
4 7 3.8 3.5 2.4 14.3 NC
5 27 NAd NA NA NA NC
6 29 NA NA NA NA NC
7 8 1.2 4 16 $50 NC
8 25 NA NA NA NA NC
9 26 NA NA 8.3 32 NC
10 28 NA NA 6.8 $50 NC
SAHA 0.25 0.47 22 50 1.2
TSA 0.036 0.043 0.89 25 0.095
Pentamidine NTe NT 1.25 4.1 NC
Chloroquine 0.014 0.18 NT NT NC

a From reference 7.
b Numbers in parentheses represent percentages of inhibition at the tested dose.
c NC, not cytotoxic at concentrations of up to 23.8 #g/ml.
d NA, not active at the maximum dose tested (4.8 #g/ml in the case of the antimalarial assays and 50 #g/ml in the case of the antileishmanial assays).
e NT, not tested.
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Apicidin: A novel antiprotozoal agent that inhibits
parasite histone deacetylase
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ABSTRACT A novel fungal metabolite, apicidin [cyclo(N-
O-methyl-L-tryptophanyl-L-isoleucinyl-D-pipecolinyl-L-2-
amino-8-oxodecanoyl)], that exhibits potent, broad spectrum
antiprotozoal activity in vitro against Apicomplexan parasites
has been identified. It is also orally and parenterally active in
vivo against Plasmodium berghei malaria in mice. Many Api-
complexan parasites cause serious, life-threatening human
and animal diseases, such as malaria, cryptosporidiosis,
toxoplasmosis, and coccidiosis, and new therapeutic agents
are urgently needed. Apicidin’s antiparasitic activity appears
to be due to low nanomolar inhibition of Apicomplexan histone
deacetylase (HDA), which induces hyperacetylation of his-
tones in treated parasites. The acetylation–deacetylation of
histones is a thought to play a central role in transcriptional
control in eukaryotic cells. Other known HDA inhibitors were
also evaluated and found to possess antiparasitic activity,
suggesting that HDA is an attractive target for the develop-
ment of novel antiparasitic agents.

Protozoan parasites of the subphylum Apicomplexa remain
significant threats to human and animal health worldwide.
With respect to human health, malaria remains one of the
leading causes of death in the world, resulting in the loss of over
1.5 million lives per year (1). Widespread multidrug resistance
to malaria has developed, and few, if any, new therapeutic
agents will be available in the foreseeable future. Another
Apicomplexan parasite, Cryptosporidium parvum, was recently
identified by the World Health Organization as an emerging
global health problem (2). The rapid spread of cryptosporidi-
osis has been reported in urban slums (3), and there have been
several major water-borne outbreaks in developed countries in
which thousands of individuals were infected (4). In immune
compromised individuals, such as AIDS patients, Cr. parvum
infections are incurable and lead to chronic diarrhea and
wasting disease. Despite its medical importance, there is
currently no therapy for treating cryptosporidiosis. Another
important apicomplexan infection in immune-compromised
patients is Toxoplasma gondii, which is becoming a relatively
common problem in AIDS patients (5). Although methods of
treating toxoplasmosis exist, better therapeutic agents are
clearly needed.

In animal health, the Apicomplexan parasites cause major
economic losses in livestock and poultry throughout the world.
Eimeria parasites are responsible for coccidiosis in poultry and
many other domesticated animals. Infection of the gut epithe-
lium by these intracellular parasites results in severe morbidity
and mortality, particularly in chickens. Poultry producers

worldwide routinely employ chemical prophylaxis to prevent
serious coccidiosis outbreaks. Resistance to currently available
coccidiostats is prevalent, and new anticoccidial agents are
needed. T. gondii is an important cause of abortion and
morbidity in livestock, especially sheep and goats (6), and
species of Cryptosporidium cause widespread and rapidly trans-
mitted diarrheal illness in several mammalian hosts, especially
calves, neonatal lambs and goats, and young foals (7).

In this paper, a novel natural product, apicidin [cyclo(N-O-
methyl-L-tryptophanyl-L-isoleucinyl-D-pipecolinyl-L-2-amino-
8-oxodecanoyl)], that has broad spectrum activity against the
Apicomplexan parasites is described, and experimental evi-
dence that demonstrates that this compound kills parasites by
inhibiting histone deacetylase (HDA), a key nuclear enzyme
involved in transcriptional control, is provided.

MATERIALS AND METHODS
Source of Compounds and Organisms. [3H]Apicidin A

(2-N-desmethoxy[3H]apicidin, specific activity 18.7 mCi�mg; 1
Ci � 37 GBq), Ac-Gly-Ala-Lys(�-[3H]Ac)-Arg-His-Arg-Lys(�-
[3H]Ac)-Val-NH2 (specific activity 3.8 Ci�mmol), ⇥-hydroxy-
HC-toxin, and trichostatin were prepared at Merck Research
Laboratories, Rahway, NJ. Sodium [14C]acetate (60 mCi�
mmol) was purchased from Amersham. Sodium butyrate and
HC-toxin were from Sigma. Organisms for in vitro studies were
obtained from a variety of sources: Plasmodium berghei (strain
KBG 173), A. Ager (University of Miami, Miami); Plasmo-
dium falciparum (Dd2 strain), D. Chakraborti (University of
Florida, Gainesville, FL); Neospora caninum (strain NC-1-2C)
and Caryospora bigenetica, D. Lindsay and C. Sundermann
(Auburn University, Auburn, AL). Human blood products
were from the North Jersey Blood Center.

Determination of in Vitro Antiprotozoal Activity. Conditions
for the in vitro culture of parasites and determination of
minimal inhibitory concentrations [defined as the lowest con-
centration (nanograms per milliliter) at which parasite growth
was fully inhibited] for compounds were conducted according
to previously described methods. For Eimeria tenella, the 48-hr
assay as described by Schmatz et al. (8) was used; for T. gondii,
Besnoitia jellisoni, and N. caninum, the method of Roos et al.
(9) was used; for Ca. bigenetica, the 7-day assay as described by
Sundermann et al. (10) was used; for P. falciparum [chloro-
quine-resistant strain Dd2, grown according to Trager and
Jensen (11)], drug sensitivity was determined over 48 hr
visually by light microscopy of stained blood smears; and
activity against Cr. parvum was determined according to
Woods et al. (12) with rat serum at a 1:1000 dilution. Test

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked ‘‘advertisement’’ in
accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviations: HDA, histone deacetylase; p.i., post infection; AUT,
acid urea triton.
†To whom reprint requests should be addressed.
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P. falciparum tymidylate kinase + zidovudine 
Template 3tmkA a yeast tymidylate kinase. 
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P. falciparum tymydilate kinase + zidovudine 
NMR Water-LOGSY  and STD experiments

Leticia Ortí, Rodrigo J. Carbajo, and Antonio Pineda-Lucena

ATM Zidovudine
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COMPLEXES
multiple data types

NPC, although no fold information (except for the transmembrane
domains) was used in the generation of the structure.
Experimental data not used in the calculation of the model. Finally,
our structure can be most directly tested by comparing it to experi-
mentally determined data that were not included in the structure
calculation. First, our structure is robust, in the sense that omission
of a randomly chosen subset of 10% of the protein interaction data
still results in structures with contact frequencies essentially identical
to those derived from the complete data set. Second, the shape of our
NPC structure37 strongly resembles the published electron micro-
scopy maps of the NPC5,38–42, even though these data were not used
here (Supplementary Fig. 22). Third, the diameter of the transport
channel in our structure is ,38 nm (excluding the FG-repeat

regions), in good agreement with the experimentally reported maxi-
mal diameter of transported particles43. Fourth, Nup133, which has
been experimentally shown to interact with highly curved mem-
branes via its ALPS-like motif, is adjacent to the nuclear envelope
in our structure44. Moreover, three of the four additional scaffold
nucleoporins that are predicted to contain the ALPS-like motif are
also close to the nuclear envelope. Finally, perhaps the best example is
that of the Nup84 complex. Our configuration for this complex
(Fig. 5b)37 is completely consistent with previous results13,14,30.
Specifically, Nup85 and Seh1 form a dimer that together with
Nup120 forms the trimeric ‘head’ of the complex, consistent with
the top two arms of the ‘Y’-shaped Nup84 complex (Fig. 5b)14.
Similarly, Nup145C, Nup84, Sec13 and Nup133 form the ‘tail’ in
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Figure 10 | Ensemble interpretation in terms of protein positions, contacts
and configuration. a, Localization volumes of all 456 proteins in the NPC
(excluding the FG-repeat regions) in four different views. The diameter of
the transport channel and the NPC are also indicated. The proteins are
colour-coded according to their assignment to the six NPC modules37.
b, Contact frequencies for all pairs of proteins. The contact frequency of a
pair of protein types is the fraction of structures in the ensemble that
contains at least one protein contact between any protein instances of the
two types. c, Contact frequencies between proteins in composite 40. Proteins
are nodes connected by edges with the observed contact frequency as the
edge weight (indicated by its thickness). Edges that are part of the maximal
spanning tree are shown by thick blue lines; the maximal spanning tree is the

spanning tree that maximizes the sum of the edge weights. All edges with a
statistically significant reduction in contact frequency from their initial
values implied by the composite data alone (P-value , 1023; Supplementary
Information) are indicated by dotted lines with contact frequencies shown in
red. d, Protein adjacencies for the whole NPC, with proteins as nodes and
edges connecting proteins that are determined to be adjacent to each other.
The edge weight is the observed contact frequency. e, Configuration of the
proteins in composite 40. The location of a protein corresponds to the
average position of the beads representing non-FG repeats of the protein.
f, Configuration of Nic96 and the NPC scaffold proteins. g, Localization
volume of Nic96 and the NPC scaffold proteins37.
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Supplementary Figure 1. Diagram of the main structural features of the NPC.  

Diagram of the main structural features of the NPC, showing the commonly-used 

published nomenclature. The nuclear basket has been omitted for clarity. 
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Supplementary Table 5: Bead representations of each nup and their stoichiometries.  

W  is the nup type. NW
T  is the number of nup instances of type W  in each cytoplasmic (T  1 ) and 

nucleoplasmic half-spoke (T  2 ). {Bj
N }  is the set of beads for each nup at representation N . nN  

is the total number of particles (beads) per nup representation N . r is the radius of each bead. 

Each nup is described with up to 9 representations N . The Cartesian coordinates of beads in 

representations at N !1  are inherited from particles in the root representation; these beads are 

shown opaque whereas all other beads in the root representation are translucent. 

 

W  NW
1  NW
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N }  nN  r W  NW

1 NW
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the overlay assay and affinity purification data (Supplementary
Information).

Optimization

With the scoring function in hand, the positions of the proteins are
determined by optimization of the scoring function (Supplementary
Information), resulting in structures that are consistent with the data
(Fig. 1). The optimization starts with a random configuration of the
constituent proteins’ beads, and then iteratively moves them so as to
minimize violations of the restraints (Fig. 8). In essence, the restraints
cooperate to slowly ‘pull together’ the proteins into a good-scoring
configuration. We use standard methods of conjugate gradients and
molecular dynamics with simulated annealing (Supplementary
Information). These methods allow the evolving structure some
‘breathing room’ to explore the scoring function landscape, min-
imizing the likelihood of getting caught in local scoring function
minima (Fig. 8a). To comprehensively sample structures consistent
with the data, independent optimizations of randomly generated
initial configurations were performed until an ensemble of 1,000

structures satisfying the input restraints was obtained (approxi-
mately 200,000 trials were required, running for approximately
30 days on 200 CPUs) (Fig. 8b).

Ensemble interpretation

We analysed the ensemble of 1,000 structures that satisfy the input
data (Fig. 8b) in terms of protein positions, contacts and configura-
tion (Figs 9 and 10).
Protein positions. These 1,000 structures were first superposed
(Fig. 9a) (Supplementary Information). Next, the superposed struc-
tures were converted into the probability of any volume element
being occupied by a given protein (that is, the ‘localization probabi-
lity’) (Fig. 9b). The spread around the maximum localization prob-
ability of each protein describes how precisely its position was
defined by the input data. The positions that have a single narrow
maximum in their probability distribution in the ensemble are deter-
mined most precisely. When multiple maxima are present in the
distribution at the precision of interest, the input restraints are insuf-
ficient to define the single native state of that protein (or there are
multiple native states).

The actual localization probabilities yielded single pronounced
maxima for almost all proteins, demonstrating that the input
restraints define one predominant structure. The average standard
deviation for the distance between neighbouring protein centroids is
5 nm; the precision of the larger, centrally positioned proteins seems
to be higher than that of the anchor domains of some FG nucleopor-
ins. This level of precision defines a region smaller than the diameters
of many nucleoporins. Thus, our map is sufficient to determine the
relative positions of proteins in the NPC; we do not interpret features
smaller than this precision. On the basis of the localization probabi-
lities (Fig. 9b), we also define the volume most likely occupied by each
protein, termed the ‘localization volume’ (Figs 9c and 10a). The
localization volumes of the proteins overlap only to a small degree,
such that only 10% of the NPC volume is assigned to two or more
proteins, again underscoring how well the position of each nucleo-
porin is resolved. On the basis of our current data, we are not able to
distinguish between the two possible mirror-symmetric structures;
here, we present one of them.
Protein contacts. The proximities of any two proteins in the struc-
ture can be measured by their relative ‘contact frequency’, which is
defined by how often the two proteins contact each other in the
ensemble (Fig. 10b). Contacts are highly conserved among the
ensemble structures, despite some variability; 32 protein pairs have
a contact frequency higher than 65%. Of all the 435 contact frequen-
cies, 7% are high (65–100%) and 73% are low (0–25%); this again
demonstrates that the structure is well defined, as an ensemble of
varied structures would yield mainly medium contact frequencies.
Notably, few high-contact frequencies are seen between proteins of
the same type, indicating that the NPC is held together primarily by
heterotypic interactions.

We can improve our determination of contacts by considering not
only the contact frequencies but also the composite data (Fig. 10c).
More specifically, we define two proteins to be ‘adjacent’ if their
relative contact frequency is larger than 65% or if they appear in
the maximal spanning tree of any composite graph whose edge
weights correspond to contact frequencies (as explained in Fig.
10c). If two proteins are adjacent, they are more likely to interact
with each other in the native NPC structure than when they are not
adjacent36. In total, 51 types of adjacencies were found (Fig. 10d). A
particularly large number of adjacencies are observed for Nic96 and
Nup82, which both appear in two copies per symmetry unit, as well as
for the core proteins Nup192 and Nup188. Whereas the latter two
proteins bridge the bulk of the NPC to the membrane proteins and
also provide anchor sites for FG nucleoporins, Nic96 bridges major
ring structures of the NPC and also serves as an anchor site for FG
nucleoporins37. Most FG nucleoporins are peripherally located and
therefore show only a few adjacencies.
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Figure 8 | Calculation of the NPC bead structure by satisfaction of spatial
restraints. a, Representation of the optimization process as it progresses
from an initial random configuration to an optimal structure. The graph
shows the relationship between the score (a measure of the consistency
between the configuration and the input data) and the average contact
similarity. The contact similarity quantifies how similar two configurations
are in terms of the number and types of their protein contacts; a contact
between two proteins occurs if the distance between their closest beads is
less than 1.4 times the sum of the bead radii (Supplementary Information).
The average contact similarity at a given score is determined from the
contact similarities between the lowest scoring configuration and a sample of
100 configurations with the given score. Error bars indicate standard
deviation. Representative configurations at various stages of the
optimization process from left (very large scores) to right (with a score of 0)
are shown above the graph; a score of 0 indicates that all input restraints have
been satisfied. As the score approaches zero, the contact similarity increases,
showing that there is only a single cluster of closely related configurations
that satisfy the input data. b, Distribution of configuration scores. The
presence of configurations with the score close to 0 demonstrates that our
sampling procedure finds configurations consistent with the input data.
These configurations satisfy all the input restraints within the experimental
error.
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the overlay assay and affinity purification data (Supplementary
Information).

Optimization

With the scoring function in hand, the positions of the proteins are
determined by optimization of the scoring function (Supplementary
Information), resulting in structures that are consistent with the data
(Fig. 1). The optimization starts with a random configuration of the
constituent proteins’ beads, and then iteratively moves them so as to
minimize violations of the restraints (Fig. 8). In essence, the restraints
cooperate to slowly ‘pull together’ the proteins into a good-scoring
configuration. We use standard methods of conjugate gradients and
molecular dynamics with simulated annealing (Supplementary
Information). These methods allow the evolving structure some
‘breathing room’ to explore the scoring function landscape, min-
imizing the likelihood of getting caught in local scoring function
minima (Fig. 8a). To comprehensively sample structures consistent
with the data, independent optimizations of randomly generated
initial configurations were performed until an ensemble of 1,000

structures satisfying the input restraints was obtained (approxi-
mately 200,000 trials were required, running for approximately
30 days on 200 CPUs) (Fig. 8b).

Ensemble interpretation

We analysed the ensemble of 1,000 structures that satisfy the input
data (Fig. 8b) in terms of protein positions, contacts and configura-
tion (Figs 9 and 10).
Protein positions. These 1,000 structures were first superposed
(Fig. 9a) (Supplementary Information). Next, the superposed struc-
tures were converted into the probability of any volume element
being occupied by a given protein (that is, the ‘localization probabi-
lity’) (Fig. 9b). The spread around the maximum localization prob-
ability of each protein describes how precisely its position was
defined by the input data. The positions that have a single narrow
maximum in their probability distribution in the ensemble are deter-
mined most precisely. When multiple maxima are present in the
distribution at the precision of interest, the input restraints are insuf-
ficient to define the single native state of that protein (or there are
multiple native states).

The actual localization probabilities yielded single pronounced
maxima for almost all proteins, demonstrating that the input
restraints define one predominant structure. The average standard
deviation for the distance between neighbouring protein centroids is
5 nm; the precision of the larger, centrally positioned proteins seems
to be higher than that of the anchor domains of some FG nucleopor-
ins. This level of precision defines a region smaller than the diameters
of many nucleoporins. Thus, our map is sufficient to determine the
relative positions of proteins in the NPC; we do not interpret features
smaller than this precision. On the basis of the localization probabi-
lities (Fig. 9b), we also define the volume most likely occupied by each
protein, termed the ‘localization volume’ (Figs 9c and 10a). The
localization volumes of the proteins overlap only to a small degree,
such that only 10% of the NPC volume is assigned to two or more
proteins, again underscoring how well the position of each nucleo-
porin is resolved. On the basis of our current data, we are not able to
distinguish between the two possible mirror-symmetric structures;
here, we present one of them.
Protein contacts. The proximities of any two proteins in the struc-
ture can be measured by their relative ‘contact frequency’, which is
defined by how often the two proteins contact each other in the
ensemble (Fig. 10b). Contacts are highly conserved among the
ensemble structures, despite some variability; 32 protein pairs have
a contact frequency higher than 65%. Of all the 435 contact frequen-
cies, 7% are high (65–100%) and 73% are low (0–25%); this again
demonstrates that the structure is well defined, as an ensemble of
varied structures would yield mainly medium contact frequencies.
Notably, few high-contact frequencies are seen between proteins of
the same type, indicating that the NPC is held together primarily by
heterotypic interactions.

We can improve our determination of contacts by considering not
only the contact frequencies but also the composite data (Fig. 10c).
More specifically, we define two proteins to be ‘adjacent’ if their
relative contact frequency is larger than 65% or if they appear in
the maximal spanning tree of any composite graph whose edge
weights correspond to contact frequencies (as explained in Fig.
10c). If two proteins are adjacent, they are more likely to interact
with each other in the native NPC structure than when they are not
adjacent36. In total, 51 types of adjacencies were found (Fig. 10d). A
particularly large number of adjacencies are observed for Nic96 and
Nup82, which both appear in two copies per symmetry unit, as well as
for the core proteins Nup192 and Nup188. Whereas the latter two
proteins bridge the bulk of the NPC to the membrane proteins and
also provide anchor sites for FG nucleoporins, Nic96 bridges major
ring structures of the NPC and also serves as an anchor site for FG
nucleoporins37. Most FG nucleoporins are peripherally located and
therefore show only a few adjacencies.
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Figure 8 | Calculation of the NPC bead structure by satisfaction of spatial
restraints. a, Representation of the optimization process as it progresses
from an initial random configuration to an optimal structure. The graph
shows the relationship between the score (a measure of the consistency
between the configuration and the input data) and the average contact
similarity. The contact similarity quantifies how similar two configurations
are in terms of the number and types of their protein contacts; a contact
between two proteins occurs if the distance between their closest beads is
less than 1.4 times the sum of the bead radii (Supplementary Information).
The average contact similarity at a given score is determined from the
contact similarities between the lowest scoring configuration and a sample of
100 configurations with the given score. Error bars indicate standard
deviation. Representative configurations at various stages of the
optimization process from left (very large scores) to right (with a score of 0)
are shown above the graph; a score of 0 indicates that all input restraints have
been satisfied. As the score approaches zero, the contact similarity increases,
showing that there is only a single cluster of closely related configurations
that satisfy the input data. b, Distribution of configuration scores. The
presence of configurations with the score close to 0 demonstrates that our
sampling procedure finds configurations consistent with the input data.
These configurations satisfy all the input restraints within the experimental
error.

ARTICLES NATURE | Vol 450 | 29 November 2007

690
Nature   ©2007 Publishing Group

Alber, F., Dokudovskaya, S., Veenhoff, L. M., Zhang, W., Kipper, J., Devos, D., Suprapto, A., et al. (2007). Nature, 450(7170), 695–701

Thursday, February 16, 12



both our structure and the Y-shaped complex (Fig. 5b)14. Here, we
resolve the relative positions of the proteins in this complex and show
how the complex is integrated into the architecture of the entire NPC.

Together these assessments indicate that our data are sufficient to
determine the configuration of the proteins comprising the NPC.
Indeed, it is hard to conceive of any combination of errors that could
have biased our structure towards a single solution that resembles
known NPC features in so many ways.

Conclusions

We have devised an integrative approach to solve the structure of the
NPC using diverse biophysical and proteomic data. This approach
has several advantages. First, it benefits from the synergy among the
input data. Data integration is in fact necessary for structure deter-
mination, because none of the individual data sets contains sufficient
spatial information on its own. Despite the little structural informa-
tion in each individual restraint, the concurrent satisfaction of all
restraints derived from independent experiments markedly reduces
the degeneracy of the final structures. Second, the integrative
approach can potentially survey all the structures that are consistent
with the data. Alternatively, if no structure is consistent with the data,
then some experiments or their interpretations are incorrect. Third,
this approach can make the process of structure determination
more efficient, by indicating which measurements would be most
informative. Fourth, the approach can, in principle, incorporate
essentially any structural information about a given assembly.
Thus, it is straightforward to adapt it for calculating higher resolution

structures by including additional spatial restraints from higher reso-
lution data sets, such as atomic structures of proteins, chemical cross-
linking, footprinting, small angle X-ray scattering (SAXS) and cryo-
EM. It is conceivable that these additional data sets might allow us to
determine pseudo-atomic structures of assemblies as complex as the
NPC. Furthermore, by obtaining detailed structural information
concerning different stages of a dynamic process, our approach
may animate the NPC’s assembly and transport mechanisms6.

The molecular architecture of many macromolecular complexes
could, in principle, be resolved using a similar integrative approach.
With regards to the NPC, the resulting structure has already
provided abundant insights into the function and evolution of the
cell37.

METHODS SUMMARY
See Supplementary Information for a detailed description of our Methods. The
experimental data, the Integrative Modelling Platform software and the NPC
structural model are available at http://ncdir.org/npc.
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of Nup192 in the ensemble of NPC structures, generated using the data sets
indicated below. The localization probability is contoured at 65% of its
maximal value (red). The smaller the volume, the better localized are the
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Prediction of protein interactions from contact frequencies improves as
more data are used. As an example, each panel illustrates the contact
frequencies between proteins found in composite 34. Contact frequencies
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connecting the proteins. Left: when only a single composite is used (together
with stoichiometry and symmetry information), all interactions are equally
likely (initial contact frequency, Supplementary Information). Middle: when
the highest likelihood of interaction between a particular protein pair from
all composites is used, the uncertainty about the interactions is reduced.
Right: when all data are used, the contact frequencies are either very high
(.0.65) or very low (,0.25), thus allowing a strong prediction of protein
interactions. Contact frequencies reflect the likelihood that a protein
interaction is formed given the data considered and are calculated from the
ensemble of optimized structures. Numbers in red indicate final contact
frequencies that significantly decreased (at a P-value ,1023) from their
initial values (Supplementary Information).
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3 Supplementary Figures 

 

 

 

 

 

 
 

Supplementary Figure 1. Diagram of the main structural features of the NPC.  

Diagram of the main structural features of the NPC, showing the commonly-used 

published nomenclature. The nuclear basket has been omitted for clarity. 
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Figure 2 | Localization of major substructures and their component
nucleoporins in the NPC. This figure is a single view of data presented in
our Supplementary Movie. The nucleoporins are represented by their
localization volumes14 and have been coloured according to their
classification into five distinct substructures on the basis of their location
and functional properties: the outer rings in yellow, the inner rings in purple,
the membrane rings in brown, the linker nucleoporins in blue and pink, and
the FG nucleoporins (for which only the structured domains are shown) in
green. The pore membrane is shown in grey. A single arbitrary repeat unit,
termed the spoke, is shown dissected into its component nucleoporins.
Together, the outer and inner rings connect to form the NPC’s core scaffold
(Fig. 3). Each of the outer rings makes connections with the adjacent linker
nucleoporins and inner rings, but connects with few FG nucleoporins and no
components of the membrane rings. The two inner rings are closely
associated with each other at the NPC’s equator and form connections with
all three integral membrane proteins in the membrane rings, thereby
anchoring the NPC to the nuclear envelope. The bulk of the membrane rings

is formed by homo-oligomerization of the C-terminal domain of Pom152.
The linker nucleoporins Nic96 and Nup82 are anchored between the inner
and outer rings and have a central role in bridging the core scaffold of the
NPC with the functionally important FG nucleoporins. On both the
cytoplasmic and nucleoplasmic sides of each spoke, one copy of Nic96 is
anchored through Nup192 and a second copy through Nup188. Whereas
one copy of Nic96 carries the FG nucleoporins Nsp1, Nup57 and Nup49, the
second copy forms interactions to another copy of Nsp1 and at the
cytoplasmic side also interacts with Nup82. Here, Nup82 associates with the
FG nucleoporins Nup159, Nup116, Nsp1 and Nup42. Thus, Nsp1 forms at
least two distinct complexes in the NPC: one exclusively cytoplasmic and
one disposed symmetrically52–55. By contrast, the FG nucleoporins found
only on the nucleoplasmic side connect mainly to the inner ring
nucleoporins, as do Nup53 and Nup59, both of which also face the pore
membrane. The scale bars indicate the average standard deviation of the
distance between a pair of neighbouring proteins in the 1,000 best-scoring
configurations14.
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 169 5C primers on + strand
 170 5C primers on – strand

 28,730 chromatin interactions
~13Kb

The 3D architecture of Caulobacter Crescentus
4,016,942  bp & 3,767 genes
Ori

Ter

Ter Ori

Ori

Ori 0.0

0.5

1.1

1.7

2.1

2.5

3.0

3.5

4.0

M
in

us
 P

ro
be

 G
en

om
e 

Po
sit

io
n 

(m
bp

)

0.0 0.5 1.1 1.6 2.1 2.5 3.1 3.6 4.0

Plus Probe Genome Position (mbp)

-7.5 x 10-1

-2.81 x 10-1

1.88 x 10-1

6.56 x 10-1

1.12 x 100

1.59 x 100

2.06 x 100

2.53 x 100

3 x 100

5C interaction Z-scores

Digestion Ligation Purification

Multiplex
Annealing and
Ligation

PCR

Polony 
Sequencing

Cross-linked
Cells

Digested 
cross-linked
chronatin

Cross-linked
ligation products

3C Library

“Carbon-copy”
junctions

5C library

3C

5C

= -  Strand
= +  Strand

Terminus

Origin

Thursday, February 16, 12



5C interaction matrix
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3D model building with the 5C + IMP approach
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Genome organization in Caulobacter crescentus
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Moving the parS sites results in whole genome rotation!
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Bridging the Resolution Gap in Structural Modeling of 3D
Genome Organization
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Abstract: Over the last decade, and especially after the
advent of fluorescent in situ hybridization imaging and
chromosome conformation capture methods, the avail-
ability of experimental data on genome three-dimensional
organization has dramatically increased. We now have
access to unprecedented details of how genomes
organize within the interphase nucleus. Development of
new computational approaches to leverage this data has
already resulted in the first three-dimensional structures
of genomic domains and genomes. Such approaches
expand our knowledge of the chromatin folding princi-
ples, which has been classically studied using polymer
physics and molecular simulations. Our outlook describes
computational approaches for integrating experimental
data with polymer physics, thereby bridging the resolu-
tion gap for structural determination of genomes and
genomic domains.

This is an ‘‘Editors’ Outlook’’ article for PLoS
Computational Biology

Recent experimental and computational advances are
resulting in an increasingly accurate and detailed characterization
of how genomes are organized in the three-dimensional (3D) space
of the nucleus (Figure 1) [1]. At the lowest level of chromatin
organization, naked DNA is packed into nucleosomes, which
forms the so-called chromatin fiber composed of DNA and
proteins. However, this initial packing, which reduces the length of
the DNA by about seven times, is not sufficient to explain the
higher-order folding of chromosomes during interphase and
metaphase. It is now accepted that chromosomes and genes are
non-randomly and dynamically positioned in the cell nucleus
during the interphase, which challenges the classical representa-
tion of genomes as linear static sequences. Moreover, compart-
mentalization, chromatin organization, and spatial location of
genes are associated with gene expression and the functional status
of the cell. Despite the importance of 3D genomic architecture,
we have a limited understanding of the molecular mechanisms that
determine the higher-order organization of genomes and its
relation to function. Computational biology plays an important
role in the plethora of new technologies aimed at addressing this
knowledge gap [2]. Indeed, Thomas Cremer, a pioneer in study-
ing nuclear organization using light microscopy, recently high-
lighted the importance of computational science in complement-
ing and leveraging experimental observations of genome organi-
zation [2]. Therefore, computational approaches to integrate
experimental observations with chromatin physics are needed to
determine the architecture (3D) and dynamics (4D) of genomes.
We present two complementary approaches to address this

challenge: (i) the first approach aims at developing simple polymer
models of chromatin and determining relevant interactions (both

physical and biological) that explain experimental observations; (ii)
the second approach aims at integrating diverse experimental
observations into a system of spatial restraints to be satisfied,
thereby constraining possible structural models of the chromatin.
The goal of both approaches is dual: to obtain most accurate 3D
and 4D representation of chromatin architecture and to under-
stand physical constraints and biological phenomena that determine
its organization. These approaches are reminiscent of the protein-
folding field where the first strategy was used for characterizing
protein ‘‘foldability’’ and the second was implemented for modeling
the structure of proteins using nuclear magnetic resonance and
other experimental constraints. In fact, our outlook consistently
returns to the many connections between the two fields.

What Does Technology Show Us?

Today, it is possible to quantitatively study structural features of
genomes at diverse scales that range from a few specific loci,
through chromosomes, to entire genomes (Table 1) [3]. Broadly,
there are two main approaches for studying genomic organization:
light microscopy and cell/molecular biology (Figure 2). Light
microcopy [4], both with fixed and living cells, can provide images
of a few loci within individual cells [5,6], as well as their dynamics
as a function of time [7] and cell state [8]. On a larger scale, light
microscopy combined with whole-chromosome staining reveals
chromosomal territories during interphase and their reorganiza-
tion upon cell division. Immunofluorescence with fluorescent
antibodies in combination with RNA, and DNA fluorescence in
situ hybridization (FISH) has been used to determine the co-
localization of loci and nuclear substructures.
Using cellular and molecular biology, novel chromosome

conformation capture (3C)-based methods such 3C [9], 3C-on-
chip or circular 3C (the so-called 4C) [10,11], 3C carbon copy
(5C) [12], and Hi-C [13] quantitatively measure frequencies of
spatial contacts between genomic loci averaged over a large

Citation: Marti-Renom MA, Mirny LA (2011) Bridging the Resolution Gap in
Structural Modeling of 3D Genome Organization. PLoS Comput Biol 7(7):
e1002125. doi:10.1371/journal.pcbi.1002125

Editor: Philip E. Bourne, University of California San Diego, United States of
America

Published July 14, 2011

Copyright: ! 2011 Marti-Renom, Mirny. This is an open-access article
distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

Funding: MAM-R acknowledges support from the Spanish Ministry of Science
and Innovation (BFU2010-19310). LM is acknowledging support of the NCI-funded
MIT Center for Physics Sciences in Oncology. The funders had no role in decision
to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests
exist.

* E-mail: mmarti@cipf.es

PLoS Computational Biology | www.ploscompbiol.org 1 July 2011 | Volume 7 | Issue 7 | e1002125

Genome Biology 2009, 10:R37

Open Access2009Fraseret al.Volume 10, Issue 4, Article R37Software
Chromatin conformation signatures of cellular differentiation
James Fraser*, Mathieu Rousseau?, Solomon Shenker*, 
Maria A Ferraiuolo*, Yoshihide HayashizakiH, Mathieu Blanchette? and 
Josée Dostie*

Addresses: *Department of Biochemistry and McGill Cancer Center, McGill University, 3655 Promenade Sir-William-Osler, Montréal, H3G1Y6, 
Canada. ?McGill Centre for Bioinformatics, McGill University, 3775 University, Montréal, H3A 2B4, Canada. HRIKEN Omics Science Center, 
RIKEN Yokohama Institute, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama, 230-0045, Japan. 

Correspondence: Josée Dostie. Email: josee.dostie@mcgill.ca

© 2009 Fraser et al.; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Chromatin conformation signatures<p>A suite of computer programs to identify genome-wide chromatin conformation signatures with 5C technology is reported.</p>

Abstract

One of the major genomics challenges is to better understand how correct gene expression is
orchestrated. Recent studies have shown how spatial chromatin organization is critical in the
regulation of gene expression. Here, we developed a suite of computer programs to identify
chromatin conformation signatures with 5C technology http://Dostielab.biochem.mcgill.ca. We
identified dynamic HoxA cluster chromatin conformation signatures associated with cellular
differentiation. Genome-wide chromatin conformation signature identification might uniquely
identify disease-associated states and represent an entirely novel class of human disease
biomarkers.

Rationale
Cell specialization is the defining hallmark of metazoans and
results from differentiation of precursor cells. Differentiation
is characterized by growth arrest of proliferating cells fol-
lowed by expression of specific phenotypic traits. This process
is essential throughout development and for adult tissue
maintenance. For example, improper cellular differentiation
in adult tissues can lead to human diseases such as leukemia
[1,2]. For this reason, identifying mechanisms involved in dif-
ferentiation is not only essential to understand biology, but
also to develop effective strategies for prevention, diagnosis
and treatment of cancer. Suzuki et al. recently defined the
underlying transcription network of differentiation in the
THP-1 leukemia cell line [3]. Using several powerful genom-
ics approaches, this study challenges the traditional views
that transcriptional activators acting as master regulators
mediate differentiation. Instead, differentiation is shown to

require the concerted up- and down-regulation of numerous
transcription factors. This study provides the first integrated
picture of the interplay between transcription factors, proxi-
mal promoter activity, and RNA transcripts required for dif-
ferentiation of human leukemia cells.

Although extremely powerful, several observations indicate
that implementation of new technologies will be required to
gain a full appreciation of how cells differentiate. First, gene
expression is controlled by a complex array of regulatory DNA
elements. Each gene may be controlled by multiple elements
and each element may control multiple genes [4]. Second, the
functional organization of genes and elements is not linear
along chromosomes. For example, a given element may regu-
late distant genes or genes located on other chromosomes
without affecting the ones adjacent to it [4,5]. Third, gene reg-
ulation is known to involve both local and long-range chro-
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SUMMARY

The immunoglobulin heavy-chain (Igh) locus is orga-
nized into distinct regions that contain multiple vari-
able (VH), diversity (DH), joining (JH) and constant
(CH) coding elements. How the Igh locus is structured
in 3D space is unknown. To probe the topography of
the Igh locus, spatial distance distributions were de-
termined between 12 genomic markers that span the
entire Igh locus. Comparison of the distance distribu-
tions to computer simulations of alternative chro-
matin arrangements predicted that the Igh locus is
organized into compartments containing clusters of
loops separated by linkers. Trilateration and triple-
point angle measurements indicated the mean rela-
tive 3D positions of the VH, DH, JH, and CH elements,
showed compartmentalization and striking confor-
mational changes involving VH and DH-JH elements
during early B cell development. In pro-B cells, the
entire repertoire of VH regions (2 Mbp) appeared to
have merged and juxtaposed to the DH elements,
mechanistically permitting long-range genomic in-
teractions to occur with relatively high frequency.

INTRODUCTION

It is well-established that higher order chromatin organization
plays a pivotal role in genome function (Cremer and Cremer,
2001). Formore thana century, the organization of chromosomes
and its functional implications in eukaryotes have been exten-
sively studied using light microscopy (Rabl, 1885; Bover, 1909).
Electron micrographs of chromosome spreads have suggested
the presence of loops, with sizes of !90 kbp, that interact with
a postulated nuclear matrix and aggregate during mitosis into

rosettes containing!18 loops, resulting in!100 rosettes per av-
erage chromosome (Paulson and Laemmli, 1977; Paulson, 1988;
Pienta and Coffey, 1984). Similar rosette-like structures have
been detected in interphase cells (Okada and Commings, 1979).
As a first approach to resolving chromosome conformation,

fluorescence in situ hybridization studies, measuring spatial dis-
tances in interphase nuclei between genomic markers as a func-
tion of genomic separation, suggested a random walk behavior
(Trask et al., 1991). However, confinement of chromosome
arms and bands to territories indicated the presence of spatial
constraints. More recent observations showed that the spatial
distance depends on the genomic distance according to a power
law with exponents of 0.5 below and 0.32 above a genomic sep-
aration of 4 Mbp (Trask et al., 1993; Warrington and Bengtsson,
1994; Sachs et al., 1995;Münkel and Langowski, 1998). The con-
straints and the scaling behavior suggested a Random-Walk/
Giant-Loop (RW/GL) configuration (Sachs et al., 1995; Yokota
et al., 1995). In the RW/GL model, the 30 nm fiber forms 2 to 5
Mbp loops that are attached to a polymer backbone. The back-
bone and the chromatin fiber within the loops follow random
walk dynamics. However, distance measurements between
genetic markers with genomic separations of less than 4 Mbp
were incompatible with the RW/GL model, but were consistent
with another topology, named the Multi-Loop-Subcompartment
(MLS) model (Münkel and Langowski, 1998; Knoch, 2002). The
MLS model proposes that the 30 nm fiber is folded into rosettes
of small loops, connected by linkers of variable sizes.
Recently computer models have been developed to evaluate

and test experimental results, designs and hypotheses about the
three-dimensional genome organization (Knoch et al., 2000;
Knoch, 2002). Beyond supporting the chromatin organization
into chromosome territory, arm and band domains, these simula-
tionsmay reveal how the local, global anddynamic characteristics
ofcell nuclei are inter-connected (Knochetal., 2000;Knoch,2002).
How genes are regulated by spatial rearrangement has been

a topic of intensive study. In prokaryotes, transcriptional
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Comprehensive Mapping of Long-Range
Interactions Reveals Folding Principles
of the Human Genome
Erez Lieberman-Aiden,1,2,3,4* Nynke L. van Berkum,5* Louise Williams,1 Maxim Imakaev,2
Tobias Ragoczy,6,7 Agnes Telling,6,7 Ido Amit,1 Bryan R. Lajoie,5 Peter J. Sabo,8
Michael O. Dorschner,8 Richard Sandstrom,8 Bradley Bernstein,1,9 M. A. Bender,10
Mark Groudine,6,7 Andreas Gnirke,1 John Stamatoyannopoulos,8 Leonid A. Mirny,2,11
Eric S. Lander,1,12,13† Job Dekker5†
We describe Hi-C, a method that probes the three-dimensional architecture of whole genomes by
coupling proximity-based ligation with massively parallel sequencing. We constructed spatial proximity
maps of the human genome with Hi-C at a resolution of 1 megabase. These maps confirm the
presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes.
We identified an additional level of genome organization that is characterized by the spatial segregation
of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the
chromatin conformation is consistent with a fractal globule, a knot-free, polymer conformation that
enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus.
The fractal globule is distinct from the more commonly used globular equilibrium model. Our results
demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.

The three-dimensional (3D) conformation of
chromosomes is involved in compartmen-
talizing the nucleus and bringing widely

separated functional elements into close spatial
proximity (1–5). Understanding how chromosomes
fold can provide insight into the complex relation-
ships between chromatin structure, gene activity,
and the functional state of the cell. Yet beyond the
scale of nucleosomes, little is known about chro-
matin organization.

Long-range interactions between specific pairs
of loci can be evaluated with chromosome con-
formation capture (3C), using spatially constrained
ligation followed by locus-specific polymerase
chain reaction (PCR) (6). Adaptations of 3C have
extended the process with the use of inverse PCR
(4C) (7, 8) or multiplexed ligation-mediated am-
plification (5C) (9). Still, these techniques require
choosing a set of target loci and do not allow
unbiased genomewide analysis.

Here, we report a method called Hi-C that
adapts the above approach to enable purification
of ligation products followed by massively par-
allel sequencing. Hi-C allows unbiased identifi-
cation of chromatin interactions across an entire
genome.We briefly summarize the process: cells
are crosslinked with formaldehyde; DNA is di-
gested with a restriction enzyme that leaves a 5′
overhang; the 5′ overhang is filled, including a
biotinylated residue; and the resulting blunt-end
fragments are ligated under dilute conditions that
favor ligation events between the cross-linked
DNA fragments. The resulting DNA sample con-
tains ligation products consisting of fragments
that were originally in close spatial proximity in
the nucleus, marked with biotin at the junction.
A Hi-C library is created by shearing the DNA
and selecting the biotin-containing fragments
with streptavidin beads. The library is then ana-
lyzed by using massively parallel DNA sequenc-
ing, producing a catalog of interacting fragments
(Fig. 1A) (10).

We created a Hi-C library from a karyotyp-
ically normal human lymphoblastoid cell line
(GM06990) and sequenced it on two lanes of
an Illumina Genome Analyzer (Illumina, San
Diego, CA), generating 8.4million read pairs that
could be uniquely aligned to the human genome
reference sequence; of these, 6.7 million corre-
sponded to long-range contacts between seg-
ments >20 kb apart.

We constructed a genome-wide contact matrix
M by dividing the genome into 1-Mb regions
(“loci”) and defining thematrix entrymij to be the
number of ligation products between locus i and
locus j (10). This matrix reflects an ensemble
average of the interactions present in the original
sample of cells; it can be visually represented as
a heatmap, with intensity indicating contact fre-
quency (Fig. 1B).

We tested whether Hi-C results were repro-
ducible by repeating the experiment with the same
restriction enzyme (HindIII) and with a different
one (NcoI).We observed that contact matrices for
these new libraries (Fig. 1, C and D) were
extremely similar to the original contact matrix
[Pearson’s r = 0.990 (HindIII) and r = 0.814
(NcoI); P was negligible (<10–300) in both cases].
We therefore combined the three data sets in
subsequent analyses.

We first tested whether our data are consistent
with known features of genome organization (1):
specifically, chromosome territories (the tendency
of distant loci on the same chromosome to be near
one another in space) and patterns in subnuclear
positioning (the tendency of certain chromosome
pairs to be near one another).

We calculated the average intrachromosomal
contact probability, In(s), for pairs of loci sepa-
rated by a genomic distance s (distance in base
pairs along the nucleotide sequence) on chromo-
some n. In(s) decreases monotonically on every
chromosome, suggesting polymer-like behavior
in which the 3D distance between loci increases
with increasing genomic distance; these findings
are in agreement with 3C and fluorescence in situ
hybridization (FISH) (6, 11). Even at distances
greater than 200Mb, In(s) is always much greater
than the average contact probability between dif-
ferent chromosomes (Fig. 2A). This implies the
existence of chromosome territories.

Interchromosomal contact probabilities be-
tween pairs of chromosomes (Fig. 2B) show
that small, gene-rich chromosomes (chromosomes
16, 17, 19, 20, 21, and 22) preferentially interact
with each other. This is consistent with FISH
studies showing that these chromosomes fre-
quently colocalize in the center of the nucleus
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A three-dimensional model of the yeast genome
Zhijun Duan1,2*, Mirela Andronescu3*, Kevin Schutz4, SeanMcIlwain3, Yoo Jung Kim1,2, Choli Lee3, Jay Shendure3,
Stanley Fields2,3,5, C. Anthony Blau1,2,3 & William S. Noble3

Layered on top of information conveyed by DNA sequence and
chromatin are higher order structures that encompass portions of
chromosomes, entire chromosomes, and even whole genomes1–3.
Interphase chromosomes are not positioned randomly within the
nucleus, but instead adopt preferred conformations4–7. Disparate
DNA elements co-localize into functionally defined aggregates or
‘factories’ for transcription8 and DNA replication9. In budding
yeast,Drosophila andmany other eukaryotes, chromosomes adopt
a Rabl configuration, with arms extending from centromeres adja-
cent to the spindle pole body to telomeres that abut the nuclear
envelope10–12. Nonetheless, the topologies and spatial relationships
of chromosomes remain poorly understood. Here we developed a
method to globally capture intra- and inter-chromosomal inter-
actions, and applied it to generate a map at kilobase resolution of
the haploid genome of Saccharomyces cerevisiae. The map recapi-
tulates known features of genome organization, thereby validating
the method, and identifies new features. Extensive regional and
higher order folding of individual chromosomes is observed.
Chromosome XII exhibits a striking conformation that implicates
the nucleolus as a formidable barrier to interaction between DNA
sequences at either end. Inter-chromosomal contacts are anchored
by centromeres and include interactions among transfer RNA
genes, among origins of early DNA replication and among sites
where chromosomal breakpoints occur. Finally, we constructed a
three-dimensional model of the yeast genome. Our findings pro-
vide a glimpse of the interface between the form and function of a
eukaryotic genome.

Chromosome conformation capture (3C) and its derivatives have
been used to detect long-range interactions within and between chro-
mosomes13–20. We developed a method for identifying chromosomal
interactions genome-wide by coupling chromosome conformation
capture-on-chip (4C)14 andmassively parallel sequencing (Fig. 1 and
Supplementary Methods). Because all 3C-based technologies are
encumbered by low signal-to-noise ratios18,21, we established the
method’s reliability by assessing: (1) random intermolecular ligations
from each of five control libraries (Fig. 2a, Supplementary Tables 1
and 2 and Supplementary Methods); (2) restriction site-based biases
(Fig. 2b, Supplementary Figs 1 and 2 and Supplementary Table 3); (3)
reproducibility between independent sets of experimental libraries
that differed in DNA concentration at the 3C step, which critically
influences signal-to-noise ratios (Supplementary Table 1, Fig. 2b and
c and Supplementary Fig. 2); (4) consistency between theHindIII and
EcoRI libraries (Supplementary Figs 3–5 and Supplementary Tables
4–8), and (5) a set of 24 chromosomal interactions using conven-
tional 3C (Fig. 2d, Supplementary Fig. 6). These results show that our
method is reliable and robust (detailed in Supplementary Methods).
We established yeast genome architecture features using interactions
from the HindIII libraries at a false discovery rate (FDR) of 1%, and

confirmed them with interactions from the EcoRI libraries at the
same threshold.

From our HindIII libraries, we identified 2,179,977 total interac-
tions at an FDR of 1%, corresponding to 65,683 interactions between
distinct pairs of HindIII fragments. We used these data to generate
conformational maps of all 16 yeast chromosomes. The overall pro-
pensity of HindIII fragments to engage in intra-chromosomal inter-
actions varied little between chromosomes, ranging from 436
interactions per HindIII fragment on chromosome XI to 620 inter-
actions per HindIII fragment on chromosome IV (Supplementary
Table 9). These results indicate broadly similar densities of self-
interaction (intra-chromosomal interaction) between chromosomes
and indicate that the density of self-interaction does not vary with
chromosome size (Supplementary Fig. 7).

Some large segments of chromosomes showed a striking propen-
sity to interact with similarly sized regions of the same chromosome.
For example, two regions on chromosome III (positions 30–90 kilo-
bases (kb), and 105–185 kb) showed an excess of interactions (Fig. 3
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Figure 1 | Schematic depiction of the method. Our method relies on the 4C
procedure by using cross-linking, two rounds of alternating restriction
enzyme (RE) digestion (6-bp-cutter RE1 for the 3C-step digestion and 4-bp-
cutter RE2 for the 4C-step digestion) and intra-molecular ligation. At step 7,
each circle contains the 6-bp restriction enzyme recognition site originally
used to link the two interacting partner sequences (RE1).Diverging from4C,
we relinearize the circles using RE1, then sequentially insert two sets of
adaptors, one of which permits digestion with a type IIS or type III
restriction enzyme (such as EcoP15I). Following EcoP15I digestion,
fragments are produced that incorporate interacting partner sequence at
either end, which can be rendered suitable for deep sequencing (see
Supplementary Methods).
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We developed a general approach that combines chromosome 
conformation capture carbon copy (5C) with the Integrated 
Modeling Platform (IMP) to generate high-resolution three-
dimensional models of chromatin at the megabase scale. 
We applied this approach to the ENm008 domain on human 
chromosome 16, containing the a-globin locus, which is 
expressed in K562 cells and silenced in lymphoblastoid cells 
(GM12878). The models accurately reproduce the known 
looping interactions between the a-globin genes and their 
distal regulatory elements. Further, we find using our approach 
that the domain folds into a single globular conformation in 
GM12878 cells, whereas two globules are formed in K562 
cells. The central cores of these globules are enriched for 
transcribed genes, whereas nontranscribed chromatin is more 
peripheral. We propose that globule formation represents a 
higher-order folding state related to clustering of transcribed 
genes around shared transcription machineries, as previously 
observed by microscopy.

Currently, efforts are directed at producing high-resolution genome 
annotations in which the positions of functional elements or specific 
chromatin states are mapped onto the linear genome sequence1. 
However, these linear representations do not indicate functional or 
structural relationships between distant elements. For instance, recent 
insights suggest that widely spaced functional elements cooperate to 
regulate gene expression by engaging in long-range chromatin loop-
ing interactions. The three-dimensional (3D) organization of chromo-
somes is thought to facilitate compartmentalization2,3, chromatin 
organization4 and spatial sequestration of genes and their regulatory 
elements5–7, all of which may modulate the output and functional 
state of the genome. A general approach for determining the spatial 
organization of chromatin can aid in the identification of long-range 
relationships between genes and distant regulatory elements as well as 
in the identification of higher-order folding principles of chromatin 
in general.

Chromosome conformation capture (3C)-based assays use formalde-
hyde cross-linking followed by restriction digestion and intramolecular  

ligation to study chromatin looping interactions7–12. 3C-based assays 
have been used to show that specific elements such as promoters, 
enhancers and insulators are involved in the formation of chromatin 
loops5,7,13–16. The frequencies at which loci interact reflect chromatin 
folding7,17, and thus comprehensive chromatin interaction data sets 
can help researchers build spatial models of chromatin.

Previously, chromatin conformation has been modeled using 
 polymer models8,18 and molecular-dynamics simulations19, which 
have proven valuable for understanding general features of chromatin  
fibers, including flexibility and compaction20,21. However, such methods 
only partially leverage the current wealth of experimental data on chro-
matin folding. Recently, experimentally driven approaches, in combi-
nation with computational modeling, have resulted in low-resolution  
models for the topological conformation of the immunoglobulin 
heavy chain22, the HoxA23 loci and the yeast genome24. However, 
those methods were limited by the resolution and completeness of the 
input experimental data22, by insufficient model representation, scor-
ing and optimization23, or by limited analysis of the 3D models24.

To overcome such limitations, we developed a new approach that 
couples high-throughput 5C experiments9 with the IMP25. We applied 
this approach to determine the higher-order spatial organization of 
a 500-kilobase (kb) gene-dense domain located near the left telo-
mere of human chromosome 16 (Fig. 1a). Embedded in this cluster 
of ubiquitously expressed housekeeping genes is the tissue-specific  

-globin locus that is expressed only in erythroid cells. This 500-kb 
domain corresponds to the ENm008 region extensively studied by the 
ENCODE pilot project (Fig. 1b)1.

The -globin locus has been used widely as a model to study the 
mechanism of long-range and tissue-specific gene regulation15,26–30. 
The -globin genes are upregulated by a set of functional elements 
characterized by the presence of DNase I–hypersensitive sites (HSs) 
located 33 to 48 kb upstream of the  gene. One of these elements, HS40, 
is considered to be of particular importance31,32. This element can act 
as an enhancer in reporter constructs and its deletion greatly affects 
activation of the -globin genes33. HS40 is bound by several erythroid  
transcription factors including GATA factors and NF-E2 (ref. 34). 
Notably, previous 3C studies have demonstrated direct long-range  
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Expression, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA. 3Department of 
Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA. 4These authors contributed equally to this work. Correspondence should be 
addressed to J.D. (job.dekker@umassmed.edu) or M.A.M.-R. (mmarti@cipf.es).

Received 22 November 2009; accepted 20 September 2010; published online 5 December 2010; doi:10.1038/nsmb.1936

The three-dimensional folding of the -globin gene 
domain reveals formation of chromatin globules
Davide Baù1,4, Amartya Sanyal2,4, Bryan R Lajoie2,4, Emidio Capriotti1, Meg Byron3, Jeanne B Lawrence3,  
Job Dekker2 & Marc A Marti-Renom1

DEKKER/MARTI-RENOM
NSMB (2011) 18:107-14

DEKKER/LANDER/MIRNY
Science (2009) 326:289-93

NOBLE
Nature (2010) 465: 363-7

Thursday, February 16, 12



Take home message

Data collection

Data interpretation
Representation
Scoring

Model analysis

Modeling
Sampling

Thursday, February 16, 12



Acknowledgments

COMPARATIVE MODELING
Andrej Sali
M. S. Madhusudhan
Narayanan Eswar
Min-Yi Shen
Ursula Pieper
Ben Webb
Maya Topf (Birbeck College)

MODEL ASSESSMENT
Francisco Melo (CU)
Alejandro Panjkovich (CU)

FUNCTIONAL ANNOTATION
Andrea Rossi (Rinat-Pfizer)
Fred Davis (Janelia Fram)

MODEL ASSESSMENT
David Eramian
Min-Yi Shen
Damien Devos

NMR
Antonio Pineda-Lucena
Leticia Ortí
Rodrigo J. Carbajo

3D Genomes
George Church (Harvard)
Job Dekker (UMASS)
Jeane Lawrence (UMASS)
Lucy Shapiro (Stanford)

Tropical Disease Initiative
Stephen Maurer (UC Berkeley)
Arti Rai (Duke U)
Andrej Sali (UCSF)
Ginger Taylor (TSL)
Matthew Todd (U Sydney)

CCPR Functional Proteomics
Patsy Babbitt (UCSF)
Fred Cohen (UCSF)
Ken Dill (UCSF)
Tom Ferrin (UCSF)
John Irwin (UCSF)
Matt Jacobson (UCSF)
Tack Kuntz (UCSF) 
Andrej Sali (UCSF) 
Brian Shoichet (UCSF) 
Chris Voigt (UCSF)

EVA
Burkhard Rost (Columbia U)
Alfonso Valencia (CNB/UAM)

BIOLOGY
Jeff Friedman (RU)
James Hudsped (RU)
Partho Ghosh (UCSD)
Alvaro Monteiro (Cornell U)
Stephen Krilis (St.George H)

GeMoA
LLuís Ballell (GSK)
Brigitte Gicquel (IP)
Olivier Neyrolles (IPBS)
Marc A. Marti-Renom (CNAG)
Matthias Wilmanns (EMBL)

FUNDING
CNAG
MINECO
Era-Net Pathogenomics
HFSP

MAMMOTH
Angel R. Ortiz

http://marciuslab.org
http://cnag.cat
http://integrativemodeling.org

OPEN POSITIONS!
Starting spring 2012

Thursday, February 16, 12

http://www.tropicaldisease.org
http://www.tropicaldisease.org
http://www.tropicaldisease.org
http://www.tropicaldisease.org
http://www.tropicaldisease.org
http://www.tropicaldisease.org

