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The “Chromatin Globule” model
D. Baù et al. Nat Struct Mol Biol (2011) 18:107-14
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Münkel et al. JMB (1999)

of the genome inferred from Hi-C. More gen-
erally, a strong correlation was observed between
the number of Hi-C readsmij and the 3D distance
between locus i and locus j as measured by FISH
[Spearman’s r = –0.916, P = 0.00003 (fig. S3)],
suggesting that Hi-C read count may serve as a
proxy for distance.

Upon close examination of the Hi-C data, we
noted that pairs of loci in compartment B showed
a consistently higher interaction frequency at a
given genomic distance than pairs of loci in com-
partment A (fig. S4). This suggests that compart-
ment B is more densely packed (15). The FISH
data are consistent with this observation; loci in
compartment B exhibited a stronger tendency for
close spatial localization.

To explore whether the two spatial compart-
ments correspond to known features of the ge-
nome, we compared the compartments identified
in our 1-Mb correlation maps with known genetic
and epigenetic features. Compartment A correlates
strongly with the presence of genes (Spearman’s
r = 0.431, P < 10–137), higher expression [via
genome-wide mRNA expression, Spearman’s
r = 0.476, P < 10–145 (fig. S5)], and accessible
chromatin [as measured by deoxyribonuclease I
(DNAseI) sensitivity, Spearman’s r = 0.651, P
negligible] (16, 17). Compartment A also shows
enrichment for both activating (H3K36 trimethyl-
ation, Spearman’s r = 0.601, P < 10–296) and
repressive (H3K27 trimethylation, Spearman’s
r = 0.282, P < 10–56) chromatin marks (18).

We repeated the above analysis at a resolution
of 100 kb (Fig. 3G) and saw that, although the
correlation of compartment A with all other ge-
nomic and epigenetic features remained strong
(Spearman’s r > 0.4, P negligible), the correla-
tion with the sole repressive mark, H3K27 trimeth-
ylation, was dramatically attenuated (Spearman’s
r = 0.046, P < 10–15). On the basis of these re-
sults we concluded that compartment A is more
closely associated with open, accessible, actively
transcribed chromatin.

We repeated our experiment with K562 cells,
an erythroleukemia cell line with an aberrant kar-
yotype (19). We again observed two compart-
ments; these were similar in composition to those
observed in GM06990 cells [Pearson’s r = 0.732,

Fig. 4. The local packing of
chromatin is consistent with the
behavior of a fractal globule. (A)
Contact probability as a function
of genomic distance averaged
across the genome (blue) shows
a power law scaling between
500 kb and 7 Mb (shaded re-
gion) with a slope of –1.08 (fit
shown in cyan). (B) Simulation
results for contact probability as
a function of distance (1 mono-
mer ~ 6 nucleosomes ~ 1200
base pairs) (10) for equilibrium
(red) and fractal (blue) globules.
The slope for a fractal globule is
very nearly –1 (cyan), confirm-
ing our prediction (10). The slope
for an equilibrium globule is –3/2,
matching prior theoretical expec-
tations. The slope for the fractal
globule closely resembles the slope
we observed in the genome. (C)
(Top) An unfolded polymer chain,
4000 monomers (4.8 Mb) long.
Coloration corresponds to distance
from one endpoint, ranging from
blue to cyan, green, yellow, or-
ange, and red. (Middle) An equi-
librium globule. The structure is
highly entangled; loci that are
nearby along the contour (sim-
ilar color) need not be nearby in
3D. (Bottom) A fractal globule.
Nearby loci along the contour
tend to be nearby in 3D, leading
to monochromatic blocks both
on the surface and in cross sec-
tion. The structure lacks knots.
(D) Genome architecture at three
scales. (Top) Two compartments,
corresponding to open and closed
chromatin, spatially partition the
genome. Chromosomes (blue, cyan,
green) occupy distinct territories.
(Middle) Individual chromosomes
weave back and forth between
the open and closed chromatin
compartments. (Bottom) At the
scale of single megabases, the chromosome consists of a series of fractal globules.
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PolII

HBB

Eraf

Factory

in-out position of active genes, relative to factories, was related to
differential positioning relative to the chromosome territory. To test
this, we assessed the position of the infrequently transcribed gene Uros
relative to the chromosome 7 territory (Supplementary Fig. 2 online).
Although Uros is actively transcribed only 29% of the time, it was
found outside its chromosome territory in 79% of cases. In contrast,
the inactive gene Fgfr2 was outside the chromosome territory in only
19% of cases (Supplementary Fig. 2 online). These results confirm
that expressed genes are often located outside chromosome territories
and inactive genes are more often inside chromosome territories. But
these data do not show a correlation between positioning relative to
the chromosome territory and the on-off transcriptional behavior of
active genes. Instead, our data suggest that genes with transcriptional
potential are preferentially located outside chromosome territories,
but this alone is not sufficient for transcription.

RNAP II factories are limiting in vivo
We noticed that the number of RNAP II foci in erythroid cells was
markedly lower than that reported for fibroblast-like cell lines. Figure 6
shows deconvoluted, projected images derived from 3D image stacks
showing all the RNAP II transcription factories in single cell nuclei

from various tissues. We found that erythroid cells had, on average,
only 100–300 RNAP II foci per nucleus. Many other tissue types
have equivalent numbers of RNAP II foci, suggesting that erythroid
cells do not have abnormally low numbers of RNAP II foci.
In contrast, limited-passage mouse embryonic fibroblasts (MEFs)
have a much greater number and higher density of RNAP II foci,
similar to previous reports for HeLa and fibroblast cell lines. We
conclude that the number of transcription factories in tissues is far
more restricted than indicated by previous estimates from cultured
cells. It is, perhaps, not surprising that colocalization of transcribed
genes was not observed in a recent study using cultured fibroblast-like
cells27. Our data indicate that erythroid and other differentiated or
committed tissue types have a limited number of available transcription
sites. Coupled with estimates from expressed-sequence tag databases,
which show that erythroid cells express at least 4,000 genes (data not
shown), we conclude that many genes are obliged to seek out and
share the same factory.

3C analysis
Finally, we corroborated the colocalization of transcribed alleles by a
completely independent method. 3C generates a population-average
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Figure 6 Comparison of RNAP II foci in several tissue types and MEFs. (a) Deconvoluted maximum-intensity projections of image stacks of nuclei
immunostained for RNAP II. E10, embryonic blood; E14, fetal liver erythroid; AS, adult anemic spleen erythroid; Sp, normal adult spleen; Th, adult thymus;
Br, fetal brain. Scale bar, 10 mm. (b) Numbers of RNAP II foci counted for each nucleus shown in a.

Figure 5 Actively transcribed genes colocalize to
shared transcription factories. (a) Single optical
section of a triple-label DNA immuno-FISH on
erythroid cell, showing Hbb (green), Eraf (red)
and RNAP II foci (blue). The merged and
separate channels of the signals are shown in the
side panels. On the left of the main panel, an
Hbb signal alone associates with an RNAP II
focus. On the right, two colocalizing signals
associate with the same RNAP II focus. Scale
bar, 5 mm. (b) A separate optical section of the
same cell showing the second Eraf allele, which
does not associate with an RNAP II focus.
(c) Box and whiskers plot of the distributions of
3D measurements of the separation distance
between Hbb and Eraf loci (n ¼ 84), divided into
RNAP II–associated versus nonassociated.
(d) Triple-label RNA immuno-FISH on erythroid
cell showing Hbb-b1 (red), Eraf (green) and
RNAP II (blue). Left panels, colocalized trans-
cription signals associating with the same RNAP
II focus. Right panels, separate transcription
signals associating with distant RNAP II foci.
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Caulobacter crescentus 3D genome
M.A. Umbarger, et al. Molecular Cell (2011) 44:252–264 
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Biomolecular structure determination
2D-NOESY data

Chromosome structure determination
5C data
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5C technology
http://my5C.umassmed.edu

Dostie et al. Genome Res (2006) vol. 16 (10) pp. 1299-309
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Integrative Modeling
http://www.integrativemodeling.org

P1 P2

P1 P2

P1 P2

these regions (Gruber and Errington, 2009; Sullivan et al., 2009).
Thus, the data presented here, which demonstrate that the
centromeric region of a bacterial chromosome is particularly
compact in vivo, connect SMC’s previously noted effects upon
chromosome segregation and compaction.

Our models also elucidate the detailed arrangement of the
arms of the chromosome and demonstrate that the chromo-
somal arms are arranged in a periodic fashion. Interestingly, a
helical arrangement of newly replicated DNA has been observed
in B. subtilis (Berlatzky et al., 2008). While themechanism behind
such a periodic arrangement in Caulobacter and/or B. subtilis is
yet to be unraveled, such arrangements could represent an
energetic minimum (Maritan et al., 2000). Alternatively, these
highly regular folding patterns could be the consequence of
interactions between the genome and helically arranged cyto-
skeletal proteins such as MreB (Gitai and Shapiro, 2003).

We find that opposite-arm loci equidistant from the parS
elements are aligned at similar positions along the long axis of
the wild-type swarmer cell chromosome structure. However, the
inversions in strains ET163 and ET166 yield regions of the struc-
ture in which opposite-arm loci are no longer well aligned. These
misalignments suggest that there are additional constraints on
the positioning of loci along the long axis of the structure/cell. In
keeping with the segregation-based model posed above, the
inversions in strains ET163 and ET166 could affect the timing of
segregation of opposite arm loci and thereby influence the align-
ment and positioning of the arms of the chromosome.

Scale bar = 2 µm
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Figure 7. The Caulobacter Chromosome Is Free to
Rotate around the Long Cell Axis
(A) Left: Schematic of a Caulobacter swarmer cell indi-

cating the positions of the new and old poles as well as the

dorsal and ventral sides of the cell. Negative and positive

signs refer to the convention used by our image analysis

software. Center: Example micrographs of double-labeled

Caulobacter swarmer cells showing configurations of the

chromosome in which the labeled loci reside on opposite

sides of the cell. Right: Relative positions of the left- and

right-arm markers in three strains marked at different

positions in the chromosome. Circles denote the means of

three experiments, each of which included at least 400

cells. Bars represent 95% confidence intervals of the

mean. The dotted line indicates the expected value for a

distribution in which loci have no preferential localization

along the short axis.

(B) Virtual cell showing the distribution of !200,000 LacI-

CFP foci along the short and long axes of the cell. Left:

Markers on the right arm. Center: Markers on the left arm.

Right: Merge of the two arms. Note that the two arms are

equally distributed along the short cell axis.

Our microscopy studies indicate that loci
have no preferential locations about the short
axis of the cell and therefore that the chromo-
some has no preferential orientation about this
axis. Therefore, the parS sites represent the
only sequence elements that stably anchor the
chromosome to the cell. Such a finding is con-
sistent with recent simulations, which have
illustrated that anchoring near the origin alone

is sufficient to yield the overall linear arrangement of loci
observed in swarmer cells (Buenemann and Lenz, 2010).
However, it remains possible that events such as transertion
(Woldringh, 2002), the simultaneous transcription, translation,
and insertion of membrane proteins into the cellular envelope,
may transiently couple the genome to the membrane.
In eukaryotes the subnuclear localization of genes is some-

times correlated with their expression (Andrulis et al., 1998;
Kosak et al., 2002). In most cases cause-and-effect relationships
for these correlations are unclear. In cases where the subnuclear
position of a gene could be experimentally altered, the resulting
gene expression changes were small (Finlan et al., 2008; Ku-
maran and Spector, 2008). Our observation that genome-wide
rotation resulting from relocalization of the parS sites did not
dramatically alter gene expression is in line with these eukaryotic
studies. Although a number of genes were affected, the effect
was typically less than 2-fold. Thus, the precise position of a
gene along the long axis of the cell does not strongly influence
its expression. Additionally, it is unlikely that the perturbed ge-
nome conformations observed in our inversion strains are the
result of large-scale transcriptional changes. Instead, the struc-
tural changes observed in the strains are likely the result of
changes in the order of loci segregation caused by the move-
ment of the parS sites.
The work presented here illustrates how a comprehensive

studyof genome3Darchitecture canprovide insight into the roles
of sequence elements and fundamental DNA-based processes

Molecular Cell

The 3D Architecture of a Bacterial Genome

262 Molecular Cell 44, 252–264, October 21, 2011 ª2011 Elsevier Inc.
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 169 5C primers on + strand
 170 5C primers on – strand

 28,730 chromatin interactions
~13Kb

The 3D architecture of Caulobacter Crescentus
4,016,942  bp & 3,767 genes
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5C interaction matrix
ELLIPSOID for Caulobacter cresentus
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3D model building with the 5C + IMP approach
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Genome organization in Caulobacter crescentus
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16
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Moving the parS sites 400 Kb away from Ori
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Moving the parS sites results in whole genome rotation!
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Moving the parS sites results in whole genome rotation!
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Genome architecture in Caulobacter
M.A. Umbarger, et al. Molecular Cell (2011) 44:252–264 

ParS

dense

dense

?

Friday, September 28, 12



From Sequence to Function
D. Baù and M.A. Marti-Renom Chromosome Res (2011) 19:25-35.

Function!

Funtion!
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