

Automated Analysis and Three-Dimensional Modeling of Genomic Domains

Davide Baù and François Serra Genome Biology Group (CNAG) Structural Genomics Group (CRG)

Tutorial outline

Theory Practice

Morning Chromatin structure and Hi-C data The Integrative Modeling Platform applied to chromatin TADbit introduction and installation

AfternoonTopologically Associated Domains detection and analysis3D modeling of real Hi-C dataAnalysis of the results

Structural Genomics Group

http://www.marciuslab.org

The genome is not linearly organized

Diversity of representations NO LINK to 1D and LINK to 1D and

Resolution gap Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, e1002125 (2011)

Know	edge								
Jost Ky					IDM			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
10 ⁰		10 ³			10 ⁶			DNA length	nt
					10				1
10-9 10-6			10^{-3} 10^{0}				Volume	3	
10	10		10		10			10	μm
								Time	
10 ⁻¹⁰	10 ⁻⁸	10 ⁻⁶	10 ⁻⁴	10 ⁻²		10 ⁰	10 ²	10 ³	S
								Resolution	
10 ⁻³			10 ⁻²				10 ⁻¹	nesolution	μ

Chromatin structure: different levels of organization

The nuclear organization of DNA

Adapted from Richard E. Ballermann, 2012

Chromatin definition

Chromatin is composed of DNA complexed with histones and other proteins

Chromatin formation enables the genome to be hierarchically packaged or condensed so that it can fit inside the nuclear space

The compaction allows to modulate gene transcription, DNA repair, recombination, and replication

Chromatin structure is considered highly dynamic

The nucleosome

The role of chromatin structure

Data used for chromatin structure determination

Restrain based modeling (IMP)

Hi-C technology

Lieberman-Aiden, E. et al. Science 326, 289–293 (2009). http://3dg.umassmed.edu

Structure determination using Hi-C data

Biomolecular structure determination 2D-NOESY data

Chromosome structure determination 3C-based data

UCSF The Integrative Modeling Platform framework

http://www.integrativemodeling.org Russel, D. et al. PLOS Biology 10, e1001244 (2012).

From Alber, F. et al. Nature 450, 695–701 (2007).

The four stages of integrative modeling

Model representation and scoring

Constituent parts of the molecule

3C-like data to spatial distances

Neighbor fragments

Non-Neighbor fragments

Parameter optimization

Model representation and scoring

Constituent parts of the molecule

Optimization of the scoring function

Clustering and structural features

Integrative Modeling

http://www.integrativemodeling.org

Genome compartments

Topologically Associating Domains (TADs)

Topologically associating domains (TADs) can be made of up to hundreds of kb in size

Loci located within TADs tend to interact more frequently with each other than with loci located outside their domain

The human and mouse genomes are each composed of over 2,000 TADs, covering over 90% of the genome

Take home message

3C-like data: what can we get out of them?

Human α -globin domain

ENm008 genomic structure and environment

ENCODE Consortium. Nature (2007) vol. 447 (7146) pp. 799-816

Long-range interactions

rioquoney contact map antoroneos

Chromatin compaction

Summary 5C data results in consistent 3D models

Toy interaction matrix

Toy interaction matrix

Real interaction matrix

Real interaction matrix

3D model building with the 5C + IMP approach

Genome organization in Caulobacter crescentus

Arms are helical

Genome organization in Caulobacter crescentus

Arms are helical

MIRRORS!

Moving the parS sites 400 Kb away from Ori

Moving the parS sites results in whole genome rotation!

Arms are STILL helical

Structure & function PRESERVED!!!

Take home message

Chromatin = DNA + (histone) proteins

The genome is well organized and hierarchically packaged

Histone modifications affect chromatin structure and activity

3C-like data measure the frequency of interaction between distant loci

