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Stage 1: Gathering Information. Information is collected in the form of data
from wet lab experiments, as well as statistical tendencies such as atomic
statistical potentials, physical laws such as molecular mechanics force fields, and
any other feature that can be converted into a score for use to assess features of a
structural model.

Stage 2: Choosing How To Represent And Evaluate Models. The
resolution of the representation depends on the quantity and resolution of the
available information and should be commensurate with the resolution of the
final models: different parts of a model may be represented at different
resolutions, and one part of the model may be represented at several different
resolutions simultaneously. The scoring function evaluates whether or not a given
model is consistent with the input information, taking into account the
uncertainty in the information.

Stage 3: Finding Models That Score Well. The search for models that score
well is performed using any of a variety of sampling and optimization schemes
(such as the Monte Carlo method). There may be many models that score well if
the data are incomplete or none if the data are inconsistent due to errors or
unconsidered states of the assembly.

Stage 4: Analyzing Resulting Models and Information. The ensemble of
good-scoring models needs to be clustered and analyzed to ascertain their
precision and accuracy, and to check for inconsistent information. Analysis can
also suggest what are likely to be the most informative experiments to perform in
the next iteration.

Integrative modeling iterates through these stages until a satisfactory model is
built. Many iterations of the cycle may be required, given the need to gather more
data as well as to resolve errors and inconsistent data.
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Advantages

Using New Information. Integrative modeling makes it easy to take advantage
of new information and new types of information, resulting in a low barrier for
using incremental information that is generally not applied to structure
characterization. Even when a single data type is relatively uninformative,
multiple types can give a surprisingly complete picture of an assembly [9,10].

Maximizing Accuracy, Precision and Completeness. Integrative models fit
multiple types of information, and can thus be more accurate, precise, and
complete than models based on the individual sources.

Understanding and Assessing the Models. By exhaustively sampling the
space of models fitting the information, integrative modeling can find all models
fitting the information, not only one. A full sampling of the models of a structure
can improve the understanding of its function [49]. Because the data are encoded
in scoring functions and the full set of models can be found, integrative modeling
facilitates assessing the input information and output models in terms of
precision and accuracy.

Planning Experiments. Integrative modeling provides feedback to guide
future experiments, by computationally testing the impact of hypothetical
datasets. As a result, experiments can be chosen to best improve our knowledge
of the assembly.

Understanding and Assessing Experimental Accuracy. Data errors present
a challenge for all methods of model building. Integrative modeling can detect
inconsistent data as no models will exist that fit all the data. In addition,
integrative modeling facilitates the application of more sophisticated methods for
error estimation, such as Inferential Structure Determination [16].
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Chromosome size

Complex genome organization

Takizawa, T., Meaburn, K. J. & Misteli, T. The meaning of gene positioning. Cell 135, 9-13 (2008).
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Complex genome organization
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Biomolecular structure determination
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Chromosome Conformation Capture
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Chromosome Conformation Capture
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Modeling 3D Genomes

Bav, D. & Marti-Renom, M. A. Methods 58, 300-306 (2012).
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Human o-globin domain
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Human oi-globin domain
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Human oi-globin domain
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Representation
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Clustering
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Not just one solution

GM12878 K562

chag



GM12878

Cluster #1

2780 model
100 1
80 1
60 1

— 40 1

ES 20 1

g o0

c

(V]

==

<2 100

4

(S 80 1
60 1
40 1
20 1

Consistency

K562

Cluster #2
314 model

GM15878

]

il

‘ 1 e 150 NM
E’. — 125 Nnm

—— 100 nm

75 nm

‘ 50 nm

h

=

¥l

e 150 Nm
— 125 Nnm
ﬂ —— 100 nm

L

Fragment

"I [ 75 nm
50 nm
—— I
[ l_,-l

chag



GM12878

Cluster #1

2780 model
100 1
80 1
60 1

— 40 1

ES 20 1

g o0

c

(V]

==

<2 100

4

(S 80 1
60 1
40 1
20 1

Consistency

K562

Cluster #2
314 model

GM15878

]

il

‘ 1 e 150 NM
E’. — 125 Nnm

—— 100 nm

75 nm

‘ 50 nm

h

=

¥l

e 150 Nm
— 125 Nnm
ﬂ —— 100 nm

L

Fragment

"I [ 75 nm
50 nm
—— I
[ l_,-l

chag



Regulatory elements

GM12878 K562

2760 mod Cluster #2
2780 model Cluster #2
25 ——a— Promoters
GM12878 Active genes

——a—— CTCF sites
——sa—— DNasel sites

2.0 H3K4me3 sites
—ae— No-active genes

8
]

° 1.5
= 3
2
©
1,000 - >

= 1.0
ol
-1 )
o

o]
o
o
1
o
1

—_
£ . K562
c
— 600 - 0 T T T T T T
8 <50 <100 <150 <200 <250 <300 <350 <400
c Distance to center (nm)
© - L
& 400 2 3 GM12878 2.50 e Promoters
—— _ . K562 Active genes
()] ——e— CTCF sites
= ) —=a—— DNasel sites
200 N =22\ ) [] L 2.00 H3K4me3 sites
L s - I ——e— No-active genes
| B ®
o
c
o o ° ° (X} ° ] ° LX) ° oo o ° (K] K562 (1] -
0 T e o e Y . . ° ° o o ° GM12878 §1'50
2
©
21.00-
©
2
.50
-00 1 T T T T T

<50 <100 <150 <200 <250 <300 <350 <400
Distance to center (nm)

chag



Density (bp/1nm)

CCEM12878

2780 model

110 -
100

Compaciness

K562

Cluster #2
314 model

90
80 -
70
60
90

40 -

i F- [ GM12878

Fragment

chag



Path length (nm)

Multi-loops

GM12878 K562

Cluster #1 Cluster #2
2780 model 314 model
700 - 68Kb 64Kb >=050
1 GM12878 44Kb
600 50Kb 65Kb
500: 45Kb 52Kb ’g‘
] @ | 205
200- 20Kb 35Kb -§_ =
300- S|
o o e e ° ° ° o o ° sl
3007 ° ° ° e ' e ° oo ° oo o ° o0 S| t161
| § |
400 - 20
] 8
o [
5001 £ | k117
] 55Kb =
7004 K562 55Kb =
68Kb 69Kb = 73

chag



Expression
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FISH validation
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The “Chromatin Globule” model
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Caulobacter crescentus genome
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The 3D architecture of Caulobacter Crescentus
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Minus Probe Genome Position (mbp)
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Genome organization in Caulobacter crescentus
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Minus Probe Genome Position (mbp)
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Genome architecture in Caulobacter
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<

dens

M.A. Umbarger, et al. Molecular Cell (2011) 44:252-264

chag



From Sequence to Function
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D. Bau and M.A. Marti-Renom Chromosome Res (2011) 19:25-35.
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Bridging the Resolution Gap in Structural Modeling of 3D

Genome Organization
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Abstract: Over the last decade, and especially after the
advent of fluorescent in situ hybridization imaging and
chromosome conformation capture methods, the avail-
ability of experimental data on genome three-dimensional
organization has dramatically increased. We now have
access to unprecedented details of how genomes
organize within the interphase nucleus. Development of
new computational approaches to leverage this data has
already resulted in the first three-dimensional structures
of genomic domains and genomes. Such approaches
expand our knowledge of the chromatin folding princi-
ples, which has been classically studied using polymer
physics and molecular simulations. Our outlook describes
computational approaches for integrating experimental
data with polymer physics, thereby bridging the resolu-
tion gap for structural determination of genomes and
genomic domains.

This is an ‘“Editors’ Outlook” article for PLoS
Computational Biology

Recent  experimental and computational advances —are
resulting in an increasingly accurate and detailed characterization
of how genomes are organized in the three-dimensional (3D) space
of the nucleus (Figure 1) [1]. At the lowest level of chromatin
organization, naked DNA is packed into nucleosomes, which
forms the so-called chromatin fiber composed of DNA and
proteins. However, this initial packing, which reduces the length of
the DNA by about seven times, is not sufficient to explain the
higher-order folding of chromosomes during interphase and
metaphase. It is now accepted that chromosomes and genes are
non-randomly and dynamically positioned in the cell nucleus
during the interphase, which challenges the classical representa-
tion of genomes as linear static sequences. Moreover, compart-
mentalization, chromatin organization, and spatial location of
genes are associated with gene expression and the functional status
of the cell. Despite the importance of 3D genomic architecture,
we have a limited understanding of the molecular mechanisms that
determine the higher-order organization of genomes and its
relation to function. Computational biology plays an important
role in the plethora of new technologies aimed at addressing this
knowledge gap [2]. Indeed, Thomas Cremer, a pioneer in study-
ing nuclear organization using light microscopy, recently high-
lighted the importance of computational science in complement-
ing and leveraging experimental observations of genome organi-
zation [2]. Therefore, computational approaches to integrate
experimental observations with chromatin physics are needed to
determine the architecture (3D) and dynamics (4D) of genomes.

We present two complementary approaches to address this
challenge: (i) the first approach aims at developing simple polymer
models of chromatin and determining relevant interactions (both

- PLoS Computational Biology | www.ploscompbiol.org

physical and biological) that explain experimental observations; (ii)
the sccond approach aims at integrating diverse experimental
observations into a system of spatial restraints to be satisfied,
thereby constraining possible structural models of the chromatin.
The goal of both approaches is dual: to obtain most accurate 3D
and 4D representation of chromatin architecture and to under-
stand physical constraints and biological phenomena that determine
its organization. These approaches are reminiscent of the protein-
folding field where the first strategy was used for characterizing
protein “foldability” and the second was implemented for modeling
the structure of proteins using nuclear magnetic resonance and
other experimental constraints. In fact, our outlook consistently
returns to the many connections between the two fields.

What Does Technology Show Us?

Today, it is possible to quantitatively study structural features of
genomes at diverse scales that range from a few specific loci,
through chromosomes, to entire genomes (Table 1) [3]. Broadly,
there are two main approaches for studying genomic organization:
light microscopy and cell/molecular biology (Figure 2). Light
microcopy [4], both with fixed and living cells, can provide images
of a few loci within individual cells [5,6], as well as their dynamics
as a function of time [7] and cell state [8]. On a larger scale, light
microscopy combined with whole-chromosome staining reveals
chromosomal territories during interphase and their reorganiza-
tion upon cell division. Immunofluorescence with fluorescent
antibodies in combination with RNA, and DNA fluorescence in
situ hybridization (FISH) has been used to determine the co-
localization of loci and nuclear substructures.

Using cellular and molecular biology, novel chromosome
conformation capture (3C)-based methods such 3C [9], 3C-on-
chip or circular 3C (the so-called 4C) [10,11], 3C carbon copy
(5C) [12], and Hi-C [13] quantitatively measure frequencies of
spatial contacts between genomic loci averaged over a large
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The three-dimensional folding of the o-globin gene
domain reveals formation of chromatin globules

Davide Bait 4 4, Bryan R Lo Mg Byron,
Job Dekker’ & Marc A Mart Renom'
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