Comparative Protein Structure Prediction

Bioinformatics Master, Universidad de Valencia 20 Abril, 2015 Francisco Martínez-Jiménez - <u>fmartinez@pcb.ub.es</u>

Monday, April 20, 15

TO LEARN HOW-TO MODEL A 3D-STRUCTURE FROM A SEQUENCE AND A KNOWN STRUCTURE

DISCLAIMER!

Structural Genomics @CNAG · CRG

home Prot. resources people RNA resources research software publications

presentations

Bioinformatics Resources

Name	Туре	World Wide Web address
DATABASES		
CATH	S	http://www.biochem.ucl.ac.uk/bsm/cath/
DBAli	s	http://www.salilab.org/DBAli/
GenBank	S	http://www.ncbi.nlm.nih.gov/Genbank/GenbankSearch.html
GeneCensus	S	http://bioinfo.mbb.yale.edu/genome
MODBASE	s	http://salilab.org/modbase/
MSD	S	http://www.ebi.ac.uk/msd/
NCBI	S	http://www.ncbi.nlm.nih.gov/
PDB	S	http://www.rcsb.org/pdb/
PSI	s	http://www.nigms.nih.gov/psi/
Sacch3D	S	http://genome-www.stanford.edu/Sacch3D/
SCOP	S	http://scop.mrc-Imb.cam.ac.uk/scop/
TIGR	s	http://www.tigr.org/tdb/mdb/mdbcomplete.html
TrEMBL	S	http://srs.ebi.ac.uk/
FOLD ASSIGN	IMENT	
123D	S	http://123d.ncifcrf.gov/
3D-PSSM	S	http://www.sbg.bio.ic.ac.uk/~3dpssm/index2.html
BIOINBGU	S	http://www.cs.bgu.ac.il/~bioinbgu/
BLAST	S	http://www.ncbi.nlm.nih.gov/BLAST/
DALI	S	http://www.ebi.ac.uk/dali/
FASS	S	http://ffas.ljcrf.edu
FastA	S	http://www.ebi.ac.uk/fasta3/
FRSVR	S	http://fold.doe-mbi.ucla.edu/

http://sgt.cnag.cat/www/software/?prot_resources

Nomenclature

Homology: Sharing a common ancestor, may have similar or dissimilar functions

Similarity: Score that quantifies the degree of relationship between two sequences.

Identity: Fraction of identical aminoacids between two aligned sequences (case of similarity).

Target: Sequence corresponding to the protein to be modeled.

Template: 3D structure/s to be used during protein structure prediction.

Model: Predicted 3D structure of the target sequence.

Restraint: a measure or condition that keeps something under control.

Nomenclature

Fold: Three dimensional conformation of a protein sequence (usually at domain level).

Domain: Structurally globular part of a protein, which may independently fold.

Secondary Structure: Regular subdomain structures composed by alphahelices, beta-sheets and coils (or loops).

Backbone: Protein structure skeleton composed by the carbon, nitrogen and oxygen atoms.

Side-Chain: Specific atoms identifying each of the 20 residues types.

Principles of protein structure

GFCHIKAYTRLIMVG...

Folding (physics) *Ab initio* prediction

D. Baker & A. Sali. Science 294, 93, 2001.

Comparative Modeling

Intro to comparative protein structure prediction

http://www.salilab.org/modeller/tutorial/

Comparative modeling by satisfaction of spatial restraints MODELLER

A. Šali & T. Blundell. J. Mol. Biol. 234, 779, 1993.
J.P. Overington & A. Šali. Prot. Sci. 3, 1582, 1994.
A. Fiser, R. Do & A. Šali, Prot. Sci., 9, 1753, 2000.

Types of homology modeling

Moulding: iterative alignment, model building, model assessment

John, Sali (2003). NAR pp31 3982

Genetic algorithm operators

Composite model assessment score

• Weighted linear combination of several structural properties:

MINIMIZE!!

 $Z = 0.17 \ Z(P_P) + 0.02 \ Z(P_s) + 0.10 \ Z(S_c) + 0.26 \ Z(H_a) + 0.45 \ (A_s)$

John, Sali (2003). NAR pp31 3982

Application to a difficult modeling case 1BOV-1LTS

Sequence identity 4.4%

Initial model C α RMSD 10.1Å

Final model C α RMSD 3.6Å

Benchmark with the "very difficult" test set

D. Fischer threading test set of 68 structural pairs (a subset of 19)

	Soguenee		Initial prediction		Final prediction		Best prediction	
Target -template	Sequence identity	Coverage	$\mathbf{C}\alpha$ RMSD	CE overlap	$\mathbf{C}\alpha$ RMSD	CE overlap	$\mathbf{C}\alpha$ RMSD	CE overlap
	[%]	[% aa]	[Å]	[%]	[Å]	[%]	[Å]	[%]
1ATR-1ATN	13.8	94.3	19.2	20.2	18.8	20.2	17.1	24.6
1BOV-1LTS	4.4	83.5	10.1	29.4	3.6	79.4	3.1	92.6
1CAU-1CAU	18.8	96.7	11.7	15.6	10.0	27.4	7.6	47.4
1COL-1CPC	11.2	81.4	8.6	44.0	5.6	58.6	4.8	59.3
1LFB-1HOM	17.6	75.0	1.2	100.0	1.2	100.0	1.1	100.0
1NSB-2SIM	10.1	89.2	13.2	20.2	13.2	20.1	12.3	26.8
1RNH-1HRH	26.6	91.2	13.0	21.2	4.8	35.4	3.5	57.5
1YCC-2MTA	14.5	55.1	3.4	72.4	5.3	58.4	3.1	75.0
2AYH-1SAC	8.8	78.4	5.8	33.8	5.5	48.0	4.8	64.9
2CCY-1BBH	21.3	97.0	4.1	52.4	3.1	73.0	2.6	77.0
2PLV-1BBT	20.2	91.4	7.3	58.9	7.3	58.9	6.2	60.7
2POR-2OMF	13.2	97.3	18.3	11.3	11.4	14.7	10.5	25.9
2RHE-1CID	21.2	61.6	9.2	33.7	7.5	51.1	4.4	71.1
2RHE-3HLA	2.4	96.0	8.1	16.5	7.6	9.4	6.7	43.5
3ADK-1GKY	19.5	100.0	13.8	26.6	11.5	37.7	7.7	48.1
3HHR-1TEN	18.4	98.9	7.3	60.9	6.0	66.7	4.9	79.3
4FGF-81IB	14.1	98.6	11.3	24.0	9.3	30.6	5.4	41.2
6XIA-3RUB	8.7	44.1	10.5	14.5	10.1	11.0	9.0	34.3
9RNT-2SAR	13.1	88.5	5.8	41.7	5.1	51.2	4.8	69.0
AVERAGE	14.2	85.2	9.6	36.7 5	7.7	44.8	6.3	57.8

Threading / Fold recognition

It is estimated there are only around 1000 to 10.000 stable folds in nature

Fold recognition is essentially finding the best fit of a sequence to a set of candidate folds

Find the best way to "mount" the residue sequence of one protein on a known structure taken from another protein

for each fold estimate the probability that the sequence can have that fold

Finding the best "fold"

- H bond donor
- H bond acceptor
- Glycin
- Hydrophobic

Threading software

TOPITS: Heuristic Threader, part of larger structure prediction system.

3DPSSM: Integrated system, does its own MSA and secondary structure predictions and then threading. (<u>http://ww.sbg.bio.ic.ac.uk/~3dpssm/index2.html</u>)

GenThreader: Similar to 3DPSSM (<u>http://bioinf.cs.ucl.ac.uk/psipred/</u>)

Model Assessment (Potentials of Mean Force)

"The native structure generally has the lowest free energy of all states under the native conditions"

Scoring Statistical Potential (inspiration)

$$K = \frac{\begin{bmatrix} AB \end{bmatrix}}{\begin{bmatrix} A \end{bmatrix} \cdot \begin{bmatrix} B \end{bmatrix}}$$
$$\Delta G = -RT \ln(K) = -RT \ln \frac{\begin{bmatrix} AB \end{bmatrix}}{\begin{bmatrix} A \end{bmatrix} \cdot \begin{bmatrix} B \end{bmatrix}}$$

From statistical physics, we know that energy difference between two states (ΔE) and the ratio of their occupancies (N₁:N₂) are related [9]:

$$\Delta E = -kT \ln \left(\frac{N_1}{N_2}\right) \tag{1}$$

in which T is the absolute temperature and k is the Boltzmann's constant. As we are interested in an interaction energy between two amino acid side chains, it would seem natural to define N_1 as the number of interactions between these two residues types in a group of real protein structures, a number which is readily available from simple database analysis. But this number must be compared with the number of interactions in some other system, N_2 , to obtain the energy difference between them.

Tanaka and Sheraga (1975) PNAS, **72** pp3802 **Sippl, (1990) J.Mo.Biol. 213 pp859** Godzik, (1996) Structure **15** pp363

Scoring Significance of an alignment (score)

"Energy" Z-score the model with respect the energy of random models (or rest of decoys).

$$Zscore = \frac{\left(\langle E \rangle - E_{m} \right)}{\sigma_{E}}$$

ProSa

http://www.came.sbg.ac.at/prosa.php

Scoring $\Delta G = -RT \ln(K) = -RT \ln \frac{[AB]}{[A] \cdot [B]}$ σ_{F} <E> $Zscore = \frac{\left(\langle E \rangle - E_{m}\right)}{\sigma_{E}}$

Understanding ProSa evaluation score

DOPE (MODELLER)

http://www.salilab.org/modeller/

Deriving

Structural space

Scoring

Pseudo-Energy with respect a ideal spherical protein as a reference state

Figure 1. Schematic representation of the reference state. (A) An illustration showing why only a fraction of a spherical shell generally contributes to the normalization function (Equation 3). (B) A pair of noninteracting atoms in a protein is modeled by two points positioned randomly inside a sphere with radius a; the points are at distance r from each other. The normalization function n(r) in Equation 7 corresponds to repeating this random assignment for an infinite number of times. (C) The definition of terms used to write Equations 8–11. The large and small spheres are the reference and probe spheres, respectively.

Shen, Min–yi, and Andrej Sali. "Statistical potential for assessment and prediction of protein structures." *Protein science* 15.11 (2006): 2507-2524.

DFIRE/DFIRE2

http://sparks.informatics.iupui.edu/yueyang/DFIRE/dDFIRE_

<u>service</u>

Deriving

Structural space

Scoring

Pseudo-Energy with respect a ideal gas-phase reference state

Verify3D

http://nihserver.mbi.ucla.edu/Verify_3D/

Monday, April 20, 15

Accuracy and applicability of comparative models

Comparative modeling by satisfaction of spatial restraints Types of errors and their impact

Template - Model - Real Structure

Marti-Renom etal. Ann Rev Biophys Biomol Struct (2000) 29, 291

Monday, April 20, 15

Model Accuracy

HIGH ACCURACY

NM23 Seq id 77% Cα equiv 147/148 RMSD 0.41Å

Sidechains Core backbone Loops

MEDIUM ACCURACY

CRABP Seq id 41%

Cα equiv 122/137 RMSD 1.34Å

Sidechains Core backbone Loops Alignment

X-RAY / MODEL

Marti-Renom et al. Annu.Rev.Biophys.Biomol.Struct. 29, 291-325, 2000.

LOW ACCURACY

EDN Seq id 33%

Cα equiv 90/134 RMSD 1.17Å

Utility of protein structure models, despite errors

D. Baker & A. Sali. Science 294, 93, 2001.

Comparative Protein Structure Prediction MODELLER tutorial

\$>mod9v14 model.py

The current release of Modeller is 9.14, which was released on July 29th, 2014

Obtaining MODELLER and related information

♦ MODELLER (9v14) web page

http://www.salilab.org/modeller/

- Download Software (Linux/Windows/Mac)
- ♦ HTML Manual
- Online tutorial.
- ♦ The password is...

Using MODELLER

No GUI! Controlled by command file Script is written in PYTHON language You may know Python language is simple

"MINIMAL" MODELLER

♦INPUT:

- Target Sequence (FASTA/PIR format)
- Template Structure (PDB format)
- Python script file
- OUTPUT:
 - Target-Template Alignment
 - Model in PDB format
 - Additional data (in .log)

Modeling of BLBP Input

Target: Brain lipid-binding protein (BLBP)
BLBP sequence in PIR (MODELLER) format:

blbp.seq

>P1;blbp

sequence:blbp::::::::

VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSIDDRNCKSVVRLDGD KLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA*

Modeling of BLBP STEP 1: Align blbp and 1hms sequences Python script for target-template alignment

align.py

```
# Example for: alignment.align()
# This will read two sequences, align them, and write the alignment
# to a file:
log.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file='lhms')
aln.append_model(mdl, align_codes='lhms')
aln.append(file='blbp.seq', align_codes=('blbp'))
# The asl.sim.mat similarity matrix is used by default:
aln.align(gap_penalties_ld=(-600, -400))
aln.write(file='blbp-lhms.ali', alignment_format='PIR')
aln.write(file='blbp-lhms.pap', alignment_format='PAP')
```

Run by typing mod9v11 align.py in the directory where you have the python file. MODELLER will produce a align.log file

Modeling of BLBP STEP 1: Align blbp and 1hms sequences Python script for target-template alignment

```
Example for: alignment.align()
 This will read two sequences, align them, and write the alignment
 to a file:
log.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file='1hms')
aln.append model(mdl, align codes='1hms')
aln.append(file='blbp.seg', align codes=('blbp'))
# The asl.sim.mat similarity matrix is used by default:
aln.align(gap_penalties_1d=(-600, -400))
        e(file='blbp-1hms.ali', alignment format='PIR')
aln.wr
aln.write(file='blbp-1hms.pap', alignment format='PAP')
```

Run by typing mod9v11 align.py in the directory where you have the python file. MODELLER will produce a align.log file
Modeling of BLBP STEP 1: Align blbp and 1hms sequences Python script for target-template alignment

```
Example for: alignment.align()
 This will read two sequences, align them, and write the alignment
 to a file:
log.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file='1hms')
aln.append model(mdl, align codes='1hms')
aln.append(file='blbp.seq', align_codes=('blbp'))
# The as1.sim.mat similarity matrix is used by default:
aln.align(gap_penalties_1d=(-600, -400))
aln.write(file='blbp-1hms.ali', alignment_format='PIR')
aln.write(file='blbp-1hms.pap', alignment_format='PAP')
```

Run by typing mod9v11 align.py in the directory where you have the python file. MODELLER will produce a align.log file

Modeling of BLBP STEP 1: Align blbp and 1hms sequences Python script for target-template alignment

```
Example for: alignment.align()
 This will read two sequences, align them, and write the alignment
 to a file:
log.verbose()
env = environ()
aln = alignment(env)
mdl = model(env, file='1hms'
aln.append model(mdl, align codes='1hms')
aln.append(file='blbp.seg', align codes=('blbp'))
# The as1.sim.mat similarity matrix is used by default:
aln.align(gap penalties 1d=(-600, -400))
aln.write(file='blbp-1hms.ali', alignment format='PIR')
aln.write(file='blbp-1hms.pap', alignment format='PAP')
```

Run by typing mod9v11 align.py in the directory where you have the python file. MODELLER will produce a align.log file

Modeling of BLBP STEP 1: Align blbp and 1hms sequences *Output*

blbp-1hms.ali

>P1;1hms
<pre>structureX:1hms: 1 :A: 131 :A:undefined:undefined:-1.00:-1.00</pre>
VDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKPTTIIEKNGDILTLKTHSTFKNTEISFKLGVEFDETTA
DDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKLILTLTHGTAVCTRTYEKE*
>P1;blbp
sequence:blbp: ::::::0.00:0.00
VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKPTVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSI
DDRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKMVVTLTFGDIVAVRCYEKA*

Modeling of BLBP STEP 1: Align blbp and 1hms sequences *Output*

>P1; 1hms	
<pre>structureX:1hms: 1 : : 131 : :undefi </pre>	ned:undefined:-1.00:-1.00
VDAFLGTWKLVDSKNFDDYMKSLGVGFATRQVASMTKP	TTIIEKNGDILTLKTHSTFKNTEISFKLGVEFDETTA
DDRKVKSIVTLDGGKLVHLQKWDGQETTLVRELIDGKL	ILTLTHGTAVCTRTYEKE*
>P1; <mark>blbp</mark>	
<pre>sequence:blbp: : : : : : : 0.0</pre>	0: 0.00
VDAFCATWKLTDSQNFDEYMKALGVGFATRQVGNVTKP	IVIISQEGGKVVIRTQCTFKNTEINFQLGEEFEETSI
DDRNCKSVVRLDGDKLIHVQKWDGKETNCTREIKDGKM	VVTLTFGDIVAVRCYEKA*

Modeling of BLBP STEP 1: Align blbp and 1hms sequences *Output*

blbp-1hms.pap

_aln.pos	1	0 2	20	30	40	50	60
1hms	VDAFLGTWK	LVDSKNFDDY	MKSLGVGF	ATRQVASMTKE	TTIIEKNGDI	LTLKTHSTF	NTEISFKLGV
blbp	VDAFCATWK	LTDSQNFDEY	MKALGVGF	ATRQVGNVTKE	TVIISQEGGE	VVIRTQCTF	NTEINFQLGE
consrvd	**** ***	* ** *** *	** *****	**** ***	* ** *	* ***	**** * **
aln.p	70	80	90	100	110	120	130
1hms	EFDETTADD	RKVKSIVTLD	GGKLVHLOR	WDGQETTLVF	ELIDGKLILT	LTHGTAVCTI	RTYEKE
			~	~ WDGKETNCTF			
-	** ** **		~				* ***

```
Homology modelling by the automodel class
log.verbose()
                                 # request verbose output
env = environ()
                                  # create a new MODELLER environment
# directories for input atom files
env.io.atom_files_directory = './:../atom_files'
a = automodel(env,
            alnfile = 'blbp-1hms.ali', # alignment filename
                   = '1hms', # codes of the templates
            knowns
            sequence = 'blbp')
                                       # code of the target
a.starting model= 1
                               # index of the first model
a.ending model = 1
                              # index of the last model
                               # (determines how many models to calculate)
                               # do the actual homology modelling
a.make()
```

Run by typing mod9v11 model.py in the directory where you have the python file. MODELLER will produce a model.log file

```
Homology modelling by the automodel class
log.verbose()
                                 # request verbose output
env = environ()
                                  # create a new MODELLER environment
# directories for input atom files
env.io.atom_files_directory = './:../atom_files'
a = automodel(env)
            alnfile = 'blbp-1hms.ali',  # alignment filename
                   = '1hms', # codes of the templates
            knowns
            sequence = 'blbp')
                                       # code of the target
a.starting model= 1
                               # index of the first model
a.ending model = 1
                              # index of the last model
                               # (determines how many models to calculate)
                               # do the actual homology modelling
a.make()
```

Run by typing mod9v11 model.py in the directory where you have the python file. MODELLER will produce a model.log file

Run by typing mod9v11 model.py in the directory where you have the python file. MODELLER will produce a model.log file

PDB file

Can be viewed with Chimera

http://www.cql.ucsf.edu/chimera/

PyMol_

http://www.pymol.org

Rasmol

http://www.openrasmol.org

color by SS focus

ender by att frequently used Configure... Close

X Viewing

Resolution: high Close Help

•Model file \rightarrow blbp.B99990001.pdb

Monday, April 20, 15

Get ready for 11th May!

http://www.salilab.org/modeller/tutorial/

FULLY AUTOMATIC MODWEB

http://salilab.org/modweb

00		ModWeb Server				
▲ ►) 🙆 🖉 🖾 🗮 🖬 (+)	https://modbase.compbio.ucsf.edu/sc	gi/modweb.cgi		C Qr Google		
	ModWeb Server					
	・ <u>Sali Lab Home</u> ・ <u>ModWeb</u> ・ <u>Mo</u>	odLoop • ModBase • IMP • Modf	Pipe • LS-SNP •			
Help User Lo	ogin ModBase Datasets for User:Anony	ymous Contact News Curren	nt ModWeb queue ModWeb Home			
News:	ModWeb: A	Server for Protein S Welcome to the new ModWeb (ol				
New <u>Chimera</u> - Modeller Module for interactive modeling!	General information		Calculate Models (Reset)			
 In Chimera's daily build starting Sept 15, 2010 	Name Email address					
Additional functionality for registered users:	Modeller license key 👔 (Not necessary for ModBase updates)					
Template based modeling	Dataset name (optional)	Add to academic dataset				
Access to all user's ModWeb datasets	Input data 👔	Add to academic dataset				
 Email notification for User's ModBase updates 	Input protein sequences 👔					
Developers:						
Eswar Narayanan Ursula Pieper Ben Webb	or upload sequences file 👔 (FASTA Format)	Choose File no file selected Calculate Models Reset				
Acknowledgements:	Model selection criteria	Best scoring model	Scoring model			
David Eramian Mallur S. Madhusudhan Marc A. Marti-Renom Min-Yi Shen Andrej Sali	Other options	Very Fast	Upload models to ModBase			

MODBASE

http://salilab.org/modbase

Search Page	
Home User Logi	in ModBase Search Page ModWeb Modelling Server Help Current Logins
Mod	Database of Comparative Protein Structure Models Welcome to ModBase, a database of three-dimensional protein models calculated by comparative modeling. (Old ModBase Interface)
General Information	
Statistics	ModBase search form Search
Project Pages	Search type 🛙 Model(Default) 🗨 Display type 🕼 Model Detail (graphical) 💌
Documentation	
Authors and Acknowledgements	All available datasets are selected
Publications	
Todo List	Search by properties
Related Resources	Property 🖬 ALL
Note: MODBASE contains theoretically calculated models, not experimentally determined structures. The models may contain significant errors.	Organism 🖬 ALL 🔄 or Advanced search

Model Details

-						
MOD	Home	User Login	ModBase Se	earch Page	ModWeb Modelling Server	Help
BASE					Current	Login
Sequence Info	rmation					
		P43632 (KI2S4	HUMAN)			
Organism 🖬		Homo sapiens	,			
Annotation		killer cell immur			or (mhc class ide nk cell receptor) (natura r cell receptor clone cl-39) (p58 nk	al kille
Sequence Leng	ath	304	script of (rikat-o)de	(poo natural killo		
Model Informa						
Perform action	n on this	model 🖬 : Selec	t option	<u>•</u>		
		:	Sequence Model Co	overage 🖬	SegId Fold Hiscory 300	
			Sequence Identity	89.00%		
	200		E-Value	2e-43		
	~5		Model Score	1.00		
	201		Target Region	27-221		
Y			Protein Length	304		
			Template PDB Code	<u>1nkr</u>		
			Template Region	6-200		
		1	Dataset	snp-human2		
Filtered model	Is for cur	rent sequence (S	Show all models)			
			, , , , , , , , , , , , , , , , , , , ,			
👾 👌						
Cross-reference	es					

Sequence Overview SegId Fold MScore hypothetical protein Pseudomonas aeruginosa 3738 Q8G8A6 Segid Fold MScore hypothetical protein Escherichia coli Q8G9W1 1140 Streptococcus pneumoniae, Streptococcus pneumoniae Segid Fold MScore hypothetical protein spr1965 1038 Q8CY62 R6

Model Overview

£950	● □	Q8G8C7	hypothetical protein	<u>Pseudomonas</u> <u>aeruginosa</u>	4996	2089-2158	70	37.00	7e-14	1.00	<u>1dnyA</u>	8-78
	•	Q8G8C7	hypothetical protein	<u>Pseudomonas</u> <u>aeruginosa</u>	4996	492-1017	526	36.00	1e-82	1.00	<u>1amuA</u>	19-529
	•	<u>Q8G9W1</u>	hypothetical protein	<u>Escherichia coli</u>	1140	349-1135	787	35.00	0	1.00	<u>1r9dA</u>	6-783

• Pieper et al. (2004) Nucleic Acids Research 32, D217-D222

Modeling RNA

MC-FOLD / MC-SYM

http://www.major.iric.ca/MajorLabEn/MC-Tools.html http://www.major.iric.ca/MC-Sym/

INSTITUTE FOR RESEARCH IN IMMUNOLOGY AND CANCER Université de Montréal

Messages:

- Please note that Working directories are erased	7 days after the last change made.
SV Pipeline page	MC-Sym's [user's guide][FAQ][wiki
MC-SYM	
- 1. Input File	
 Make sure that your input file contains on Do not use Microsoft Word to edit the sc 	
	Browse
Submit Reset	Help
2. Local File (Option)	
	Browse
3. Directory Key (Option)	
	remove previous models
4. Email Address (Option)	
Provide your email address to receive notific	ations about:
Job completionDirectory removal (48h notice)	

- Coarse-grained model
- Fragment-based approach
- Fully automated
- Slow
- Sampling bottleneck
- Relative poor accuracy

Monday, April 20, 15

Welcome to ROSIE Rosetta Online Server that Includes Everyone							
Welcome Queue Documentation Support	_	Login Create an account					
	Rosetta RNA_Denovo Protocol						
[Submit RNA Denovo task]		[RNA Denovo Documentation]					
 Please cite the following article when referring to results from our RNA_Denovo server: Das, R., Karanicolas, J., Baker., D. "Atomic accuracy in predicting and designing noncanonical RNA structure". Nature Methods 7:291-294. (2010). Online PDF 							
rosie is web front-end for <u>Rosetta software su</u>	<u>ite</u> . Developed by Sergey Lyskov, <u>GrayLab at JHU</u> . Cop	pyright © 2012 Rosetta Commons Member Institutions.					

MODERNA

http://iimcb.genesilico.pl/modernaserver/

Laboratory of Bioinformatics and Protein Engineering

Home Submit All results

ModeRNA server

ModeRNA Help Tutorial Contact

Genesilico Homepage

Moderita Selvel

A server for RNA structure modeling and analysis

by Magdalena Rother, Kaja Milanowska, Tomasz Puton, Kristian Rother, and Janusz M. Bujnicki.

http://iimcb.genesilico.pl/modernaserver/

What is the ModeRNA server?

This service is based on the ModeRNA software for RNA 3D structure prediction, analysis, and manipulation.

Currently, the server allows you to:

- build a model (requires a pairwise sequence alignment and a structural template).
- find template (looks for potential templates using ParAlign and Rfam).
- align sequences (prepares an alignment between two RNA sequences using R-coffee).
- convert PDB naming (changes nomenclature in a PDB file).
- clean up a structure (remove water, ions, and ligands, adds missing P atoms and changes '*' into ''' in ribose).

- Comparative RNA modeling
- Able to handle 115 nucleotide modifications

Modeling Chromatin

Integrative Modeling with RNA and chromatin

http://www.integrativemodeling.org

The "Chromatin Globule" model

D. Baù et al. Nat Struct Mol Biol (2011) 18:107-14 A. Sanyal et al. Current Opinion in Cell Biology (2011) 23:325-33.

Monday, April 20, 15

Caulobacter crescentus 3D genome

M.A. Umbarger, et al. Molecular Cell (2011) 44:252-264

Take-home messages

- Homology != Identity
- Comparative modeling needs prior knowledge and a template.
- Our model relies on the alignment step...
- Evaluation is the key step, statistical potential.
- You should play with modeller, tutorial 11th may!

General References

Protein Structure Prediction:

Marti-Renom et al. Annu. Rev. Biophys. Biomol. Struct. 29, 291-325, 2000. Baker & Sali. Science 294, 93-96, 2001.Cited by 1338

Pavlopoulou, A., & Pavlopoulou, A. (2011). State-of-the-art bioinformatics protein structure prediction tools (Review). International Journal of Molecular Medicine, 28, 295-310. http://dx.doi.org/10.3892/ijmm.2011.705

Comparative Modeling:

Madhusudhan et al. The Proteomics Protocols Handbook. Ed. Walker. Humana 2005.

Press Inc., Totowa, NJ. 831-860,

Sánchez, Roberto, and Andrej Šali. "Comparative protein structure modeling: introduction and practical examples with modeller." Protein Structure Prediction. Humana Press, 2000. 97-129.

Zhang, Yang. "I-TASSER server for protein 3D structure prediction." BMC bioinformatics 9.1 (2008): 40.

Kim, David E., Dylan Chivian, and David Baker. "Protein structure prediction and analysis using the Robetta server." Nucleic acids research 32.suppl 2 (2004): W526-W531.

MODELLER:

Sali & Blundell. J. Mol. Biol. 234, 779-815, 1993. Eswar, M. A. et al. Comparative Protein Structure Modeling With MODELLER. Current Protocols in Bioinformatics, John Wiley & Sons, Inc., Supplement 15, 5.6.1-5.6.30, 2006.

Structural Genomics:

Sali. Nat. Struct. Biol. 5, 1029, 1998. Burley et al. Nat. Genet. 23, 151, 1999. Sali & Kuriyan. TIBS 22, M20, 1999. Sanchez et al. Nat. Str. Biol. 7, 986, 2000. Baker & Sali. Science 294, 93-96, 2001. Terwilliger et al. Annu. Rev. Biophys. 38, 371-383, 2009.