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Stage 1: Gathering Information. Information is collected in the form of data
from wet lab experiments, as well as statistical tendencies such as atomic
statistical potentials, physical laws such as molecular mechanics force fields, and
any other feature that can be converted into a score for use to assess features of a
structural model.

Stage 2: Choosing How To Represent And Evaluate Models. The
resolution of the representation depends on the quantity and resolution of the
available information and should be commensurate with the resolution of the
final models: different parts of a model may be represented at different
resolutions, and one part of the model may be represented at several different
resolutions simultaneously. The scoring function evaluates whether or not a given
model is consistent with the input information, taking into account the
uncertainty in the information.

Stage 3: Finding Models That Score Well. The search for models that score
well is performed using any of a variety of sampling and optimization schemes
(such as the Monte Carlo method). There may be many models that score well if
the data are incomplete or none if the data are inconsistent due to errors or
unconsidered states of the assembly.

Stage 4: Analyzing Resulting Models and Information. The ensemble of
good-scoring models needs to be clustered and analyzed to ascertain their
precision and accuracy, and to check for inconsistent information. Analysis can
also suggest what are likely to be the most informative experiments to perform in
the next iteration.

Integrative modeling iterates through these stages until a satisfactory model is
built. Many iterations of the cycle may be required, given the need to gather more
data as well as to resolve errors and inconsistent data.
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Complex genome organization
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Radial organization of the genome

Takizawa, T., Meaburn, K. J. & Misteli, T. The meaning of gene positioning. Cell 135, 9-13 (2008).
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Complex genome organization
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A/B Compartments and TADs

chag



Loop-extrusion as a driving force
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Modeling Genomes
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Biomolecular structure determination

2D-NOESY data

Chromosome structure determination

5C data
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Chromosome Conformation Capture
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Chromosome Conformation Capture

3C 5C 4C Hi-C ChiP-loop ChIA-PET
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Modeling 3D Genomes

Bau, D. & Marti-Renom, M. A. Methods 58, 300-306 (2012).
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Examples...
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Human o-globin domain
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Human o-globin domain
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Human o-globin domain
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Representation
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GM12878
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Clustering
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Not just one solution
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The “Chromatin Globule” model
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D. Bau et al. Nat Struct Mol Biol (2011) 18:107-14
A. Sanyal et al. Current Opinion in Cell Biology (2011) 23:325-33.
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Caulobacter crescentus genome
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The 3D architecture of Caulobacter Crescentus
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Minus Probe Genome Position (mbp)
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Genome organization in Caulobacter crescentus
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Moving the porS sites 400 Kb away from Ori
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sites results in whole genome rotation!
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Genome architecture in Caulobacter
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M.A. Umbarger, et al. Molecular Cell (2011) 44:252-264
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From Sequence to Function
5C+ IMP

Technology

D. Bat and M.A. Marti-Renom Chromosome Res (2011) 19:25-35.
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Bacteria has also TADs (CIDs)
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On TADs and hormones
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Progesterone-requlated transcription in breast cancer

> 2,000 genes Up-regulated
> 2,000 genes Down-regulated

Regulation in 3D?

Vicent et al 2011, Wright et al 2012, Ballare et al 2012




Experimental design
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Are there TADs? how robust?

>2.000 detected TADs
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Are TADs homogeneous?
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Fold change per TAD (Log2)
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Modeling 3D TADs
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How TADs respond structurally to Pg?
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Bridging the Resolution Gap in Structural Modeling of 3D

Genome Organization
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Abstract: Over the last decade, and especially after the
advent of fluorescent in situ hybridization imaging and
chromosome conformation capture methods, the avail-
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physical and biological) that explain experimental observations; (ii)
the second approach aims at integrating diverse experimental
observations into a system of spatial restraints to be satisfied,
thereby constraining possible structural models of the chromatin.
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Chromatin conformation signatures of cellular differenti
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already resulted in the first three-dimensional structures
of genomic domains and genomes. Such approaches
expand our knowledge of the chromatin folding princi-
ples, which has been classically studied using polymer
physics and molecular simulations. Our outlook describes
computational approaches for integrating experimental
data with polymer physics, thereby bridging the resolu-
tion gap for structural determination of genomes and
genomic domains.

This is an “Editors’ Outlook” article for PLoS
Computational Biology

Recent  experimental and  computational ~advances are
resulting in an increasingly accurate and detailed characterization
of how genomes are organized in the three-dimensional (3D) space
of the nucleus (Figure 1) [1]. At the lowest level of chromatin
organization, naked DNA is packed into nucleosomes, which
forms the so-called chromatin fiber composed of DNA and
proteins. However, this initial packing, which reduces the length of
the DNA by about seven times, is not sufficient to explain the
higher-order folding of chromosomes during interphase and
metaphase. It is now accepted that chromosomes and genes are
non-randomly and dynamically positioned in the cell nucleus
during the interphase, which challenges the classical representa-
tion of genomes as linear static sequences. Moreover, compart-

folding ficld where the first strategy was used for characterizing
protein “foldability”” and the second was implemented for modeling
the structure of proteins using nuclear magnetic resonance and
other experimental constraints. In fact, our outlook consistently
returns to the many connections between the two fields.

What Does Technology Show Us?

Today, it is possible to quantitatively study structural features of
genomes at diverse scales that range from a few specific loci,
through chromosomes, to entire genomes (Table 1) [3]. Broadly,
there are two main approaches for studying genomic organization:
light microscopy and cell/molecular biology (Figure 2). Light
microcopy [4], both with fixed and living cells, can provide images
of a few loci within individual cells [5,6], as well as their dynamics
as a function of time [7] and cell state [8]. On a larger scale, light
microscopy combined with whole-chromosome staining reveals
chromosomal territories during interphase and their reorganiza-
tion upon cell division. Immunofluorescen
antibodies in combination with RNA, and DNA fluorescence in
situ hybridization (FISH) has been used to determine the co-
localization of loci and nuclear substructures.

Using cellular and molecular biology, novel chromosome
conformation capture (3C)-based methods such 3C [9], 3C-on-
chip or circular 3C (the so-called 4C) [10,11], 3C carbon copy
(5C) [12], and Hi-C [13] quantitatively measure frequencies of
spatial contacts between genomic loci averaged over a large

ce with fluorescent

Gurng saly B call development, In pro-6 el the
v o Vo glons 2 V) spperes '
have merged and juxtaposed to the Dy Sements,
nochniioay peniig ogange serame i Yot eee et

matonsl changes IMoiving Vi and Dy elements  NOp cps 1t e aiched s bk bck. e bk

s W oo Sucarommart

I
e

o 2 e
oy ks v s
e e e deapnd o e

' ps i n o " e o

S e von sy oot oneh

o Bes s o o

o cgazsion (ooch o 3.

185 S, 1605,

o oo 2,

¥ poshitod i e 1 S A e 0 o o i Sy . Kt o

P ——

i chaacterized by rowth et of prfferaing s o

Il promotr iy, and RNA ranserpts i o i

s csentil roughout deveopment and for ol s
enancs, Fo cspe

Abosgh xtemely powerte,

e the

e
ndoying scsption e of difrcaation  the

funcona] oganation ofgncsand hments i ot e

e aproshis his sy challge e raonal iws
gl acimors i a st il

ot g gt It
e —— e —

o oihr chsmomes

§i% FANTOM

DEKKER/LANDER/MIRNY
Science (2009) 326:289-93

NOBLE
Nature (2010) 465: 363-7

Comprehensive Mapping of Long-Range ..o n o/
Interactions Reveals Folding Principles % o S A

o0 sors

nanne

LETTERS

A three-dimensional model of the yeast genome
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The three-dimensional folding of the o.-globin gene
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