3DGenomics for genome engineering

Marc A. Marti-Renom Structural Genomics Group (ICREA, CNAG-CRG)

http://marciuslab.org
http://3DGenomes.org
http://cnag.crg.eu

Resolution Gap

Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, e1002125 (2011)

Know	edge								
1 ANT A					IDM			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0		2			6			DNA length	
10°		10 ³			10°			10 [°]	nt
								Volume	
10 ⁻⁹		10 ⁻⁶	10 ⁻	3		10 ⁰		10 ³	μm³
								Time	
10 ⁻¹⁰	10 ⁻⁸	10 ⁻⁶	10 ⁻⁴	10 ⁻²		10 ⁰	10 ²	10 ³	S
								Resolution	
10-3			10 ⁻²				10 ⁻¹		μ

Hybrid Method Baù, D. & Marti-Renom, M. A. Methods 58, 300–306 (2012).

Experiments

Computation

Chromosome Conformation Capture

Dekker, J., Rippe, K., Dekker, M., & Kleckner, N. (2002). Science, 295(5558), 1306–1311. Lieberman-Aiden, E., et al. (2009). Science, 326(5950), 289–293.

Chromosome Conformation Capture

CROSSLINK											
CUTTING	Sonication										
LIGATION	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Biotin dCTP fill in	Immunoprecipitation	Immunoprecipitation biotinilated linkers						
REVERSE CROSSLINKS			B B B		B						
DETECTION	Multiplexed amplification	Digestion with four base cutter	Sonicate		Mmel digestion						
PCR with specific primers	PCR with universal primers	Ligation	Pull down	PCR with specific primers	Pull down						
Contact library		Inverse PCR	B B B	<u> </u>	B						
COMPUTATIONAL ANALYSIS			V H H V M H H V								
3C	5C	4C	Hi-C	ChIP-loop	ChIA-PET						

Restraint-based Modeling

Baù, D. & Marti-Renom, M. A. Methods 58, 300–306 (2012).

Chromosome structure determination 3C-based data

Biomolecular structure determination 2D-NOESY data

http://3DGenomes.org

FastQ files to Maps

Map analysis

Model building

Model analysis

Baù, D. et al. Nat Struct Mol Biol (2011) Umbarger, M. A. et al. Mol Cell (2011) Le Dily, F. et al. Genes & Dev (2014) Trussart M. et al. Nature Communication (2017) Cattoni et al. Nature Communication (2017)

Stadhouders R. et al. Nature Genetics (2017) in press

Job Dekker

George M. Church

Lucy Shapiro

The 3D architecture of Caulobacter Crescentus

Nierman W C et al. PNAS 2001 98:4136-4141

The 3D architecture of Caulobacter Crescentus

169 5C primers on + strand 170 5C primers on – strand 28,730 chromatin interactions

5C interaction matrix

ELLIPSOID for Caulobacter cresentus

3D model building with the 5C + TADbit

Genome organization in Caulobacter crescentus

Arms are helical

Moving the parS sites 400 Kb away from Ori

Moving the parS sites results in whole genome rotation!

Arms are **STILL** helical

From Sequence to (Structure) to Function

Structure alteration and disease

three examples from the Mundlos (2) and Young (1) Labs...

Chromosome Conformation Capture

Dekker, J., Rippe, K., Dekker, M., & Kleckner, N. (2002). Science, 295(5558), 1306–1311. Lieberman-Aiden, E., et al. (2009). Science, 326(5950), 289–293.

Structure alteration and disease

Lupiáñez, et al. (2015). Cell, 1–15.

Structural alteration and disease

Franke, M., et al. (2016). Nature, 1–15.

Structural alteration and disease

Hnisz, D. et al. (2016). Science. 25;351(6280):1454-1458

http://www.4dnucleome.eu

David Castillo Yasmina Cuartero Irene Farabella Silvia Galan Mike Goodstadt Francesca Mugianesi Julen Mendieta Juan Rodriguez François Serra Paula Soler Aleksandra Sparavier Yannick Spill Marco di Stefano

Caulobacter 3D Genome in collaboration with Job Dekker, Jorge Church and Luci Shapiro

http://marciuslab.org
http://3DGenomes.org
http://cnag.crg.eu