

Chromosome walking with super-resolution imaging and modeling

Marc A. Marti-Renom CNAG-CRG · ICREA

http://marciuslab.org
http://3DGenomes.org
http://cnag.crg.eu

Irene Farabella CNAG-CRG

Guy Nir Harvard Med School

Ting Wu Harvard Med School

Can we walk the chromatin path in the nucleus?

by

Integrating imaging and Hi-C maps with modeling.

by developing a method for

Oligopaint-based modeling of genomes (IMGR)

High-resolution imaging Tracing chromosomes with OligoSTORM & fluidics cycles in PGP1 cells

homologous 32-42bp

Beliveau et al. Nat. Comm. 2015

chr19:7,335,095-15,449,189 ~8Mb

High-resolution imaging Tracing chromosomes with OligoSTORM & fluidics cycles in PGP1 cells

Carl Ebeling Bruker

High-resolution imaging Tracing chr19:7,335,095-15,449,189 ~8Mb 3 9

1,280Kb

1,240Kb

1,800Kb

1,040Kb

520Kb 520Kb 840Kb

٩.

520Kb 360Kb

.

Cell-02

High-resolution imaging XYZ points convolution into a density map

Cell-02 · Segment 1

$$\frac{Z_{N}}{(\sqrt{2\pi})^{3}}e^{-\frac{(x-x_{n})^{2}+(y-y_{n})^{2}+(z-z_{n})^{2}}{2\sigma^{2}}}$$

Farabella et al, J Appl Crystallogr. 2015

Density maps Cell-02 · Density map @ 50nm

Area (nm^2) Volume (nm³) Sphericity Overlap (%) Distance (nm)

Farabella et al, J Appl Crystallogr. 2015

Structural features Area, Volume and Sphericity of 19 cells each with 2 homologous resolved

Area

Spatial arrangement Distance and overlap of 19 cells each with 2 homologous resolved

Diff. distance

Diff. overlap

Structural clustering 19 cells each with 2 homologous and 9 segments each (342)

PGP1 ChIP-seq and Hi-C data from ENCODE and Lieberman-Aiden Lab, respectively

89

Cluster properties A/B compartment properties

Can we walk the chromatin path in the nucleus?

Can we increase the resolution of our data?

by fitting 3D models based on Hi-C interaction maps

YES!

Increasing resolution Rigid body fitting 3D structures based on Hi-C data

Farabella et al, J Appl Crystallogr. 2015 Roseman, 2000; Wriggers & Chacon, Structure 2001

Increasing resolution Flexible fitting 3D structures based on Hi-C data

Increasing resolution Flexible fitting 3D structures based on Hi-C data

Chromosome walking path @10Kb resolution

http://marciuslab.org http://3DGenomes.org

David Castillo Yasmina Cuartero Marco Di Stefano Irene Farabella Silvia Galan Mike Goodstadt Maria Marti-Marimon Francesca Mugianesi Julen Mendieta Juan Rodriguez Paula Soler Aleksandra Sparavier

Multiscale Complex **G**enomics

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD

.: Our current sponsors :.

