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Hierarchical genome organisation 
Lieberman-Aiden, E., et al. (2009). Science, 326(5950), 289—293.  
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Figure 1. We Used In Situ Hi-C to Map over 15 Billion Chromatin Contacts across Nine Cell Types in Human and Mouse, Achieving 1 kb
Resolution in Human Lymphoblastoid Cells
(A) During in situ Hi-C, DNA-DNA proximity ligation is performed in intact nuclei.

(B) Contact matrices from chromosome 14: the whole chromosome, at 500 kb resolution (top); 86–96 Mb/50 kb resolution (middle); 94–95 Mb/5 kb resolution

(bottom). Left: GM12878, primary experiment; Right: biological replicate. The 1D regions corresponding to a contact matrix are indicated in the diagrams above

and at left. The intensity of each pixel represents the normalized number of contacts between a pair of loci. Maximum intensity is indicated in the lower left of each

panel.

(C) We compare our map of chromosome 7 in GM12878 (last column) to earlier Hi-Cmaps: Lieberman-Aiden et al. (2009), Kalhor et al. (2012), and Jin et al. (2013).

(D) Overview of features revealed by our Hi-Cmaps. Top: the long-range contact pattern of a locus (left) indicates its nuclear neighborhood. We detect at least six

subcompartments, each bearing a distinctive pattern of epigenetic features. Middle: squares of enhanced contact frequency along the diagonal (left) indicate the

presence of small domains of condensed chromatin, whosemedian length is 185 kb (right). Bottom: peaks in the contact map (left) indicate the presence of loops

(right). These loops tend to lie at domain boundaries and bind CTCF in a convergent orientation.

See also Figure S1, Data S1, I–II, and Tables S1 and S2.

Cell 159, 1–16, December 18, 2014 ª2014 Elsevier Inc. 3

CELL 7905

Please cite this article in press as: Rao et al., A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Loop-
ing, Cell (2014), http://dx.doi.org/10.1016/j.cell.2014.11.021

(12, 13). Interestingly, chromosome 18, which is
small but gene-poor, does not interact frequently
with the other small chromosomes; this agrees
with FISH studies showing that chromosome 18
tends to be located near the nuclear periphery (14).

We then zoomed in on individual chromo-
somes to explore whether there are chromosom-
al regions that preferentially associate with each
other. Because sequence proximity strongly in-
fluences contact probability, we defined a normal-

ized contact matrixM* by dividing each entry in
the contact matrix by the genome-wide average
contact probability for loci at that genomic dis-
tance (10). The normalized matrix shows many
large blocks of enriched and depleted interactions,
generating a plaid pattern (Fig. 3B). If two loci
(here 1-Mb regions) are nearby in space, we
reasoned that they will share neighbors and have
correlated interaction profiles. We therefore de-
fined a correlation matrix C in which cij is the

Pearson correlation between the ith row and jth
column of M*. This process dramatically sharp-
ened the plaid pattern (Fig. 3C); 71% of the result-
ing matrix entries represent statistically significant
correlations (P ≤ 0.05).

The plaid pattern suggests that each chromo-
some can be decomposed into two sets of loci
(arbitrarily labeled A and B) such that contacts
within each set are enriched and contacts between
sets are depleted.We partitioned each chromosome

Fig. 1. Overview of Hi-C. (A)
Cells are cross-linked with form-
aldehyde, resulting in covalent
links between spatially adjacent
chromatin segments (DNA frag-
ments shown in dark blue, red;
proteins, which canmediate such
interactions, are shown in light
blue and cyan). Chromatin is
digested with a restriction en-
zyme (here, HindIII; restriction
site marked by dashed line; see
inset), and the resulting sticky
ends are filled in with nucle-
otides, one of which is bio-
tinylated (purple dot). Ligation
is performed under extremely
dilute conditions to create chi-
meric molecules; the HindIII
site is lost and an NheI site is
created (inset). DNA is purified
and sheared. Biotinylated junc-
tions are isolated with strep-
tavidin beads and identified by
paired-end sequencing. (B) Hi-C
produces a genome-wide con-
tactmatrix. The submatrix shown
here corresponds to intrachro-
mosomal interactions on chromo-
some 14. (Chromosome 14 is
acrocentric; the short arm is
not shown.) Each pixel represents all interactions between a 1-Mb locus and another 1-Mb locus; intensity corresponds to the total number of reads (0 to 50). Tick
marks appear every 10 Mb. (C and D) We compared the original experiment with results from a biological repeat using the same restriction enzyme [(C), range
from 0 to 50 reads] and with results using a different restriction enzyme [(D), NcoI, range from 0 to 100 reads].
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Fig. 2. The presence and orga-
nization of chromosome territo-
ries. (A) Probability of contact
decreases as a function of ge-
nomic distance on chromosome 1,
eventually reaching a plateau at
~90 Mb (blue). The level of in-
terchromosomal contact (black
dashes) differs for different pairs
of chromosomes; loci on chromo-
some 1 are most likely to inter-
act with loci on chromosome 10
(green dashes) and least likely
to interact with loci on chromo-
some 21 (red dashes). Interchro-
mosomal interactions are depleted
relative to intrachromosomal in-
teractions. (B) Observed/expected
number of interchromosomal con-
tacts between all pairs of chromosomes. Red indicates enrichment, and blue indicates depletion (range from 0.5 to 2). Small, gene-rich chromosomes tend to interact
more with one another, suggesting that they cluster together in the nucleus.

A B

9 OCTOBER 2009 VOL 326 SCIENCE www.sciencemag.org290

REPORTS

 o
n 

Ja
nu

ar
y 

7,
 2

01
0 

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 



Can we walk the chromatin path in the nucleus? 

by 

Integrating imaging and Hi-C maps with modeling. 

by developing a method for 

Oligopaint-based modeling of genomes (IMGR)



High-resolution imaging 
Tracing chromosomes with OligoSTORM & fluidics cycles in PGP1 cells

chr19:7,335,095-15,449,189  
~8Mb

Beliveau et al. Nat. Comm. 2015
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High-resolution imaging 
Tracing chromosomes with OligoSTORM & fluidics cycles in PGP1 cells

chr19:7,335,095-15,449,189  
~8Mb
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High-resolution imaging 
Tracing chr19:7,335,095-15,449,189 ~8Mb

Cell-02 
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Representation  

Blur the atomic structure to the correct resolution by convoluting it with a Gaussian 
function that approximates the point spread function.  
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Farabella et al, J Appl Crystallogr. 2015

High-resolution imaging 
XYZ points convolution into a density map

Cell-02 · Segment 1 
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Density maps 
Cell-02 · Density map @ 50nm 

Farabella et al, J Appl Crystallogr. 2015



Structural features 
Area, Volume and Sphericity of 19 cells each with 2 homologous resolved
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Spatial arrangement 
Distance and overlap of 19 cells each with 2 homologous resolved
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Structural clustering 
19 cells each with 2 homologous and 9 segments each (342)
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Cluster properties 
A/B compartments?

PGP1 ChIP-seq and Hi-C data from ENCODE and Lieberman-Aiden Lab, respectively

H3K9me3H3K4me1 H3K27me3H3K4me3H3K27acDNAseRNA
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Cluster properties 
A/B compartment properties
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Can we walk the chromatin path in the nucleus? 

YES! 

Can we increase the resolution of our data? 

by fitting 3D models based on Hi-C interaction maps



Increasing resolution 
Rigid body fitting 3D structures based on Hi-C data

Serra, Baù, et al. PLOS CB 2017 
http://www.3DGenomes.org

Farabella et al, J Appl Crystallogr. 2015 
Roseman, 2000; Wriggers & Chacon, Structure 2001

Segment 1 3D models 
- Masking the surrounding density:

• Fitting other components and masking.

• Normalised Local Cross-Correlation function (LCCF)

Improved scoring functions

Programs: 

DOCKEM, EMfit, NMFF, Mod-EM
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Increasing resolution 
Flexible fitting 3D structures based on Hi-C data

Simulated Annealing 
Molecular Dynamics

Conjugate Gradient
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Increasing resolution 
Flexible fitting 3D structures based on Hi-C data
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Chromosome walking path @10Kb resolution
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