

Structure determination of genomes and genomic domains by satisfaction of spatial restraints

Marc A. Marti-Renom CNAG-CRG · ICREA

http://marciuslab.org http://3DGenomes.org http://cnag.crg.eu

All you will see in the screen is here:

l encourage you to:

listen AND speak not necessarily in this order... 😂

http://marciuslab.org/www/presentations/

Resolution Gap Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, e1002125 (2011)

	IDM			$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	
			0	DNA length	
	10 ⁶			10 ⁹	nt
			0	Volume	
) ⁻³		10 ⁰		10 ³	μm³
				Time	
10 ⁻²		10 ⁰	10 ²	10 ³	S
				Resolution	
			10 ⁻¹		μ

Resolution Gap Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, e1002125 (2011)

IC CONTRACTOR IN	DM		$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$	
			DNA length	
10 ⁶			10 ⁹	nt
			Volume	
-3	10 ⁰		10 ³	μm³
			Time	
10 ⁻²	10 ⁰	10 ²	10 ³	S
			Resolution	
		10 ⁻¹		μ

Level I: Radial genome organization

Takizawa, T., Meaburn, K. J. & Misteli, T. The meaning of gene positioning. Cell 135, 9–13 (2008).

Level II: Euchromatin vs heterochromatin

Electron microscopy

Level III: Lamina-genome interactions

internal chromatin (mostly active) lamina-associated domains (repressed)

Genes

% mRNA

Adapted from Molecular Cell 38, 603-613, 2010

Level IV: Higher-order organization

Dekker, J., Marti-Renom, M. A. & Mirny, L. A. Nat Rev Genet 14, 390–403 (2013).

Compartments

Level V: Chromatin loops

Level VI: Nucleosome

Complex genome organization

Cavalli, G. & Misteli, T. Functional implications of genome topology. Nat Struct Mol Biol 20, 290–299 (2013).

Chromosome Conformation Capture

Hakim, O., & Misteli, T. (2012). SnapShot: Chromosome Confirmation Capture. Cell, 148(5), 1068–1068.e2.

ARTICLE

doi:10.1038/nature12593

Single-cell Hi-C reveals cell-to-cell variability in chromosome structure

Takashi Nagano¹*, Yaniv Lubling²*, Tim J. Stevens³*, Stefan Schoenfelder¹, Eitan Yaffe², Wendy Dean⁴, Ernest D. Laue³, Amos Tanay² & Peter Fraser¹

LETTER

doi:10.1038/nature20158

Capturing pairwise and multi-way chromosomal conformations using chromosomal walks

Pedro Olivares-Chauvet¹, Zohar Mukamel¹, Aviezer Lifshitz¹, Omer Schwartzman¹, Noa Oded Elkayam¹, Yaniv Lubling¹, Gintaras Deikus², Robert P. Sebra² & Amos Tanay¹

nature .	
geneti	C

ARTICLES https://doi.org/10.1038/s41588-018-0161-

Enhancer hubs and loop collisions identified from single-allele topologies

Amin Allahyar^{1,2,7}, Carlo Vermeulen^{3,7}, Britta A. M. Bouwman³, Peter H. L. Krijger³, Marjon J. A. M. Verstegen³, Geert Geeven³, Melissa van Kranenburg³, Mark Pieterse³, Roy Straver³, Judith H. I. Haarhuis⁴, Kees Jalink⁵, Hans Teunissen⁶, Ivo J. Renkens¹, Wigard P. Kloosterman¹, Benjamin D. Rowland⁴, Elzo de Wit⁹, Jeroen de Ridder¹ and Wouter de Laat^{3*}

Resource

Higher-Order Inter-chromosomal Hubs Shape 3D **Genome Organization in the Nucleus**

Graphical Abstract

Cell

Sofia A. Quinodoz, Noah Ollikainen, Barbara Tabak, ..., Patrick McDonel Manuel Garber, Mitchell Guttman

Correspondence mguttman@caltech.edu

Authors

ARTICLE

COMMUNICATIONS

DOI: 10.1038/s41467-018-06961-0 OPEN

Chromatin conformation analysis of primary patient tissue using a low input Hi-C method

Noelia Díaz ^(b) ¹, Kai Kruse ^(b) ¹, Tabea Erdmann², Annette M. Staiger^{3,4,5}, German Ott³, Georg Lenz² & Juan M. Vaquerizas 💿 ¹

Compartment-dependent chromatin interaction dynamics revealed by liquid chromatin Hi-C

Houda Belaghzal^{1*}, Tyler Borrman^{2*}, Andrew D. Stephens³, Denis L. Lafontaine¹, Sergey V. Venev¹, Zhiping Weng², John F. Marko^{3,4}, Job Dekker^{1, 5, 6 #}

Chromosome Conformation Capture

Dekker, J., Rippe, K., Dekker, M., & Kleckner, N. (2002). Science, 295(5558), 1306–1311. Lieberman-Aiden, E., et al. (2009). Science, 326(5950), 289–293.

Irchical genuinal guisation Lieberman-Aiden, E., et al. (2009). Science, 326(5950), 289–293. Rao, S. S. P., et al. (2014). Cell, 1–29.

TADs Chromosome 14

Hnisz, D., et al. (2016). Science

TADs are functional units

TADs are functional units

Figure adapted from Hui Zheng and Wei Xie. Nature Reviews Molecular Cell Biology (2019)

Flavahan, W. A. et al. Nature 529, 110–114 (2016).

Despang, et al. (2019). Nature Genetics 51,1263–1271 (2019)

TADs are functional units

Loop-extrusion as a TAD forming mechanism

Fudenberg, G., Imakaev, M., Lu, C., Goloborodko, A., Abdennur, N., & Mirny, L. A. (2018). Cold Spring Harb Symp Quant Biol 2017. 82: 45-55

Baù, D. & Marti-Renom, M. A. Methods 58, 300–306 (2012).

Biomolecular structure determination 2D-NOESY data

Chromosome structure determination 3C-based data

Sequence @FORTUSP82AJWD1 CCGTCANTTCATTTAAGTTTTAACCTTGCGGCCGTACTCCCCAGGCGGT + AMAMAMAAA: : 99@::::??@@::FFAAMACCAA::::BB@@?A? Q scores (us ASCII chars) Base-T, Q=':'=25 -----_ _ _ _ _ _ _ _ _ _ _

FastQ files to Maps

Map analysis

Model building

Model analysis

Serra, F., Baù, D. et al. PLOS CB (2017)

Model representation and scoring

Harmonic

$$H_{i,j} = k \Big(d_{i,j} - d_{i,j}^0 \Big)^2$$

Harmonic Upper Bound

$$\begin{cases} if \ d_{i,j} \ge d_{i,j}^{0}; & ubH_{i,j} = k \left(d_{i,j} - d_{i,j}^{0} \right)^{2} \\ if \ d_{i,j} < d_{i,j}^{0}; & ubH_{i,j} = 0 \end{cases}$$

Harmonic Lower Bound

$$\begin{cases} if \ d_{i,j} \le d_{i,j}^{0}; & lbH_{i,j} = k \left(d_{i,j} - d_{i,j}^{0} \right)^{2} \\ if \ d_{i,j} > d_{i,j}^{0}; & lbH_{i,j} = 0 \end{cases}$$

Parameter optimization

Optimization of the scoring function

Model analysis: clustering and structural features

Accessibility (%)

Density (bp/nm)

Interactions

Angle

Serra, Baù, et al. (2017). PLOS CompBio

https://github.com/3DGenomes/tadbit https://github.com/3DGenomes/MethodsMolBiol

ADbit

	 Baù, D. et al. Nat Struct Mol Biol (2011)
lodels	 Umbarger, M. A. et al. Mol Cell (2011)
louels	 Le Dily, F. et al. Genes & Dev (2014)
	 Belton, J.M. et al. Cell Reports (2015)
rocessing	 Trussart M. et al. Nature Communication (2017)
	 Cattoni, D. et al. Nature Communication (2017)
Score	 Stadhouders R. et al. Nature Genetics (2018)
optimization	• Kojic, A., Cuadrado, A. et al. Nat Struct Mol Biol (2018
	 Beekman R. et al. Nature Medicine (2018)
odeling	 Mas, G. et al. Nature Genetics (2018)
toring	• Pascual-Reguant, L. et al. Nature Communication (2018)
tening	 Nir, Farabella, Perez-Estrada, et al. PLOS Genetics (201)
al analysis	 Cuadrado, Giménez-Llorente et al. Cell Reports (2019)
	 Vara et al. Cell Reports (2019)
	 Miguel-Escalada et al. Nature Genetics (2019)
del	 Morf et al. Nature Biotechnology (2019)
lysis	Nature Structural & Molecular Biology, 25(9), 766-777, 2018 Cell, 173(7), 1796-1809.e17, 2018 Structure, 26(6), 894-904.e2, 2018 Genome Research, 29(1), 29-39, 2019 Genome Research, 29(1), gr.238527.118, 2019 BMC Biology 17(1), 55, 2019

Tool	Short-read aligner(s)	Mapping improvement	Read filtering	Read-pair filtering	Normalization	Visualization	Confidence estimation	Implementation language(s)
HiCUP [46]	Bowtie/Bowtie2	Pre-truncation	✓	✓	_	_	_	Perl, R
Hiclib [47]	Bowtie2	Iterative	\checkmark^{a}	\checkmark	Matrix balancing	\checkmark	_	Python
HiC-inspector [131]	Bowtie	_	\checkmark	\checkmark	_	\checkmark	_	Perl, R
HIPPIE [132]	STAR	✓ ^b	\checkmark	\checkmark	_	_	_	Python, Perl, R
HiC-Box [133]	Bowtie2	_	\checkmark	\checkmark	Matrix balancing	\checkmark	_	Python
HiCdat [122]	Subread	_c	\checkmark	\checkmark	Three options ^d	\checkmark	_	C++, R
HiC-Pro [134]	Bowtie2	Trimming	\checkmark	\checkmark	Matrix balancing	_	_	Python, R
TADbit [120]	GEM	Iterative	\checkmark	\checkmark	Matrix balancing	\checkmark	_	Python
HOMER [62]	_	_	\checkmark	\checkmark	Two options ^e	\checkmark	\checkmark	Perl, R, Java
Hicpipe [54]	_	_	_	_	Explicit-factor	_	_	Perl, R, C++
HiBrowse [69]	_	_	_	_	_	\checkmark	\checkmark	Web-based
Hi-Corrector [57]	_	_	_	_	Matrix balancing	_	_	ANSI C
GOTHIC [135]	_	_	\checkmark	\checkmark	_	_	\checkmark	R
HiTC [121]	_	_	_	_	Two options ^f	\checkmark	\checkmark	R
chromoR [59]	_	_	_	_	Variance stabilization	_	_	R
HiFive [136]	_	_	\checkmark	\checkmark	Three options ^g	\checkmark	_	Python
Fit-Hi-C [20]	_	_	_	_	_	\checkmark	\checkmark	Python

DISCLAIMER — Many alternatives

Analysis methods for studying the 3D architecture of the genome Ay, F. & Noble, W. S. Genome Biol. 16, 183 (2015).

Method *available online	Representation	Scoring			Sampling	Models	
		U _{3C}		U_{Biol}	UPhys		
		$F_{ij} \rightarrow D_{ij}$ conversion	Functional form				
ChromSDE [*] [37]	Points	$D_{ij} = \begin{cases} \left(\frac{1}{F_{ij}}\right)^{\alpha} \text{ if } F_{ij} > 0\\ \infty \text{ if } F_{ij} = 0 \end{cases} \alpha \text{ is optimized}$	$\frac{\sum_{(ij)D_{ij}<\infty)} \frac{\langle r_{ij}^2 - D_{ij}^2 \rangle}{D_{ij}} - \lambda \sum_{(i,j)} r_{ij}^2 \text{ where } \lambda \text{ is set to } 0.01$	N/A	N/A	Deterministic semidefinite programming to find the coordinates	Consensus
ShRec3D* [38]	Points	$D_{ij} = \begin{cases} \left(\frac{1}{F_{ij}}\right)^{\alpha} & \text{if } F'_{ij} > 0\\ \frac{N^2}{\sum_{y,y}^{N'}} & \text{if } F'_{ij} = 0 \end{cases} F'_{ij} \text{ is the original } F_{ij} \text{ corrected to} \\ \text{satisfy all triangular inequalities with the shortest path} \\ \text{reconstruction} \end{cases}$	N/A	N/A	N/A	Deterministic transformations of D _{ij} into coordinates	Consensus
TADbit [*] [43]	Spheres	$D_{ij} \propto \begin{cases} \alpha F_{ij} + \beta & \text{if } F_{ij} < \gamma' \text{ or } F_{ij} > \gamma \\ \frac{S_i + S_j}{2} & \text{if } i - j = 1 \end{cases} \alpha \text{ and } \beta \text{ are estimated} \\ \text{from the max and the min } F_{ij}, \text{ from the optimized max} \\ \text{distance and from the resolution. } \gamma' < \gamma \text{ are optimized too. } s_i \\ \text{is the radius of particle } i \end{cases}$	$\sum_{(i,j)} k_{ij} (r_{ij} - D_{ij})^2$ where $k_{ij} = 5$ if $ i - j = 1$ or proportional to F_{ij} otherwise	Yes	U _{esci} and U _{bond} have harmonic forms	Monte Carlo (MC) sampling with Simulated annealing and Metropolis scheme	Resampling
BACH [*] [45]	Points	$D_{ij} \propto \frac{B_1B_j}{F_{ij}^2}$. The biases B_i and B_j and α are optimized	$b_{ij}D_{ij}^{1/x} + c_{ij} \log(D_{ij})$ where b_{ij} and c_{ij} are optimized parameters	No	No	Sequential importance and Gibbs sampling with hybrid MC and adaptive rejection	Population
Giorgetti et al. [40]	Spheres	Particles interact with pair-wise well potentials of depths B_{ij} a hard-core radius and smaller than a maximum contact radiu the population of models	nd contact radius <i>a</i> , which is larger than a s. The parameters are optimized over all	No	N/A	MC sampling with metropolis scheme	Population
Duan et al. [41]	Spheres	$\overline{F_{ i-j }} = \frac{\sum_{k=0}^{N- i-j } F_{ i k+ i-j }}{N- i-j }$ is the average of F_{ij} at genomic distance $ i-j $ expressed in kb. $D_{ij} = \overline{F_{ i-j }} \times 7.7 \times i-j $ assuming that α 1 kb maps onto 7.7 nm	$\sum_{\langle i,j \rangle} (r_{ij} - D_{ij})^2$	Yes	U _{excl} and U _{bond} have harmonic forms	Interior-point gradient- based method	Resampling
MCMC5C* [49]	Points	$D_{ij} \propto \frac{1}{F_{ij}^2}$ where is optimized	$\sum_{(i,j)} (F_{ij} - r_{ij}^{-1/2})^2$	N/A	N/A	MC sampling with Markov chain based algorithm	Resampling
PASTIS [*] [47]	Points	$D_{ij} \propto \frac{1}{F_{ij}^2}$ where α is optimized	$b_{ij}D_{ij}^{1/2} + c_{ij}\log(D_{ij})$ where b_{ij} and c_{ij} are optimized parameters	No	No	Interior point and isotonic regression algorithms	Resampling
Meluzzi and Arya [48]	Spheres	$\sum_{\langle i,j\rangle\rangle}k_{ij}r_{ij}^2$ where k_{ij} are adjusted such that the contact probab F_{ij}	ilities computed on the models match the	No	U _{exct} is a pure repulsive LJ potential. U _{bond} and U _{bend} have harmonic forms	Brownian dynamics	Resampling
AutoChrom3D* [44]	Points	$D_{ij} \propto \begin{cases} \alpha F_{ij} + \beta & \text{if } F_{\min} < F_{ij} < F_{\gamma} \\ \alpha' F_{ij} + \beta' & \text{if } F_{\gamma} < F_{ij} < F_{\max} \end{cases} \text{ where } F_{\min} (F_{\max}) \text{ are } \\ \text{the min(max) of } F_{ij}. \text{ The parameters } (\alpha, \beta), (\alpha', \beta') \text{ and } F_{\gamma} \text{ are } \\ \text{found using the nuclear size, the resolution and the decay of } \\ F_{ij} \text{ with } i - j \end{cases}$	$\sum_{(l,j)} \frac{(r_0 - D_0)^2}{D_0^2}$	Yes	N/A	Non-linear constrained	Consensus
Kalhor et al. [14]	Spheres	$D_{ij} = R_{contact}$ to enforce the pair contact, if the normalized contact frequency F_{ij} is higher than 0.25. Otherwise the contact is not enforced	$\sum_{\text{models}} \sum_{(i,j)} k_{ij} (r_{ij} - D_{ij})^2$ where k_{ij} is different for pairs of particles, on different chromosomes, on the same chromosome, or connected	Yes	U _{excl} and U _{bond} have harmonic forms	Conjugate gradients sampling with Simulated annealing scheme	Population

* These methods are publicly available.

DISCLAIMER — Many alternatives

Restraint-based three-dimensional modeling of genomes and genomic domains. Serra F, Di Stefano M, Spill YG, Cuartero Y, Goodstadt M, Baù D, Marti-Renom MA. FEBS Lett 589: 2987–2995 (2015)

Are the models correct? Trussart et al. NAR (2015)

Duan (2010) Nature

Baù (2011) Nature Structural & Molecular Biology

Giorgetti, (2014) Cell

Fraser (2009) Genome Biology Ferraiuolo (2010) Nucleic Acids Research

Kalhor (2011) Nature Biotechnology Tjong (2012) Genome Research

Hu (2013) PLoS Computational Biology

Research

Nucleic Acids Research Advance Access published March 23, 2015

Nucleic Acids Research, 2015 1 doi: 10.1093/nar/gkv221

Assessing the limits of restraint-based 3D modeling of genomes and genomic domains

Marie Trussart^{1,2}, François Serra^{3,4}, Davide Baù^{3,4}, Ivan Junier^{2,3}, Luís Serrano^{1,2,5} and Marc A. Marti-Renom^{3,4,5,*}

¹EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain, ²Universitat Pompeu Fabra (UPF), Barcelona, Spain, ³Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain, ⁴Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain and ⁵Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

Received January 16, 2015; Revised February 16, 2015; Accepted February 22, 2015

ABSTRACT

Restraint-based modeling of genomes has been recently explored with the advent of Chromosome Conformation Capture (3C-based) experiments. We previously developed a reconstruction method to resolve the 3D architecture of both prokaryotic and eukaryotic genomes using 3C-based data. These models were congruent with fluorescent imaging validation. However, the limits of such methods have not systematically been assessed. Here we propose the first evaluation of a mean-field restraint-based reconstruction of genomes by considering diverse chromosome architectures and different levels of data noise and structural variability. The results show that: first, current scoring functions for 3D reconstruction correlate with the accuracy of the models; second, reconstructed models are robust to noise but sensitive to structural variability; third, the local structure organization of genomes, such as Topologically Associating Domains, results in more accurate models; fourth, to a certain extent, the models capture the intrinsic structural variability in the input matrices and fifth, the accuracy of the models can be a priori predicted by analyzing the properties of the interaction matrices. In summary, our work provides a systematic analysis of the limitations of a meanfield restrain-based method, which could be taken into consideration in further development of methods as well as their applications.

Recent studies of the three-dimensional (3D) conforma-

tion of genomes are revealing insights into the organiza-

tion and the regulation of biological processes, such as gene

INTRODUCTION

the so-called Chromosome Conformation Capture (3C) assays (7), which allowed identifying chromatin-looping interactions between pairs of loci, helped deciphering some of the key elements organizing the genomes. High-throughput derivations of genome-wide 3C-based assays were established with Hi-C technologies (8) for an unbiased identification of chromatin interactions. The resulting genome interaction matrices from Hi-C experiments have been extensively used for computationally analyzing the organization of genomes and genomic domains (5). In particular, a significant number of new approaches for modeling the 3D organization of genomes have recently flourished (9-14). The main goal of such approaches is to provide an accurate 3D epresentation of the bi-dimensional interaction matrices, which can then be more easily explored to extract biological insights. One type of methods for building 3D models from interaction matrices relies on the existence of a limited number of conformational states in the cell. Such methods are regarded as mean-field approaches and are able to capture, to a certain degree, the structural variability around these mean structures (15).

expression regulation and replication (1-6). The advent of

We recently developed a mean-field method for modeling 3D structures of genomes and genomic domains based on 3C interaction data (9). Our approach, called TADbit, was developed around the Integrative Modeling Platform (IMP, http://integrativemodeing.org), a general framework for restraint-based modeling of 3D bio-molecular structures (16). Briefly, our method uses chromatin interaction frequencies derived from experiments as a proxy of spatial proximity between the ligation products of the 3C libraries. Two fragments of DNA that interact with high frequency are dynamically placed close in space in our models while two fragments that do not interact as often will be kept apart. Our method has been successfully applied to model the structures of genomes and genomic domains in eukaryote and prokaryote organisms (17–19). In all of our studies, the final models were partially validated by assessing their

To whom correspondence should be addressed. Tel: +34 934 020 542; Fax: +34 934 037 279; Email: mmarti@pcb.ub.cat

© The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creative mons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Toy models

150 bp/nm

75 bp/nm

40 bp/nm

set 0 (Δ ts = 10°)

- set 1 ($\Delta ts = 10^{1}$)
- set 2 ($\Delta ts = 10^2$)

Toy interaction matrices

Reconstructing toy models

chr40_TAD **α=100 ∆ts=10** TADbit-SCC: 0.91 <dRMSD>: 32.7 nm <dSCC>: 0.94

chr150_TAD α**=50** ∆ts=1 TADbit-SCC: 0.82 <dRMSD>: 45.4 nm <dSCC>: 0.86

TADs & higher-res are "good"

Noise is "OK"

Structural variability is "NOT OK" + structural variability 150 125 0 0 0 0 0 \diamond 0

0.6 0.7 0.8 0.9 1.0 **TADbit-SCC**

Can we predict the accuracy of the models?

Skewness "side effect"

Can we predict the accuracy of the models?

MMP = -0.0002 * Size + 0.0335 * SK - 0.0229 * KU + 0.0069 * SEV + 0.8126

Can we predict the accuracy of the models?

MMP = -0.0002 * Size + 0.0335 * SK - 0.0229 * KU + 0.0069 * SEV + 0.8126

Human Chr1:120,640,000-128,040,000

homogenize your cell population!

...but we can differentiate between noise and structural variability

and we can a priori predict the accuracy of the models

Higher-res is "good" put your \$\$ in sequencing

Noise is "OK"

no need to worry much

Structural variability is "NOT OK"

http://marciuslab.org http://3DGenomes.org

David Castillo Yasmina Cuartero Marco Di Stefano Irene Farabella Silvia Galan Mike Goodstadt Rodrigo Jara Maria Marti-Marimon Francesca Mugianesi Julen Mendieta Juan Rodriguez Paula Soler Aleksandra Sparavier

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

.: Our current sponsors :.

