

Structure determination of genomes and genomic domains

Marc A. Marti-Renom CNAG-CRG · ICREA

Photo by David Oliete - www.davidoliete.com

Resolution Gap Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, e1002125 (2011)

	IDM			$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	
				DNA length	
	10 ⁶			10 ⁹	nt
				Volume	
) ⁻³		10 ⁰		10 ³	μm³
				Time	
10 ⁻²		10 ⁰	10 ²	10 ³	S
				Resolution	
			10 ⁻¹		μ

Resolution Gap Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, e1002125 (2011)

	IM		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
			DNA length	
10 ⁶			10 ⁹	nt
			Volume	
-3	10 ⁰		10 ³	μm³
			Time	
10 ⁻²	10 ⁰	10 ²	10 ³	S
			Resolution	
		10 ⁻¹		μ

Hybrid Method Baù, D. & Marti-Renom, M. A. Methods 58, 300–306 (2012).

Experiments

Computation

Chromosome Conformation Capture

Dekker, J., Rippe, K., Dekker, M., & Kleckner, N. (2002). Science, 295(5558), 1306–1311. Lieberman-Aiden, E., et al. (2009). Science, 326(5950), 289–293.

Lieberman-Aiden, E., et al. (2009). Science, 3'20(5'950), '289–293. Rao, S. S. P., et al. (2014). Cell, 1–29.

Baù, D. & Marti-Renom, M. A. Methods 58, 300–306 (2012).

Biomolecular structure determination 2D-NOESY data

romosome structure determination 3C-based data

http://3DGenomes.org

Serra, Baù, et al. (2017). PLOS CompBio

- Baù, D. et al. Nat Struct Mol Biol (2011)
- Umbarger, M. A. et al. Mol Cell (2011)
- Le Dily, F. et al. Genes & Dev (2014)
- Belton, J.M. et al. Cell Reports (2015)
- Trussart M. et al. Nature Communication (2017)
- Cattoni, D. et al. Nature Communication (2017)
- Stadhouders R. et al. Nature Genetics (2018)
- Kojic, A., Cuadrado, A. et al. Nat Struct Mol Biol (2018)
- Beekman R. et al. Nature Medicine (2018)
- Mas, G. et al. Nature Genetics (2018)
- Pascual-Reguant, L. et al. Nature Communication (2018)
- Nir, Farabella, Perez-Estrada, et al. PLOS Genetics (2018)
- Cuadrado, Giménez-Llorente et al. Cell Reports (2019)
- Vara et al. Cell Reports (2019)
- Miguel-Escalada et al. Nature Genetics (2019)
- Morf et al. Nature Biotechnology (2019)
- Di Stefano et al. Genetics (2020)

Nature Structural & Molecular Biology, 25(9), 766-777, 2018 Cell, 173(7), 1796-1809.e17, 2018 Structure, 26(6), 894-904.e2, 2018 Genome Research, 29(1), 29-39, 2019 Genome Research, 29(1), gr.238527.118, 2019 Cell Systems 9, 1–13.e1–e6, 2019 Nature Communications, 10(1), 5355, 2019 BMC Biology, 17(1), 55, 2019 Molecular Cell, 2019 Cell Systems, 9(5), 446-458.e6, 2019

3D structural dynamics of the SOX2 locus activation

Marco di Stefano **Ralph Stadhouders**

with Graf Lab (CRG, Barcelona)

Nature Genetics (2018) 50 238–249 & BioRxived

Transcription factors dictate cell fate

Graf & Enver (2009) Nature

Transcription factors (TFs) determine cell identity through gene regulation Normal 'forward' differentiation

Cell fates can be converted by enforced TF expression

Transdifferentiation or reprogramming

Graf & Enver (2009) Nature Stadhouders, R., Vidal, E. et al. (2018) Nature Genetics

Interplay: topology, gene expression & chromatin

Reprogramming from B to PSC Stadhouders, R., Vidal, E. et al. (2018) Nature Genetics

Hi-C maps of reprogramming from B to PSC The SOX2 locus

Hi-C maps of reprogramming from B to PSC The SOX2 locus

. . .

- How does these structural rearrangements interplay with the transcription activity?
 - What are the main drivers of structural transitions?

Optimal IMP parameters lowfreq=0, upfreq=1, maxdist=200nm, dcutoff=125nm, particle size=50nm (5kb)

TADbit modeling of SOX2 from B cells Hi-C

Models of reprogramming from B to PSC The SOX2 locus

TADdyn: from time-series Hi-C maps to dynamic restraints The SOX2 locus

TADdyn: from time-series Hi-C maps to dynamic restraints The SOX2 locus

TADdyn: from time-series Hi-C maps to dynamic restraints The SOX2 locus

Energy penalty

Transition	Stable	Vanishing	Raising		
Β -> Β α	18,612	6,984	7,290		
Β α -> D2	18,512	7,390	6,687		
D2 -> D4	18,369	6,830	6,893		
D4 -> D6	18,971	6,291	7,289		
D6 -> D8	20,167	6,093	6,250		
D8 -> ES	20,679	5,738	6,173		

SOX2 locus structural changes from B to PSC Contacts

SOX2 locus structural changes from B to PSC Contacts

SOX2 locus structural changes from B to PSC TAD borders

SOX2 locus structural changes from B to PSC TAD borders

SOX2 locus structural changes from B to PSC Distance to regulatory elements

SOX2 locus structural changes from B to PSC Distance to regulatory elements

SOX2 locus structural changes from B to PSC Chromatin Activity

 92
 69 🚬
 46 🖌
 23 🗖
0

	В	Ba	D2	D4	D6	D8	PSC
А	9	6	7	13	13	22	48
AP	4]	4	4	4	13	23
APD	3]]]	4	10	15
	B cell	Βα	D2	0 D4	0 D6	D8	PSC

SOX2 locus structural changes from B to PSC Structural exposure

SOX2 locus structural changes from B to PSC Structural exposure

SOX2 locus dynamics changes from B to PSC SOX2 displacement

SOX2 locus dynamics changes from B to PSC SOX2 displacement

SOX2 locus dynamics changes from B to PSC SOX2 displacement

Two dimensional trajectories and area explored over 50s of the CCND1 locus recored before -E2 and after +E2 activation.

Germier ,T., et al, (2017) Blophys J.

Transcription affects the 3D topology of the enhancer-promoted enhancing its temporal stability and is associated with further spatial compaction.

Chen ,T., et al, (2018) Nat. Genetics

Structural changes from B to PSC Other 21 loci

Dynamics of gene activation Trends in 21 loci

 $10 \cdot$ log(RPKM+1) 0

Time and expression levels

http://marciuslab.org http://3DGenomes.org

David Castillo Yasmina Cuartero Marco Di Stefano Irene Farabella Silvia Galan Mike Goodstadt Rodrigo Jara Maria Marti-Marimon Francesca Mugianesi Julen Mendieta Juan Rodriguez Aleksandra Sparavier

.: Our current sponsors :.

