

Structure determination of genomes and genomic domains.

Marc A. Marti-Renom CNAG-CRG · ICREA

http://marciuslab.org http://3DGenomes.org http://cnag.crg.eu

Resolution Gap Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, e1002125 (2011)

	IDM			$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$	
				DNA length	
	10 ⁶			10 ⁹	nt
				Volume	
10 ⁻³		10 ⁰		10 ³	μm³
				Time	
10 ⁻²		10 ⁰	10 ²	10 ³	S
				Resolution	
			10 ⁻¹		μ

Resolution Gap Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, e1002125 (2011)

IC CONTRACTOR IN	DM		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
			DNA length	
10 ⁶			10 ⁹	nt
			Volume	
-3	10 ⁰		10 ³	μm³
			Time	
10 ⁻²	10 ⁰	10 ²	10 ³	S
			Resolution	
		10 ⁻¹		μ

Number of cells

Targets per cell

Chromosome walking with super-resolution imaging and modeling

Guy Nir Irene Farabella Cynthia Perez-Estrada with Wu Lab (HMS, Boston) & Aiden Lab (UT, Texas)

PLOS Genetics (2018) 14(12) e1007872

High-resolution imaging Tracing chromosomes with OligoSTORM & fluidics cycles in PGP1 cells

Beliveau et al. Nat. Comm. 2015

High-resolution imaging Tracing chromosomes with OligoSTORM & fluidics cycles in PGP1 cells

Carl Ebeling Bruker

High-resolution imaging Tracing chr19:7,335,095-15,449,189 ~8Mb 1 2 3 4 5 6 7 8 9

1,800Kb

1,280Kb	1,240Kb

1,040Kb

520Kb 520Kb 840Kb

٩.

Kb 520Kb 360Kb

.

Farabella et al, J Appl Crystallogr. 2015

Density maps Cell-02 · Density map @ 50nm

Area (nm^2) Volume (nm³) Sphericity Overlap (%) Distance (nm)

Farabella et al, J Appl Crystallogr. 2015

Structural features Area, Volume and Sphericity of 19 cells each with 2 homologous resolved

Area

Spatial arrangement Distance and overlap of 19 cells each with 2 homologous resolved

Diff. distance

Diff. overlap

Structural clustering 19 cells each with 2 homologous and 9 segments each (342)

PGP1 ChIP-seq and Hi-C data from ENCODE and Lieberman-Aiden Lab, respectively

89

Cluster properties A/B compartment properties

Increasing resolution Rigid body fitting 3D structures based on Hi-C data

Increasing resolution Flexible fitting 3D structures based on Hi-C data

Chromosome walking path @10Kb resolution

Mapping "omics" 3D organization of local structures

OligoSTORM

- Is a set of technologies for in-situ chromosome walking at super-resolution
- Is highly designable: can target any region of the genome (except repeats?)

- Combined with micro-fluidics can do up to tens of rounds (steps)
- Combined with modeling + Hi-C produces traces of chromosomes at 10Kb resolution

• Can be pipelined with other approaches such OligoFISSEQ for increased speed (next)

Chromosome tracing with OligoFISSEQ

Marc A. Marti-Renom CNAG-CRG · ICREA

Huy Nguyen Shyamtanu Chattoraj David Castillo

in collaboration with the Wu Lab (HMS) Nature Methods (2020) 17 p822

LIT barcode

HIT bridge 3' sites SIT primer site SIT barcode

Genome homology

From tens of kb to Mb Min. of few 100s oligos/target At least a Mb between targets

OligoFISSEQ

LIT primer site

LIT barcode

OligoFISSEQ

OligoFISSEQ scales exponentially!

Sequential hybridization

of targets = F*NF = # of fluorophores N = # of seq. rounds

Barcode sequencing

of targets = FNF = # of fluorophores N = # of seq. rounds

Proof-of-principle

600kb-1Mb/target (876 kb average) 5,000 oligos/target 7-70Mb between targets

Round 1

Round 2

Round 3

Round 4

Detecting a given target

OligoFISSEQ "Manhattan plot"

--**≻** X

In OligoFISSEQ every pixel matters & make "patches" 4 rounds / 4 channels

OligoFISSEQ barcode efficiency

OligoFISSEQ is high throughput!

~2 days of image acquisition ~1,000 cells ~5,000 <u>complete</u> chromosomes ~150 cells with <u>complete</u> chromosomes

Single cell homolog resolved tracing of chromosomes

Do OligoFISSEQ tracing maps show known features? Hi-C contact maps & Radial position of chromosomes OligoFISSEQ n=1,108 Distance (μ m) envelope(µm) 12 n=691 0 8 -6 – **Distance to nuclear** 4 – $r^2 = 0.71$ 2 -0 – Hi-C Interaction 19 16 5 15 0 $n = 1 \times 10^6 + cells$

Are the chromosomes randomly located inside the nucleus? Are there preferred configurations in the cell population?

OligoFISSEQ tracing of (almost) entire chromosomes 46 Plex in chromosome X

chrX (

5 rounds 445 kb/probe 2,000 Oligopaints/probe 2 Mb between loci

OligoFISSEQ tracing of (almost) entire chromosomes 46 Plex in chromosome X

OligoFISSEQ tracing of (almost) entire chromosomes 46 Plex in chromosome X

Cluster 1 (n=156)

0% 100% models with particles at <2.0 (μ m)

Cluster 2 (n=20)

OligoFISSEQ beyond chromosome tracing

OligoFISSEQ pipelined with OligoSTORM chr2

OligoSTROM 1 round

(2h/round)

OligoFISSEQ 2 round (3h/round)

 \bigcirc

Decoding OligoFISSEQ

3

A 34

1

and a

OligoFISSEQ for multiple loci detection

72%

OligoFISSEQ + protein immunofluorescence

- Is a <u>set of technologies</u> for in-situ genome mapping Is <u>highly versatile</u>: mainstreet and backstreet
- - Used with wide-field microscopy permits the analysis of thousands of cells. Identifies <u>sub-clusters</u> with specific conformational characteristics

- Can be <u>pipelined</u> with other approaches
 - OligoSTORM \bullet
 - Protein immunofluorescence
 - RNA...

OligoFISSEQ

http://marciuslab.org http://3DGenomes.org

David Castillo Yasmina Cuartero Silvia Galan Rodrigo Jara lana Kim Maria Marti-Marimon Francesca Mugianesi Julen Mendieta Aleksandra Sparavier

In collaboration with the Wu Lab — Ting Wu, Nir Guy, Huy Nguyen & Shyamtanu Chattoraj

Marco Di Stefano Mike Goodstadt

.: Our current sponsors :.

International Nucleome Consortium

@INC_COST linc-cost.eu ICA18127

https://inc-cost.eu

Luxembourg Malta Moldova Netherlands Norway Poland Portugal Romania Serbia Slovenia Spain Switzerland Turkey United Kingdom

Azerbaijan
Egypt
Japan
Russia
USA

Funded by the Horizon 2020 Framework Programme of the European Union

https://inc-cost.eu/inc-academy/

@INC_COST linc-cost.eu ICA18127 International NUCLEOME consortium

Thanks to the INC Academy Committee!!

Ikbal Agah Ince Tuncay Baubec Maria C. Gambetta Sarah Hurtado-Bagès Daniel Jost Jonas Krebs Jonas Paulsen <u>Vladimir Teif</u> Melita Vidakovic

Funded by the Horizon 2020 Framework Programme of the European Union

