

Structure determination of genomes and genomic domains by image tracing

Marc A. Marti-Renom CNAG-CRG · ICREA

http://marciuslab.org http://3DGenomes.org http://cnag.crg.eu

Complex genome organization

Cavalli, G. & Misteli, T. Functional implications of genome topology. Nat Struct Mol Biol 20, 290–299 (2013).

Number of cells

Targets per cell

Chromosome walking with super-resolution imaging and modeling

Guy Nir Irene Farabella Cynthia Perez-Estrada with Wu Lab (HMS, Boston) & Aiden Lab (UT, Texas)

PLOS Genetics (2018) 14(12) e1007872

High-resolution imaging Tracing chromosomes with OligoSTORM & fluidics cycles in PGP1 cells

homologous 32-42bp

Beliveau et al. Nat. Comm. 2015

chr19:7,335,095-15,449,189 ~8Mb

High-resolution imaging Tracing chromosomes with OligoSTORM & fluidics cycles in PGP1 cells

High-resolution imaging Tracing chr19:7,335,095-15,449,189 ~8Mb 1 2 3 4 5 6 7 8 9

1,800Kb

1,280Kb	1,240Kb

1,040Kb

520Kb 520Kb 840Kb

٩.

Kb 520Kb 360Kb

.

Farabella et al, J Appl Crystallogr. 2015

Density maps Cell-02 · Density map @ 50nm

Area (nm^2) Volume (nm³) Sphericity Overlap (%) Distance (nm)

Farabella et al, J Appl Crystallogr. 2015

Structural features Area, Volume and Sphericity of 19 cells each with 2 homologous resolved

Area

Spatial arrangement Distance and overlap of 19 cells each with 2 homologous resolved

Diff. distance

Diff. overlap

Structural clustering 19 cells each with 2 homologous and 9 segments each (342)

PGP1 ChIP-seq and Hi-C data from ENCODE and Lieberman-Aiden Lab, respectively

89

Cluster properties A/B compartment properties

Increasing resolution Rigid body fitting 3D structures based on Hi-C data

Increasing resolution Flexible fitting 3D structures based on Hi-C data

Chromosome walking path @10Kb resolution

Mapping "omics" 3D organization of local structures

Chromosome tracing with OligoFISSEQ

Marc A. Marti-Renom CNAG-CRG · ICREA

Huy Nguyen Shyamtanu Chattoraj David Castillo

in collaboration with the Wu Lab (HMS) Nature Methods (2020) 17 p822

LIT barcode

HIT bridge 3' sites SIT primer site SIT barcode

Genome homology

From tens of kb to Mb Min. of few 100s oligos/target At least a Mb between targets

OligoFISSEQ

LIT primer site

LIT barcode

OligoFISSEQ

OligoFISSEQ scales exponentially!

Sequential hybridization

of targets = F*NF = # of fluorophores N = # of seq. rounds

Barcode sequencing

of targets = FNF = # of fluorophores N = # of seq. rounds

Proof-of-principle

600kb-1Mb/target (876 kb average) 5,000 oligos/target 7-70Mb between targets

Round 1

Round 2

Round 3

Round 4

Detecting a given target

OligoFISSEQ "Manhattan plot"

--**≻** X

In OligoFISSEQ every pixel matters & make "patches" 4 rounds / 4 channels

OligoFISSEQ barcode efficiency

OligoFISSEQ tracing of (almost) entire chromosomes 46 Plex in chromosome X

chrX (

5 rounds 445 kb/probe 2,000 Oligopaints/probe 2 Mb between loci

OligoFISSEQ is high throughput!

~2 days of image acquisition ~1,000 cells ~5,000 <u>complete</u> chromosomes ~150 cells with <u>complete</u> chromosomes

OligoFISSEQ beyond chromosome tracing

OligoFISSEQ for multiple loci detection

72%

OligoFISSEQ + protein immunofluorescence

OligoFISSEQ pipelined with OligoSTORM chr2

OligoSTROM 1 round

(2h/round)

OligoFISSEQ 2 round (3h/round)

 \bigcirc

Decoding OligoFISSEQ

3

1 30

1 1

......

- Is a <u>set of technologies</u> for in-situ genome mapping Is <u>highly versatile</u>: mainstreet and backstreet
- - Used with wide-field microscopy allows for the analysis of thousands of cells. Identifies <u>sub-clusters</u> with specific conformational characteristics

- Can be <u>pipelined</u> with other approaches
 - OligoSTORM \bullet
 - Protein immunofluorescence
 - RNA...

OligoFISSEQ

http://marciuslab.org http://3DGenomes.org

David Castillo Ronan Duchesne Irene Farabella Alicia Hernández lana Kim François Le Dily lago Maceda Maria Marti-Marimon Francesca Mugianesi Meritxell Novillo Aleksandra Sparavier Leo Zuber

Since September 2021, Marc A. Marti-Renom serves as a consultant to Acuity Spatial Genomics, Inc., and receives compensation for these services.

.: Our current sponsors :.

National Human Genome Research Institute

.: Conflict of Interest Statement :.

https://www.chromdesign.eu/epic-conference/

EpIC - EpiGene3Sys meets INC-Spain

David S. Kong MIT Media Lab **United States**

ChromDesign: MSCA interdisciplinary training network, grant agreement 813327 **INC-Spain:** Spanish network of the International Nucleome Consortium funded by

