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Fly Chromatin COLORs  
Filion et al. (2010). Cell, 143(2), 212—224.

a rich description of chromatin composition along the genome.
By integrative computational analysis, we identified, aside from
PcG and HP1 chromatin, three additional principal chromatin
types that are defined by unique combinations of proteins. One
of these is a type of repressive chromatin that covers !50% of
the genome. In addition, we identified two types of transcription-
ally active euchromatin that are bound by different proteins and
harbor distinct classes of genes.

RESULTS

Genome-wide Location Maps of 53 Chromatin Proteins
We constructed a database of high-resolution binding profiles of
53 chromatin proteins in the embryonicDrosophila melanogaster

cell line Kc167 (Figure 1A and Figure S1A available online). In
order to obtain a representative cross-section of the chromatin
proteome, we selected proteins from most known chromatin
protein complexes, including a variety of histone-modifying
enzymes, proteins that bind specific histone modifications,
general transcription machinery components, nucleosome re-
modelers, insulator proteins, heterochromatin proteins, struc-
tural components of chromatin, and a selection of DNA-binding
factors (DBFs) (Table S1). For!40 of these proteins, full-genome
high-resolution binding maps have not previously been reported
in any Drosophila cell type or tissue. Though chromatin immuno-
precipitation (ChIP) is widely used to map protein-genome inter-
actions (Collas, 2009), large-scale application of this method is
hampered by the limited availability of highly specific antibodies.
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Figure 1. Overview of Protein Binding Profiles and Derivation of the Five-Type Chromatin Segmentation
(A) Sample plot of all 53 DamID profiles (log2 enrichment over Dam-only control). Positive values are plotted in black and negative values in gray for contrast.

Below the profiles, genes on both strands are depicted as lines with blocks indicating exons.

(B) Two-dimensional projections of the data onto the first three principal components. Colored dots indicate the chromatin type of probed loci as inferred by

a five-state HMM.

(C) Values of the first three principal components along the region shown in (A), with domains of the different chromatin types after segmentation by the five-state

HMM highlighted by the same colors as in (B).

See also Figure S1 and Table S1.
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Who “holds” the genome structure? 
Serra et al. PLoS Comput Biol (2017) 13(7): e1005665 
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Hi-ChIP: capturing specific protein-mediated interactions 
Mumbach, M.R. et al. (2016) Nature Methods 13(11) 919-922.
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Validation with HiChIP as benchmark 
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The role of chromatin factors in genome topology 
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3D interactions are mostly associated with pluripotent TFs
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CHROMATIC better represents genome function than ChIP-seq alone
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Types of 3D interactions with LSA in ESC
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Types of 3D interactions with LSA in ESC
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4 major types of 3D interactions in ESC

A and B compartments

pTFs PcG- 
Bivalent

Active InactiveGenome 
-wide

%
 A

 / 
B

A

B

A

A
A

A

B

B
B

B

Higly-, Lowly-expressed and Silent genes

Lo
Hi

Hi
Hi

Hi

Lo

Lo

Lo

Lo

pTFs PcG- 
Bivalent

Active InactiveGenome 
-wide

%
 o

f g
en

es
Hi

Si

Si

Si Si

Si

Silent   RPKM<1 
Low     1<RPKM<10 
High    RPKM>10

ESC



NPC

Polycomb

Neuronal TF

Architectural

Activity

Repression

Pluripotency TF

HoxA

NPC - 5kb res. - mm10 
chr6:48,050,000-52,750,000 Log2(Hi-C int)

N
orm

alized ChIP-seq 

HoxA cluster (example in NPC)



Global 3D interactions rewiring during mouse development

Pluripotent TFs

Inactive

Active

PcG-Bivalent

73.4%
1.6%

4.9%

20.1%

Total 5kbx5kb pixels = 5,216,011 (0.07%)

ESC

Total 5kbx5kb pixels = 6,710,882 (0.09%)

Neuronal TFs

Inactive

Active

PcG-Bivalent

40.2%

24.3% 2.2%

33.3%

NPC



Global 3D interactions rewiring during mouse development

Pluripotent TFs

Inactive

Active

PcG-Bivalent

73.4%
1.6%

4.9%

20.1%

Total 5kbx5kb pixels = 5,216,011 (0.07%)

ESC

Total 5kbx5kb pixels = 6,710,882 (0.09%)

Neuronal TFs

Inactive

Active

PcG-Bivalent

40.2%

24.3% 2.2%

33.3%

NPC

Neuronal TFs

Active

Inactive
PcG-Bivalent

UnclassifiedPluripotent TFs

Active

Inactive
PcG-Bivalent

Unclassified

ESC NPC
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3D interactions rewiring at Zfp608 locus during mouse neural development
5kb res.

chr18:53,800,000-56,600,000ESC NPC

Hi-C Log2 interactions

Scale
chr18:

1 Mb mm10
54,500,000 55,000,000 55,500,000 56,000,000 56,500,000

GENCODE VM23 Comprehensive Transcript Set (only Basic displayed by default)
Csnk1g3
Csnk1g3

Redrum
Gm50361

4933434P08Rik
9330117O12Rik

Gm33732
Zfp608

Gm4221
Gm4221
Gm24183

AC163347.1

Gm34073

Gm22597

Gm37828
Gm37337

Gm24514
Gm4230
Gm23335
Gm22484

Gm23555
Gm25476

Gramd3
Gramd3

Gramd3
Aldh7a1
Aldh7a1
Aldh7a1
Mir1258

Phax
Phax
Tex43

Major 3D-types
Active
Neuronal TFs
PcG-Bivalent
Inactive

Major 3D-types
Active
Plurip.TFs
PcG-Bivalent
Inactive

Scale
chr18:

1 Mb mm10
54,500,000 55,000,000 55,500,000 56,000,000 56,500,000

GENCODE VM23 Comprehensive Transcript Set (only Basic displayed by default)
Csnk1g3
Csnk1g3

Redrum
Gm50361

4933434P08Rik
9330117O12Rik

Gm33732
Zfp608

Gm4221
Gm4221
Gm24183

AC163347.1

Gm34073

Gm22597

Gm37828
Gm37337

Gm24514
Gm4230
Gm23335
Gm22484

Gm23555
Gm25476

Gramd3
Gramd3

Gramd3
Aldh7a1
Aldh7a1
Aldh7a1
Mir1258

Phax
Phax
Tex43



Take home message…

Hi-C

Factor D

Factor C

Factor B

Factor A



http://marciuslab.org 
http://3DGenomes.org 

@marciuslab 
@mamartirenom

.: Our current sponsors :.

.: Conflict of Interest Statement :.  
Marc A. Marti-Renom serves as a consultant to Acuity Spatial Genomics, Inc., and receives compensation for these services.

In collaboration with the Di Croce Lab @CRG

David Castillo 
Marco Di Stefano 
Irene Farabella 

Alicia Hernández 
Francesca Mugianesi  

Juan A. Rodriguez

Alexander Barclay 
Nikolai Bykov 

Constantin Diekmann 
Ronan Duchesne 

Iana Kim 
François Le Dily 
Iago Maceda 

Maria Marti-Marimon 
Meritxell Novillo 

Aleksandra Sparavier 
Leo Zuber


