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Hermaphrodite primeval men 
Plato´s symposium, 385-370 BC

Left-right theory 
Alexandrian manuscripts, 1st cent. BC

Discovery of Sry gene 
Koopman et al., Nature, 1991 

(Goodfellow & Lovell Badge labs)

Mythology Theories Genetics

Sex determination: a 3,000 year-old enigma



Hi-C & ChIP-seq
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Sample fragmentation
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Sex-determination as a model for “bipotential” commitment
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No major structural (apparent) differences
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Genomic coordinates

ETALoci



Hi-C normalization and interaction selection 
chr11:110780000-114770000

Normalized Hi-C

Top interactions



Kamada & Kawai, 1989

Spatial lay-out of significant interactions 
chr11:110780000-114770000

chr11:110,780,000

chr11:114,770,000
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Marker (H3K27ac) into 2D mapping 
chr11:110780000-114770000
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Quantifying regulatory environments bin by bin
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LMI Trip for Sox9 gene
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All genes LMI Trip
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Can we identify regulatory elements using ETALoci

Now that we know the genes….



Fgf9 locus chr14:56,070,000-60,070,000 

METALoci predictive mode



Fgf9 locus chr14:56,070,000-60,070,000 

METALoci predictive mode
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METALoci predictive mode
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METALoci predictive mode
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Fgf9 XY 306 mutantΔ
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Fgf9 XY additional mutants
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bars). We will complement these experiments with novel analysis on binding sites on the enhancer 
element within the 306Kb region, to identify potential TF controlling Fgf9 expression. 
 

 
Reviewer figure 2. Outline of new deletions planned at the Fgf9 locus. Hi-C maps, as well as ATAC-seq and 
H3K27 ChIP-seq tracks are shown for Sertoli E13.5 XY cells (Sertoli). Note the abundancy of ATAC peaks across 
the adjacent gene desert to Fgf9. METALoci perturbations are shown in the lower track, in which dots that are 
below the defined threshold (dots with bars) represent 10Kb regions which deletion is predicted to cause a 
disruption of Fgf9 regulatory activity. Orange rectangles represents the 306Kb non-coding region, which deletion 
impairs Fgf9 expression and causes male-to-female sex reversal in transgenic mice. Red rectangles represent the 
deletions that are currently being generated, and that have a similar size to Δ306. These experiments would serve 
as control deletions to potentially demonstrate the relevance of the 306Kb region. Purple rectangles represent 
smaller deletions within the 306Kb region. These deletions will reveal if the regulatory activity of the 306Kb region 
is distributed over several regulatory elements concentrated in a particular portion. 

 
We have already obtained preliminary data for some of the mutants with smaller deletions. 

In particular, we have performed a phenotypical analysis on mutants carrying a deletion of the 93Kb 
fragment (Δ93 mutants), which is a subregion of the previously deleted 306Kb fragment (Reviewer 
Figure 3). In these mutants, we observe a wider range of gonadal phenotypes than in XY Δ306 mutants, 
including the development of apparently normal testes, of ovotestes and of fully sex-reversed ovaries. 
These experiments are already informative for two reasons. First, they demonstrate that the 93Kb 
region contains regulatory elements for Fgf9, thus allowing us to narrow down the required regions 
to sustain the gonadal function of this genes. And second is the fact that the phenotype is not as severe 
as in XY Δ306 mutants (as those never develop normal testes). This may indicate that additional 
regulatory elements, outside of the 93Kb but within the 306Kb region, also contribute to Fgf9 
expression. This may imply that the large regions derived from METALoci predictions are not due to a 
lack of precision, but rather indicate a distribution of the functionality along the Fgf9 loci. This 
phenotypical analysis will be complemented with expression datasets, to estimate the degree of 
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disruption of Fgf9 expression upon the 93Kb deletion and to compare with the existing and other 
newly-generated mutants. 
 

 
Reviewer Figure 3. Phenotypical analysis of Fgf9 METALoci mutants. First row displays control gonads of 

wildtype animals at E14.5 (testis are from XY and ovaries from XX individuals). Second row shows gonadal 

phenotypes for Δ306 mutants included in the previous version of the manuscript. Third row displays gonadal 

phenotypes for the newly-generated Δ93 mutants, which carry a deletion of a subregion included in the 306Kb 

region. Note the presence of 3 distinct phenotypes. The ovotestes phenotypes is characterized by the formation 

of testicular tissue in the center of the gonad (green bracket) and ovarian tissue at the poles (purple brackets). 

Fourth row displays gonadal phenotypes for the newly-generated Δ225 mutants, which carry a deletion of a 

region adjacent to the 306Kb region. Note the consistent development of a testis phenotype in Δ225 mutants. All 

mutant phenotypes correspond to XY individuals. The numbers below each gonadal picture represent the number 

of observed phenotypes out of the total number of analyzed gonads. 

 
The METALoci analysis could be interesting for the 3D genome community, particularly for those 
studying gene regulation. Unfortunately no comparison is made to existing tools is made either 
computational (see for instance: https://www.nature.com/articles/s41467-017-02386-3, 
https://www.sciencedirect.com/science/article/pii/S1097276520303920). However, what is more 
problematic is that the analyses are very technical, complicated and frankly byzantine. Figure 3 is a 
good example of this. There is a whole list of factors that are suggested to be important in 3D genome 
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Take home messages:

First characterization of the 3D regulatory landscape of sex determination 

METALoci is an unbiased approach to quantify gene regulatory activity 

METALoci is a predictive tool to identify critical regulatory loci 

Discovery of a novel non-coding region controlling sex determination 
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