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In retrospect, it was probably inevitable that admirers of open source software production 
would look for a second act.  Before the 1990s, most commentators had imagined that the  
landscape of innovation consisted almost entirely of patents and copyright.  This was 
never really true – careful policy makers have always considered other options such as 
prizes, grants and contract research2 – but in the closing, patent-obsessed decades of the 
20th Century the illusion was hard to shake.  To observers who had never imagined such a 
thing, the realization that workers could create new products without central control or 
private ownership was unexpected.3  The fact that open source had occurred in one of 
society’s hardest innovation problems – complex computer operating systems – seemed 
doubly miraculous.  Like moon rockets and integrated circuits, operating systems 
required far more labor than any single human lifetime could supply.  In the Twentieth 
Century, that had meant big, hierarchical teams.  It didn't really matter whether the 
engineers were in Santa Monica or Minsk, the long rows of drafting boards and (later) 
computer terminals looked pretty much the same.  The system worked, of course, but 
anyone who's ever read Dilbert4 knows that it wasn’t pretty.  Now, suddenly, the open 
source movement had shown that at least one complex invention – computer software – 
could be organized in a completely different way.  Why not others? 
 
The question remained, what would this second act be?  At least intuitively, drug 
discovery was the likeliest candidate.  After all, pills – like software – consist largely of 
information.  Indeed, per-pill R&D expenses are roughly the same as manufacturing 
costs.5  Furthermore, drug discovery and computing seemed to be converging.  By the 
late 1990s, pharmaceutical experts were predicting a new era of rational drug design in 
which the next generation of pharmaceuticals would be discovered by scientists staring at 
computer monitors.  Open source software advocates claimed that having large numbers 
of volunteers – “many eyeballs” – look at code was a great way to find bugs.  Why not 
use the same methods to find subtle flaws in the genome?  Indeed, the scenario even had 
a villain: “Big Pharma” with its massively hierarchical teams looked perfect for the part 
of Microsoft.  Finally, biologists were already launching initiatives (most notably The 
SNP Consortium and the Bermuda Protocol) that renounced patent rights in the human 
genome.6 By the Year 2000, many observers thought that open source drug discovery 
collaborations were just around the corner.7 
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The problem, nearly a decade later, is that the revolution has yet to arrive.  Some 
commentators still see a future in which hackers trade open source molecules8 and even 
entire life forms.9  Increasingly, however, it is the absence of open source drug discovery  
that needs explaining.  Why has so little happened?  Two explanations are common.  
First, open source computing requires very few resources beyond the volunteers’ own 
time.  The average pharmaceutical product, on the other hand, costs about $802 million10 
and includes substantial out-of-pocket costs for chemical reagents, pre-clinical and 
clinical testing, and novel chemical compounds.  Since open source researchers cannot 
charge patients, they have no way to repay these expenses.11  Second, drug patents are 
notoriously lucrative. Given that so many biologist-entrepreneurs have become 
millionaires, why should anyone donate their ideas to an open source collaboration?  
These are serious objections, backed by experience.  At the same time, drug discovery is 
a complex process.  This paper argues that, on closer examination, there are many 
locations along the drug discovery pipeline where patent-driven R&D is compatible with 
– and may even support – open source methods.12 
 
This article reviews the first tentative experiments with open source drug discovery and 
identifies spaces within the drug discovery pipeline where more convincing examples of 
open source collaboration could take root.  Section I discuses the sometimes elusive 
definition of “open source drug discovery” and distinguishes the term from “open 
science” and related concepts.  Section II looks at recent biology collaborations that are 
sometimes said to resemble open source.  Section III argues that more convincing 
collaborations can be designed by scrutinizing the drug discovery pipeline for subtasks 
that match the known strengths and weaknesses of open source methods.  Section IV 
describes three relatively modest examples of open source collaborations that could 
plausibly be built in the next few years.  Section V discusses more ambitious, longer-term 
ideas for using open source methods to cut costs at the very expensive downstream end of 
the drug discovery pipeline.  Section VI asks whether open source drug discovery needs 
so-called “viral” or “copyleft” licenses that prevent users from patenting improvements 
and, if so, whether such agreements are legal.  Finally, Section VII presents a brief 
conclusion. 
 
 
I. What Does Open Source Drug Discovery Mean?  
 
As Prof. Opderdeck has remarked, “Exactly what ‘open source’ means is a subject of 
some confusion and debate.”13 Strictly speaking, the phrase “open source” is limited to 
source code, i.e. one particularly transparent and human-readable format for recording 
computer code.14  To this extent, phrases like “open source biology” and “open source 
drug discovery” are oxymorons.  That should not, of course, stop us from using them.  
“Words,” as Alice in Wonderland’s Red Queen observed, “mean what I choose them to 
mean.”15  But we should at least reserve the label for something novel.  As we will see in 
Section II, biology collaborations often use the word “open” to describe the absence of 
patents. This seems insufficient.  After all, scientists were already doing research for such 
non-monetary reasons as reputation and curiosity in Linnaeus’ time. 
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If there is something new in “open source” production, then, it must be more than the 
traditional practices that some observers call “open science.”16  That extra something is 
focus – i.e., the desire to obtain not just knowledge but a specific product.  Far more than 
in traditional science, it is this purposefulness that forces members to interact, to 
subordinate themselves to a larger plan, and to judge success by such suspiciously 
capitalist measures as consumer acceptance and market share.  Properly understood, then, 
“open source” is less a legal category than a behavior.  Practically all biology 
collaborations receive government or foundation funding17 and it is easy for such groups 
to add open source licenses to work that they would do anyway. In this case, the actual 
research activity – for example how tasks are done and who participates – hardly changes 
at all.  “Open source” should mean something more than that.  A useful definition should 
track substance, not just paperwork. 
 
What that definition should be is not entirely clear.  Even for software, definitions of 
“open source” tend to be arbitrary and occasionally controversial.  Paraphrasing Prof. 
Benkler’s seminal description18, we will define open source as  
 

(a) a method of producing complex economic products;  
 
(b) capable of supporting medium- to large-scale collaborations, potentially 
including thousands of people; and  
 
(c) organized according to signals that are neither hierarchical commands (as in 
firms or academic laboratories) nor prices (as in markets) but voluntary or social.  

 
This definition is not entirely satisfactory, since the final subpart describes incentives 
negatively (not price, not hierarchical) instead of using an explicit list.  This flaw is 
probably understandable for a new subject that is still being explored.  More to the point, 
things are not as bad as they seem: We will see in Part III that social scientists have 
devoted considerable effort to identifying the half-dozen or so incentives that seem to 
drive all existing open source software projects.  This article will normally assume that 
viable open source drug discovery collaborations must choose from this same, relatively 
short list of incentives.   
 
In what follows, we ask whether collaborations that fit this description are a feasible way 
to do drug discovery and, if so, whether they would make society better off.  We begin by 
surveying recent attempts to import at least some open source features into biology. 
 
 
II. First Steps 
 
The open source label is so appealing that it was only a matter of time until biology 
collaborations started to use it.  These collaborations can usefully be grouped into five 
categories.  We shall see that the first three – software, community-wide big science 
projects, and databases – are fairly traditional, grant-supported activities.  Because they 
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are hierarchically organized and are not focused on producing “complex economic 
product,” they fall outside Benkler’s criteria.19  Nevertheless, their licenses are instructive 
and could point the way to genuine open source.  The remaining categories consist of 
organizations trying to organize genuine open source drug discovery programs.  As we 
shall see, it is too early to know whether any of these initiatives will succeed. 
 
Biology Software.  Given the convergence of biology and computing, it is hardly 
surprising that biologists write software and that much of this code is open source.20  
Examples include Biojava,21 BioPerl,22 BioPython,23 Bio-SPICE,24 BioRuby,25 Simple 
Molecular Mechanics for Proteins,26 and Generic Software Components for Model 
Organism Databases (“GMOD”)27. These projects use a wide variety of licenses.  Some 
include “copyleft” elements that require users who develop improved versions to share 
their code free-of-charge.  Examples include SMP (GNU General Public License)28 
Biojava (GNU Lesser GPL)29 and BioPerl and GMOD (Perl Artistic License30).  Other 
licenses are more limited.  These disclaim liability and require users to give appropriate 
author credit, but otherwise allow unrestricted commercialization.  Examples include 
Bio-SPICE which uses the Berkeley Software Distribution License31 and Biopython 
which offers a BSD-type license of its own devising.32  The fact that most collaborations 
use off-the-shelf licenses suggests that the issues facing biology software are not very 
different from other kinds of code.  This may be, as Prof. Rai has suggested, because 
software licenses have little impact on downstream drug discovery rights.33 
 
The question remains which license to choose.  For non-biology software, open source 
software licenses are often – though not always – selected as a kind of marketing ploy to 
attract ideologically-motivated volunteers.  Here, it makes sense to let volunteers choose 
whichever license they prefer.34  However, biology software projects are almost always 
publicly funded35 so that there is little or no need to attract volunteers.  In this case, one 
might think that “he who pays the piper should call the tune,” i.e., that funding agencies 
should specify a single best license for all collaborations.  Predictably, funding agencies 
have been reluctant to grasp this nettle.36  That said, letting individual collaborations 
choose is surely misguided.  At the end of the day, scientists have neither the time nor the 
training to choose between licenses.  Furthermore, different collaborations are bound to 
pick inconsistent licenses.  This can only complicate the legal hurdles facing follow-on 
projects that seek to compare and combine earlier work. Foundations would be wiser to 
study the problem in detail and draft uniform terms for grantees to use.  Section V will 
comment further on what this analysis should be. 
 
Because bioinformatics programs are used to discover drugs, there is a definitional sense 
in which they must also qualify as “open source drug discovery.” At the same time, the 
fact that biology software – like all programs – can be produced using open source 
methods is hardly surprising.  Clearly, it would be much more interesting if non-software 
projects could be organized along open source lines.  We turn to these now. 
 
Big Science Projects.  A second set of examples consists of large hierarchical team 
projects designed to acquire key data for an entire community.  One of the earliest and 
most prominent examples was The SNP Consortium. Here, Britain’s Wellcome Trust 
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foundation and thirteen private sector firms paid scientists to discover genome data and 
place them in the public domain.  Prof. Burk has argued that the SNP Consortium’s 
decision to put its discoveries in the public domain shares many features with open 
source.37  However, it also made good business sense for corporate donors that wanted to 
block a commercial rival (Celera) from becoming “the Bill Gates of the human 
genome.”38  Instead of making us cynical about open source drug discovery, the 
observation should give us hope: This is, after all, a case where commercial firms spent 
money that they had earned from patents to promote openness.  We will return to this 
idea in Part IV. 
 
The SNP Consortium’s legacy is also visible in The Alliance for Cell  
Signaling (“AfCS”), a government-funded consortium of nine academic laboratories 
working together to map the chemical inputs and outputs that control cell behavior.39  
AfCS members are allowed to keep data confidential to preserve publication priority.  
However, this embargo is temporary.  Indeed, members are required to place all data in 
the public domain as soon as their “main findings” are accepted for publication.  
Furthermore, members must also post after-acquired data “deemed relevant” to the 
paper’s conclusions.  Once posted, “all data may be used by any party for research and/or 
commercial purposes.”40  Finally, AfCS members also waive patents for any discovery 
that results directly from Alliance funds or reagents.  The stated purpose of this clause is 
to enhance openness between members and eliminate administrative delays related to 
intellectual property protection.  The clause is also said to “facilitate the rapid placement 
of research discoveries in the public domain,” presumably by removing the temptation to 
delay publication in order to gain a head start on commercialization.”41 
 
Finally, The SNP Consortium’s public domain model has received a copyleft twist from 
The HapMap Consortium’s $130 million project to compare multiple human genomes 
to find disease-causing variations.42  For the first two years of HapMap’s existence, users 
could only download data if they agreed to a “clickwrap” license promising not to file 
“composition of matter” patent claims for any SNP, genotype, or haplotype data based at 
least partly on HapMap data.43   Although modeled on the GNU copyleft license, the 
HapMap license actually focused on a much narrower problem:  If the group waited to 
distribute data until all sequencing was finished, it could deposit a complete list of 
variations in the public domain.  But if it did not wait and published its data piecemeal, 
outside researchers could compare it against their own sequences to find and patent 
variations that the Consortium would eventually discover anyhow.  The solution was not 
perfect – HapMap’s copyleft feature reportedly kept several public genome databases 
from using its data44 –  but it did let members publish data immediately without an AfCS-
style embargo   Furthermore, HapMap promised from the outset that it would waive its 
restrictions as more data accumulated.  This was originally supposed to happen “around 
the end of calendar 2005.”45  In the event, HapMap lifted its restrictions in late 2004.46  
For now, the future of HapMap-style clickwrap restrictions is unclear.  Because many 
journals refuse to print articles based on restricted data, future collaborations may prefer 
systems based on SNP Consortium-style deposits to the public domain or AfCS-style 
embargos.  The jury is still out.47 
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Because these projects are grant-supported and hierarchical, they fail to satisfy Prof. 
Benkler’s requirement that genuine open source collaborations rely neither on market 
signals nor commands.  Furthermore, they are essentially indiscriminate in their search 
for knowledge and, to that extent, lack open source’s focus on producing particular 
economic products.  However, these distinctions could turn out to be details. 
Conceivably, their descendants may yet evolve into directions that fit Prof.. Benkler’s 
definition.  
 
Databases.  Like most sciences, modern academic biology has been constructed around a 
small number of large, open databases.48  Building these resources requires extensive 
volunteer labor, access to unpublished information, and processes for developing 
communal judgments.49  These challenges are very similar to those that a hypothetical 
open source collaboration, particularly for data-intensive applications based on 
discovering drugs in silico.50 
 
Recent experiments have centered on finding ways for members to pool their knowledge 
of gene function.  The most technology-intensive initiative is the Distributed Annotation 
System.51  It automatically combines data from independent databases provided that the 
authors follow certain minimal computing conventions.  Other automated tools (e.g. 
BioCorba52 and The Piper Project53) are designed to make peer-to-peer work flow more 
efficient across geographically dispersed networks.  Finally, a few proposals eschew 
technological solutions in favor of better social organization. Because they harvest human 
judgment, such low technology solutions often produce very powerful databases.54  One 
gene annotation wiki (“Wiki for Professionals”) is already in place.55  Interestingly, the 
experiment has received approximately $2 million in private funding: Backers hope to 
host private versions of the system that let customers add their own proprietary data to 
the publicly-available pages.56  If successful, such tools could be readily adapted to many 
or the open source models discussed in Part IV.  
 
Software apart, biology databases are probably the closest analogs to genuine open 
source drug discovery.  Once again, the principal objection is that they do not focus on a 
specific product.  However, physical science databases have long predicted the results of 
future experiments and it is natural to think that biology databases will one day emulate 
them by predicting drugs.57 For this reason, it is reasonable to see current database 
collaborations as a possible stepping stone to open source drug discovery. 
 
Cambia.  Probably the best-known project with open source ambitions is a Rockefeller-
funded collaboration called Cambia.58  Its BiOS (“Biological Innovation for the Open 
Society”) initiative covers a wide assortment of activities, many of which – for example, 
inventing new ways to manipulate genomes; extending Cambia’s database of life 
sciences patents; and various leadership and advocacy activities59 – envisage traditional 
grant-supported work within Cambia itself.  Here we focus more narrowly on BiOS’s 
attempts to promote what it calls “new platforms for cooperative invention, improvement 
and delivery of biological technologies within a dynamic ‘protected commons.’”60  The 
main components of this effort so far are two draft “BiOS-compliant” Technology 
licenses61, a “BiOS-Compliant Materials Transfer Agreement” in both “Detailed” and 
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“Simple” versions, and an “initial prototype” web site called Bioforge62 where members 
can work together on projects “seeded” by Cambia-developed technologies or else 
recommend new projects of their own.63  It would be nice to know whether outside 
volunteers have actually used Bioforge to do research.  For now, the answer seems to be 
“No.”64 
 
Unless and until Bioforge starts functioning, Cambia’s licensing scheme is purely 
theoretical.  Nevertheless, the drafters have made some interesting choices.  Probably the 
most striking is Cambia’s attempt to bring every improvement that would otherwise give 
rise to a blocking patent within a “protected commons” where every member could use 
it.65  Although Cambia argues that proprietary firms would otherwise “capture” its 
technology, the argument is far from self-evident.  First, one would normally assume that 
placing technology in the public domain is already enough to protect it from “capture.”  
In the software world, this answer is not always sufficient because code needs to be 
maintained and will wither away if it is not used.66  This objection has much less force for 
biological inventions, however, whose functionality is permanently encoded into the 
living world.  A second, more sophisticated argument echoes the HapMap rationale:  At 
least in principle, companies could monitor the collaboration’s work and then rush in to 
patent trivial improvements that would have been discovered in any case.67  However, in 
this case the HapMap solution – a temporary embargo – ought to be sufficient.  Finally, a 
third and more radical argument assumes that most (though presumably not all) inventors 
who apply for patents would still make and publish discoveries if intellectual property 
incentives did not exist.  In this case, restrictions on patenting could significantly increase 
the fraction of public domain inventions while only slightly reducing the total volume of 
innovation.68  We return to this tradeoff in Part V, below.  For now, we remark only that 
many open source software collaborations let members make proprietary improvements69 
and that Cambia’s decision to write viral terms makes its licenses very complex.70 
 
Finally, there is a real question whether Cambia’s vision should be called “open source” 
at all.  Contractually, the scheme is more or less identical to a commercial patent pool in 
which licensees receive the non-exclusive right to use a patented technology in exchange 
for promising to grantback patented improvements to other pool members.71  The 
difference, according to Cambia, is that its protected commons would be “accessible to 
all.”72  This would indeed be true if Cambia charged no royalty.  However, Cambia 
actually proposes to charge commons members an annual “subscription fee” ranging 
from $10,000 to $150,000.73  Even for biotechnology companies, this figure is 
substantial.74  As in a conventional commercial patent pool, profit-maximizing businesses 
would not join the commons unless they expected membership to generate sufficient 
earnings to cover their royalty fees.  Since these earnings would be inversely proportional 
to the number of companies already using the technology, we expect the commons to 
stop growing at roughly the same size that commercial patent pools do.75  While the 
arrangement might still benefit society,76 it would not be “accessible to all” in any 
meaningful sense.  Moreover, protected commons membership would be further 
restricted by Cambia’s internal procedures, which provide that new members must be 
“approved by a project curator” according to “a member approval process.”77  Project 
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curators drawn from industry would have an obvious incentive to prevent competitors 
from joining the commons.78 
 
For now, it is hard to say more than this.  Cambia’s draft licenses and Bioforge web site 
have laid the groundwork for an elaborate experiment. Licensees may accept openness, or 
they may insist on patent pool-type membership restrictions, or they may refuse to 
participate on any terms at all. Only time will tell. 
 
Host Sites.  The software community maintains several on-line sites where new 
volunteers can find, join, and work on open source projects.  The largest of these, 
Sourceforge,79 currently hosts nearly 150,000 software projects, although only a small 
fraction of these are active.80  Not surprisingly, there are at least two analogous sites 
dedicated to hosting open source biology and drug discovery software.  The Open 
Bioinformatics Foundation81 seeks to enhance standard developer toolkits so that they 
can be used more effectively in biology.  Its work is tightly focused on a handful of 
programs including BioPerl, BioPython, BioJava, BioXML, BioCorba and BioDAS.82  A 
second organization, Bioinformatics.org83 is more agnostic.  Like Sourceforge, it offers 
an on-line home to any open biology software collaboration that needs one.  It currently 
claims 18,000 members and hosts over 250 projects.84  Significantly, both collaborations 
build on tightly knit physical contacts among scientists and institutions.  These include an 
annual Bioinformatics Open Source Conference85 that attracts hundreds of participants.   
 
There are also several sites dedicated to promoting open source biology collaborations 
beyond software.  We have already mentioned Cambia’s Bioforge86 site.  Like the Open 
Bioinformatics Foundation, it tends to focus on a comparably small number of Cambia-
initiated technologies and specifies what licenses new projects must use.  A second site, 
operated by The Synaptic Leap (TSL),87 lets volunteers choose their own projects and 
licenses. TSL currently has on-line collaboration pages dedicated to malaria, 
schistosomiasis, toxoplasmosis, and tuberculosis.  Each is hosted by a different volunteer-
expert, although none is currently active.  In addition to providing a focus for new 
projects, TSL is working on developing collaboration software that goes beyond simple 
e-mail threads and wiki-pages.  The current plan is to test the system on volunteers doing 
malaria research.  If the collaboration produces solid science, minimally-modified 
versions of TSL’s code can then be adapted to other collaborations and diseases. Finally, 
at least one commercial venture is currently creating tools for open source sharing.  
Collaborative Drug Discovery, Inc. (“CDD”) offers data management software that lets 
users choose whether their biology data is “100% confidential,” shared with a finite list 
of approved recipients, or open to the world.88  CDD clearly sees the open source drug 
discovery idea as a market for its products.89 
 
Like Sourceforge, these sites are only facilitators, not open source itself.  We still do not 
know whether volunteers will join open drug discovery collaboration or, if they do, 
whether they can make useful progress.  Organizations like Bioforge, TSL, and CDD do, 
however, increase the chances of success. 
 
 



 9

III. Design Principles 
 
We have seen that existing biology collaborations either fail to fit our definition of open 
source or are too preliminary to evaluate.  While this observation is discouraging, it 
actually says very little about whether open source drug discovery is possible.  We have 
already seen that the conventional arguments against open source drug discovery claim 
(a) that open source has no way to recover its costs from patients, and (b) that patent 
incentives will drive out open source voluntarism wherever they meet.  However, these 
claims are hardly airtight.  First, patents and patient revenues are more or less irrelevant 
to a large class of pharmaceutical R&D problems.  These include diseases of the 
developing world,90 bioweapons,91 and so-called orphan diseases.92  Here, progress can 
only be made if government and non-profit programs cover researchers’ costs. These 
initiatives could well include a role for open source.  Second, commercial drug discovery 
is not monolithic.  Instead, it consists of roughly a dozen innovation steps, each of which 
requires its own specialized personnel, equipment, and skill sets.93  In the software world, 
companies often compete at one level (e.g. applications programs) while supporting open 
source cooperation at another (operating systems).94  We argue below that therapeutics 
companies may similarly find it in their dollars-and-cents interest to support open source 
drug discovery at various points along the drug discovery pipeline.95 
 
The challenge now is to find places in the drug discovery pipeline where recognizably 
open source methods could actually flourish.  The fact that such niches have not been 
colonized already suggests that they are subtle.  For this reason, simple analogies to 
computing will not provide much guidance.  This article argues that a more systematic 
approach is needed.  There is now a large and insightful literature explaining when open 
source software production works and – just as importantly – when it offers more social 
benefits than alternative methods like patents.96  One way to exploit these insights is 
scrutinize the long and complex drug discovery process for niche activities where open 
source collaborations would be simultaneously feasible and useful.  This article begins 
the process by identifying and discussing five specific examples.   
 
The starting point for this analysis is to ask where open source incentives are likely to be 
effective.  Table 1 describes typical incentives that are known to drive open source 
collaborations in software production.  A few of these (e.g. production for the inventor’s 
own use, production to sell a related good or service) seem to lack clear analogs in drug 
discovery.  However, many other incentives do apply.  For example, it is not hard to 
imagine that biologists would join collaborations to learn new skills (education), 
demonstrate those skills to others (signaling), or donate their services from a sense of 
altruism.97  For drugs with commercial potential, employers could also pay employees to 
“volunteer” for cold-blooded business reasons.  For example, a firm could decide that 
open source collaborations were a good way to share costs with companies that do not 
produce competing products.98  Or it could decide that an open product would make its 
own proprietary inventions more valuable.99  Sections IV and V identify five different 
locations along the drug discovery pipeline where the foregoing incentives could be 
strong enough to drive an open source collaboration. 
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Of course, arguing that an open source collaboration is possible is not the end of the 
story.  We should also ask whether a successful open source collaboration would be good 
for society.  In general, open source methods have both strengths and weaknesses 
compared to patents.  Consumers benefit chiefly by (a) low prices, which facilitate the 
widest possible consumption, and (b) increased transparency, which makes it easier to 
judge the quality of both existing and proposed products.100  We will see that similar 
benefits are likely to be important at various points along the drug discovery pipeline.  
Open source software also has disadvantages, most notably in its tendency to decouple 
product creation from the price signal and, hence, consumers’ needs.   Ironically, this is 
not always a disadvantage for drug discovery.  Indeed, efforts by Western governments 
and foundations to find cures for neglected diseases normally assume that market-driven 
R&D signals are hopelessly inadequate and should be overridden.  Section VI argues that 
open source collaborations would be welfare improving for each of the five niches 
described below. 
 
Finally, open source methods often shift R&D costs from users onto innovators.  This 
raises potential fairness issues.  These issues probably do not matter much for neglected 
diseases, where it is probably acceptable to shift R&D costs from developing world 
patients (who cannot pay in any case) onto volunteer researchers.  The question is much 
closer for rich nation diseases.  However, in this case volunteers often receive corporate 
support.  These costs will almost always be passed back to patients through the patent 
system. 
 
 
IV. Next Steps 
 
Here, we describe three open source drug discovery collaborations that are either 
currently being organized or could be organized within the next few years.  Success 
would potentially lay the foundation for some of the more ambitious projects described in 
Section V. 
  
In Silico Drug Discovery.   During the 1980s, biologists began using computers and large 
databases to do biology research “in silico.”101 The basic idea was to identify proteins 
encoded by the genome that cause disease (“drug targets”) by noticing subtle patterns in 
their sequence and/or structure, and then design novel molecules (“drug candidates”) to 
turn off the proteins’ functions.  The main challenge for such projects – motivating large 
numbers of skilled workers to find and patch obscure flaws – is strongly reminiscent of 
Linus Torvalds’ dictum that “with enough eyeballs, all bugs are shallow.”102  Given that 
the human genome is not much larger than Microsoft Windows,103 it is reasonable to 
think that methods which work in computing might also work for drug discovery.104 
 
Since 2004, I have worked with Profs. Arti Rai and Andrej Sali105 to establish a Tropical 
Disease Initiative (TDI)106 where volunteers could comb on-line databases and run 
sophisticated computational chemistry simulations to develop new drug ideas.  Just as 
most open source software collaborations start with a preexisting (if limited and buggy) 
code base, TDI will start with a kernel of possible targets supplied by a core group of 
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researchers.  Volunteers will then be organized around three separate tasks.  First, they 
will search electronic databases for additional lines of evidence that the target actually 
does (does not) control disease.107  The resulting information will be recorded separately 
for each target in an on-line document (“gene card”) that members can continually 
update.  Second, members will use sophisticated computational chemistry software to 
predict new chemical compounds (“drug leads”) that (a) bind to proposed targets, and (b) 
possess certain characteristics needed to make a working drug.  Compounds predicted by 
more than one simulation are likely to be especially promising.  Finally, TDI members 
will reach a collective judgment identifying the most promising drug leads for further 
funding. 
  
Like all open source drug discovery collaborations, TDI is an experiment.  In scientific 
terms, skeptics point to the fact that commercial programs have found very few drugs 
using computers.108  Organizers argue that TDI will do better, chiefly because developing 
world diseases have been studied far less than rich nation diseases in which all the easy 
drugs have been known for decades.  In social terms, TDI skeptics ask whether TDI can 
attract volunteers.  TDI argues that there are many reasons for members to volunteer 
including ideology, education (i.e., the chance to learn computational biology), and 
signaling (i.e., the chance to advertise skills to potential employers).  These incentives are 
similar to the ones that drive many open source software collaborations109 and should be 
particularly attractive to academics and graduate students.  TDI would also allow students 
and scientists in the developing world to trade their passion and detailed local knowledge 
for the chance to work with and learn from leading rich nation research groups.  Such 
interactions may never occur outside TDI’s on-line world. 

 
Chemistry.  Despite years of effort, biologists’ ability to predict successful drug 
candidates in silico remains limited.  For this reason, it is important to supplement 
computerized research with physical experiments.  The difference, of course, is that 
physical experiments are expensive. This means that open source collaborations must 
simulate a world in which reagents – like computer time – cost nothing.  To some extent, 
this world already exists since academic labs seldom bother to meter the costs of small-
scale experiments.  Furthermore, academic grantees can sometimes scrounge chemicals 
from other grants.110  However, one suspects that funding agencies would have only 
limited tolerance for such behavior.  The challenge is to find useful R&D projects that 
can be done within these constraints.  Prof. Matthew Todd believes that one such problem 
involves finding a better way to synthesize praziquantel, today’s preferred drug for 
treating schistosomiasis.  Current methods indiscriminately make two mirror-image 
versions of the molecule, only one of which is biologically useful.  Producing a pure 
version of the active ingredient would make it easier to administer the drug to children 
and deliver larger doses to adults.111  Todd remarks that “There are two ways in which 
organic chemists can help. One is to design synthetic routes or share experience on those 
being discussed. The other is to attempt one or two steps and share results, so that an 
optimized route may be arrived at.”112  Significantly, only the second step requires 
physical resources.  The first is a matter of cleverness and imagination. 
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Stem Cell Lines.  In the software world, the price that an operating system commands 
often has very little to do with its inherent quality or cleverness.  Instead, consumers may 
purchase it because other people already own it or have written applications for it or for 
other basically historical reasons.  Because of these network effects,113 even an 
indifferent product can end up commanding high prices.  This situation is particularly 
frustrating for free-lance programmers who customize software for individual customers 
since it means splitting their wages with a monopolist.  During the 1990s, many of these 
professionals famously created LINUX as an alternative to Windows.  For them, working 
on LINUX meant “creating code that they will never have to pay someone to use 
again.”114 

 
For biologists, the closest analog to an operating system is a cell line.  In the case of stem 
cells, therapeutics companies are already trying to coax individual cell lines to make heart 
muscle and other replacement tissues for the human body.  In theory, each company 
could use its own lines.  That, however, would mean forfeiting the chance to learn from 
past experiments.  In practice, biologists prefer to adopt lines that have been used before 
(offer “more experience”) even if they are not otherwise known to be “better.”115  As with 
Windows, this preference suggests a tipping dynamic in which initially popular lines 
become steadily more popular over time.  Evidence for this phenomenon can be found in 
stem cell requests processed by The National Stem Cell Bank.  One-third of all requests 
specify just one of the thirteen available lines and the top three lines account for almost 
two-thirds (62%) of all requests.116   
 
It is worth asking what these dynamics would mean to a therapeutics company trying to 
develop stem cell-based treatments.  In order to invent products, the company would 
already need a patent license from the Wisconsin Alumni Research Foundation (WARF).  
But what if tipping creates a second monopolist in cell lines?  Some observers have 
suggested that challengers may be able to invent around117 or invalidate118 WARF’s 
patents.  Therapeutics companies will gain nothing from this, however, if tipping effects 
have created a cell line monopolist in the meantime.  The situation will be even worse if 
WARF’s patents are upheld.  There is an old result in economics that if two monopolists 
own two (or more) resources needed to make a product the total price will be higher than 
if a single monopolist owned the inputs.119  All of this suggests that therapeutics 
companies have a strong interest in encouraging employees to develop open cell lines.   
 
The timing is excellent.  President’s Bush’s freeze on federal funded research on cell 
lines created after 2000 means that practically all incumbent lines have been damaged by 
aging and contamination.120  If and when the freeze is lifted, observers expect a flood of 
new cell lines.  At this point, today’s incumbents will disappear and the tipping race will 
start over.  Of course, it is possible to imagine companies donating open lines to the 
public domain while stopping short of a full open source collaboration.  However, open 
lines would not mean much unless there were also open methods to cultivate and exploit 
them.  Recent game theory research confirms the intuition that companies that produce 
non-competing therapies should frequently find it in their interest to share information.121  
Indeed, even companies that compete directly can still profit from early-stage R&D 



 13

sharing.122  These results do not guarantee that open source sharing will emerge, but they 
do make it more likely. 
 
 
V. Distant, Ambitious Goals 

 
So far, we have discussed pre-clinical projects.  However, seventy-five percent of the cost 
of new drugs takes place after clinical trials begin.123  For open source to be truly 
transformative, it must colonize this space.  Using open source to organize clinical trials 
would be far more ambitious than the ideas discussed in Section IV and could easily take 
a decade or more to achieve.  The question remains whether such collaborations make 
sense.  We start with the simplest case in which an open source collaboration would 
conduct post-approval (“Phase IV”) tests to expand FDA approval for an existing drug.  
We then ask whether drug companies have any reason to support open source 
participation at the more expensive Phase I, II and III stages of testing. 
 
Phase IV Trials.  At first blush, the idea of downstream open source seems 
counterintuitive.  Who will pay for the drugs and physicians?  However, Profs. 
DeMonaco, Ali and von Hippel have pointed out that there is at least one context in 
which the drugs and physicians are already paid for.  Physicians often discover that drugs 
have so-called “off label” uses not previously considered by the FDA.  At this point, 
manufacturers typically conduct additional tests (“Phase IV trials”) to persuade the FDA 
to amend and expand its original approval.  Given that the healthcare system already pays 
for treating physicians and drugs, a Phase IV open source project need only persuade 
members to take, report, and analyze data.  Here, motives like advancing medicine, 
reputation, and showing off skills to potential employers may be sufficient. DeMonaco et 
al. argue that current system for finding “off label” uses suffers from “major 
inefficiencies” and that a model similar to “open source software” could improve 
matters.124 
 
Naively, an open source Phase IV collaboration would put its discoveries in the public 
domain.  In this case, open source would play the same role that it does in software: 
Reducing  product prices so that more consumers can afford them.  Alternatively, 
aggressive drug companies might think of a way to patent the new uses.  Thinking of 
such tactics, however, is not the same as using them.  Even if drug companies never 
obtained a patent, they would still benefit from increased sales.  Waiving patent claims to 
these new uses might be an acceptable trade if it persuaded more open source volunteers 
to join the project. 

 
Phase I  - III Trials.  A successful Phase IV open source collaboration would inevitably 
encourage volunteers to organize pre-clinical trials as well.  Since the healthcare system 
does not normally pay for Phase I – III trials, Big Pharma would have to support these 
projects.  Interestingly, it might have a business reason to do so.  In the late 1990s, drug 
companies spent $802 million (averaged over failed efforts) for each product that they 
delivered to market.  A large fraction of these costs was devoted not so much to 
discovering drugs as persuading FDA that Big Pharma’s claims were correct.  
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Unfortunately, regulators are right to be skeptical:  Over the years, there have been 
repeated scandals in which researchers and clinicians have falsified data to keep lucrative 
R&D contracts alive.125  In principle, FDA could relax its paperwork requirements – and 
drug companies could reduce their testing costs – if the process were more trustworthy.   
 
We have already argued in Section IV that open source is a natural vehicle for achieving 
transparency and/or insulating data from commercial bias.  Instead of conducting their 
own trials, drug companies could simply make new compounds available at prices 
comparable to treatments already on the market.  Open source volunteers would then 
collect and analyze data for such traditional reasons as reputation and a desire to help 
patients.  Like today’s commercial software companies,126 Big Pharma could further 
encourage volunteers by providing free support tools, convention expenses, and other 
benefits.  The main challenge for such a scheme would be persuading volunteers to test a 
patented drug.127  Fortunately,  there is limited data from the software world suggesting 
that commercial rights can coexist with voluntarism.128  Big Pharma could also attract 
volunteers by promising to donate its patents to the public domain after a fixed period of 
years.  
 
 
VI. Will Open Source Drug Discovery Make Society Better Off? 
 
Commentators sometimes forget that open source drug discovery is not an end in itself.129  
Instead, it is only worth doing if it benefits society.  In practice, these benefits tend to be 
different for each of the projects described above.   
 
Neglected disease collaborations (e.g., TDI) would offer three types of benefit.  First, 
volunteers matter.  By almost any standard, R&D for neglected diseases remains badly 
underfunded.  Open source lets volunteers pitch in by aggregating small “granular” 
contributions of labor and expertise into a significant R&D effort.130  These contributions 
are especially useful because they happen to focus on the very earliest stages of the drug 
discovery pipeline that are most in danger of running dry.131  Second, open source offers 
significant savings.  Because open source drugs are (by definition) generic, Western 
governments and foundations would pay nothing for the right to develop and (eventually) 
manufacture them.  Open source drug candidates would also provide competition for 
patented drug ideas, driving down the royalties that owners could otherwise charge to 
sponsors.  Finally, open source would make drug discovery more transparent.  In 
conventional commercial research, Big Pharma companies know that biotech companies 
have both the opportunity and motive to suppress adverse results.  For this reason, they 
seldom invest in new ideas unless and until those ideas have reached the animal testing 
stage.  For neglected disease research, this presents a chicken-and-egg problem since 
drugs may never reach this point unless sponsors help.  Here, open source offers a crucial 
advantage.  Because open source collaborations depend on volunteers, they possess an 
inherent transparency that few biotech companies can match.  As Prof. Titmuss noted 
three decades ago, volunteers can gain nothing by shading the truth.132 
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The case for commercial open source is similarly varied.  In the case of stem cells, we 
have argued that open source stem cell lines would reduce input prices for therapeutics 
companies.  At least in part, these savings would be passed on to consumers.  This would 
allow more patients to purchase the drug and give society more bang for its R&D 
investment.  On the other hand, the main advantage of open source clinical trials would 
be their transparency.  These benefits could be extremely important if it allowed the FDA 
to reduce its current monitoring and paperwork costs. 
 
Finally, all of the foregoing projects would organize science in ways that look very 
different from today’s world of commercial secrecy and small competing academic 
laboratories.  This would have two distinct benefits.  First, volunteers would have an 
opportunity to pool information that might otherwise be kept secret or proprietary.  In 
theory, companies have nothing to lose by sharing their databases with outside groups 
studying neglected diseases because developing world markets have little or no 
commercial value.  However, this will only be true as long as the shared data do not leak 
back into the race to develop new drugs for rich nation diseases.  These concerns will be 
much reduced if the company’s employees are also open source volunteers.  In this case, 
only group members who were already insiders would ever see the full database, 
although any answers they came up with would obviously have to be made public.133  
Second, small academic laboratories are perennially short of manpower.  This forces 
them to replace human judgment with computation wherever possible.  But human 
judgment is valuable.  Indeed, commercial bioinformatics companies often hire large 
teams to sift through data by hand. A successful open source collaboration would extend 
this many eyeballs strategy to basic research. 
 
 
VII. Are Open Source Drug Discovery Licenses Legal? 
 
Open source software’s most famous legal innovation is surely the viral license that 
requires improvers to offer any modified code on the same open terms as the original 
software.  Traditionally, these licenses have been based on copyright.  Perhaps 
surprisingly, none has ever been tested in court.  Nevertheless, most commentators think 
that such viral restraints are valid.  The situation becomes much more complicated, 
however, when one tries to build viral terms into a patent license.  This section asks 
whether open source drug discovery needs viral licenses and, if so, whether such licenses 
are enforceable. 
 
Are Viral Licenses Necessary?  The conventional argument for viral licenses is that an 
initially open technology might be captured if the improvements are patented.134  
Alternatively, a scientist who donated technology to the public domain might feel cheated 
if it later earns money for others.135  These claims are far from self-evident:  After all, 
consumers who do not want to pay for improvements can always use the original 
unimproved technology.  Moreover, the continued existence of a public domain 
alternative will prevent the improver from charging more than the value of his own work 
– The improvement.136  On its face, this seems like a fair solution.  Following Prof. 
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Rai,137 one might argue that the public domain is sufficient and that some open source 
collaborations do not need viral licenses at all. 
 
Nevertheless, there are at least two cases where viral terms are either desirable or 
essential.  First, as Profs. Gamberdella and Hall have emphasized, many open source 
collaborations are unstable.  Even though members collectively value a large public 
domain, each individual scientist can do still better by patenting his or her contributions.  
The result is a Prisoner’s Dilemma outcome in which every scientist seeks patents and the 
public domain disappears.138  This dynamic is not necessarily an argument for viral 
licenses since much less intrusive mechanisms like norms, peer pressure, and 
transparency seem to stabilize most open source software collaborations.139  
Nevertheless, there may be cases in which more formal legal guarantees might be needed.  
The second case where viral licenses could make sense is where markets tip to a single 
standard technology so that the existence of an open product becomes irrelevant.  While 
tipping dynamics seem to be rare in biology, our stem cell discussion suggests that such 
situations will sometimes arise. 
 
Are Viral Licenses Enforceable?  Prof Opderdeck has expressed skepticism that licenses 
which prohibit patenting could be used to invalidate a patent or support any other 
“meaningful remedy.”140  Other commentators have gone further by asking whether a 
viral license that limited licensees’ ability to patent improvements would constitute 
misuse.141  The basic objection is that Congress has authorized inventors to seek 
improvement patents even when they are “blocked,” that is when they cannot be 
practiced without the underlying patent owner’s consent.142  It would be strange if the 
parties could overrule this policy simply by signing (or clicking on) a license.  Doing so, 
the argument runs, reduces the reward available to improvement patents and therefore 
innovation.143  However, Profs. Feldman, Boettinger, and Burk point out that this 
argument proves too much: If diminished rewards were the only test, then grantbacks, 
reach-through agreements, and patent pools would all be illegal which, plainly, they are 
not.  Nevertheless, these arguments are not entirely convincing.  Partly this is because – 
even in software – no case challenging a viral license has ever been litigated to 
judgment.144  This makes arguments from existing case law highly speculative.  More 
fundamentally, misuse cases typically involve transactions in which the right to seek 
patents is transferred but not extinguished.  A court might justifiably ask how the analysis 
changes when the goal is to replace patent incentives with open source. 
 
In the typical grantback or reach-through case, licensors and licensees agree to share 
improvements in advance.  This can slow R&D by suppressing the incentive for the 
licensor and licensee to engage in (possibly wasteful) races to find and patent 
improvements.145 At the same time, the licensor and licensee still have incentives to see 
their shared technology improved and patented.  This is obvious for the licensor, who will 
develop ideas for suggested improvements whenever the R&D cost is less than the 
expected increase in the technology’s earning power.  However it is also true for the 
licensee, since disclosing ideas costs nothing and may persuade the licensor to invest in 
improvements that make the existing license more valuable.  In this sense, grantbacks do 
not really reduce the licensee’s patent incentives so much as transfer them to the licensor.  
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Since no incentives are destroyed, we expect all profitable ideas to be implemented 
sooner or later.   
 
This same logic would apply to Cambia’s protected commons as long as its size was 
limited.  As in the commercial case, the existing group could be sure of recapturing all 
profits from any improvement.  Knowing this, we would expect members to disclose 
profitable ideas and share development costs as necessary.  As in the commercial case, 
Cambia’s grantback clause would only redistribute patent incentives, not destroy them.  
What would happen, though, if Cambia designed its commons so that membership really 
was “accessible to all?”146  In this case, the defining feature of patents – the power to 
exclude – would no longer apply.  Instead of transferring patent incentives, Cambia’s 
grantback clause would make them disappear entirely.   
 
This result might be acceptable if we knew that new ideas would continue to be 
developed anyway under open source incentives.  However, there is no reason to expect 
this:  In general, we expect patent incentives to support at least some R&D projects that 
open source does not. 147  For this reason, a Cambia-style viral contract potentially poses 
much greater dangers than the grantback clauses found in conventional patent pool cases 
like Transwrap.  We should not overrule Congress’s policy judgment that patent 
incentives are an important R&D incentive lightly.  At the same time, it makes sense to 
develop ideas using open source methods as much as possible, since this means fewer 
patent monopolies.  It therefore seems reasonable to let parties write viral licenses for 
limited periods of time so that patent incentives can be brought back into play if open 
source methods fail.  The HapMap Collaboration’s decision to waive license restrictions 
that had initially prevented users from seeking patents is very much in this spirit.  Future 
open source drug discovery collaborations would be well-advised to design viral terms 
that fade away over time. 

 
 

VIII. Conclusion 
 
In the late 1990s, the idea of open source drug discovery seemed so inevitable that there 
was no particular need to ask how it would work.  “Wait and see” seemed like a sufficient 
response.  Today, commentators have fallen into the opposite fallacy of dismissing the 
concept in a few words.  This article has avoided both extremes, arguing that open source 
drug discovery is neither inevitable nor impossible, but merely difficult.  In the process, it 
has identified five scenarios where open source ought to work and would be a distinct 
improvement compared to conventional patent incentives.  Nobody would claim that this 
list is exhaustive, but it does show that open source drug discovery is worth thinking 
about.  Additional examples are limited mostly by our imagination.   
 
Imagination, of course, is what commentators are supposed to supply.  Over the past 
decade legal scholars, economists, and other social scientists have learned a great deal 
about the incentives that drive ordinary open source software.  For this reason, the idea of 
open source drug discovery comes as a sort of final exam – similar to software in many 
respects but also sufficiently different for naïve analogies to be misleading.  Success will 
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require a much deeper and more detailed understanding than anyone would have 
imagined ten years ago.   
 
The stakes are high.  We have seen that open source is often a plausible strategy for 
reducing drug development costs and making new medicines affordable; that it offers 
increased transparency for funding agencies trying to decide which early stage drug 
candidates to invest in; that it may allow regulators to reduce the reporting requirements 
that help make late-stage drug discovery expensive; and that its ability to mobilize 
volunteers offers a key advantage to cash-strapped neglected disease programs.  Perhaps 
more importantly, open source is the first fundamentally new innovation mechanism 
since patents and copyright appeared four centuries ago. A successful drug discovery 
collaboration would show that open source methods are not limited to software and could 
even open the door to applications beyond biology.148 For all these reasons, open source 
deserves a second act. 
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Table 1: Common Open Source Incentives149 
 
Own Use (Personal). Writing software for one’s own use 

and enjoyment.  Examples include 
hobbyists, developers (LINUX). 

 
Own Use (Corporate). Producing an open source product 

used by one’s employer.  Examples 
include corporate webmasters’ 
creation of the Apache web server. 

 
Education. Producing an open source product in 

order to learn from experience and 
peer review. 

 
Signaling Producing an open source product in 

order to demonstrate competence to 
others.  

 
Shared R&D Costs Firms that do not compete with one 

another frequently use open source 
to share R&D costs.  For example, 
companies that share web 
development costs (Apache) lose 
little, if any, competitive advantage 
by doing so.  

 
Related Goods & Services Producing an open source product 

which is needed to sell a separate, 
proprietary good or service.  
Examples include hardware (IBM) 
and customer training and 
programming services (Red Hat) 

 
Social Psychology. Working for non-material rewards 

including reputation, altruism, 
collective solidarity, etc. 
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Table 2: The Drug Discovery Pipeline150 
 
Task  
     
Basic Research Undirected, curiosity-driven research into 

the mechanisms that cause disease. 
 
Finding Targets Exploiting research to find a gene location, 

metabolic pathway, or other point where 
drugs can intervene to disrupt disease. 

 
Validating Targets Using multiple, additional lines of evidence 

to see whether they support or discredit the 
hypothesis that a given target can be used to 
disrupt disease. 

 
Finding Lead Compounds Testing chemical compounds to see whether 

they bind to an existing target and otherwise 
possess the properties needed to make an 
effective drug.  Lead target searches can be 
conducted using “wet chemistry” methods 
or computer simulations. 

 
Optimizing Lead Compounds   Systematically modifying and testing  

lead compounds to increase their 
effectiveness as drugs. 
 

Process Development Developing procedures for making 
candidate drug in large, affordable 
quantities. 

 
Pre-Clinical Testing In silico and animal testing to determine 

candidate drug’s safety and efficacy. 
 
Phase I Tests Testing the candidate drug in 20 – 80 

healthy volunteers to find safe doses and 
identify side effects. 

 
Phase II Tests Testing the candidate drug on 100-300 

patients to obtain short term safety 
information and preliminary efficacy data. 

 
Phase III Tests Testing on several hundred to several 

thousand patients to search for rare side 
effects, document efficacy, and optimize 
delivery methods and doses. 
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Approval Paperwork and hearings to obtain FDA 

approval of the candidate drug for specified 
uses. 

 
Phase IV Tests Testing on patients to confirm pre-approval 

test conclusions; demonstrate drug’s 
efficacy in applications not previously 
approved by FDA. 
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