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Reliability of Assessment
of Protein Structure Prediction Methods

is not reliable, how many more test sequences are
needed for it to become reliable? Alternatively, how large
should the difference in quality between the two meth-
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Pels Family Center for Biochemistry ods be for the ranking to be reliable, given the available

number of test sequences?and Structural Biology
The Rockefeller University As an illustration, we assess the reliability of the rank-

ing of comparative modeling methods at the fourthNew York, New York 10021
2 CUBIC meeting on Critical Assessment of Techniques for Pro-

tein Structure Prediction (CASP) [1]. In the CASP experi-Department of Biochemistry
and Molecular Biophysics ments, models for protein sequences are calculated

shortly before their actual structures become available.Columbia University
New York, New York 10032 The models are first assessed objectively by a large

number of numerical criteria [2]. These numerical criteria
are then interpreted by an assessor who provides the
final assessment and ranking of the participants’ meth-The reliability of ranking of protein structure modeling

methods is assessed. The assessment is based on ods at a CASP meeting. It is generally assumed that the
ranking at CASP is reasonably accurate [3–6] althoughthe parametric Student’s t test and the nonparametric

Wilcox signed rank test of statistical significance of concerns about its reliability due to a small number of
test sequences have also been expressed [7, 8]; forthe difference between paired samples. The approach

is applied to the ranking of the comparative modeling example, only 14 test sequences were available for the
comparative modeling category at CASP4. A quantita-methods tested at the fourth meeting on Critical As-

sessment of Techniques for Protein Structure Predic- tive analysis of the statistical significance of the ranking
of the methods based on the CASP models has not beention (CASP). It is shown that the 14 CASP4 test se-

quences may not be sufficient to reliably distinguish published yet. In this communication, we focus narrowly
on the reliability of ranking of comparative modelingbetween the top eight methods, given the model qual-

ity differences and their standard deviations. We sug- methods at CASP4 based on a single model quality
criterion. Our results raise doubts about the ability togest that CASP needs to be supplemented by an as-

sessment of protein structure prediction methods that distinguish among the quality of predictions from the top
comparative methods under the conditions of CASP4,is automated, continuous in time, based on several

criteria applied to a large number of models, and with contrary to some reviews [6], and suggest what is
needed for reliable ranking in the future. This examina-quantitative statistical reliability assigned to each

characterization. tion of the statistical significance of ranking of compara-
tive methods at CASP4 is not a criticism of CASP as a
whole; the CASP experiment has generally been recog-Introduction
nized as a positive contribution to the field of protein
structure prediction. We conclude by discussing someProtein structure prediction methods need to be ranked

reliably by their quality. A reliable ranking helps develop- aspects of the assessment of protein structure predic-
tion in general.ers to improve their approaches, and also enables users

to apply the existing tools judiciously. Ranking of differ-
ent methods generally consists of the following steps: Methods
(1) define a set of test sequences; (2) define one or more
model quality criteria; (3) apply the modeling methods We define the statistical significance of the ranking be-

tween two modeling methods based on a single modelto the test sequences; (4) assess the methods by calcu-
lating the quality scores for the models; and (5) rank the quality criterion. While a comprehensive characteriza-

tion of modeling methods usually requires multiple qual-methods based on a comparison of the corresponding
model quality scores. ity criteria, such as the fraction of the test sequence

modeled, the accuracy of side chains, or the accuracyHere, we focus on an aspect of the fifth step above, the
statistical reliability of ranking of two modeling methods. of loops, the test of statistical significance may be re-

peated independently for each criterion. Separate con-The reliability of ranking increases with the number of
test sequences and the difference in quality between sideration of the individual model criteria is useful be-

cause different aspects of a structure may be predictedtwo compared methods. When the number of test se-
quences is not large or the quality difference between best by different methods.

We first propose one reasonable quality criterion forthe two methods is relatively small, a question arises
as to the statistical significance of the observed ranking. comparative models. Although we do not focus on model

quality criteria [2, 8, 9], we need to define one such criterionDoes the ranking of the methods reflect their true perfor-
mance or is it a consequence of chance? If the ranking
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to be able to illustrate the issue of statistical significance
of ranking with a practical example. Two fundamentally
distinct features that are not comparable to each other
describe the quality of a model: (1) the fraction of the
protein sequence that is modeled (i.e., coverage) and
(2) the accuracy of the modeled region. There are many
criteria to assess the accuracy of different aspects of a
model (e.g., core, loops, and side chains) [2, 8, 9]. In
addition, the coverage and accuracy are generally de-
pendent on each other. The smaller the modeled fraction
of the sequence, the more accurate is the model; for
example, the accuracy of a model can be increased at
the expense of coverage by retaining only the core of the
fold and eliminating loops and termini from the model.
Hence, it is necessary to combine coverage and accu-
racy into a single number when comparing methods that
model different parts of the test sequences, as is the
case at CASP. While there is no single best way of
defining accuracy or of combining coverage and accu-
racy, there are a number of reasonable combined crite-
ria. We define model quality as the average percentage
of the C� atoms that are within 1, 2, and 3 Å of their
correct positions upon least squares superposition of
the model with the corresponding experimentally deter-
mined structure. These numbers were taken from the
CASP4 evaluation site (http://predictioncenter.llnl.gov;
January 31, 2001). The resulting quality criterion has
a reasonable dynamic range in the sense that it can
discriminate between backbones of models differing
only in minor details (i.e., the 1 Å cutoff) as well as
models differing at the level of alignment (i.e., the 3 Å
cutoff). The selected quality criterion is closely related
to perhaps the most frequently used single measure of
model quality at recent CASP meetings: the “similarity”
curves [10], the rmsd/coverage graphs [11], and the
“global distance” curves (http://predictioncenter.llnl.
gov); the criterion approximates the area under the
global distance curve from 0 to 3 Å.

Prediction methods can be compared most reliably
when they are tested under identical circumstances; for
example, two modeling methods cannot be ranked by
comparing the quality of an easy model based on a close
template structure from one method with the quality of
a difficult model based on a distant template structure
from the other method. Thus, the best way to rank two
methods is to assess their models for the same test
sequences. Such a comparison is quantified by the dis-
tribution of the pairwise model quality differences, one
difference for each of the common models (Figure 1).

In principle, there are two extreme possibilities: (1)
the model quality difference is distributed around zero,

Figure 1. Explanation of Statistical Significance of Ranking Two
indicating the lack of a statistically significant differenceModeling Methods

(A) The black dots indicate the model quality differences for a hypo-
thetical sample of common models produced by the two compared
methods. The normal distribution of the model quality differences

(B) The average model quality difference D� that is required forcorresponding to the average and standard deviation of the sample
is shown as a bell curve. The lower and upper bounds �l and �u on statistical significance (95%) is plotted against the number of com-

mon models n and standard deviation of the observed model qualitythe average model quality difference for the whole population of all
possible models, estimated from the sample as defined in the text, differences S. A line corresponding to 14 models is drawn to indicate

the maximum possible number of common comparative models atare indicated on the horizontal axis. D and S are sample average
and standard deviation of model quality difference, respectively. CASP4. The actual average number of common models is only 8.5.

(C) The number of common models n� that is required for statisticalWhen 0 lies between �l and �u, the difference between the perfor-
mances of the two methods is not statistically significant at the significance is plotted against the average D and standard deviation

S of the observed model quality difference.given confidence level.
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between the performances of the two methods and (2) Results
the distribution is shifted from zero significantly relative
to its standard deviation, indicating a statistically signifi- At CASP4, 123 methods were used to calculate models

for at least one of the 14 comparative modeling test se-cant difference between the performances of the two
methods. If the distribution of the model quality differ- quences (1,181 models in total; http://predictioncenter.

llnl.gov/casp4; January 31, 2001). Only the 107 methodsence is at least approximately Gaussian, the lower and
upper bounds on the average model quality difference that were used to calculate models for at least two test

sequences were analyzed further (1,165 models). Whenof the whole population of the models sampled by the
common models in the test set are [12]: a method was used to calculate multiple models of the

same test sequence, only the first model was considered.
In total, there were 1,131 “first” models calculated by the�u,l � D �

t(n � 1,c)S

√n 107 methods, corresponding to an average of 10.6 models
per method. The average number of models common to

where D is the average model quality difference for the all pairs of the 107 methods was 8.5.
pairs of the common models in the sample, S is the stan- Figure 2 shows the number of models calculated by
dard deviation of the model quality difference in the sam- each method, the statistical significance of ranking of
ple, t(n�1,c) is the Student’s t distribution for an unknown each pair of methods at a confidence level of 95%,
population average and standard deviation [12], n�1 is and the number of additional common models, if any,
the number of degrees of freedom in the sample (one required for reliable pairwise ranking based on the
less than the number of common models), and c is the model quality criterion defined in Methods. Upon visual
confidence level of the bounds (95% in this paper). Ac- inspection, the performance of the 107 methods falls
cording to the paired samples Student’s t test, a model- into four weakly defined clusters.
ing method is significantly better than another at the The first cluster consists of the top eight methods
given confidence level if the estimated interval of the aver- (Figure 2). Their performance is not significantly different
age model quality difference lies below or above zero. from each other according to the Student’s t distribution
Conversely, when the signs of the lower and upper bounds statistics. Reliable ranking of the top eight methods is
�l and �u differ, the performance of the two methods is precluded by small numbers of common models (12.7
not distinguishable at the confidence level of c. on average), small average model quality differences

It is important to distinguish between the magnitude (1.3% on average), and large standard deviations of
of the average model quality difference and its statistical model quality difference (4.6% on average). Reliable
significance. A large average model quality difference ranking of the top eight methods would require on aver-
can be statistically insignificant if the number of com- age 47 additional common models (Figure 2). In contrast,
mon models is small and the standard deviation of the the 14 CASP4 test sequences are sufficient to rank the
model quality difference is large. A small number of fictitious method with perfect alignments (method 000)
common models and a large standard deviation of better than any of the top eight methods; the average
model quality difference require a large average model values of the average and standard deviation of model
quality difference for confident ranking of two methods quality difference of method 000 with the top eight meth-
(Figure 1B). Similarly, a small average model quality dif- ods are 12.3% and 8.1%, respectively.
ference and a large standard deviation of model quality The first cluster of the top eight methods appears to
difference require a large number of common models be marginally distinguishable from the following �62
for confident ranking of two methods (Figure 1C). methods, which in turn are marginally distinguishable

The definitions above are sufficient to achieve the from the next �27 methods, followed by the least �10
main aim of the study, to determine for each pair of accurate methods.
methods whether it is possible to discriminate their per- How reliable is the assessment of the statistical signifi-
formances based on a limited number of test sequences cance by the paired samples Student’s t test? This para-
and the chosen model quality criterion. In addition, the metric test is valid when the model quality difference is
pairwise method comparisons were used in two steps distributed approximately normally (it is not necessary
to construct an approximate ranking that lists all of the that the model quality itself be distributed normally).
assessed methods. First, for each method i, a temporary When the model quality difference is not distributed
ranking was constructed for it and for all other methods normally, the estimated significance can be lower or
j with which it shared at least one model, using the higher than the actual significance. According to the
average model quality differences. Second, the final Anderson-Darling test [13], the distribution of the model
ranking list was obtained by averaging the rank positions quality difference is normal for essentially all pairs of
in all the temporary ranking lists. In general, any final modeling methods (data not shown).
ranking list will be frustrated in the sense that method There are several other statistical methods suitable for
i assessed to be better than method j in the direct pair- assessing the significance of the average model quality
wise comparison may be positioned worse than method difference. One such method is the paired samples Wil-
j in the final ranking because of the impact of the pairwise cox signed rank test, a nonparametric test of statistical
comparisons with other methods, based on different significance that assumes a symmetric continuous dis-
sets of common models. While frustration can be quanti- tribution of the model quality difference [12]. We re-
fied by the standard deviation of the temporary rankings, peated all calculations with the Wilcox test (data not
it is a good reason for focusing on the pairwise compari- shown) and reached the same conclusions as with the

Student’s t test.son of the methods.
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Figure 2. Comparison of Performances of Comparative Modeling Methods at CASP4, Based on the Model Quality Criterion as Defined in
Methods

Upper diagonal (top legend): black and gray squares indicate pairs of methods whose performance is and is not statistically significantly
different at the confidence level of 95%, respectively. Pairs of methods with less than two models in common, which could not be compared
to each other, are indicated by black dots in white squares.

Lower diagonal (bottom legend): the intensity of gray indicates the number of additional common models that are needed to rank the two
compared methods with statistical significance at a confidence level of 95%; if more than 100 additional models are needed, 101 is logged.
The white squares correspond to pairs of methods that can already be ranked reliably based on a comparison of the common models
submitted to CASP4. The histogram at the bottom shows the number of models calculated by each method. The method identifiers, as defined
at CASP4, are given on the horizontal and vertical axes. Method 000 is a fictitious prediction method corresponding to models without
alignment errors; a model consists of the C� atoms of the closest template structure that is optimally aligned with the actual target structure.
Method 000 is not used in the calculation of the ranking list.

The order of the methods in the overall ranking list is 18.1). We note again that, in contrast to the overall rank-
ing list, the statistical significance of a pairwise methodsomewhat arbitrary. The uncertainty of a position in the

overall ranking list can be measured by the standard comparison is not arbitrary. Thus, ranking at CASP
would be significantly simplified if all the methods weredeviation of the method’s rank over all the temporary

ranking lists (Methods). This frustration is an unavoid- applied to all the test sequences.
able consequence of different common sets of models
for the different pairwise method comparisons. For ex- Discussion
ample, the first method in the final ranking list is posi-
tioned from 1 to 22 in the temporary ranking lists, with We describe a general procedure for quantifying reliabil-

ity of ranking of two protein structure prediction meth-the standard deviation of 4.7. The eighth method in the
final ranking list is positioned from 2 to 31, with the ods, given a single model quality criterion. This proce-

dure relies on the parametric Student’s t test or thestandard deviation of 4.9. Similarly, the overlap between
the clusters of methods is exemplified by the averages nonparametric Wilcox signed rank test of statistical sig-

nificance of the difference between paired samples. De-and standard deviations of temporary rankings of the
ninth method (13.0 � 7.3) and the 36th method (37.1 � pending on the number of test models and the difference
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between the performances of the two methods, it may quence similarity, but unsuccessful at side chain
modeling based on high-sequence similarity. The impor-or may not be possible to conclude that one method is

more accurate than the other. Reliable ranking of differ- tant errors in comparative modeling include errors in
recognizing weak sequence structure similarities, align-ent methods is important in the development as well as

the use of the methods. This approach to ranking was ment, modeling of insertions, rigid body shifts, distor-
tions, and side chains, as well as mistakes in detectingillustrated by application to the ranking of comparative

modeling methods at CASP4. errors in a model [16]. For a comprehensive character-
ization of modeling methods, hundreds of test se-CASP meetings have become one of the most influen-

tial venues for assessing protein structure modeling quences are needed.
Human predictors and assessors are not likely to bemethods [14, 15]. For example, it was reported without

elaboration that team 126 retained its leading position able to handle many more test sequences than at the
past CASP meetings. Predictors only have a few monthsin the comparative modeling category [6]. However, the

performance of method 126 is statistically indistinguish- to generate their models, and an assessor only has
about 2 months to examine approximately 1000 modelsable from that of 53 other methods with more than ten

models, as judged by the model quality criterion and calculated by 100 methods; a rigorous examination that
goes beyond the use of a single model quality criterionthe statistical significance test described in this commu-

nication (Figure 2). Similar results apply to the other must depend on consideration of tens of quantitative
assessment criteria and visual inspection of each model.top seven methods. Thus, our results indicate that the

number of test sequences at CASP4 may not be suffi- It appears that testing with hundreds of sequences can
be achieved only by automating both the modeling andcient to distinguish reliably between the top eight com-

parative modeling methods, or, conversely, that the dif- assessment methods. Although the CAFASP section of
CASP [17] already evaluates automated predictionferences between the top eight methods may be too

small for the methods to be distinguished based on the methods, this assessment is the same as that of the
other models and is thus exposed to the same problems.small number of test sequences available at CASP4.

The use of other single or multiple model quality crite- While there is clearly a continued need for subjective
but judicious examination of the successes and failuresria is not likely to rank any modeling method overall

as significantly better than the other top methods. The of protein structure prediction, the CASP experiments
need to be supplemented by large-scale, automated, andreason is that the current model quality criterion is a

good measure of the largest differences among the com- continuous assessments, such as those implemented in
the LiveBench (http://www.bioinfo.pl/LiveBench) [18]parative models at CASP4, which result from errors in

alignment and modeling of insertions. Similarly, other and EVA (http://cubic.bioc.columbia.edu/eva/) [8, 19]
web servers for assessing automated protein structurereasonable approaches to assessing statistical signifi-

cance of ranking based on the CASP4 models are also prediction methods.
not likely to detect reliable ranking among the top meth-
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Note Added in Proof

A reader may want to see a detailed description of assessment of
comparative modeling methods at CASP4 by Tramontano et al. on
pages 22–38 in the special issue 5 of Proteins that became available
online on January 28, 2002.


