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ABSTRACT

EVA (http://cubic.bioc.columbia.edu/eva/) is a web
server for evaluation of the accuracy of automated
protein structure prediction methods. The evaluation
is updated automatically each week, to cope with the
large number of existing prediction servers and the
constant changes in the prediction methods. EVA
currently assesses servers for secondary structure
prediction, contact prediction, comparative protein
structure modelling and threading/fold recognition.
Every day, sequences of newly available protein
structures in the Protein Data Bank (PDB) are sent to
the servers and their predictions are collected. The
predictions are then compared to the experimental
structures once a week; the results are published on
the EVA web pages. Over time, EVA has accumu-
lated prediction results for a large number of
proteins, ranging from hundreds to thousands,
depending on the prediction method. This large
sample assures that methods are compared reliably.
As a result, EVA provides useful information to
developers as well as users of prediction methods.

INTRODUCTION

Continuous, automated, large data sets, statistical
significance. The goal of EVA is to evaluate the sustained
performance of protein structure prediction servers through a

battery of objective measures for prediction accuracy. While
the bi-annual CASP (Critical Assessment of Techniques for
Protein Structure Prediction) meetings address the question
‘how well can experts predict protein structures with the
help of machines?’, the question addressed by EVA is ‘how
well can automatic servers predict protein structures?’.
Conceptually, this is similar to CAFASP (Critical Assessment
of Fully Automated Structure Prediction), but there is a major
difference: EVA provides a continuous, fully automatic and
statistically more significant analysis of structure prediction
servers, whereas CAFASP only covers a limited number of pro-
teins determined in a period of about 4 months in every 2 years:
fewer than 10 proteins were available for the non-homology
category at CAFASP3 in 2002. This implies that it is—at
best—extremely difficult to infer differences of statistical
significance from the CAFASP/CASP data sets. For example,
the assessor for secondary structure prediction in 2002 con-
cluded that there was no improvement in secondary structure
predictions with respect to the CAFASP/CASP in 2000
although the numerical values differed by over six percentage
points.

A tool for developers of prediction methods. EVA facilitates
developers of structure prediction methods to improve their
approaches and users of prediction servers to apply methods
judiciously. The ranking of each prediction method is analysed
and updated on the web every week. Ranking is a non-trivial
task because of the non-uniformity in data sets and in
the measures for accuracy. Another complication is that
methods are compared most reliably when they are tested
under identical conditions, i.e. with identical sets of proteins
(1–3). Here, we sketch the EVA mechanisms that enable
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such large-scale assessment of prediction servers automatically
and continuously.

DESIGN AND IMPLEMENTATION

Five steps from sequence to results

The analysis of prediction methods involves the following steps
(Fig. 1): (i) select a set of suitable test sequences; (ii) apply pre-
diction methods to those sequences; (iii) assess prediction
methods by measuring prediction quality using certain scoring
functions; (iv) determine criteria for statistically significant
differences, and rank the methods accordingly; (v) merge
results of the current week with those accumulated in the past,
publish results on the web, and communicate with and gather
results from the EVA satellites [at Centro Nacional de
Biotecnologia (CNB) in Madrid, Spain and at University of
California, San Francisco (UCSF)].

(i) Selection of test sequences. Every day, EVA downloads
the sequences for the newest experimentally determined pro-
tein structures from the Protein Data Bank (PDB) (4) web site.
Sequences are dissected into protein chains that constitute the
basic units for EVA. Very short sequences (<30 residues) and
proteins containing a significant number of unresolved resi-
dues are excluded. The remaining sequences are sent by
META-PredictProtein (5,6) (META-PP) to prediction servers
that consented to the evaluation by EVA. Threading/fold recog-
nition servers constitute an exception to this ‘send-all’ rule: in
order to reduce the load on these servers, we submit only
sequences without clearly homologous structures (i.e. novel
proteins) (7,8). These novel sequences have no hits in the pre-
vious version of the PDB below a PSI-BLAST (9) E-value of
10�3 and/or an HSSP-distance <0 (8). Over the last 3 years,
this filtering step reduced the number of chains to about 8%;
threading servers therefore have to handle <10 submissions
from EVA per week. While secondary structure prediction
methods handle all proteins, currently EVA publishes results
only for the subset of the novel proteins every week. For con-
tact predictions, proteins with homologous structures are con-
sidered separately from proteins without structurally defined
homologues. Obviously, most results analysed in the compara-
tive modelling category (EVA-CM) are based on proteins that
are not novel. However, EVA-CM currently does not apply any
particular threshold: all models are evaluated.

(ii) Collection of predictions. Once a day, META-PP (5,6) sub-
mits sequences to prediction servers and collects the results.
Once a week, these results are sent to EVA satellites for evalua-
tion, namely to Columbia University for secondary structure
prediction and fold recognition/threading, to UCSF for compara-
tive modelling and to CNB for inter-residue distances/contacts.

(iii) Evaluation of sustained performance. Prediction quality
is evaluated using a battery of scoring functions sketched
below for all four categories.

(iv) Ranking prediction methods. Ranking is most
reliable when prediction methods are tested under identical
circumstances. The best way to rank two methods is to assess
their performance based on the identical test sets. Two ranking

methods are currently available in EVA. The first one is based
on sub-sets of all proteins that are common to all methods. The
limitations of this approach are that: (i) not all methods exist at
the same time; and (ii) not all sequences are predicted by all
methods at any given time due to server downtime and errors.
In practice, these two effects reduce the size of the common
sub-sets dramatically. The second ranking approach relies
on pairwise method comparisons that depend on the sub-set
of proteins common to the two compared methods (3). This
pairwise ranking approach determines for each pair of parti-
cipating servers whether or not it is possible to discriminate
their accuracies, given the size of the test set and the particular
accuracy measure used. The downside of this approach is that
the overall ranking list obtained by averaging the pairwise
results may be ‘frustrated’ due to the different testing sets for
the different pairs of methods.

(v) Results presented on the EVA web sites. The central EVA
site at Columbia University collects either the assessments or
the html pages with assessments from the satellites every week
and presents them on the web. The central EVA site is mirrored
at all EVA satellites (Fig. 1).

CATEGORIES OF EVALUATION

EVA currently addresses the following protein structure
prediction categories (Table 1): comparative modelling

Figure 1. Flowchart of EVA. Every day, EVA downloads the newest protein
structures from PDB (4). The structures are added to mySQL databases,
sequences are extracted for every protein chain and are sent to each prediction
server by META-PredictProtein (5) (except for threading in which only novel
structures are sent). META-PP collects the results and sends them to EVA.
Every week, predictions of secondary structure, threading/fold recognition,
comparative modelling and inter-residue contacts are evaluated at the EVA
satellites at Columbia University, University of California, San Francisco, and
CNB Madrid. The central EVA site at Columbia collects all the assessments
from the satellites and the results from the database searches, and publishes
the updated web pages. Finally, all web pages are mirrored at the satellites.
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(EVA-CM); inter-residue contact prediction (EVA-con);
secondary structure prediction (EVA-sec); and threading
(EVA-FR). In the following, we sketch the measures for
accuracy employed for each category. Note that the detailed
definitions of the scores are available through the EVAweb sites.

EVA-CM. Implements a small number of criteria—arranged
hierarchically from coarser to finer—that measure the accuracy
of a comparative model. The assessed aspects of a model
include fold type, alignment, whole structure, core structure,
loops and side-chains. Final ranking is reported using the
‘pairwise’ comparison of prediction servers (3). From May
2000 to January 2003, predictions were collected from five
different servers, resulting in 20 957 submitted models for
9050 different PDB chains. On average, 2.3 models were
predicted per chain.

EVA-con. Evaluates inter-residue contact/distance predic-
tions. A number of servers predict contacts directly, using
neural networks of different kinds trained on contact maps
(10,11). There are also predictions of contacts based on
assembled structures (12). The current evaluation criteria
implemented in EVA-con include: (i) accuracy—the number
of the correctly predicted contacts divided by the total number
of predicted contacts (13); (ii) improvement over random—the
calculated accuracy divided by the random accuracy (13); (iii)
distance distribution of the predicted contacts—the weighted

harmonic average difference between the predicted contact dis-
tance distribution and the all-pairs distance distribution (14);
and (iv) delta evaluation—the percentage of correctly predicted
contacts that are within a certain number (delta) of residues of
the experimental contact, measured along the sequence (15).
EVA-con may also be used to evaluate ab initio, fold recogni-
tion and comparative modelling servers by transforming mod-
els into intra-molecular contacts between the corresponding
C-beta atoms (C-alpha for Gly) with a 8 Å cut-off.

EVA-sec. Evaluates protein secondary structure predictions.
Secondary structures are assigned from 3D structures through
DSSP (16) and STRIDE (17). EVA-sec measures accuracy by:
(i) per-residue accuracy (18) (Q3)—percentage of residues cor-
rectly predicted in one of the three states (helix, strand or
other); (ii) per-segment accuracy (18,19) (SOV)—average over-
lap between segments (methods that get most of the segment
cores right are generally more useful than those that get some
of the entire segments right); and (iii) accuracy of predicting
structural class—percentage of proteins correctly predicted in
one of the following classes: all-alpha, all-beta, alpha/beta
and others (20,21). Rankings are presented using both the
‘common subset’ and ‘pairwise’ comparison approaches.

EVA-FR. Currently evaluates models only for novel
sequences (i.e. proteins for which PSI-BLAST searches do
not reveal similarity to a known structure). Since there is no

Table 1. Prediction methods evaluated by EVA

Method URL Main developer(s) References

Comparative modeling
3D-Jigsaw http://www.bmm.icnet.uk/servers/3djigsaw/ PA Bates, P Fitzjohn and BC Moreira (26,27)
CPHModels http://www.cbs.dtu.dk/services/CPHmodels/ S Brunak et al. (28)
ESyPred3D http://www.fundp.ac.be/urbm/bioinfo/esypred/ C Lambert (29)
SDSC1 http://cl.sdsc.edu/hm.html IN Shindyalov and PE Bourne (24)
SwissModel http://www.expasy.org/swissmod/ T Schwede, MC Peitsch and N Guex (30)
Threading/fold recognition
3D-PSSM http://www.sbg.bio.ic.ac.uk/~3dpssm L Kelley, B Maccallum and M Sternberg (31)
BLAST http://www.ncbi.nlm.nih.gov/BLAST S Karlin and S Altschul (32)
FUGUE http://www-cryst.bioc.cam.ac.uk/~fugue/ K Mizuguchi —
Libellula http://www.pdg.cnb.uam.es:8081/libellula.html — —
Prospect http://www.aber.ac.uk/~phiwww/prof/ Y Xu (33)
PSI-BLAST http://www.ncbi.nlm.nih.gov/BLAST/ S Altschul et al (9)
SAMt99 http://www.cse.ucsc.edu/research/compbio/

HMM-apps/model-library-search.html
K Karplus, C Barrett and R Hughey (34,35)

Superfamily http://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/ J Gough (36)
Inter-residue contacts
CORNET http://prion.biocomp.unibo.it/cornet.html P Fariselli, O Olmea and A Valencia, R Casadio (10,37,38)
PDGCON http://www.pdg.cnb.uam.es:8081/ F Pazos, O Olmea and A Valencia (13)
CONcons/CONhydro http://www.pdg.cnb.uam.es:8081/ F Pazos, O Olmea and A Valencia (37–39)
Secondary structure
APSSP2 http://www.imtech.res.in/raghava/apssp2/ G Raghava (40)
Jpred http://jura.ebi.ac.uk:8888/ JA Cuff and GJ Barton (41)
PHDsec http://cubic.bioc.columbia.edu/predictprotein B Rost and C Sander (42)
PHDpsi http://cubic.bioc.columbia.edu/predictprotein D Przybylski and B Rost (43)
PROF_king http://www.aber.ac.uk/~phiwww/prof/ M Ouali and R King (44)
PROFsec http://cubic.bioc.columbia.edu/predictprotein B Rost (45)
PSIpred http://insulin.brunel.ac.uk/psiform.html D Jones (46,47)
SAM-T99sec http://www.cse.ucsc.edu/research/compbio/

HMM-apps/T99-query.html
K Karplus, C Barrett and R Hughey (34,48)

SSpro2 http://promoter.ics.uci.edu/BRNN-PRED/ G Pollastri and P Baldi (49)
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single measure that can comprehensively assess the quality of
threading models, EVA-FR employs an array of alignment
dependent and alignment independent measures (22–24). For
most of the measures used, two aspects of server performance
are considered: (i) the ability to produce good models for each
target (rank analysis); and (ii) the ability to assign reliable
scores to its models, measured through Receiver Operator
Characteristics curves (ROC; note this aspect is often referred
to with ‘fold recognition’). Methods are ranked through both
the ‘common subset’ and ‘pairwise’ comparison approaches.

DISCUSSION

EVA provides an automated and continuous evaluation. Every
week, test sequences are automatically submitted to prediction
servers and results are evaluated and posted on the EVA web
sites. The test sets are constructed so that methods could not
have been trained based on the sequences in the test sets.
Moreover, the test sets are as large as possible. In addition,
the reliability of the comparisons between methods is maxi-
mised by using only test sets common to the methods assessed.

EVA provides supplemental information to CASP. Since
1994, the development of structure prediction methods has
been influenced by the CASP meetings. While EVA uses
well-defined numerical criteria to evaluate sustained perfor-
mance, expert evaluations are still needed to learn what mea-
sures are most useful. However, human assessors are not
likely to be able to handle many more test sequences than those
at CASP. At the same time, there are problems with ranking
methods based on test sets that are too small (1–3). EVA rank-
ings are statistically more significant than those at CASP,
because EVA assesses prediction methods continuously on as
many proteins every month as CASP in 2 years (1). We believe
that CASP needs to be supplemented by a large-scale, auto-
mated and continuous assessment, such as that by LiveBench
(25) (assessment for threading methods only) and EVA. In fact,
EVA may replace certain CASP categories in the future. For
example, it was proposed at the last 2002 CASP meeting to
eliminate secondary structure predictions from CASP.
Instead, EVA-sec will replace CASP/CAFASP for users inter-
ested in those methods. This decision was partially influenced
by the fact that the evaluation of secondary structure prediction
methods has matured and this matured analysis has demon-
strated beyond doubt that the set of proteins at CASP5
(2002) was not representative and too small.

EVA allows developers to focus on developing better
methods. The best secondary structure prediction methods
have reached a sustained level of 76% accuracy for the last 2
years (2) which indicates a substantial improvement in second-
ary structure prediction over the last 4 years. While it is always
difficult to choose an appropriate set of measures, EVA uses
standard criteria that have been largely used by experts in the
area. For secondary structure prediction, these criteria are well
established. For all other categories, we are currently experi-
menting with new criteria, others will be incorporated into
EVA upon request from users. The precise definitions of the
criteria are available on the web. While we can make our

original scripts available upon request, we currently do not
have the resources to cast the whole EVA code into a form that
guarantees portability or ease-of-use. Overall, EVA allows
developers to focus on the development of better methods,
rather than on the generally time-consuming evaluation.

Extension of the EVA framework to other prediction
categories. In principle, the concepts implemented in EVA
could and should be generalised to evaluating a larger variety
of prediction methods. Often, the problem is the availability of
new high-resolution data. We intend to explore extensions that
cover the predictions of protein–protein interactions, mem-
brane regions, signal peptides, cleavage sites, structural/
functional motifs and sub-cellular localisation.
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