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Comparative Protein Structure Modeling

M. S. Madhusudhan, Marc A. Marti-Renom, Narayanan Eswar, Bino
John, Ursula Pieper, Rachel Karchin, Min-Yi Shen, and Andrej Sali

1. Introduction

Three-dimensional protein structures are invaluable sources of information for the
functional annotation of protein molecules. These structures are best determined by
experimental methods such as X-ray crystallography and nuclear magnetic resonance
(NMR) spectroscopy. However, the experimental methods cannot always be applied.
In such cases, prediction of the protein structure by computational methods can
frequently result in a useful model.

Protein structures can be modeled either ab initio from sequence alone or by
comparative methods that rely on a database of known protein structures (1,2). Ab
initio methods are largely based on the laws of physics, while comparative methods,
including comparative (or homology) modeling and threading, are based primarily on
statistical learning. Although there have been significant improvements in the ab initio
(3) and threading methods (4), comparative modeling gives the most accurate results if
a known protein structure that is sufficiently similar to the modeled sequence is avail-
able (1).

To predict protein structure by comparative modeling, two conditions have to be
met (5,6). First, the sequence to be modeled (i.e., the target sequence) must have
detectable similarity to another sequence of known structure (i.e., the template).
Second, it must be possible to compute an accurate alignment between the target
sequence and the template structure. The whole prediction process consists of fold
assignment, target–template alignment, model building, and model evaluation (Fig. 1).

A simple predictor of the overall model accuracy is the degree of sequence similar-
ity between the target and the template (Fig. 2). The higher is the sequence similarity to
the template, the more accurate is the model. Although high-accuracy models are most
informative, low-accuracy models may also provide coarse structural and functional
annotation (Fig. 3) (1).

Comparative models can currently be built for domains in approx 57% of the approx
1.5 million protein sequences in the TrEMBL database (7). However, approximately
two-thirds of the models are likely to contain significant errors because they are based
on less than 30% sequence identity to the closest known protein structure. The primary
sources of geometrical errors in the final models based on less than 30% sequence
identity are the mistakes in the target–template alignment. Other errors include  incor-
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Fig. 1. A flow chart of the steps involved in comparative protein structure modeling.

rect fold assignments as well as incorrect modeling of loops, correctly aligned core
segments, and side chains. No current modeling program can generally recover from
an incorrect starting alignment. Therefore, one of the priorities for methods developers
is to improve the accuracy of sequence-structure alignment and/or to minimize the
dependence of the modeling methods on the input sequence-structure alignment.

The importance of comparative modeling derives partly from its role in structural
genomics (8–10). Structural genomics aims to structurally characterize most protein
sequences by an efficient combination of experiment and prediction (9,11–14). This
aim will be achieved by careful selection of target proteins and their structure determi-
nation by X-ray crystallography or NMR spectroscopy. There are a variety of target
selection schemes (15), ranging from focusing on only novel folds to selecting all pro-
teins in a model genome. A model-centric view requires that targets be selected such
that most of the remaining sequences can be modeled with useful accuracy by com-
parative modeling. Even with structural genomics, the structure of most of the proteins
will be modeled, not determined by experiment. As mentioned above, the accuracy of
comparative models and correspondingly the variety of their applications decrease
sharply below the 30% sequence-identity cutoff, mainly as a result of a rapid increase
in alignment errors. Thus, structural genomics should determine protein structures such
that most of the remaining sequences are related to at least one known structure at
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Fig. 2. Average accuracy of models calculated by ModPipe (218) with respect to the per-
centage sequence identity to the template. The average overlap of the experimentally deter-
mined protein structure with its calculated model (lower dashed line) and with the template on
which the model was based (upper dashed line) are shown as a function of the target–template
sequence identity. This sequence identity is calculated from the modeling alignment. The struc-
ture overlap is defined as the fraction of the equivalent Cα atoms after rigid superimposition of
the two structures. Two Cα atoms are considered equivalent if they are within 3.5Å of each
other. The points in the curves correspond to the median values, and the error bars in the posi-
tive and negative directions correspond to the average positive and negative differences from
the median, respectively. The shaded area between the two curves corresponds approximately
to the model error that arises from the alignment error.

higher than 30% sequence identity (15,16). It was estimated that this cutoff requires a
minimum of 16,000 targets to cover 90% of all protein domain families, including
those of membrane proteins (16). These 16,000 structures will allow the modeling of a
very much larger number of proteins. For example, New York Structural Genomics
Research Consortium measured the impact of its structures by documenting the num-
ber and accuracy of the corresponding models for detectably related proteins in the
non-redundant sequence database. For each new structure, on the average approx 100
protein sequences without any prior structural characterization could be modeled at
least at the fold level (http://www.nysgxrc.org/). This large leverage of structure deter-
mination by protein structure modeling illustrates and justifies the premise of struc-
tural genomics.

This chapter describes methods and computer programs used in all the steps of com-
parative modeling (Table 1). We conclude by reviewing several sample applications of
the models.
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Fig. 3. Accuracy and applications of protein structure models. The vertical axis indicates the
different ranges of applicability of comparative protein structure modeling, the corresponding
accuracy of protein structure models, and their sample applications. (A) The docosahexaenoic
fatty acid ligand was docked into a high accuracy comparative model of brain lipid-binding
protein (right), modeled based on its 62% sequence identity to the crystallographic structure of
adipocyte lipid-binding protein (PDB code 1adl). A number of fatty acids were ranked for their
affinity to brain lipid-binding protein consistently with site-directed mutagenesis and affinity
chromatography experiments (194), even though the ligand specificity profile of this protein is
different from that of the template structure (left). (B) A putative proteoglycan binding patch
was identified on a medium accuracy comparative model of mouse mast cell protease 7 (right),
modeled based on its 39% sequence identity to the crystallographic structure of bovine pancre-
atic trypsin (2ptn) that does not bind proteoglycans. The prediction was confirmed by site-
directed mutagenesis and heparin-affinity chromatography experiments (193). Typical accuracy
of a comparative model in this range of sequence similarity is indicated by a comparison of a
trypsin model with the actual structure. (C) A molecular model of the whole yeast ribosome
(right) was calculated by fitting atomic rRNA and protein models into the electron density of
the 80S ribosomal particle, obtained by electron microscopy at 15Å resolution (229). Most of
the models for 40 out of the 75 ribosomal proteins were based on template structures that were
approx 30% sequentially identical. Typical accuracy of a comparative model in this range of
sequence similarity is indicated by a comparison of a model for a domain in L2 Protein from
Bacillus Stearothermophilus with the actual structure (1rl2).
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Table 1
Programs and Web Servers Useful in Comparative Protein Structure Modeling

Name World-Wide Web addressb Referencec

Databases

BALIBASE http://www-igbmc.u-strasbg.fr/BioInfo/BAliBASE/ 196
CATH http://www.biochem.ucl.ac.uk/bsm/cath/ 197
GENBANK http://www.ncbi.nlm.nih.gov/Genbank/ 198
GENECENSUS http://bioinfo.mbb.yale.edu/genome/ 199
MODBASE http://www.salilab.org/modbase/ 7
PDB http://www.pdb.org 200
PRESAGE http://presage.berkeley.edu 201
SCOP http://scop.mrc-lmb.cam.ac.uk/scop/ 202
SWISSPROT-TREMBL http://www.expasy.org 203

Template search

123D http://123d.ncifcrf.gov/ 204
3D PSSM http://www.sbg.bio.ic.ac.uk/~3dpssm 77
BLAST http://www.ncbi.nlm.nih.gov/BLAST/ 22
DALI http://www2.ebi.ac.uk/dali/ 19
FASTA http://www.ebi.ac.uk/fasta33/ 23
MATCHMAKER http://bioinformatics.burnham-inst.org 205
PREDICTPROTEIN http://cubic.bioc.columbia.edu/predictprotein/ 206
PROFIT http://www.bioinfo.org.uk/software 207
THREADER http://bioinf.cs.ucl.ac.uk/threader/threader.html 70
UCLA-DOE FOLD SERVER http://fold.doe-mbi.ucla.edu 208
SUPERFAMILY http://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/ 209

Target–template alignment

BCM SERVERF http://searchlauncher.bcm.tmc.edu 210
BLAST2 http://www.ncbi.nlm.nih.gov/blast/bl2seq/bl2.html 211
BLOCK MAKERF http://blocks.fhcrc.org/ 212
CLUSTALW http://www2.ebi.ac.uk/clustalw/ 62
MULTALIN http://prodes.toulouse.inra.fr/multalin/ 213
SEA http://ffas.ljcrf.edu/sea/ 214
FFAS03 http://ffas.ljcrf.edu/ 26,64
SAM-T02 http://www.soe.ucsc.edu/research/compbio/ 215

HMM-apps/
FUGUE http://www-cryst.bioc.cam.ac.uk/fugue 75
TCOFFEE http://www.ch.embnet.org/software/TCoffee.html 216
COMPASS ftp://iole.swmed.edu/pub/compass/ 27
MUSCLE http://www.drive5.com/muscle 217
SALIGN http://www.salilab.org/modeller 218
USC SEQALN http://www-hto.usc.edu/software/seqaln 219

Modeling

COMPOSER http://www.tripos.com/sciTech/inSilicoDisc/ 87
CONGEN http://www.congenomics.com/congen/congen_toc.html 94
ICM http://www.molsoft.com/bioinfomatics/ a220
DISCOVERY STUDIO http://www.accelrys.com/composer.html b

(continued)
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Table 1 (Continued)
Programs and Web Servers Useful in Comparative Protein Structure Modeling

Name World-Wide Web addressb Referencec

MODELLER http://www.salilab.org/modeller/ 101
SYBYL http://www.tripos.com c
SCWRL http://dunbrack.fccc.edu/SCWRL3.php 157
SNPWEB http://salilab.org/snpweb 218
SWISS-MODEL http://www.expasy.org/swissmod 221
WHAT IF http://www.cmbi.kun.nl/whatif/ 222

Model evaluation

ANOLEA http://protein.bio.puc.cl/cardex/servers/ 188
AQUA http://nmr.chem.uu.nl/users/jurgen/Aqua/server 184
BIOTECH http://biotech.embl-heidelberg.de:8400 183
ERRAT http://www.doe-mbi.ucla.edu/Services/ERRAT/ 223
PROCHECK http://www.biochem.ucl.ac.uk/~roman/procheck/ 178

procheck.html
PROSAII http://www.came.sbg.ac.at 181
PROVE http://www.ucmb.ulb.ac.be/UCMB/PROVE 224
SQUID http://www.ysbl.york.ac.uk/~oldfield/squid/ 185
VERIFY3D http://www.doe-mbi.ucla.edu/Services/Verify_3D/ 74
WHATCHECK http://www.cmbi.kun.nl/gv/whatcheck/ 225

Methods evaluation

CASP http://predictioncenter.llnl.gov 226
CAFASP http://bioinfo.pl/cafasp.html 170
EVA http://cubic.bioc.columbia.edu/eva/ 173
LIVEBENCH http://bioinfo.pl/LiveBench/ 171
CASA http://capb.dbi.udel.edu/casa 227
AMAS http://www.compbio.dundee.ac.uk/ 228

Some of the sites are mirrored on additional computers.
aMolSoft Inc., San Diego.
bAccelrys Inc., San Diego.
cTripos Inc., St. Louis.
The BIOTECH server uses PROCHECK and WHATCHECK for structure evaluation.

2. Steps in Comparative Modeling

Comparative modeling consists of four sequential steps: fold assignment, target–
template alignment, model building, and model assessment (Fig. 1). If an assessment
of the model is not positive, the model can be rebuilt by selecting different templates,
refining the target–template alignment, or changing model-building parameters. The
sections below deal with each one of the four steps in the modeling protocol.

2.1. Fold Assignment and Template Selection

The initial step in comparative modeling is to assign the likely fold of the target
sequence. Template identification can be achieved using any one of the many pro-
grams that scan sequence and structure databases, such as Protein Data Bank (PDB)
(17), structural classifcation of proteins (SCOP) (18), distance-matrix alignment
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(DALI) (19), and Class, Architecture, Topology, and Homology (CATH) (20,21)
(Table 1). Template search methods can be categorized into three different classes:

First, pairwise comparison methods, which include the popular programs Basic
Local Alignment Search Tool (BLAST) (22) and FASTA (23), align the target sequence
with all the sequences in the database of known structures. The performance and effi-
ciency of this class of methods has been studied extensively (24). Second, sequence
profile methods, such as position specific iterative (PSI)-BLAST (25) and HMMER
(http://hmmer.wustl.edu), rely on profiles derived from multiple sequence alignments
to increase the sensitivity and accuracy of the template search. The profile enhances
the sensitivity of the search (26–29). Profiles are also utilized by the intermediate
sequence search algorithms that establish a homology between two remotely related
sequences through an intermediary sequence (30–36). Third, the so-called threading
methods use a combination of sequence and structure considerations to detect similari-
ties between sequences and structures (37–41). In these methods, the target sequence is
threaded through a library of 3-D profiles or folds, and each threading is assessed based
on a certain scoring function. Commonly used methods and servers in this category
include Superfamily (42) and GenThreader (43). The threading methods are more
effective in detecting homology at low sequence similarity than the methods relying on
sequence information alone (44).

The three different classes of methods are best suited for identifying templates in
different regimes of the sequence-identity spectrum. The pairwise sequence compari-
son methods are the least sensitive and are best used to detect close homologs. The
profile-based methods are usually capable of recognizing homologs sharing only
approx 25% sequence identity. Threading methods can sometimes recognize common
folds even in the absence of any statistically significant sequence similarity. Because
most of the fold assignment methods involve sequence alignment, some of them are
discussed in more detail in the following section about sequence-structure alignment.

While a correct fold assignment can be used to build a useful model, an incorrect
fold assignment renders the resulting model useless. Thus, when using a fold-recogni-
tion method, it is crucial to be aware of the accuracy of the method. In an assessment of
different fold-recognition methods, the best method detected 75% of the closest struc-
tures correctly for a set of sequences related at the “family” level in the SCOP database
(18). However, at the superfamily and fold levels, the accuracy dropped to 29 and 15%,
respectively (44).

Once a list of all related protein structures is obtained, templates that are appropriate
for the given modeling problem have to be selected. Usually, a higher overall sequence
identity between the target and the template sequence yields a better template. Several
other factors should also be considered in selecting templates.

Constructing a phylogenetic tree for the whole family can frequently help in select-
ing a template from the subfamily that is closest in structure to the target sequence.
Databases of structure-based phylogenies, such as the database of Phylogeny and Align-
ment (PALI) (45), are useful in making a distinction between the sequence and struc-
ture similarity, which can be a key consideration for template identification.

Accuracy of the template structure is another important factor in template selection.
The resolution and the R-factor of a crystallographic structure and the number of
restraints per residue for an NMR structure are indicative of structure accuracy.
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It is also crucial to compare the environment of the template to the required environ-
ment for the model. The term environment is used in a broad sense and includes all
factors that determine protein structure, except its sequence (e.g., solvent, pH, ligands,
and quaternary interactions). For example, if the objective of the model-building exer-
cise is to dock ligands in the model, it is usually best to use a template that is itself
bound to an identical or similar ligand. In general, prior biological information about
the target sequence can be valuable in identifying an appropriate template (46,47).

Prioritization of the criteria for template selection depends on the purpose of the
comparative model. For instance, if a protein–ligand model is to be constructed, the
choice of the template that contains a similar ligand is probably more important than
the resolution of the template. On the other hand, if a model is to be used to analyze the
geometry of the active site of an enzyme, it is preferable to use a high-resolution tem-
plate. It is not necessary to select only one template. In fact, the use of several tem-
plates approximately equidistant from the target sequence generally increases the model
accuracy (48,49).

2.2. Target–Template Alignment

After identifying the template(s), the next crucial step in comparative modeling is to
accurately align the target sequence to the template(s). Although most template-recog-
nition methods produce a target–template alignment, there is frequently a need to use a
specialized alignment method to realign the sequences because the template-identifica-
tion step is often optimized to identify distant relationships, sometimes at the expense
of alignment accuracy. The sequence-structure alignment is a vital step in the model-
building process, and an erroneous alignment will almost certainly lead to the con-
struction of an incorrect model.

An alignment between two sequences of residues is usually calculated by optimiz-
ing an alignment scoring function (50). The two common ingredients of the scoring
function are a gap penalty function and a matrix of substitution scores for matching
every residue in one sequence to every residue in the other sequence. The alignment
score is usually a sum of the gap penalties, which depend linearly on the gap lengths,
and the pairwise substitution scores, which depend on the matched residue types. The
original and still widely used optimization method for sequence alignment is based on
dynamic programming (51–53). Since its inception, the scoring function and its opti-
mization by dynamic programming have been improved for alignment accuracy and
speed, and applied to a variety of alignment problems.

In the next few paragraphs, we examine different methods to obtain substitution
score matrices and gap penalties that optimize the accuracy of the output alignments.
We examine the use of information from related multiple sequences and structures to
enhance alignment accuracy and coverage, especially when target–template sequence
identity decreases below 30%.

2.2.1. Using Multiple Sequence Information

The accuracy of a pairwise alignment method that uses dynamic programming
greatly depends on the matrix of substitution scores and the gap penalties. Matrices
with values for each of the possible residue type substitutions, such as Block Substitu-
tion Matrix (BLOSUM) (54) and point accepted mutation (PAM) (55), are useful only
when sequence similarity is readily recognizable (e.g., above 30% sequence identity).
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To increase the accuracy of the alignment between more divergent sequences, some
methods construct the substitution scores by relying on substitution patterns revealed
in a multiple sequence alignment (MSA) of many members of the corresponding pro-
tein family. A multiple sequence alignment is converted into a sequence profile that
lists the likelihood of the 20 standard amino acid residue types at every position in a
given MSA. Alignments based on sequence profiles rather than single sequences have
been shown to be significantly more accurate (56–58) (Table 2). This improvement is
reflected in the accuracy and extent of the resulting homology models.

Two popular profile alignment methods are PSI-BLAST (25) and SAM-T98 (59).
Both methods take a single sequence as input and produce a sequence profile or a
hidden Markov model (HMM) as output. PSI-BLAST relies on the BLAST algorithm
(22) to collect homologs of a query sequence and to construct its profile by iteratively
scanning a sequence database (25,32). SAM-T98 first uses BLAST to prefilter a large
sequence database. It then constructs a multiple alignment and a HMM in parallel
through several rounds of database searching and HMM building. The HMM is derived
only from the sequences that score better than a specified threshold.

The latest generation of alignment methods extends sequence profile or MSA build-
ing to both sequences of interest, and aligns the two profiles or MSAs, rather than the
individual sequences. These methods have been shown to be more sensitive than
sequence-profile methods (26–28,60). The CLUSTALW program compares two MSAs
by using a substitution matrix for all pairs of positions from the two alignments (61,62);
each single value in this matrix is an average of residue-residue substitution scores
over two matched alignment positions. The LAMA program aligns two MSAs by first
transforming them into position-specific scoring matrices (PSSMs) and then compar-
ing the two PSSMs to each other by the Pearson correlation coefficient (63). The FFAS
program aligns two sequence profiles with each other using a dot product (26,64). A
related approach, using mutual entropy, has been used by Yona and Levitt (65,66) to
construct the ProtoMap database of protein sequence families (66–68). Most recently,
the COMPASS program was developed to locally align two MSAs with assessment of
statistical significance (27). The SALIGN command in the program MODELLER con-
structs a scoring matrix by comparing two profiles with mutual entropy and correlation
coefficient measures (60). These methods compare two profiles by matching every
position in one profile to each position in the other profile, followed by either local or
global dynamic programming to calculate the optimal alignment.

2.2.2. Using Structural Information

Alignment accuracy can be significantly improved by incorporating information
about protein structure. Threading and 3-D template-matching methods consider pro-
tein structure information for one of the sequences in a pairwise comparison (69–71).
For a review of this class of methods, see (38–41,72). A combination of threading and
sequence alignment scoring functions can also be used (43,73).

Another approach is to incorporate structural information into profile methods, by
making substitution scores dependent on solvent exposure, secondary structure type,
hydrogen bonding properties, and so on (74). Some methods in this category are
FUGUE (75), 3D-PSSM (76,77), and SAM-T02 multitrack HMMs (78). These meth-
ods lie between traditional sequence-based algorithms and threading methods. The use
of structural data is not restricted to the structure side of the aligned sequence-structure
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Table 2
Different Programs for Aligning Two Protein Sequences, or a Protein
Sequence and a Structure, Tested on a Benchmark of 200 Pairs
of Related Known Structures*

Average alignment accuracy

Method Type 1Å 2Å 3Å 4Å 5A Average

CE structure/structure 18.81 49.09 68.02 78.77 84.54 59.85
BLAST sequence/sequence 7.60 17.07 22.72 26.41 29.29 20.62
ALIGN sequence/sequence 6.86 18.11 27.19 34.79 41.44 25.68
PSI-BLAST sequence/profile 9.07 23.50 33.16 40.28 45.63 30.33
SAM sequence/profile 7.76 21.60 31.40 38.72 45.26 28.95
LOBSTER sequence/profile 8.81 23.32 33.82 41.51 48.17 31.13
SEA profile/profile 9.02 24.15 34.90 43.27 50.43 32.36
CLUSTALW profile/profile 7.41 19.31 28.02 35.36 41.87 26.40
COMPASS profile/profile 10.37 26.06 36.08 42.35 46.65 32.30
SALIGN profile/profile 9.63 27.05 39.81 49.64 57.55 36.74

*An alignment is assessed here by a degree of structure similarity that it implies. This criterion was
calculated by first superposing the two compared structures according to the tested alignment, and then
calculating the percentage of the Cα positions that were within the specified cutoff of 1, 2, 3, 4, or 5 Å;
in addition, the average of these percentages at all cutoffs was also calculated. For comparison, the
actual structure similarity calculated from the structure-based alignments produced by the CE program
is also given in the first row.

pair. For example, SAM-T02 and HMAP (79) make use of the predicted local structure
to enhance homolog detection and alignment accuracy.

To improve the alignment accuracy, gap penalties can be adjusted according to the
local environment in which they occur (80). For example, the SALIGN command in
MODELLER (81) scales the gap insertion penalty depending on the structural environ-
ment of the gap; the cost of opening a gap in a region of regular secondary structure is
greater than opening a gap in a random coil region. The SALIGN command of
MODELLER (82) can also use structure-dependent gap penalties in conjunction with a
sequence profile, similar to FUGUE (75).

Even when algorithms are enriched with structural and multiple sequence informa-
tion, it remains difficult to align distantly homologous proteins in the “twilight zone”
of sequence identity below 30% sequence identity (83). In a comparative modeling
setting, the MOULDER algorithm (84) uses an iterative approach to build better align-
ments between distant homologs. The method relies on a genetic algorithm to itera-
tively (1) build target–template alignments; (2) build structural models based on the
alignments; (3) assess the models; and (4) select the alignments that produce the best
models as seeds to generate further alignments (84). The method was shown to improve
significantly the alignment accuracy of alignments that fell within the twilight zone.

2.3. Model Building

The target–template alignment, maps the sequence of the target on the template struc-
ture. This mapping is utilized in constructing the 3-D model of the target protein. There
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are several methods of constructing the model, and some of these approaches are
reviewed below. The various model-building procedures lead to the construction of
models of similar accuracy when used optimally (85). In addition to the different
schemes for building whole models, this review also examines techniques for con-
structing inserted loop segments of the target that have no corresponding template and
for packing the side chains on a given backbone scaffold.

2.3.1. Modeling by Assembly of Rigid Bodies

The first and still widely used approach in comparative modeling is to assemble a
model from a small number of rigid bodies obtained from the aligned protein structures
(6,86). The approach is based on the natural dissection of the protein structure into
conserved core regions, variable loops that connect them, and side chains that decorate
the backbone. For example, the following semiautomated procedure is implemented in
the computer program COMPOSER (87). First, the template structures are selected
and superposed. Second, the “framework” is calculated by averaging the coordinates
of the Cα atoms of structurally conserved regions in the template structures. Third, the
main-chain atoms of each core region in the target model are obtained by superposing
on the framework the core segment from the template whose sequence is closest to the
target. Fourth, the loops are generated by scanning a database of all known protein
structures to identify the structurally variable regions that fit the anchor core regions
and have a compatible sequence (88). Fifth, the side chains are modeled based on their
intrinsic conformational preferences and on the conformation of the equivalent side
chains in the template structures (87). And finally, the stereochemistry of the model is
improved either by a restrained energy minimization or a molecular dynamics refine-
ment. The accuracy of a model can be somewhat increased when more than one tem-
plate structure is used to construct the framework and when the templates are averaged
into the framework using weights corresponding to their sequence similarities to the
target sequence (48). Possible future improvements of modeling by rigid-body assem-
bly include incorporation of rigid-body shifts, such as the relative shifts in the packing
of α-helices and β-sheets (89).

2.3.2. Modeling by Segment Matching or Coordinate Reconstruction

The basis of modeling by coordinate reconstruction is the finding that most
hexapeptide segments of protein structure can be clustered into only 100 structurally
different classes (90,91). Thus, comparative models can be constructed by using a sub-
set of atomic positions from template structures as “guiding” positions, and by identi-
fying and assembling short, all-atom segments that fit these guiding positions. The
guiding positions usually correspond to the Cα atoms of the segments that are con-
served in the alignment between the template structure and the target sequence. The
all-atom segments that fit the guiding positions can be obtained either by scanning all
the known protein structures, including those that are not related to the sequence being
modeled (92,93), or by a conformational search restrained by an energy function
(94,95). For example, a general method for modeling by segment matching is guided
by the positions of some atoms (usually Cα atoms) to find the matching segments in the
representative database of all known protein structures (96). This method can construct
both main-chain and side-chain atoms, and can also model unaligned regions (gaps). It
is implemented in the program SegMod. Even some side-chain modeling methods (97)



842 Madhusudhan et al.

and the class of loop construction methods based on finding suitable fragments in the
database of known structures (98) can be seen as segment-matching or coordinate-
reconstruction methods.

2.3.3. Modeling by Satisfaction of Spatial Restraints

The methods in this class begin by generating many constraints or restraints on the
structure of the target sequence, using its alignment to related protein structures as a
guide. The procedure is conceptually similar to that used in determination of protein
structures from NMR-derived restraints. The restraints are generally obtained by
assuming that the corresponding distances between aligned residues in the template
and the target structures are similar. These homology-derived restraints are usually
supplemented by stereochemical restraints on bond lengths, bond angles, dihedral
angles, and nonbonded atom–atom contacts that are obtained from a molecular-
mechanics force field. The model is then derived by minimizing the violations of all
the restraints. This optimization can be achieved either by distance geometry or real-
space optimization. For example, an elegant distance-geometry approach constructs
all-atom models from lower and upper bounds on distances and dihedral angles (99).

We now describe our own approach to comparative modeling by satisfaction of spe-
cial restrains in more detail (100–103). The approach was developed to use as many
different types of data about the target sequence as possible. It is implemented in the
computer program MODELLER (101). The comparative modeling procedure begins
with an alignment of the target sequence with related known 3-D structures. The out-
put, obtained without any user intervention, is a 3-D model for the target sequence
containing all main-chain and side-chain nonhydrogen atoms.

In the first step of model building, distance and dihedral angle restraints on the tar-
get sequence are derived from its alignment with template 3-D structures. The form of
these restraints was obtained from a statistical analysis of the relationships between
similar protein structures. The analysis relied on a database of 105 family alignments
that included 416 proteins of known 3-D structure (103). By scanning the database of
alignments, tables quantifying various correlations were obtained, such as the correla-
tions between two equivalent Cα-Cα distances, or between equivalent main-chain
dihedral angles from two related proteins (101). These relationships are expressed as
conditional probability density functions (PDFs) and can be used directly as spatial
restraints. For example, probabilities for different values of the main-chain dihedral
angles are calculated from the type of a residue considered, from main-chain confor-
mation of an equivalent residue, and from sequence similarity between the two pro-
teins. Another example is the PDF for a certain Cα-Cα distance given equivalent
distances in two related protein structures. An important feature of the method is that
the forms of spatial restraints were obtained empirically, from a database of protein
structure alignments.

In the second step, the spatial restraints and the CHARMM22 force-field terms
enforcing proper stereochemistry (104,105) are combined into an objective function.
The general form of the objective function is similar to that in molecular dynamics
programs, such as CHARMM22 (105). The objective function depends on the Carte-
sian coordinates of approx 10,000 atoms (3-D points) that form the modeled molecules.
For a 10,000-atom system, there can be on the order of 200,000 restraints. The func-
tional form of each term is simple; it includes a quadratic function, harmonic lower and
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upper bounds, cosine, a weighted sum of a few Gaussian functions, Coulomb’s law,
Lennard–Jones potential, and cubic splines. The geometric features presently include a
distance; an angle; a dihedral angle; a pair of dihedral angles between two, three, four
atoms and eight atoms, respectively; the shortest distance in the set of distances; sol-
vent accessibility in Å2; and atom density, expressed as the number of atoms around the
central atom. Some restraints can be used to restrain pseudo-atoms such as the gravity
center of several atoms.

Finally, the model is obtained by optimizing the objective function in Cartesian
space. The optimization is carried out by the use of the variable target function method
(106) employing methods of conjugate gradients and molecular dynamics with simu-
lated annealing (107). Several slightly different models can be calculated by varying
the initial structure, and the variability among these models can be used to estimate the
lower bound on the errors in the corresponding regions of the fold.

Because the modeling by satisfaction of spatial restraints can use many different
types of information about the target sequence, it is perhaps the most promising of all
comparative modeling techniques. One of the strengths of modeling by satisfaction of
spatial restraints is that constraints or restraints derived from a number of different
sources can easily be added to the homology-derived restraints. For example, restraints
could be provided by rules for secondary structure packing (108), analyses of hydro-
phobicity (109) and correlated mutations (110), empirical potentials of mean force
(111), NMR experiments (112), cross-linking experiments, fluorescence spectroscopy,
image reconstruction in electron microscopy, site-directed mutagenesis (113), intu-
ition, and so on. In this way, a comparative model, especially in the difficult cases,
could be improved by making it consistent with available experimental data and/or
with more general knowledge about protein structure.

Accuracies of the various model-building methods are relatively similar when used
optimally (85). Other factors such as template selection and alignment accuracy usu-
ally have a larger impact on the model accuracy, especially for models based on less
than 40% sequence identity to the templates. However, it is important that a modeling
method allow a degree of flexibility and automation to obtain better models more eas-
ily and rapidly. For example, a method should allow for an easy recalculation of a
model when a change is made in the alignment; it should be straightforward to calcu-
late models based on several templates; and the method should provide tools for incor-
poration of prior knowledge about the target (e.g., cross-linking restraints, predicted
secondary structure) and allow ab initio modeling of insertions (e.g., loops), which can
be crucial for annotation of function. Loop modeling is an especially important aspect
of comparative modeling in the range from 30 to 50% sequence identity. In this range
of overall similarity, loops among the homologs vary while the core regions are still
relatively conserved and aligned accurately.

2.3.4. Loop Modeling

In comparative modeling, target sequences often have residues inserted relative to
the template structures, or have regions that are structurally different from the corre-
sponding regions in the templates. Thus, no structural information about these inserted
segments can be extracted from the template structures. These regions frequently cor-
respond to surface loops. Loops often play an important role in defining the functional
specificity of a given protein framework, forming the active and binding sites. The



844 Madhusudhan et al.

accuracy of loop modeling is a major factor determining the usefulness of comparative
models in applications such as ligand docking. Loop modeling can be seen as a mini-
protein folding problem, because the correct conformation of a given segment of a
polypeptide chain has to be calculated mainly from the sequence of the segment itself.
However, loops are generally too short to provide sufficient information about their
local fold. Even identical decapeptides in different proteins do not always have the
same conformation (114,115). Some additional restraints are provided by the core
anchor regions that span the loop, and by the structure of the rest of a protein that
cradles the loop. Although many loop-modeling methods have been described, it is still
not possible to model correctly and confidently loops longer than approximately eight
residues (102).

There are two main classes of loop-modeling methods: (1) the database search
approaches that scan a database of all known protein structures to find segments fitting
the anchor core regions (98,116); and (2) the conformational search approaches that
rely on an optimization of a scoring function (117,118). There are also methods that
combine these two approaches (119,120).

The database search approach to loop modeling is accurate and efficient when a
database of specific loops is created to address the modeling of the same class of loops,
such as β-hairpins (121), or loops on a specific fold, such as the hyper-variable regions
in the immunoglobulin fold (116,122). There are attempts to classify loop conforma-
tions into more general categories, thus extending the applicability of the database
search approach to more cases (123–125). However, the database methods are limited
by the fact that the number of possible conformations increases exponentially with the
length of a loop. As a result, only loops up to four to seven residues long have most of
their conceivable conformations present in the database of known protein structures
(126,127). Even according to the more optimistic estimate, approx 30% and 60% of all
the possible eight- and nine-residue loop conformations, respectively, are missing from
the database (126). This limitation is made even worse by the requirement for an over-
lap of at least one residue between the database fragment and the anchor core regions,
which means that the modeling of a 5-residue insertion requires at least a 7-residue
fragment from the database (92). Despite the rapid growth of the database of known
structures, it does not seem possible to cover most of the conformations of a 9-residue
segment in the foreseeable future. On the other hand, most of the insertions in a family
of homologous proteins are shorter than 10–12 residues (102).

To overcome the limitations of the database search methods, conformational search
methods were developed (117,128). There are many such methods, exploiting different
protein representations, objective function terms, and optimization or enumeration
algorithms. The search algorithms include the minimum perturbation method (129),
molecular dynamics simulations (94,119), genetic algorithms (130), Monte Carlo and
simulated annealing (131–133), multiple-copy simultaneous search (134), self-consis-
tent field optimization (135), and an enumeration based on the graph theory (136). The
accuracy of loop predictions can be further improved by clustering the sampled loop
conformations and therefore partially accounting for the entropic contribution to the
free energy (137). Another way to improve the accuracy of loop predictions is to con-
sider the solvent effects. Improvements in implicit solvation models, such as the gener-
alized Born solvation model (GB) (138) and surface-generalized Born with nonpolar
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correction (SGB/NP) (139), motivated their use in loop modeling. The solvent contri-
bution to the free energy can be added to the scoring function for optimization, or it can
be used to rank the sampled loop conformations after they are generated with a scoring
function that does not include the solvent terms (2,140–143).

The loop modeling module in MODELLER implements the optimization-based
approach (2,102). The main reasons are the generality and conceptual simplicity of
scoring function minimization, as well as the limitations on the database approach
imposed by a relatively small number of known protein structures (126). Loop predic-
tion by optimization is applicable to simultaneous modeling of several loops and loops
interacting with ligands, which is not straightforward for the database search
approaches. Loop optimization in MODELLER relies on conjugate gradients and
molecular dynamics with simulated annealing. The pseudo-energy function is a sum of
many terms, including some terms from the CHARMM22 molecular mechanics force
field (104) and spatial restraints based on distributions of distances (111,144) and dihe-
dral angles in known protein structures. The method was tested on a large number of
loops of known structure, both in the native and near-native environments (102).

2.3.5. Side-Chain Modeling

Two simplifications are frequently applied in the modeling of side-chain conforma-
tions. First, amino acid replacements often leave the backbone conformation almost
unchanged (145), allowing us to fix the backbone during the search for the best side-
chain conformations. Second, most side chains in high-resolution crystallographic
structures can be represented by a limited number of conformers that comply with
stereochemical and energetic constraints (146). This observation motivated Ponder and
Richards to develop the first library of side-chain rotamers for the 17 types of residues
with dihedral angle degrees of freedom in their side chains, based on 10 high-resolu-
tion protein structures determined by X-ray crystallography (147). Subsequently, a
number of additional libraries have been derived (148–152).

Rotamers on a fixed backbone are often used when all the side chains need to be
modeled on a given backbone. This approach overcomes the combinatorial explosion
associated with a full conformational search of all the side chains, and is applied by
some comparative modeling (6) and protein design approaches (153). However, approx
15% of the side chains cannot be represented well by these libraries (154). In addition,
it has been shown that the accuracy of side-chain modeling on a fixed backbone
decreases rapidly when the backbone errors are larger than only 0.5 Å (155). Fortu-
nately, these two approximations may be unnecessary in the modeling of a single-point
mutation that in general does not trigger changes in many dihedral angles (152).

Earlier methods for side-chain modeling often put less emphasis on the energy or
scoring function. The function was usually greatly simplified, and consisted of the
empirical rotamer preferences and simple repulsion terms for non-bonded contacts
(151). Nevertheless, these approaches have been justified by their performance. For
example, a method based on a rotamer library compared favorably with that based on a
molecular-mechanics force field (156) , and more recently all the new and most effi-
cient methods are also based on rotamer library (152,157). In contrast, a lot of attention
has been paid to the optimization procedure. The various approaches include a Monte
Carlo simulation (158), simulated annealing (159), a combination of Monte Carlo and
simulated annealing (160), the dead-end elimination theorem (161,162), genetic algo-
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rithms (148), neural network with simulated annealing (163), mean field optimization
(164), and combinatorial searches (151,165,166). It was suggested that the modeling
accuracy for up to 10-residue segments is currently limited by the accuracy of the scor-
ing function, not by the thoroughness of the search algorithms (102). Several recent
papers focused on the testing of more sophisticated potential functions for conforma-
tional search (166,167) and development of new scoring functions for side-chain mod-
eling (168), report favorable performance compared to earlier studies.

3. Errors in Comparative Modeling

It is crucial for method developers and users alike to assess the accuracy of their
methods. An attempt to address this problem has been made by the Critical Assessment
of Techniques for Proteins Structure Prediction (CASP) (169) and the Critical Assess-
ment of Fully Automated Structure Prediction (CAFASP) experiments (170). How-
ever, both CASP and CAFASP assess methods only over a limited number of target
protein sequences (85,171). To overcome this limitation, two additional evaluation
experiments have been described, LiveBench (171) and EVA (172,173). EVA is a
large-scale and continuously running Web server that automatically assesses protein
structure prediction servers in the categories of secondary structure prediction, residue-
residue contact prediction, fold assignment, and comparative modeling. The aims of
EVA are (1) to evaluate continuously and automatically blind predictions by prediction
servers, based on identical and sufficiently large data sets; (2) to provide weekly updates
of the method assessments on the Web; and (3) to enable developers, non-expert users,
and reviewers to determine the performance of the tested prediction servers.

As the similarity between the target and the templates decreases, the errors in the
model increase. Errors in comparative models can be divided into five categories as
follows (49) (Fig. 4).

1. First, errors in side-chain packing. As the sequences diverge, the packing of the atoms in
the protein core changes. Sometimes, even the conformation of identical side chains is not
conserved, a pitfall for many comparative modeling methods. Side-chain errors are criti-
cal if they occur in regions that are involved in protein function, such as active sites and
ligand-binding sites.

2. Second, distortions and shifts in correctly aligned regions. As a consequence of sequence
divergence, the main-chain conformation changes, even if the overall fold remains
the same. Therefore, it is possible that in some correctly aligned segments of a model, the
template is locally different (<3 Å) from the target, resulting in errors in that region. The
structural differences are sometimes not due to differences in sequence, but are a conse-
quence of artifacts in structure determination, or structure determination in different envi-
ronments (e.g., packing of subunits in a crystal). The simultaneous use of several templates
can minimize this kind of an error (49,174).

3. Third, errors in regions without a template. Segments of the target sequence that have no
equivalent region in the template structure (i.e., insertions or loops) are the most difficult
regions to model. As mentioned in the section on loop modeling, this problem is akin to ab
initio fold prediction. If the insertion is relatively short, less than nine residues long, some
methods can correctly predict the conformation of the backbone (102,119,143,175).
Conditions for successful prediction are the correct alignment and an accurately modeled
environment surrounding the insertion.
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Fig. 4. Typical errors in comparative modeling.

4. Fourth, errors resulting from misalignments. The largest source of errors in comparative
modeling is misalignments, especially when the target–template sequence identity
decreases below 30%. However, alignment errors can be minimized in two ways. First, it
is usually possible to use a large number of sequences to construct a multiple alignment,
even if most of these sequences do not have known structures. Multiple alignments are
generally more reliable than pairwise alignments (176,177). A second way of improving
the alignment is to iteratively modify those regions in the alignment that correspond to
predicted errors in the model (49).

5. Fifth, selection of incorrect templates. This error is a potential problem when distantly
related proteins are used as templates (i. e., less than 25% sequence identity). Distinguish-
ing between a model based on an incorrect template and a model based on an incorrect
alignment with a correct template is difficult. In both cases, the evaluation methods will
predict an unreliable model. The conservation of the key functional or structural residues
in the target sequence increases the confidence in a given fold assignment.

4. Predicting Model Accuracy

The accuracy and extent of the predicted structure determines the information that
can be extracted from it. Thus, estimating the accuracy of 3-D protein models in the
absence of the known structures is essential for interpreting them. The model can be
evaluated as a whole as well as in the individual regions. There are many model evalu-
ation programs and servers (178,179) (Table 1).

The first step in model evaluation is to determine whether the model has the correct
fold (180). A model will have the correct fold if the correct template is picked and if
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that template is aligned at least approximately correctly with the target sequence. The
confidence in the fold of a model is generally increased by a high sequence similarity
with the closest template, an energy-based Z-score (180,181), or by conservation of the
key functional or structural residues in the target sequence.

Once the fold of a model is accepted, a more detailed evaluation of the overall model
accuracy can be obtained, based on the similarity between the target and template
sequences (180). Sequence identity above 30% is a relatively good predictor of the
expected accuracy, because the deviation from the least-squares curve relating
sequence identity to the accuracy is relatively small. The reasons are the well-known
relationship between structure and sequence similarities of two proteins (145), the “geo-
metrical” nature of modeling (which forces the model to be as close to the template as
possible) (101), and the inability of any current modeling procedure to recover from an
incorrect alignment (49). The dispersion of the model-target structure overlap increases
with the decrease in sequence identity. If the target–template sequence identity falls
below 30%, the sequence identity becomes unreliable as a predictor of the model accu-
racy. Models that deviate significantly from the average accuracy are frequent. It is in
such cases that model evaluation methods are particularly useful.

In addition to the target–template sequence similarity, the environment can strongly
influence the accuracy of a model. For instance, some calcium-binding proteins un-
dergo large conformational changes when bound to calcium. If a calcium-free template
is used to model the calcium-bound state of the target, it is likely that the model will be
incorrect irrespective of the target–template similarity or accuracy of the template struc-
ture (182). This observation also applies to the experimental determination of protein
structure; a structure must be determined in the functionally meaningful environment.

A basic requirement for a model is to have good stereochemistry. Some useful pro-
grams for evaluating stereochemistry are PROCHECK (183), PROCHECK-NMR
(184), AQUA (184), SQUID (185), and WHATCHECK (186). The features of a model
that are checked by these programs include bond lengths, bond angles, peptide-bond
and side-chain ring planarities, chirality, main-chain and side-chain torsion angles, and
clashes between non-bonded pairs of atoms.

There are also methods for testing 3-D models that implicitly take into account many
spatial features compiled from high-resolution protein structures. These methods are
based on 3-D profiles and statistical potentials of mean force (74,111,144). Programs
implementing this approach include VERIFY3D (74), PROSAII (181), HARMONY
(187), ANOLEA (188), and DFIRE (189). These programs evaluate the environment
of each residue in a model with respect to the expected environment as found in the
high-resolution X-ray structures. There is a concern about the theoretical validity of
the energy profiles for detecting regional errors in models (102). It is likely that the
contributions of the individual residues to the overall free energy of folding vary widely,
even when normalized by the number of atoms or interactions made. If this expectation
is correct, the correlation between the prediction errors and energy peaks is greatly
weakened, resulting in the loss of predictive power of the energy profile. Despite these
concerns, error profiles have been useful in some applications (190).
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5. Applications of Comparative Modeling

Comparative models have been used in a myriad of applications (1,191). The appli-
cability of a model depends on its accuracy (Fig. 3). We now list typical applications of
comparative models.

Models that are built using as templates protein structures with which they share less
than approx 25% in sequence identity are usually used for fold assignment. Such mod-
els often have less than 50% of their Cα positions within 3.5 Å of the actual structure.
Nevertheless, fold assignment is frequently sufficient to assign coarse protein function
(20,192). At this level of target–template similarity, model evaluation can be used as a
discriminator between correct and incorrect fold assignment (49,144,180).

Models built on approx 35% sequence identity to the templates, on the average cover
about 85% of the residues to within 3.5 Å of their correct positions. Since the active
and binding sites of proteins are frequently more conserved than the rest of the fold,
they tend to be modeled more accurately than the rest of the fold (180). In general,
medium-resolution models frequently allow a refinement of the functional prediction
based on sequence alone, because ligand binding is most directly determined by the
structure of the binding site rather than its sequence. It may be possible to correctly
predict important features of the target protein that do not occur in the template struc-
ture. For example, the location of a binding site can be predicted from clusters of
charged residues (193) , and the size of a ligand may be predicted from the volume of
the binding-site cleft (194). Medium-resolution models can also be used to construct
site-directed mutants with altered binding capacity, which in turn could test hypotheses
about the sequence-structure-function relationships. Other problems that can be
addressed with medium-resolution comparative models include designing proteins that
have compact structures—without long tails, loops, and exposed hydrophobic resi-
dues—for better crystallization; or designing proteins with added disulfide bonds for
extra stability.

The high end of the accuracy spectrum corresponds to models based on 50%
sequence identity or more. The average accuracy of these models approaches that of
low-resolution X-ray structures (3Å resolution) or medium-resolution NMR structures
(10 distance restraints per residue) (49). The alignments on which these models are
based generally contain almost no errors. In addition to the already listed applications,
high-accuracy models can be used for docking of small ligands (130) or whole proteins
onto the given protein (195). For an overall view of the scope of applicability of com-
putational models, see refs. 1,191.
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