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The function of an uncharacterized protein is usually inferred
either from its homology to, or its interactions with, characterized
proteins. Here, we use both sequence similarity and protein inter-
actions to identify relationships between remotely related protein
sequences. We rely on the fact that homologous sequences share
similar interactions, and, therefore, the set of interacting partners
of the partners of a given protein is enriched by its homologs. The
approach was benchmarked by assigning the fold and functional
family to test sequences of known structure. Specifically, we relied
on 1,434 proteins with known folds, as defined in the Structural
Classification of Proteins (SCOP) database, and with known inter-
acting partners, as defined in the Database of Interacting Proteins
(DIP). For this subset, the specificity of fold assignment was
increased from 54% for position-specific iterative BLAST to 75% for
our approach, with a concomitant increase in sensitivity for a few
percentage points. Similarly, the specificity of family assignment at
the e-value threshold of 10�8 was increased from 70% to 87%. The
proposed method would be a useful tool for large-scale automated
discovery of remote relationships between protein sequences,
given its unique reliance on sequence similarity and protein–
protein interactions.

remote homology � fold assignment � family assignment � protein function
annotation � protein–protein interactions

Functional annotation of protein sequences by computation is
essential in leveraging the impact of the genome-sequencing

projects. To characterize the function of a protein sequence, it
is often useful to identify its homologs and interacting proteins
of known function. This task is facilitated by the classifications
of protein domain families (1, 2), lists of protein–protein inter-
actions (3, 4), and databases of protein structures (5–7). Protein
domains are organized into folds (if sharing a similar structure),
superfamilies (with evidence of homology in addition to struc-
ture similarity), and families (for homologs with similar function,
sequence, and structure) (6). The vast majority of homologous
sequences are expected to share the same fold.

The most sensitive algorithms for detecting homology between
remotely related protein sequences rely on multiple sequence
and protein structure information. The former group includes
the sequence profile-based methods (8, 9) and hidden Markov
models (10) that construct a multiple sequence alignment of the
close homologs of the query, followed by scanning the corre-
sponding profile against a database of sequences. The latter
group includes sequence-structure threading methods that can
sometimes reveal more distant relationships than purely se-
quence-based methods (11). Threading methods assign the fold
by assessing the energy of coarse models corresponding to all of
the possible ways of threading the sequence through each of the
structures in a library of all known folds. Despite the increased
coverage and accuracy of fold assignment when using multiple
sequence and structure information, two major problems remain
for sequences related at approximately �25% sequence identity

(12), (i) finding remote homologs that are undetectable by
sequence similarity alone and (ii) identifying the functional
family even when the fold can be detected (13, 14). Of the known
protein sequences, �60% have at least one domain with a
reliable fold assignment, covering �35% of the amino acid
residues in the known protein sequences (15, 16).

Even when two sequences share little or no sequence similarity,
their structures and functions may be similar (17, 18). Therefore,
similarity in function may indicate a similar structure. An indicator
of related functions is similar protein–protein interaction patterns.
One such special case are the ‘‘interlogs’’ (i.e., pairs of interacting
proteins that interact identically in two species) (19). It has already
been demonstrated that the information about the interacting
partners can be used to predict the fold (7, 20–22) or function (14,
23–27) of a protein without considering its sequence. The useful-
ness of these approaches should grow with time, given the increas-
ing amount of data about protein–protein interactions (20, 24, 28),
collected in databases such as the Biomolecular Interaction Net-
work Database (BIND; ref. 3), the Munich Information Center for
Protein Sequences (MIPS; ref. 29), and the Database of Interacting
Proteins (DIP) (4).

Here, our objective is to demonstrate that the combined use
of protein interactions and sequence similarity improves detec-
tion of remote similarity. We implemented our method by using
the position-specific iterative (PSI) BLAST program, but any
other method for detection of remote sequence similarity could
be used. We begin by describing the approach. Next, we bench-
mark the method by relying on a set of nonredundant domains
from the Structural Classification of Proteins (SCOP) database
that have known interacting partners defined in DIP. We
conclude by discussing the implications of our results for protein
structure modeling and functional annotation.

Methods
A protein-interaction network can be represented by a graph
with nodes as proteins and edges as protein interactions. In such
a graph, a set of proteins connected to protein X (i.e., physically
interacting with X) is named ‘‘partners of X.’’ Moreover, we
define successive levels of partnership as follows: the set of
partners of X is named ‘‘partners of X at level 1,’’ and the set of
partners of the partners of X at level 1 forms the set of partners
at level 2, etc. Given the commutative relation of the interactions
(i.e., if B is found in the set of partners of A, then A is found in
the set of partners of B), protein X should be in the set of
partners at level 2 of itself. In fact, protein X should occur in all
sets of partners at even levels. Therefore, given the fact that
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homologous proteins perform similar functions associated with
similar interaction partners, the sets of partners of protein X at
even levels contain more sequences homologous to protein X
than a randomly selected set of sequences of the same size (see
Results). Furthermore, partners of protein X at levels 1 and 3 may
also include some of its homologs because some proteins interact
with their homologs, or they evolved by means of a fusion of two
genes of interacting ancestors (30). Here, we exploited these
considerations in combination with sequence similarity to im-
prove the assignment of a given protein sequence into the correct
fold class and functional family.

We relied on the following three databases: the TrEMBL data-
base of protein sequences (release, 23.6; April 2003) (31), the SCOP
database of protein structure classification (version, 1.65; Decem-
ber 2003) (32), and the DIP of experimentally identified protein
interactions (release, 20040113; January 2004) (33).

The DIP contains 16,903 protein sequences that are involved
in 43,742 documented binary interactions. Fold, superfamily,
and family domain codes of SCOP were assigned to a total of
4,324 proteins in DIP that could be matched by BLAST to a
protein in SCOP, covering one-sixth of all proteins in DIP (i.e.,
DIP-SCOP group). More precisely, one or more domain codes
were assigned to a protein sequence in DIP when the alignment
between the two sequences had an e value of �10�8 over at least
75% of the residues in the SCOP domain. A total of 4,743 binary
interactions had SCOP codes for both proteins, whereas 14,813
interactions had the SCOP code for only one partner. This initial
set of proteins was reduced to 1,434 query proteins to remove
redundancies so that no two proteins in the set share �25%
sequence identity after aligning them with the BLAST program.

Next, we added extrapolated links to the protein-interaction
network. Two proteins were linked by extrapolation if any members
from their SCOP families interacted with each other. To enable
benchmarking, the extrapolation was not performed for the query
proteins in the benchmark. It was also not performed for ‘‘hub’’
proteins (34) that were defined here as proteins interacting with
proteins in �10 different SCOP families. The hub proteins were
excluded from extrapolation to minimize false positives. Thus, the
list of reference links included both known interactions between
pairs of domains as well as extrapolated links. Similarly, the term
partner was expanded to include proteins connected by extrapo-
lated links in addition to physical interactions.

The assignment of a fold or a family to a query sequence
involves five steps (Fig. 1). First, a profile [position-specific
scoring matrix (PSSM)] is constructed of the query sequence by
searching for its homologs in the TrEMBL database (31) by
PSI-BLAST (35) for a maximum of five iterations. Second, query
homologs are detected in the DIP-SCOP group by PSI-BLAST
using the query profile from step 1 (set G0). Third, partners of
the query at levels 1–4 are extracted by using the reference links.
Fourth, the sets of partners obtained in step 3 are grouped into
four main groups, formed by the set of partners at level 2 (G2),
the union of the partners at levels 1 and 2 (G1,2), the union of
the partners at levels 2 and 4 (G2,4), and the union of the four
sets (G1,2,3,4). Fifth, the members of each of the groups in step
4 are ranked based on the e value calculated in step 2. Additional
combinations of partner levels are either redundant or complex,
and they are not reported in this study.

We tested family and fold assignment for different thresholds
on the PSI-BLAST e value with proteins in sets G0, G2, G1,2, G2,4,
and G1,2,3,4. The number of positive assignments is defined as the
number of sequences that align with the query sequence with an
e value smaller or equal to the threshold. Among these positives,
we define the number of true positives as the number of
sequences with the same SCOP code as the query sequence.

Results
Quantifying the Enrichment Afforded by Protein Interactions. Our
method for detecting remote relationships by both sequence sim-
ilarity and protein–protein interactions depends on the enrichment
of the homologs among the set of partners of the partners of the
query protein (i.e., the G2 set). Therefore, we quantified this
enrichment as follows. First, we calculated the proportion of the
correct fold assignments by dividing the sum of the correct fold
assignments in each G2 set by the sum of the G2 set sizes (Table 1).
Next, we compared this proportion with the corresponding pro-
portion in the DIP-SCOP group. There was a significant enrich-
ment of the proteins with the correct fold assignment in the G2 set
relative to DIP-SCOP. The same assessment was also performed
for family assignment instead of fold assignment, revealing an even
larger enrichment than that for fold assignment. Reflecting the
homodimers, the corresponding statistics for the G1 set also shows
significant enrichment for homologs over a random selection from
the DIP-SCOP set.

To quantify the statistical significance of enrichment in the G2
set, we calculated the P value with the Wilcoxon test (36). For each
query, we compared the enrichment in G2 and in 1,000 random sets

Fig. 1. Flowchart for detection of remotely related proteins based on both
sequence similarity and protein interactions. First, for a query protein, a PSSM
is built by five iterations of scanning the TrEMBL database by PSI-BLAST. Second,
the PSSM is used in another PSI-BLAST run to obtain the e values between the
query and the proteins in DIP-SCOP. Third, the interaction partners of the
query are extracted from DIP and may be expanded through SCOP family
codes. This step is repeated, resulting in set Gi in iteration i. Fourth, partners
at different levels are grouped as described in Methods. Fifth, proteins in the
intersection are ranked by the PSI-BLAST e value to the query, obtained in the
second step.

Table 1. Enrichment for the correct folds and families

Assignment G1 G2 DIP-SCOP

Fold 0.137 0.041 0.018
Family 0.107 0.018 0.003

Proportions of the correct fold and family assignments in the G1 and G2 sets
are compared with the proportion of the correct folds in the DIP-SCOP set.
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with the same number of proteins as in groupG2, obtained from the
DIP-SCOP group. The corresponding P value of 0.0064 quantifies
the high statistical significance of enrichment in the G2 set.

Improved Specificity of Fold and Family Assignment. The specificity
is defined as the number of true positives over the total number of
positives. For an e-value cutoff of 1, our approach achieved 75%
specificity for group G1,2 (Fig. 2a). This relatively high specificity
can be compared with the specificity of 54% for groupG0, obtained

by PSI-BLAST alone; simultaneously, sensitivity is also improved for
several percentage points (below). The improvement in specificity
justifies the use of less significant e-value cutoffs in the filtered
groups of sequences (G2 and G1,2) than with PSI-BLAST (G0). The
difference in performance between the traditional PSI-BLAST ap-
proach based on sequencematching alone and our approach, which
also includes information about protein–protein interactions, in-
creases as the e-value cutoff is raised.
The sets G2 andG1,2 were enriched for the correct family codes

relative to the set G0, demonstrating an improvement relative to
searching by PSI-BLAST alone (data not shown). The specificities
obtained from groups G2 and G1,2 were 80% for the e-value
cutoff of 10 3, whereas PSI-BLAST sequence search without
consideration of interactions had a specificity of only 60%.

Sensitivity of Fold and Family Assignment. Our method cannot
correctly assign a fold to a protein sequence when a stringent
threshold on the e-value filters out correct predictions orwhen there
are no experimental data about relevant protein interactions. To
estimate the sensitivity, we defined the undetected members of the
same group that have the same domain fold as the query protein as
false negatives. Sensitivity for groups G2 and G1,2 is consistently
better for several percentage points than for G0 (Fig. 2b).

Applicability of Fold and Family Assignment. Our combined ap-
proach is not as general as the sequence comparison methods,
which can be applied to all protein sequences. The reason is that the
combined approach depends on the availability of protein-
interaction data. Therefore, to gauge the practical utility of the
combined approach, we estimated its applicability to fold assign-
ment for proteins in the sets G2, G1,2, G2,4, and G1,2,3,4 (Fig. 2c).

Extrapolating Interactions to Increase the Coverage. To assess the
effect of the extrapolation of protein interactions (Methods), we
compared the number of true positives at the fold level obtained
with and without extrapolation, respectively. When used without
extrapolation, our method was able to find only 286 true positives
with 81% specificity at the PSI-BLAST e-value cutoff of 1,
compared with 2,885 true positives and 75% specificity when
using extrapolation. Thus, extrapolation yields a 10-fold increase
in coverage with a relatively small loss in specificity. However,
even with extrapolation, only 50% of the proteins in the
DIP-SCOP group have a partner at level 2.

Example of Fold and Family Assignment. To illustrate the ability of
our approach to detect relationships betweenmembers of the same
family in the absence of significant sequence similarity, we describe
an example of the Swiss-Prot sequences CNTF HUMAN (ciliary
neurotrophic factor) and ONCM HUMAN (oncostatin M).
CNTF HUMAN is a survival factor for various neuronal cell types,
and ONCM HUMAN is a growth regulator that inhibits the
proliferation of a number of tumor cell lines. The two proteins share
the same fold (four-helical cytokines) and family (long-chain cyto-
kines). However, sequence similarity is very low (PSI-BLAST e value,
0.1; sequence identity, 16%).
According to DIP, both proteins interact with a member of the

cytokine receptor family, LIFR HUMAN (leukemia inhibitory
factor receptor), as revealed by immunoprecipitation experiments
(DIP entries 10988E and 10064E for the interactions of
CNTF HUMAN and ONCM HUMAN, respectively). Moreover,
the PDB ID code 1I1R structure reveals a physical interaction
between amember of the cytokine family (viral IL-6) and amember
of the cytokine receptor family (human gp130). Thus, our method
predicts with an e value of 0.1 in groupG2 that CNTF HUMANhas
the same fold as ONCM HUMAN (Fig. 3a).

Example of Fold Assignment. To illustrate the ability of our approach
to detect remote relationships at the fold level, we describe here an

Fig. 2. Specificity, sensitivity, and applicability of fold assignment based on
a combination of sequence similarity and protein interactions. The specificity
(a), sensitivity ( b), and applicability ( c) are plotted as a function of the thresh-
old on the PSI- BLAST e value for groups G 2 (orange), G 1,2 (green), G 2,4 (blue),
G1,2,3,4 (red), and G 0 (black with filled circles).
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example of the Swiss-Prot sequences EF1G�YEAST and
EF1B�YEAST. The C-terminal domains of these sequences adopt
a ferredoxin-like fold. Nevertheless, EF1G�YEAST is an elonga-
tion factor 1� of the eEF1� domain superfamily, whereas
EF1B�YEAST is an elongation factor 1� of the eEF-1�-like
superfamily. Both structures share a core formed by a sheet of three
�-strands and an external helix, and could be superimposed with an
rms deviation of 3.6 Å (Fig. 3b). The e value of the PSI-BLAST
alignment between EF1G�YEAST and EF1B�YEAST is 0.036,
obtained by querying the TrEMBL database with EF1G�YEAST
for five iterations with default parameters.

The relationship between both sequences could be extracted
through the interaction of EF1G�YEAST with an elongation factor
1� (EF1A�YEAST) in the G protein family, obtained from tandem
affinity purification experiments (DIP entry 17026E, between
nodes 6813N and 2250N). In addition, DIP contains an interaction
between EF1B�YEAST and TEM1�YEAST (a G protein) with the
DIP entry code of 13895E (between nodes 6445N and 1691N),
revealed by immunoprecipitation experiments. Therefore,
EF1B�YEAST is a partner of EF1G�YEAST at level 2 (G2). Table
2 shows the set of proteins found in G0 of EF1G�YEAST with e
values between 10�3 and 1; there is only a single analog sharing the
ferredoxin-like fold with EF1G�YEAST and two false positives that
do not appear in group G1,2. In this case, our method is both
sensitive and specific, because the correct fold of EF1G�YEAST
appears in group G1,2 without any false positives.

Discussion
We described, implemented, and benchmarked a method that
uses information about both sequence similarity and protein–
protein interactions to detect homology between remotely re-
lated protein sequences. The method was validated by a bench-
mark involving 1,434 query proteins of known structure (Figs. 1
and 2), and it was illustrated by two examples (Fig. 3). Although
the method was benchmarked by using known protein structures,
it is equally applicable to detection of remote relationships
between protein sequences without known structures because it
does not rely on protein structure information.

Generally, the function of uncharacterized proteins can be an-
notated in two fundamentally different ways (37). It can be done by
establishing (i) a sequence and�or structure similarity to another
characterized protein and (ii) a functional link to another charac-

terized protein. The first group of methods includes sequence
matching and threading (9, 11). The second group includes both
experimental and computational methods, such as clustering by
physical interactions (26), mRNA array expression profiles (38),
analysis of gene fusion (30), phylogenetic profiles (39), and genomic
association of genes (40). Our approach is unique in that it discovers
homology by explicitly combining both sequence similarity and
experimentally determined protein interactions. Therefore, it ben-
efits from the databases of protein sequences, structures, and
interactions. Another method infers fold and family membership
from protein interactions (21) but not in combination with se-
quence similarity. Although a few other sequence similarity-based
methods, such as 3D-PSSM (22), also use functional information,
this information is mined from scientific texts and not from lists of
protein interactions.

The benchmark clearly suggests that protein-interaction data
increase the specificity and sensitivity of fold and family assign-
ment (Fig. 2). Consequently, our method allows the assignment
of fold and family to a higher percentage of known protein
sequences without loss of accuracy. For example, the specificity
of fold assignment at the PSI-BLAST e-value cutoff of 1 was
increased from 54% for PSI-BLAST to 75% when combining
sequence similarity and protein–protein interactions, with a
concomitant increase of sensitivity for several percentage points.
Similarly, the specificity of family assignment at the e-value
threshold of 10�8 was increased from 70% to 87%, also with a
slight increase in sensitivity. Moreover, at the e-value cutoff of
1, �90% of the correct fold assignments share the same family
as the query, whereas only 65% of the correct fold assignments
with PSI-BLAST correspond to proteins with the same family
code. This result was expected, given that our approach benefits
from the conservation of interaction patterns usually related to
the protein function and, thus, family classification.

The accuracy and coverage of our method are limited by false
positives and negatives of sequence matching by PSI-BLAST (41, 42),
as well as by false and missing interactions in DIP (43). To minimize
sequence matching problems, additional methods, such as profile–
profile searches (9), hidden Markov models (10), threading (44),
and intermediate sequence search (41) can be used. With the
interactions, false positives rate and coverage can be improved by
probabilistic methods that rely on multiple sources of information
about protein interactions (45) and by performing more experi-

Fig. 3. Fold assignment by the combined approach. (a) Structural superposition of the human ciliary neurotrophic factor (chain 1 of PDB ID code 1CNT; cyan)
and the human oncostatin M (chain A of PDB ID code 1EVS; magenta). Structures were superposed with CE (53), with a C� rms deviation of 1.7 Å and 15% sequence
identity. (b) Structural superposition of two members of the ferredoxin-like fold, the C-terminal domains of human elongation factor 1� (chain A of PDB ID code
1PBU; cyan) and yeast elongation factor 1� (chain B of PDB ID code 1G7C; magenta). The structures were superposed with CE, obtaining a C� rms deviation of
3.6 Å and 7.5% sequence identity.

7154 � www.pnas.org�cgi�doi�10.1073�pnas.0500831102 Espadaler et al.



ments. Clearly, the coverage of the method will rise with the
increase in the number of known protein–protein interactions that
link query proteins to other proteins.

There are also intrinsic limitations of the method. For exam-
ple, some of the proteins in the same SCOP family do not share
the same interactions (46), resulting in false positives of our
method. In addition, current interaction databases, including the
DIP database, list protein–protein interactions and not domain–
domain interactions. Therefore, the lack of distinction between
a protein and a domain may also increase false positives when
extrapolating links through the existence of common domains
within proteins. This problem is reduced, but not eliminated, by
not applying the extrapolation procedure to hub proteins.

The combined method is applicable only to protein sequences
and their homologs for which protein-interaction data are available,
in contrast to sequence comparison alone, which is applicable to all
protein sequences. This limitation is quantified by the following two
examples. First, �20–50% of the proteins in the benchmark have
a partner in the G2 set (Fig. 2c). Second, for specificity of 75%,
sequence comparison by PSI-BLAST makes 30,302 pairs with correct
fold assignments, whereas our combined method finds 2,885 true
positives of which 188 were not reported by PSI-BLAST. Two of these
assignments are shown in Fig. 3. We suggest that even the com-
paratively small coverage of the combined method is already useful
in practice, given the 2 million known protein sequences that need
to be related to each other; very few methods for characterization
of proteins, experimental or computational, are applicable to most
protein sequences, and many proven methods are applicable only to
a small fraction of all proteins. Moreover, the usefulness of our
combined method is clearly increasing with the growth of the
databases of known protein sequences and their interactions. We
also expect that the idea of combining protein sequence compar-
ison and protein interactions could enable additional improvements
in the matching of remotely related protein sequences.

There are several fold assignment methods, such as profile–
profile matching, hidden Markov models, and threading, that are
more sensitive than PSI-BLAST. We did not assess the perfor-
mance of our approach against these methods because we
focused on the relative usefulness of protein interactions when
added to the consideration of sequence similarity. However, we
do suggest that our use of protein interactions will sometimes

result in correct fold assignments when all other methods fail,
especially when the most sensitive fold assignment methods are
used instead of PSI-BLAST in our approach.

The proposed method is as applicable to establishing remote
sequence–sequence matches as it is to fold assignment. However,
we focused on fold assignment because of its importance in
comparative protein structure modeling and structural genom-
ics. The structural genomics initiative aims to experimentally
determine carefully selected protein structures, such that most of
the remaining sequences can be modeled with useful accuracy by
comparative modeling (47). The number of experimentally
determined structures for comparative modeling of most pro-
teins based on at least 30% sequence identity to a known
structure is estimated to be �16,000 (48). A reduction of this
number, while keeping the accuracy of the corresponding models
constant, would reduce both the cost and time required by
structural genomics to fulfill its aim (49–52). This reduction can
be partly achieved by using more sensitive fold detection meth-
ods, such as the method described here.

Our method could be made applicable to large-scale com-
parative protein structure modeling and, thus, increase the
number of modeled proteins in MODBASE, our comprehen-
sive database of comparative models for all known protein
sequences that are detectably related to a known structure
(15). The proposed method is expected to be a useful tool for
large-scale automated discovery of remote protein similarities,
given its unique reliance on sequence similarity and protein–
protein interactions.
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SYEC�YEAST 0.027 No 52373 52374 No
EF1B�YEAST 0.036 Yes 54861 54984 Yes
SC14�YEAST 0.83 No 46928, 52086 46938, 52087 No
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between 10�3 and 0.1 (Methods). ‘‘e value’’ indicate the corresponding PSI-BLAST e values. ‘‘Shares fold’’ indicates
whether or not the sequence shares a fold with EF1G�YEAST (ferredoxin-like fold). ‘‘SCOP fold’’ and ‘‘SCOP
superfamily’’ indicate the SCOP fold and superfamily codes, respectively (multidomain proteins have multiple
codes). ‘‘Appears in G1,2’’ indicates whether or not a sequence is found in the G1,2 set of EF1G�YEAST.
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