
Nucleic Acids Research, 2015 1
doi: 10.1093/nar/gkv221

Assessing the limits of restraint-based 3D modeling of
genomes and genomic domains
Marie Trussart1,2, François Serra3,4, Davide Baù3,4, Ivan Junier2,3, Luı́s Serrano1,2,5 and
Marc A. Marti-Renom3,4,5,*

1EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain, 2Universitat
Pompeu Fabra (UPF), Barcelona, Spain, 3Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic
Regulation (CRG), Barcelona, Spain, 4Genome Biology Group, Centre Nacional d’Anàlisi Genòmica (CNAG),
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ABSTRACT

Restraint-based modeling of genomes has been re-
cently explored with the advent of Chromosome Con-
formation Capture (3C-based) experiments. We pre-
viously developed a reconstruction method to re-
solve the 3D architecture of both prokaryotic and eu-
karyotic genomes using 3C-based data. These mod-
els were congruent with fluorescent imaging valida-
tion. However, the limits of such methods have not
systematically been assessed. Here we propose the
first evaluation of a mean-field restraint-based recon-
struction of genomes by considering diverse chro-
mosome architectures and different levels of data
noise and structural variability. The results show
that: first, current scoring functions for 3D recon-
struction correlate with the accuracy of the models;
second, reconstructed models are robust to noise
but sensitive to structural variability; third, the local
structure organization of genomes, such as Topo-
logically Associating Domains, results in more accu-
rate models; fourth, to a certain extent, the models
capture the intrinsic structural variability in the input
matrices and fifth, the accuracy of the models can be
a priori predicted by analyzing the properties of the
interaction matrices. In summary, our work provides
a systematic analysis of the limitations of a mean-
field restrain-based method, which could be taken
into consideration in further development of meth-
ods as well as their applications.

INTRODUCTION

Recent studies of the three-dimensional (3D) conforma-
tion of genomes are revealing insights into the organiza-
tion and the regulation of biological processes, such as gene

expression regulation and replication (1–6). The advent of
the so-called Chromosome Conformation Capture (3C) as-
says (7), which allowed identifying chromatin-looping inter-
actions between pairs of loci, helped deciphering some of
the key elements organizing the genomes. High-throughput
derivations of genome-wide 3C-based assays were estab-
lished with Hi-C technologies (8) for an unbiased identifi-
cation of chromatin interactions. The resulting genome in-
teraction matrices from Hi-C experiments have been exten-
sively used for computationally analyzing the organization
of genomes and genomic domains (5). In particular, a sig-
nificant number of new approaches for modeling the 3D or-
ganization of genomes have recently flourished (9–14). The
main goal of such approaches is to provide an accurate 3D
representation of the bi-dimensional interaction matrices,
which can then be more easily explored to extract biolog-
ical insights. One type of methods for building 3D models
from interaction matrices relies on the existence of a limited
number of conformational states in the cell. Such methods
are regarded as mean-field approaches and are able to cap-
ture, to a certain degree, the structural variability around
these mean structures (15).

We recently developed a mean-field method for model-
ing 3D structures of genomes and genomic domains based
on 3C interaction data (9). Our approach, called TADbit,
was developed around the Integrative Modeling Platform
(IMP, http://integrativemodeing.org), a general framework
for restraint-based modeling of 3D bio-molecular struc-
tures (16). Briefly, our method uses chromatin interaction
frequencies derived from experiments as a proxy of spatial
proximity between the ligation products of the 3C libraries.
Two fragments of DNA that interact with high frequency
are dynamically placed close in space in our models while
two fragments that do not interact as often will be kept
apart. Our method has been successfully applied to model
the structures of genomes and genomic domains in eukary-
ote and prokaryote organisms (17–19). In all of our studies,
the final models were partially validated by assessing their
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accuracy using Fluorescence in situ hybridization imaging.
However, no internal and systematic analysis of the accu-
racy of the resulting models has been performed and only
an assessment of the reproducibility of these 3D reconstruc-
tion methods has been addressed (20).

Here, our main objective is to address the lack of
such analysis by assessing the limits of 3D reconstruc-
tion based on mean-field restraint-based modeling. Al-
though our analysis is based solely on models generated by
TADbit, the conclusions are likely to hold for alternative
mean-field restraint-based approaches. Over the next sec-
tions of the manuscript, we detail the methods for simu-
lating ‘toy genome’ structures, deriving interaction matri-
ces from them, reconstructing their 3D structure, assessing
their quality and evaluating their accuracy using the Ma-
trix Modeling Potential (MMP) score (Materials and Meth-
ods). Next, we describe the results of assessing the predic-
tive power for determining the ‘real’ assembly structure of
‘toy genome’ structures as well as a priori evaluate the in-
put interaction matrices modeling potential (Results). Fi-
nally, we summarize our conclusions on the limits of mean-
field restraint-based approaches and how a measure such as
the MMP can be used to a priori evaluate the reconstructed
models (Discussion).

MATERIALS AND METHODS

Overall pipeline

With the aim of assessing the accuracy of restraint-based
modeling of genomes and genomic domains by TADbit
(9,21), we devised a computational pipeline consisting of
the following three steps (Figure 1A). First, using polymer
modeling we simulated six artificially generated genomes
(here called ‘toy genomes’) of a single chromosome with dif-
ferent architectures, from which we extracted 168 simulated
interaction matrices with increasing noise levels and struc-
tural diversity. Second, we reconstructed with TADbit 3D
models of the toy genomes based on their simulated ‘Hi-
C’ interaction matrices. And third, we analyzed the recon-
structed models for each simulation to assess their struc-
tural similarity to the original simulated toy genomes.

Matrix generation from toy genome architectures

The toy genomes were generated using a worm-like chain
(WLC) model, which provides a coarse-grained description
of protein-coated DNA (e.g. the eukaryotic chromatin). At
the ‘microscopic level’, a WLC is characterized by three pa-
rameters: the diameter (nm), the persistence length (nm)
and the linear density (bp/nm), which respectively account
for the physical thickness, the stiffness and the level of DNA
compaction of the chain. Here, we considered a ‘chromatin
fiber’ structure with a diameter of 30 nm and a persistence
length of 100 nm, and investigated three densities: 40, 75
and 150 bp/nm. The toy genomes consisted of a single cir-
cular chromosome of ∼1 Mb long (Figure 1B) with a cir-
cular architecture to prevent the formation of knots dur-
ing the WLC simulation. For half of the simulations, we
forced into the toy genomes the formation of a Topologi-
cally Associated Domain (TAD)-like architecture by defin-
ing a limited number of locally interacting regions in the

chromosome. To this end, we added a harmonic potential
between all pairs of loci within the region considered as
TAD so that they were constrained to remain close-by in
space (22). Altogether, considering the combination of the
three linear densities and the architectural properties (TAD
or non-TAD), we investigated six types of genome architec-
tures. Using a Monte-Carlo algorithm (23), we then sim-
ulated the equilibrium folding of these chromosomes in a
cube of side 400 nm, which leads to the typical DNA den-
sity that is found in eukaryotic nucleus (0.015 bp*nm−3).

Each of the six simulations generated many successive
conformations of the chromosomes, whose likelihood is dic-
tated by thermodynamic laws (24). Using the outcome of
these simulations, we generated simulated Hi-C matrices
as explained below. To this end, each spatial conformation
of the toy genome was segmented into N spherical bins of
equal lengths, which determined the resolution of the Hi-C
matrix. Given the ∼1 Mb length of our simulated chromo-
somes, we respectively considered bins of length 1.6 kb (626
bins), 2.5 kb (402 bins) and 5 Kb (202 bins) for the bp den-
sities 40, 75 and 150 bp/nm, respectively (Figure 1C).

To assess the impact of cell-to-cell variability on our re-
construction method (25), we examined the effect of in-
creasing the level of structural variability by selecting con-
formations of the toy genomes at different times of the sim-
ulations. For each of the six simulations (corresponding
to the six chromosome architectures), we created a total
of seven sets of 100 models, each differing in the number
of simulation steps that separated them (�t) from 1 to 1
000 000 steps. The corresponding sets of toy genomes were
named sets 0 to 6. The larger the �t between two selected
models, the larger their structural variability (Figure 1D).

Finally, for each set of toy genome structures we derived
an interaction matrix to obtain a ‘simulated Hi-C matrix’ by
computationally mimicking the published Hi-C protocol (8)
(Figure 1E). We set a restriction enzyme cutting frequency
and defined all restriction site positions that would be tested
for interactions (i.e. contact in the models). We considered
∼2000 restriction sites over the 1 Mb toy genome, which
resulted in an average cutting frequency of 500 bp. We se-
lected this frequency to consider it a middle range value
of the restriction site frequencies used in the Hi-C experi-
ments (26). Restriction enzymes recognizing a 6-base-pair
sequence (e.g. HindIII) have an approximate cutting fre-
quency of 4 Kb in the Human genome, while restriction
enzymes recognizing a 4-base-pair sequence cut on aver-
age every 256 base pairs. The genomic position of each re-
striction site was determined randomly, maintaining the de-
fined cutting frequency of 500 bp per genome. Once the re-
striction sites were assigned, we interpolated its 3D coor-
dinates in the simulated toy genomes to obtain Euclidean
distances between all the restriction sites. Next, we applied
a 200 nm distance cut-off to generate a contact map be-
tween all the restriction sites in a set of structures (Fig-
ure 1E); this cut-off can be viewed as a maximum size of
protein macro-complexes that can lead to Hi-C interactions
through formaldehyde cross-linking. In addition, since sev-
eral steps of the Hi-C protocol may affect the detection of
interacting fragments (e.g. inefficient formaldehyde cross-
linking or inefficient digestion and/or re-ligation) (26), we
simulated the experimental noise by selecting pairwise inter-
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Figure 1. Matrix generation and model building. (A) Flowchart from toy genome generation to reconstructed 3D models. (B) Types of simulated genomic
architectures. (C) Genomic density of simulated genomes. (D) Structural variability depending on the selection of conformations between distant time
steps in the simulated genomes. (E) Derivation of interaction matrices from toy genome structures based on simulated restriction sites (black lines) and
distance cut-off. Noise was added by a Monte-Carlo procedure with a probability proportional to the distance between the simulated restriction sites.
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actions with a probability defined by a Gaussian procedure
with an � value varying from 50 to 200 in steps of 50. The �
parameter is related to the decay of the Gaussian function
between the probability of interactions and the Euclidean
distance between the restriction sites. A large � of 200 will
increase the total probability of interactions, while a smaller
� of 50 will decrease it. The selection of the Gaussian proce-
dure allowed for a large dynamical range of maps across the
tested structural variability. The resulting interaction matri-
ces, that is, our ‘simulated Hi-C matrices’, thus contain a
varying proportion of noise compared to a direct contact
map generated from the models (Figure 1E). Finally, the
total number of interactions between restriction sites was
then pooled into bins according to the linear density of the
genome (see above). The simulated Hi-C matrices contain
thus a varying degree of experimental noise (� from 50 to
200), which are then complemented by an increasing degree
of structural variability (sets 0 to 6) representing cell-to-cell
variability in a population of millions of cells of a typical
Hi-C experiment (Figure 2).

Before building models using TADbit, the input matri-
ces were normalized by first calculating the weight (Wi,j) for
each pair of interactions:

wi. j =
∑N

i=1

∑N
j=1 Mi. j∑N

i=1 Mi. j × ∑N
j=1 Mi. j

.i j ∈ 1..N

where Mi,j is the raw counts in the simulated interaction ma-
trix between bins i and j. The normalized matrix resulted
from the multiplication of Mi,j by its weight Wi,j, which cor-
responds to a single iteration of the iterative correction and
eigenvector decomposition (ICE) normalization procedure
(27). Next, a decimal logarithm transformation was applied
to the normalized interactions and its Zscorei,j was com-
puted for non-zero interaction cells in the matrix as:

Zscorei. j = log10(Mi. j × wi. j ) − μ

σ

where the average μ and the standard deviation � from the
entire matrix were obtained as:

μ = log10

(∑N
i=1

∑N
j=1 Mi. j ×wi. j

N×N

)
and

σ = 2

√∑N
i=1

∑N
j=1 ((Mi. j ×wi. j )−μ)2

N

The resulting Z-scored matrices were used as input for
modeling with TADbit.

Model building by TADbit

To build the 3D models of the genomes, we used the TADbit
python library developed around the IMP, which involves
the translation of the data into particles; the assignment
of spatial restraints between them and the search for op-
timal solutions maximizing the satisfaction of the imposed
restraints. Next, we describe the used of our modeling pro-
tocol, which has been previously detailed (9).

Briefly, 3D models in TADbit are defined by N parti-
cles determined by the resolution of the input interaction
matrix. Each particle has an excluded volume defined as a
sphere with a radius proportional to the number of base

pairs in each particle. Here, we consider an inverse rela-
tionship between spatial distances and the corresponding
frequencies of interactions. Given this assumption, TAD-
bit transforms the frequencies of interactions into spatial
restraints differently for consecutive and non-consecutive
particles. Two consecutive particles are spatially restrained
(that is, kept at an equilibrium distance) according to their
occupancy, which corresponds to the sum of their radii.
Non-consecutive particles are restrained based on empir-
ically identified parameters that define a set of restraints,
their distances and the forces applied to them. TADbit em-
pirically identifies three optimal parameters using a grid
search where a limited number of models are built for each
set of parameters. The three parameters are: the proximal
distance between two non-interacting particles, a lower-
bound cut-off to define particles that do not interact fre-
quently and an upper-bound cut-off defining particles that
do interact frequently. The resulting models for each com-
bination of parameters are then used to calculate a con-
tact map to compare it to the input interaction matrix by
calculating the Spearman correlation coefficient between
the two matrices (here called IMPSCC). Thus, similarly to
many restraint-based methods for 3D genome reconstruc-
tion, TADbit sampling aims at identifying a set of models
that maximizes the similarity between the models contact
map and the Hi-C interaction matrix. Once the optimal pa-
rameters are identified, restraints are applied to the parti-
cles. Pairs of particles with contact frequencies above the
upper-bound threshold are restrained to be at a given equi-
librium distance. Pairs of particles with contact frequencies
below the lower-bound threshold are maintained further
than an equilibrium distance. Finally, TADbit uses a Monte
Carlo simulated annealing sampling procedure to identify a
set of 3D models that best satisfy the imposed restraints.

Model accuracy

We assessed the structure similarity between the original
toy genome architecture sets and the reconstructed mod-
els by computing two different measures. First, the distance
Root Mean Square Deviation (dRMSD) between the best-
reconstructed model and each of the 100 original selected
structures was calculated after optimal superimposition of
their structures by:

dRMSD =
√∑

i

∑
j

(Oi j − Ri j )2

where Oij and Rij are the distance vectors between particle
i and j in the original structure and in the reconstructed
model, respectively. The dRMSD is a measure that varies
between 0, when the two structures are identical, and a large
number, proportional to the size of the object measured,
when the two structures are completely different. The max-
imum dRMSD depends on the size of the object and the
number of particles compared. Therefore, the reconstructed
models were scaled to have the same dimensions in the three
axes as the toy structures before structural superimposing
them. The scale factor was calculated as the average ra-
tio between the maximum distances in x-, y- and z-axis of
the reconstructed models and the toy structures. Second, a
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Figure 2. Simulated Hi-C interaction matrices. Simulated Hi-C interaction matrices for the toy genome architecture of chr75 TAD with noise levels � =
50. Each row shows the calculated matrix, the distribution of Z-scores and four randomly selected input structures, which are colored from particle 1 in
blue to particle N in red, the start and end particles are highlighted with spheres. From top to bottom the figure depicts the simulated matrices from sets 0
to 6 (�t = 1 to �t = 1 000 000).
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distance Spearman correlation coefficient (dSCC) between
all pairwise distances of particles in the best-reconstructed
model and the corresponding ones in each of the 100 origi-
nal toy structures was calculated. The dSCC measure varies
between −1.0 and 1.0 for comparisons where the distances
perfectly anti-correlate or correlate, respectively. Therefore,
a model with a dSCC of 1.0 indicates good accuracy regard-
less of the scale of the compared structure.

MMP

With the aim of identifying a priori whether an interaction
matrix has the potential of being use for modeling, we cal-
culated from each of the 168 simulated Hi-C matrices three
different measures: (i) the contribution of the significant
eigenvectors (SEV) from the matrix, (ii) the skewness and
(iii) the kurtosis of the distribution of Z-scores in the ma-
trix.

The contribution of the SEV score was obtained by first
calculating the eigenvectors of the interaction matrix and
the percentage of contribution of their corresponding eigen-
values. Next, we randomized 100 times the interaction ma-
trix by shuffling the cells in the matrix that are equidistant
from the diagonal. This shuffling strategy preserved the ex-
pected exponential decay of interactions as we go from the
diagonal to the anti-diagonal corners of the matrix. From
the 100 randomized matrices, we also calculated their eigen-
vectors and the percentage of contribution of their cor-
responding eigenvalues. We then set as ‘SEV’ those with
eigenvalues above the mean eigenvalue plus two standard
deviations of the equivalent eigenvectors in the random set
of matrices. The final SEV score was the sum of the differ-
ences of the contribution of eigenvalues of all SEV:

SEV =
∑

i

evi − revi

where evi corresponds to the contribution of the eigenvalue
of the SEV i in the interaction matrix and revi is the aver-
age contribution of the eigenvalue of the same eigenvector
in the randomized 100 interaction matrices. Overall, large
SEV scores are indicative of good potential for modeling.
Intuitively, they indicate the presence of specific contacts
that are not just the results of a random conformation of
the chromosome.

The other two descriptive statistics were calculated di-
rectly from the distribution of Z-scores in the Hi-C matrices.
First, the skewness statistic (SK) assesses in a single measure
whether a score is skewed toward the right or left tails of its
distribution. The kurtosis statistic (KT) complements the
interpretation of the skewness. For example, matrices with
skewness close to zero may result from multi-modal distri-
butions of Z-scores. In such cases, the distribution will re-
sult in large KT scores. Therefore, the SK score will indicate
skewness of the matrix toward positive or negative Z-scores
and the KT score will indicate whether a matrix results or
not in single-peaked distribution of Z-scores. For optimal
modeling in TADbit, we expect no skewness and a single
peak in the Z-score distribution. Both the skewness and the
KT statistic were estimated using the SciPy python library

(http://www.scipy.org). The SK and KT are calculated as:

SK =
∑N

i=1 (xi − x̄)3

∑N
i=1 (xi − x̄)2

3
/2

KT =
∑N

i=1 (xi − x̄)4∑N
i=1 (xi − x̄)22

where N is the number of bins in the Z-score distribution
and xi corresponds to the frequency of a given bin i.

Finally, to calculate the MMP score, we used the size
(number of bins in the matrix), SEV, SK and KT for all 168
simulated Hi-C matrices as input to train a classifier with a
linear regression kernel using Weka (28). During the train-
ing of the classifier, we used the actual accuracy of the pro-
duced 3D models (that is, the dSCC measure) as a target
goal. We decided to use the dSCC measure instead of the
dRMSD accuracy measure because it is independent of the
scale and size of the objects to compare. The classifier, thus,
aims at identifying a linear combination of the four matrix
measures to produce a final score that best correlates with
the dSCC of the models. We trained the classifier with a 10-
fold cross-validation procedure, which resulted in a corre-
lation coefficient of 0.84 between the MMP score and the
dSCC measure. The MMP score is calculated as:

MMP = −0.0002 ∗ Size + 0.0335 ∗ SK − 0.0229∗
KU + 0.0069 ∗ SEV + 0.8126

RESULTS

Toy genome structures and derived matrices

We investigated the reconstruction efficiency of six types
of toy genomes hereafter labeled by ch40, ch75, ch150,
ch40 TAD, ch75 TAD and ch150 TAD depending on the
bp density along the chromosome and on the presence, or
not, of TAD-like organization. To this end, for each toy
genome, we generated seven sets of 100 different conforma-
tions, corresponding to seven different structural variability
levels. More precisely, the nth set was generated by extract-
ing 100 conformations separated by a time step of �t = 10n

iterations in the corresponding WLC simulation (Figure 2).
Altogether, for each toy genome we generated 700 different
chromosome conformations that were distributed among
seven different sets, with set 0 having the lowest structural
variability (�t = 1) and set 6 the highest (�t = 106). Such
structural sets were then used to derive four contact maps
with varying levels of experimental noise (that is, with � =
50, 100, 150 and 200), which simulate the results of a hy-
pothetical Hi-C experiment. Finally, the contact maps were
input to TADbit to build 3D models using a previously im-
plemented protocol (9). The initial structural sets for the
six tested toy genome architectures, their derived interac-
tion matrices and the reconstructed 3D models are available
at http://www.3DGenomes.org/datasets. Specific details on
the construction of the toy genomes and the derived models
are given in the Materials and Methods.

Overall accuracy of the generated models

To assess the accuracy of the genomic 3D models built by
TADbit, we calculated two different accuracy measures be-
tween the reconstructed models and the toy genomic struc-
tures (that is, the dRMSD and the dSCC). Both measures
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of accuracy were calculated for all reconstructed models
and averaged over architecturally similar toy genomes (Ta-
ble 1). In total, we generated 168 simulated Hi-C matrices
for the six toy genome architectures (that is, six architectures
with seven levels of structural variability and each with four
levels of noise in the data). The reconstructed architecture
that best fitted the input structures corresponded to the 40
bp/nm density with a TAD-like architecture (chr40 TAD),
with an average dRMSD of 60.5 nm and dSCC of 0.79.
The architecture most difficult to reconstruct corresponded
to 150 bp/nm density with no TAD-like features (chr150),
with an average dRMSD of 86.4 nm and dSCC of 0.51.
These values correspond to average measures over the 28
simulated Hi-C matrices per architecture, which include
varying degrees of noise and structural variability. For ex-
ample, within the chr40 TAD architecture, one of the best
reconstructions corresponded to the matrix with mid noise
level (� = 100), and low structural variability (�t = 10),
which resulted in a 3D model with dRMSD of 32.7 nm
and dSCC of 0.94 (Figure 3A, top). Similarly, for the low-
resolution architecture 150T, the best result (dRMSD =
45.4 nm and dSCC = 0.86) corresponded to a low level of
noise (� = 50) and low structural variability (�t = 1) (Fig-
ure 3A, bottom). In summary, TADbit was able to produce
accurate models for all six toy genome architectures with a
varying degree of accuracy depending on the levels of noise
and structural variability in the simulated Hi-C matrices.

Genome architecture and model accuracy

We tested two features of the toy genome architecture:
its density (or resolution) and the presence or absence of
local compact regions representing TADs. Models based
on higher-resolution matrices resulted in a higher number
of imposed restraints per particle in the reconstructed 3D
models (Table 1). As expected, we observed a linear rela-
tionship between the number of restraints per particle im-
posed during modeling and the dSCC value (r = 0.9, Fig-
ure 3B), which in turn depends on the resolution of the in-
put matrices determined by the density of the toy genomes.
Despite the relative low accuracy of models for high-density
genomes (i.e. low-resolution genomes), TADbit was able to
generate topologies very similar to the input structures (Fig-
ure 3A). Altogether, these results indicate that the choice
of genomic density and, with it, the resolution representing
the genome alter the accuracy of the reconstructed mod-
els. The existence of a TAD-like organization in the genome
had also an effect on the accuracy of the reconstructed mod-
els. All simulated matrices with genome architectures at 40
bp/nm density with TAD-like architecture resulted in an av-
erage dRMSD of 60.5 nm while genome architectures with
no TADs resulted in an average dRMSD of 71.1 nm (Ta-
ble 1). This trend was observed for all resolutions where the
TAD-like architecture resulted in lower average dRMSDs
(t-test P-value <0.001, Figure 3C). Overall, both high res-
olution simulated matrices and the existence of a TAD-like
structures in the toy genomes resulted in more accurate re-
constructed 3D models.

The accuracy of the models is sensitive to structural variabil-
ity but robust to noise

3C-based experiments are performed on tens of millions of
cells and thus are a population-based interrogation of the
genome. It is therefore likely that the interrogated cell popu-
lation harbors structurally different conformations of their
genome, due to the unsynchronized cell cycle or to natural
cell-to-cell variability, among many other factors. To sim-
ulate such situation, we increased the structural variability
in the input matrices by selecting structures from the archi-
tectural genomes at different simulation time steps (Materi-
als and Methods). Simulated Hi-C matrices with increasing
variability provided less detail of local chromosome struc-
turing but captured the large-scale organization of the toy
genomes such as the existence of TADs (Figure 2). As ex-
pected for any mean-field reconstruction method, the ac-
curacy of our reconstructed genomes decreased with the
increase in the input structural variability (Figure 3D and
E). For all toy genomes with different architectures, the ac-
curacy of the models was maintained up to the structural
variability set 3 (�t = 1000). The models resulting from the
sparse matrices based on the structural sets 4 to 6 (�t ≥
10 000) had significantly higher dRMSD values as com-
pared to the other models. Indeed, model reconstruction
based on low-resolution matrices (150 bp/nm genomes) and
large structural variability resulted in models with poor ac-
curacy (dRMSD > 90 nm). At the highest levels of struc-
tural variability (i.e. sets 4 to 6 or �t ≥ 10 000), the interac-
tion matrices were predominantly populated in the proxim-
ity of the diagonal, or the TAD structures, as the only com-
mon interacting regions between the different input struc-
tures for both the non-TAD-like and TAD-like architec-
tures, respectively (see, for example, Figure 2, bottom rows).
Interestingly, the reconstruction of 3D models with TADbit
was robust to noise (Figure 3F). In fact, the accuracy of the
models was constant to mid levels of noise in the data (aver-
age dRMSD of 70.7, 71.5, 74.3 and 78.7 for � values of 50,
100, 150 and 200, respectively). Nevertheless, the correla-
tion between the TADbit-SCC and the dRMSD was higher
at the mid level of noise compared to the low level of noise
(0.77 for � = 50 and 0.87 for � > = 150). In summary, the
reconstruction of 3D models based on noisy data is robust
but mean-field methods are sensitive to structural variabil-
ity in the simulated Hi-C interaction matrices.

The TADbit-SCC is an accurate scoring function for model-
ing

TADbit model building depends on the imposed restraints
for modeling, which in turn are determined by three op-
timized parameters. The three cut-offs are determined by
maximizing the Spearman correlation coefficient between a
contact map calculated from the reconstructed 3D models
and the input simulated Hi-C matrix (here called TADbit-
SCC). To test whether the TADbit-SCC measure is a good
proxy for model accuracy, we compared it with the dRMSD
of the resulting reconstructed genomes. The results clearly
indicate that the use of the TADbit-SCC as a scoring func-
tion to identify the best models is reasonable (Figure 3E) as
high values of TADbit-SCC are indicative of low dRMSD (r
= −0.67). However, the relationship is not perfect and has
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Figure 3. Model assessment. (A) Comparison of a 3D model ensemble of genome architectures for the chr40 TAD (top) and chr150 TAD (bottom)
architectures. Superimposed input structures for set 0 (left models) and superimposed reconstructed 3D models (due to mirroring, TADbit generates right-
and left-handed models (9)). Models are colored from particle 1 in blue to particle N in red, the start and end particles are highlighted with spheres. (B)
Correlation between the restraints per particle and the accuracy of the reconstructed models as measured by the average dSCC score per architecture.
Circle symbols correspond to non-TAD-like architectures. Rhomboid symbols correspond to TAD-like architecture. The colors indicate the toy genome
density (green, blue and orange for 40, 75 and 150 bp/nm, respectively). (C) dRMSD distributions with respect to genome architecture. Colors correspond
to the three density values with dark and pale colors corresponding to TAD-like and non-TAD-like architectures, respectively. Horizontal gray line and
shade corresponds to the dRMSD distributing of comparing a ‘random genome’ of the same size and number of particles as the reconstructed models
but with randomized coordinates. (D) Model accuracy as measured by dRMSD (left) and dSCC (right) with respect to the model density. Each density is
colored as in panel A and contains seven distributions from the seven sets of structures from set 0 (�t = 1) to high structural variability set 6 (�t = 106)
with dark to pale colors, respectively. Horizontal gray lines and shade as in panel C. (E) Correlation between the dRMSD values per reconstructed models
and the Spearman correlation coefficient of the contact map from the reconstructed models and the original toy genome structures (TADbit- SCC). The
points are colored proportional to the level of structural variability in the matrix (yellow to red from low set 0 (�t = 1) to high structural variability set 6
(�t = 106)). Shapes represented as in panel B. (F) Same as panel E but now the points are colored by the level of noise in the data (yellow to red for low
to high levels of noise, that is from � = 50 to 200). The regression coefficients indicate the correlation per noise level �. (G) Correlation between structural
variability in the toy genome structures and in the reconstructed models. Colors and shapes as in panel B.
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Table 1. Toy genome architectures and overall reconstruction accuracy

Name Dens.(bp/nm) TAD Size
<Restraints
per particle>

<Spearman
CC> <dRMSD> <dSCC>

Chr40 40 no 626 104.4 0.84 71.12 0.78
Chr40 TAD 40 Yes 626 113.7 0.86 60.49 0.79
Chr75 75 no 402 91.8 0.84 82.14 0.69
Chr75 TAD 75 yes 402 79.9 0.86 68.56 0.74
Chr150 150 no 202 46.3 0.82 86.42 0.51
Chr150 TAD 150 yes 202 53.5 0.86 72.63 0.64

two main properties that affect its adequacy for identify-
ing good models: (i) a range of low dRMSD values may re-
sult in very similar TADbit-SCC and (ii) the dRMSD value
saturates for low TADbit-SCC values. Altogether, the anal-
ysis indicates that the use of Spearman correlation coeffi-
cient (TADbit-SCC) as a scoring function during modeling
is a good proxy for model accuracy but needs to be comple-
mented by additional measures (see below).

Reconstructed models capture part of the structural variabil-
ity in the matrices

Mean-field restraint-based modeling methods assume that
the interaction matrix reflects an average structure of the
genome with a limited number of different conformations.
Thus, such methods have intrinsic difficulties in capturing
the variability of the data. To test whether our reconstructed
models reflect the structural variability in the matrices, we
calculated the dRMSD between the 100 input toy genome
structures in each of the 168 matrices. We also calculated
the dRMSD between 100 generated models per simulated
matrix. In all the genomic architectures, we observed a cor-
relation between the variability in the toy genome struc-
tures and the resulting variability in the reconstructed mod-
els (Figure 3G). The captured variability decreased with
the increased number of restraints per particle (Figure 3B).
That is, higher-resolution matrices that resulted in more re-
strained models have less structural variability in the output
structures. Importantly, the degree of variability is ∼2-fold
less in the resulting models compared to the input toy struc-
tures. Nevertheless, and despite the intrinsic limitations, the
resulting models capture part of the structural variability in
the matrices.

Statistics of the input matrices correlate with the accuracy of
the models

To assess which features from the interactions matrices
could be useful to predict the accuracy of the reconstructed
models, we have calculated three statistical measures from
the simulated Hi-C matrices (Materials and Methods). In
particular we measure the contribution of the SEV from the
matrix (SEV), the skewness (SK) and the kurtosis (KT) of
the distribution of Z-scores. These three measures are in-
dicative of the internal correlations in the matrix (SEV) and
the deviation from normality of the distribution of interac-
tion counts (SK and KT). These features are relevant for the
modeling with the TADbit protocol since they determine
the quantity and quality of the imposed restraints during
modeling (9). In principle, an input matrix with high con-
tribution of the SEV, skewness close to zero and low neg-

ative kurtosis is optimal for 3D reconstruction. For exam-
ple, the toy genome architecture chr40 TAD, which results
in accurate 3D reconstructed models (dRMSD = 47.2 nm
and dSCC = 0.91), has a SEV of 32.3%, a SK of −0.32
and a KT of −0.69 (Figure 4A). Indeed, the three statis-
tical measures from the simulated Hi-C matrices correlate
with the final accuracy of the reconstructed models (Fig-
ure 4B). dRMSD correlates with SEV, SK and KT with
a −0.53, 0.63 and 0.75 regression coefficient, respectively.
dSCC correlates with SEV, SK and KT with an 0.70, −0.60
and −0.54 regression coefficient, respectively. Moreover, we
observed that the SK statistic, which measures whether a
matrix has a Z-score distribution skewed toward positive or
negative values, could be used to discern between matrices
with high structural variability from those with high experi-
mental noise (Figure 4C). All but one of the simulated Hi-C
matrices with large noise content (� = 200) and low struc-
tural variability (set 0) result in negative values of SK score.
Similarly, all but two of the simulated Hi-C matrices with
low noise content (� = 50) and high structural variability
(set 7) result in positive values of SK score. In summary, we
introduced here three simple statistics from the Hi-C ma-
trices that can help us assess the likeliness of an interaction
matrix to result in accurate reconstructed models.

The MMP score

To assess whether we could a priori evaluate the adequacy of
the input matrix for 3D reconstruction, we calculated a sin-
gle score, here called MMP, combining four measures from
the interaction matrices: its size, SEV, SK and KT values.
We trained a linear regression with the four measures for
the 168 simulated Hi-C matrices to obtain a single score
that correlates the most with the dSCC accuracy measure
of the 168 reconstructed models. The training set contains,
thus, a variety of resolutions, experimental noise and struc-
tural variability. Using a 10-fold cross-validation the MMP
score resulted in a final correlation with the dSCC of the
reconstructed models of 0.84 (Figure 5A). The mean abso-
lute error of the MMP score in predicting the dSCC accu-
racy of the models is 3.1%, which provides a clear predictive
power to the new score. Indeed, the MMP score behaves
as expected (Figure 5B). Simulated matrices built from toy
genomes with TAD-like structure results in higher MMP
score, which also increases with a slight presence of noise in
the matrix and is clearly affected by the increase of struc-
tural variability. In summary, combining the three statisti-
cal scores from the simulated Hi-C matrices as well as its
size into a single MMP score provides a means to a priori
evaluate the modeling potential of the matrix. Matrices with
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high MMP scores are likely to result in accurate 3D recon-
structed models.

To test the applicability of our new score, we selected
three datasets of real Hi-C experimental data from human
(19), fly (29) and bacterial (30) genomes and calculated their
MMP score (Figure 5C). Of the three example matrices, the
human genomic domain results in an MMP score of 0.82,
which predicts a dSCC of 0.81 (0.69–0.92 at 95% confidence
range). The best individual score for the human genomic
domain is the skewness of the distribution, which approx-
imates zero (SK = 0.20). However, the contribution of the
significant eigenvalues is small (SEV = 3.61). Similarly, the
Caulobacter crescentus genome matrix has good SK and KT
values but poor SEV (0.26, −0.25 and 3.05, respectively).
The resulting MMP score is 0.77, which predicts a dSCC of
0.73 (0.62–0.85 at 95% confidence range). Finally, the fly ge-
nomic domain is the one with the best MMP score (0.83) of

the three real Hi-C matrices, which resulted in a predicted
dSCC of 0.83 (0.72–0.94 at 95% confidence range). This re-
sult shows that, at different levels of predicted accuracy, real
Hi-C matrices could be used in TADbit for 3D reconstruc-
tion of genomes and genomic domains.

DISCUSSION

Recently, chromatin interaction matrices from 3C-based
experiments have been used for modeling the 3D organi-
zation of genomes and genomic domains (5). Those ap-
proaches aim at providing a 3D representation of the bi-
dimensional interaction matrices that can be explored to
extract biological insights. Here, we have introduced a com-
prehensive analysis of the limitations of chromatin model
building using a restraint-based mean-field approach. To
do so, we have derived a series of simulated Hi-C matri-
ces where the genomic architectures are pre-defined and
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Figure 5. Predicting the accuracy of the reconstructed models. (A) Correlation between the MMP score and the dSCC accuracy measure. Points are colored
by the density of the simulated Hi-C matrices (green 40, blue 75 and orange 150 bp/nm). Shaded area corresponds to the correlation confidence band.
(B) MMP score distributions depending on genome architecture, noise and structural variability of the simulated Hi-C matrices. Panels from left to right
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(30).

the amount of noise and structural variability is controlled.
The entire set of 168 simulated Hi-C matrices can be con-
sidered as a benchmark set for assessing the future devel-
opments of restraint-based methods for modeling genomes
and genomic domains. To our knowledge, this is the first
fully available dataset for benchmarking reconstruction
methods, which can be freely accessed here: http://www.
3DGenomes.org/datasets.

In our analysis, a total of six different genomic architec-
tures were benchmarked. Those varied the resolution (or

genomic density) as well as the presence of locally com-
pacted regions resembling TADs observed for many organ-
isms (19,31–32). The overall accuracy of the reconstructed
models points to three main conclusions. First, indepen-
dently of the genomic architecture, restraint-based mean-
field modeling can provide accurate models with dRMSD
as low as 30 nm and dSCC as high as 0.99 with the major
variability in accuracy originating from the structural vari-
ability in the input matrices. Second, an increase of the ma-
trix resolution (that is, low-density models with larger pro-
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portion of restraints per particle) results in more accurate
reconstructed models. Therefore, increasing the sequencing
depth of a Hi-C experiment will result not only in higher-
resolution models (i.e. more bins in the interaction matrix)
but also in models of higher overall accuracy. And third,
the presence of a TAD-like architecture results in more ac-
curate models at any levels of noise and structural variabil-
ity. This increased accuracy can be interpreted as the result
of a sharper structuring of the input Hi-C matrix for scales
equal or larger than that of TADs, which are expected to
be found under the form of compact globules (32). In verte-
brates, these globules are believed to be the result of multiple
specific chromatin loops induced by the bridging of several
protein complexes, with CTCF as a major factor (6,33). In-
deed, such specific loops can be easily integrated in polymer
models of chromosomes (34) and should facilitate the inner
reconstruction of TADs.

Typically, Hi-C experiments capture a limited number of
all possible interactions in each cell (25,35) and thus are per-
formed on a population of tens of millions of cells (8). This
results in interaction matrices that have two main sources of
variability originating from noise in the experiment and/or
the natural conformational differences between genomes in
each cell. Here we have simulated these two sources of vari-
ability by first varying the probability of capturing an in-
teraction from the toy models (experimental noise) and sec-
ond by deriving simulated interaction matrices from mod-
els of varying structural similarity. The results of our test
clearly indicate that restraint-based mean-field reconstruc-
tion is robust to experimental noise but sensitive to high
levels of structural variability. Indeed, at all levels of ex-
perimental noise, our method was able to reconstruct accu-
rate models when structural variability was low. However,
the reconstruction of models degraded significantly when
the level of structural variability was high, indicating that
mean-field methods may have difficulties capturing the en-
tire structural diversity of the input matrices. It is important
to note that our simulated Hi-C matrices with high levels of
structural variability (set 6) contain homogenous structural
variability where each of the toy structures can be consid-
ered as a ‘single cell state’ that is equally different to all other
structures in the set. Despite these limitations, our approach
was also able to capture part of the structural variability in
the original set. Altogether, our results conclude that Hi-C
interaction matrices from as homogenous as possible popu-
lation of cells (e.g. synchronized in cell cycle, same cell state,
unique cell type, etc.) are more adequate for 3D reconstruc-
tion. Interestingly, we also show that experimental noise,
which could originate from limitations in any of the four
main steps in 3C-based methods (that is, cell fixation, DNA
fragmentation, DNA ligation and read-out by sequencing),
is not highly relevant for 3D reconstruction.

Most of the reconstruction approaches, either those
mean-field or population-based approaches, have a scoring
function to minimize. The specific scoring function varies
between methods but all aim at correlating the observed
3C-based interactions with those obtained from the recon-
structing models. In our approach we find optimal param-
eters for the simulation by maximizing the Spearman cor-
relation coefficient (TADbit-SCC) between the input inter-
action matrix and a contact map obtain from the models.

We have shown here that this scoring function is appropri-
ate for 3D reconstruction and that high TADbit-SCC result
in accurate models, which validates our protocol for 3D re-
construction by TADbit. In practice, with our method the
TADbit-SCC can be taken as a proxy of model accuracy.
Additionally, we also provide, for the first time, a single mea-
sure (the MMP) calculated from the interaction matrix that
highly correlates with the accuracy of the resulting models
(r = 0.84, P-value < 0.001). The MMP score is composed
of a weighted sum of four properties of the matrix (that is,
its size, the percentage of contribution of significant eigen-
values in the interaction matrix as well as the skewness and
kurtosis of the distribution of Z-scores in the interaction
matrix). Interestingly, the skewness of the distribution has
an additional property that allowed us to differentiate be-
tween matrices rich in experimental noise from those high
in structural variability. Negative skewness matrices (that is,
with a long positive tale) are likely to contain a large pro-
portion of experimental noise. Positive skewness matrices
(that is, with a long negative tail) are likely to be obtained
from a population of cells with large structural variability.
We applied our new MMP score to three published Hi-C
interaction matrices. The results indicate that the 3D recon-
struction of two genomic domains from the human and fly
datasets as well as the entire C. crescentus genome could re-
sult in accurate models.

In summary, we provide a dataset of simulated toy struc-
tures and their respective Hi-C matrices that can be used for
benchmarking restraint-based methods for 3D reconstruc-
tion. Our dataset was used to show that such methods are
adequate for building 3D models of genomes and genomic
domains. Moreover, we have shown that these methods are
robust with respect to experimental noise but are more sen-
sitive to structural variability in the input matrices. Exper-
imentalists aiming to generate 3C-based interaction matri-
ces for 3D reconstruction are thus encouraged to obtain the
most homogenous cell population before performing the ex-
periments. Finally, we provide for the first time a new score
(here called MMP score) that allows predicting a priori the
accuracy of the resulting models by calculating a limited
number of properties of the input interaction matrices. Such
score may probe very useful for defining whether a newly
generated interaction matrix can be useful for obtaining ac-
curate 3D models, which can then be more easily explored
to extract biological insights.
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