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Abstract  
 
Recent progress in imaging and chromosome conformation capture (3C) experiments 
has enabled the determination of the chromosome structure of different organisms, from 
bacteria to humans. Through applying computational approaches, researchers have used 
such experimental data to model the three-dimensional (3D) structure of genomes and 
genomic domains. However, despite these numerous studies, no systematic analysis of 
the accuracy of the 3D modeling of genomes has been performed. Moreover it has been 
shown that chromatin structure plays an essential role in the regulation of gene 
expression. This correlative observation, however, leads us to the question of how does 
the structural organization of genomes interplay with the transcriptional regulation of 
the resident genes. 
 
In this thesis, we aim at addressing these two issues: first we developed a methodology 
to evaluate the accuracy of 3D modeling approaches; second, we applied this approach 
to explore the chromosome structure of the genome-reduced bacterium Mycoplasma 
pneumoniae. By combining super-resolution microscopy and Hi-C, we determined the 
3D chromosome structure of this reduced-genome bacteria and established fundamental 
principles of its organization. For example, we studied the impact of chromosomal 
interacting domains (CIDs) on transcriptional regulation. Finally, our work suggests that 
a defined chromosomal structure could be a universal feature of all living systems, 
including those with minimal genomes. 
 
 
 

Resumen  
 
Los últimos progresos en microscopia y el desarrollo de las técnicas de captura de la 
conformación del cromosoma (3C) han permito determinar la estructura del cromosoma 
de diferentes organismos, desde bacterias a humanos. Investigadores han desarrollado 
metodologías para modelar la estructura del cromosoma en tres-dimensiones (3D). A 
pesar del gran número de estudios, no se ha evaluado aun la precisión y la metodología 
de la modelización de la conformación en 3D de los cromosomas. Además, se ha 
demostrado que la estructura de la cromatina tiene un papel esencial en la regulación de 
la expresión genética. ¿Cual es el papel de esa interacción entre la organización de la 
cromatina y la regulación de la transcripción en moldear la estructura del núcleo? 
 
En esa tesis, hemos abordado estos dos problemas: hemos desarrollado una metodología 
para evaluar la precisión de los modelos reconstruidos; segundo hemos aplicado este 
método de modelización para explorar la estructura del cromosoma de la bacteria 
Mycoplasma pneumoniae que tiene un genoma reducido y pocas proteínas que unen 
DNA. Combinando microscopia de alta-resolución con Hi-C, hemos determinado la 
estructura tridimensional de su genoma y hemos establecido principios fundamentales 
de la organización de un cromosoma. Por ejemplo hemos estudiado el impacto de los 
dominios en la regulación de la transcripción. En conclusión, sugerimos que la 
estructura del cromosoma podría ser una característica de todos seres vivos, incluyendo 
los que tienen un genoma mínimo. 
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Objectives 

 

The two main objectives of this thesis are: 1) to evaluate mean-field restraint-based 
reconstruction of genomes by considering diverse chromosome architectures and 
different levels of data noise and structural variability; 2) determine the 3D structure 
and the possible impact of chromatin organization in transcriptional regulation in M. 
pneumoniae. 
 

 
The first chapter of the thesis is an introduction of genome organization and the 
different modeling and experimental approaches to unveil the 3D conformation of 
genomes. We presented the different factors that compact DNA and the role of 
chromatin structure in regulation. We also discussed the application of such methods to 
determine the chromosome structure of Mycoplasma pneumoniae and we end the 
chapter presenting the characteristics of this genome-reduced bacterium.   
 

Over the second chapter of the thesis, we designed a pipeline to evaluate the restraint-
based modeling approach that consists in simulating ‘toy genome’ structures, deriving 
interaction matrices from them, reconstructing their 3D structure, assessing their quality 
and predicting their accuracy using the Matrix Modeling Potential (MMP) score. Next, 
we described the results of assessing the predictive power for determining the ‘real’ 
assembly structure of ‘toy genome’ structures as well as a priori evaluate the input 
interaction matrices modeling potential. Finally, we summarized our conclusions on the 
limits of mean-field restraint-based approaches and how a measure such as the MMP 
can be used to a priori evaluate the reconstructed models. 
 
 
The goal of chapter three was to uncover the 3D genome structure of M. pneumoniae 
with restraint-based modeling by combining electron microscopy, high-resolution light 
microscopy (STORM) and Hi-C. We selected M. pneumoniae as model organism 
because of its small genome size and its expected simplified regulatory network, 
compared to other bacteria that have several TFs and alternative sigma factors to 
reprogram RNA polymerase and coordinate gene transcription. By analyzing the 
resulting 3D models, we identified fundamental principles of genome organization and 
their impact in gene expression and provide evidence that the chromosome structure is 
exploited to control transcription. Moreover we detected that the chromosome is 
organized into CIDs and we provided the first evidence that genes inside CIDs tend to 
be co-regulated. We then studied the effect of inhibiting supercoiling on genome 
structure and observed that it significantly reduced the sharpness and positions of CIDs, 
suggesting that supercoiling is regulating those domains formation in bacteria. In 
conclusion, this study expands the current understanding of bacterial genome. 
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1. INTRODUCTION  
 
 
1.1  Genome organization and their role in regulation 

 

Identifying how genomes and chromosomes are spatially organized, and how their 

organization changes during physiological processes could help unveiling the 

complexity of regulation of gene-transcriptional networks determining all aspects of 

life. Indeed, the identification of some groups of transcription units in eukaryotes, called 

“transcription factories” [1, 2], as well as “replication factories” [3], have shed new light 

on the importance of genome architecture and chromatin looping in the coordination 

and regulation of biological processes, such as gene expression and replication. In 

prokaryotes, by analogy with the organization of transcription and replication in 

eukaryotes [4], the first imaging of bacterial RNA polymerase (RNAP) in Bacillus 

subtilis [5] revealed an organization in the RNAP distribution with the concentration of 

RNAP into transcription foci or “factories” at high growth rate. Similarly, imaging of 

RNAP in Escherichia coli provided more evidence into the role of RNAP and 

transcription in the organization of the bacterial chromosome as changes in the 

distribution of RNAP accompany changes in nucleoid structure [6-8]. Such interplay 

suggests that chromatin organization have a role in regulating gene expression at both 

global and gene-specific level [9-15]. 

In both eukaryotes and prokaryotes, the genome must be compacted to fit into the 

nucleus or nucleoid, respectively, while maintaining accessibility for efficient 

transcription, replication and segregation. Eukaryotic genomes are localized into the cell 

nucleus, where each chromosome is confined into a discrete region, referred to as 

chromosome territories [16], which in turn are spaced into two compartment types [17]. 

Co-regulated genes of the same compartment will be brought into physical proximity to 

coordinate their activities leading to a more efficient gene expression. In prokaryotes, a 

recent study has shown in fast-growing E. coli cells that the transcription machinery is 

spatially organized into functional compartments, which suggest that functional 

compartmentalization is also present in bacterial chromosome organization [18]. 

Besides, mammalian genomes are further partitioned into domains, the so-called 
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Topological Associated Domains (TADs) ranging from 200-kilobases (kb) to 1 

megabase (Mb) and conserved across different species and cell types [19, 20].  

Although technical limitations for chromosome visualization have hampered the 

characterization of detailed organization of bacterial chromosome, several levels of 

regulation have been identified. At the molecular level, bacteria have evolved 

mechanisms that condense their chromosome like DNA supercoiling, macromolecular 

crowding forces exerted by the cytoplasm, polyamines and nucleoid-associated proteins 

(NAPs). Paradoxically, the coupled transcription and translation of transmembrane 

proteins, called transertion expand the nucleoid towards the cell membrane [21-23]. In 

the following sections, we will discuss the mechanisms mentioned that compact the 

chromosome. 

 

a) Supercoiling 
 

The first factor that condense DNA is the supercoiling that is mediated by the action of 

topoisomerases and gyrases [24, 25]. In bacteria the DNA is negatively supercoiled, 

which means twisted in the opposite direction to the Watson-Crick helix. DNA gyrase 

introduces negative supercoiling, while DNA topoisomerases I such as topA gene 

relaxes negative supercoiling and DNA topoisomerases IV relaxes both positive and 

negative supercoiling [26, 27]. Structurally, gyrases act as tetramers with two monomers 

encoded gyrA and gyrB genes. The introduction of supercoils occurs at the expense of 

ATP hydrolysis, gyrB subunit forms the site of ATP binding and hydrolysis while gyrA 

subunit is involved in catalyzing the breakage and ligation of the cut DNA. Negative 

supercoiling forms plectonemic loops (Fig. 1) or micro-domains from 2 kb to 65 kb 

with about 10 kb average size, depending on the studies. Such plectonemic loops are 

maintained by gyrases and topoisomerases to prevent relaxation of the entire 

chromosome [28-30].   
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Figure 1: DNA topology. The DNA topology is described quantitatively by the twists of double helix 
and by the number of times the helix crosses over on itself (plectoneme). The figure was extracted from 
[31]. 

 

The best investigated example of source of DNA supercoiling is the transcription 

generated supercoiling. Indeed transcription and translation processes dynamically 

change DNA topology inducing local and temporal supercoiling of the DNA template. 

As the RNAP is immobilized in transcription factories, the DNA template being 

transcribed is forced to rotate around its axis as the double helix threaded through the 

transcriptional machinery [32]. In bacteria, as transcription proceeds, DNA in front of 

the transcription ensemble becomes positively supercoiled, and DNA behind the 

ensemble becomes negatively supercoiled [21, 33] (Fig. 2). A decrease in the degree of 

negative supercoiling elevates the transcription of the gyrA and gyrB genes and reduces 

the transcription of the topA genes whereas an increase in the degree of negative 

supercoiling has the opposite effects on the expression of those genes [34, 35]. The level 

of supercoiling induced by transcription depends on the rate of transcriptional 

elongation as well as the rate of transcriptional initiation and the possible RNA 

polymerase pausing [21]. Low levels of transcription thus produces torsional stress 

followed by DNA relaxation while high level of transcription with repetitive initiation 

may establish stable dynamic supercoiling upstream of the transcription start sites [36].  
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 Figure 2: Illustration of the mechanism of transcription and supercoiling. A transcription ensemble 
R is illustrated including the polymerase, the nascent RNA and proteins bound to the RNA. If R is 
moving from left to right as indicated by the arrow, the DNA is front of the polymerase becomes 
overwound, or positively supercoiled while the DNA behind the polymerase becomes underwound, or 
negatively supercoiled. The figure was extracted from [21]. 

 

Additionally the distribution of promoters in divergent orientation could reinforce DNA 

supercoiling upstream of the transcription start sites by untwisting the double helix as 

well as by inducing directly plectonemes [37]. 

Another source of supercoiling is provided by the reorganization of eukaryotic 

chromatin with the assembly and disassembly of nucleosomes. Eukaryotic organisms 

lack enzymes such as DNA gyrase that directly introduce supercoils into DNA, but have 

nucleosomes and statically their genome is supercoiled to a similar degree of bacterial 

genome [38]. Each nucleosome of the chromosome is wrapped by DNA 1.8 times 

which constrains the chromosome until released by nucleosome removal [39]. Special 

proteins called chromatin remodelers complexes are indeed able to remove or slide 

nucleosomes in an ATP-dependent fashion [40, 41].  

 

b) Molecular crowding 

The second factor that condenses the genome is the molecular crowding that causes 

strong depletion and attraction forces [42, 43]. It has been proposed that genome 

organization is mainly entropy-driven [44] as nucleoid is expanded in low-crowding 

conditions and compacted under high-crowding conditions [45]. However, crowding 

forces are non-specifically driving compaction and therefore cannot regulate specific 

DNA interactions. Still this crowded environment could contribute to DNA-DNA 
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interactions and NAP interactions with genomic DNA [42] that also have an effect on 

genome folding.  

 

c) Polyamines 

Additionally, some studies revealed the essential role of polyamines in chromosome 

condensation in mammalian cells [46] and bacterial cells [47, 48]. In prokaryotes, the 

most abundant polyamines are putrescine and spermidine that account for the majority 

of intracellular cationic charge [49]. The interaction of polyamines with DNA induces 

conformational changes such as transitions from B to A and Z DNA forms [50] or DNA 

bending [51] as well as modify the interactions of DNA with sequence-specific DNA-

binding proteins [52]. Moreover at high cellular abundance, spermidine stabilizes the 

condensed bacterial chromosome in isolated nucleoid, suggesting an important role of 

polyamines in the compaction of DNA in bacterial cells [53, 54]. 

 

d) Nucleoid-associated proteins 

The fourth important factor in DNA compaction is the action of nucleoid-associated 

proteins NAPs, which also play a role in chromosome segregation and DNA repair [55-

57]. NAPs were initially referred to as ‘histone-like’ proteins [58, 59], by analogy to the 

histone eukaryotic proteins that alter the shape of DNA, but they are now referred to as 

NAPs, reflecting their cellular location. Interestingly, some NAPs seem to have a clear 

role in compaction, whereas others seem to act both as compacting agents and as 

antagonists of compaction. The best characterized ones, due to their high intracellular 

abundance, which depends on growth phase [60, 61], are heat unstable (HU) [62], factor 

for inversion stimulation (Fis) [63], integration host factor (IHF) [64] and histone-like 

nucleoid structuring (H-NS) [65]. A non-exhaustive list of NAPs found in gram-positive 

and gram-negative bacteria and their different functional interactions with DNA has 

been published [33], where they were classified into three categories: DNA-wrappers, 

DNA-bridgers, and DNA-benders (Table 1).  
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Protein  Bacteria Binding motif Molecular 

Mass 

Function Native protomer Refs 

HU Gram-

negative ; 

Gram-

positive 

DNA structural motif 

in dsDNA to either 

dsDNA or ssDNA 

with preference for 

AT-rich or curved 

DNA ; ND 

~9 kDa ;  

~10 kDa 

DNA wrapping and 

bending ;  DNA bending 

Heterodimer (for 

example HUα-HUβ); 

Homodimer 

[62, 66-

70] 

Fis Gram-

negative 

A-6-tracts and AT 

tracts 

~11 kDa DNA wrapping bridging 

and bending 

Homodimer [71, 72] 

IHF Gram-

negative 

(A/T)ATCAANNNNT

T(A/G) 

~11 kDa DNA bending Heterodimer (IHFα-

IHFβ) 

[73, 74] 

H-NS Gram-

negative 

AT-rich DNA and 

TCGATAAATT 

~15 kDa DNA bridging Homodimer or 

heterodimer (H-NS–

StpA) 

[75] 

Lrp Gram-

negative ; 

Gram-

positive 

(T/C)AG(A/T/C)A(A/

T)ATT(A/T)T(A/T/G) 

CT(A/G) ; ND 

~18 kDa ; 

~17 kDa  

DNA wrapping  and 

bridging 

Homodimer [76, 77] 

MukB Gram-

negative ; 

Gram-

positive 

ND ; 

Preference for ssDNA 

~175 kDa ; 

~130 kDa 

DNA bridging Homodimer [78, 79] 

Dps Gram-

negative 

ND ~19 kDa  ND Monomer or 

dodecamer 

[80] 

StpA Gram-

negative 

AT-rich DNA ~15 kDa ; DNA bridging Homodimer or 

heterodimer  (StpA–

H-NS) 

[81] 
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CbpA Gram-

negative 

Curved DNA ~33 kDa ; ND Homodimer or 

heterodimer (CbpA–

CbpM) 

[82] 

CbpB Gram-

negative 

Curved DNA ~33 kDa ; ND Monomer [83] 

EbfC Gram-

negative 

GTNAC ~11 kDa ; DNA bridging suggested Homodimer [84] 

MvaT Gram-

negative 

AT-rich DNA ND DNA bridging Homodimer [85] 

Lsr2 Gram-

positive 

AT-rich DNA ~12 kDa ; DNA bridging Homodimer [86] 

Hlp Gram-

positive 

ND ~21 kDa ; ND Monomer [87] 

MrgA Gram-

positive 

ND ~17 kDa ; ND Monomer or 

dodecamer 

[88] 

Table 1: Nucleoid-associated proteins in bacteria. Legend for abbreviations: Curved-DNA-binding 
protein A (CbpA); Curved-DNA-binding protein B (CbpB), also known as Rob; DNA protection from 
starvation (Dps); Double-stranded DNA (dsDNA); Factor for inversion stimulation (Fis); Histone-like 
protein (Hlp); Histone-like nucleoid-structuring (H-NS); Integration host factor (IHF); Leucine-
responsive regulatory protein (Lrp); Metalloregulation DNA-binding stress protein (MrgA); Not 
determined (ND); Single-stranded DNA (ssDNA). This table was adapted from [57]. 

 

Similarly as histone proteins in eukaryotes, which were thought to be the dominant 

mode of DNA packaging, the first family of DNA wrappers induces a considerable 

volume reduction of the DNA. Indeed, since bacteria mostly lack histone proteins, there 

are additional NAPs that help in DNA compaction (Table 1). The second family of 

DNA bending NAPs can relieve repression or counteract the effect of the third family of 

DNA bridging NAPs, which are thought to repress transcription. Indeed, DNA bridges 

have the potential to trap RNA polymerase (RNAP) and exclude it from the promoters 

of the genes concerned. Moreover, an evidence of co-localization of such proteins with 

RNAP is consistent with this trapping mechanism [89, 90].  
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From the first family, leucine-responsive regulatory protein (Lrp) forms disc-shaped 

octameric structures with multiple binding sites that wrap DNA around themselves in a 

right-handed superhelix [77]. This wrapping constrains positive supercoiling and 

compacts DNA. 

From the second family, HU, which might be the most universally conserved and 

abundant NAP, can induce DNA bends, condense DNA in a fibre and can also interact 

with single stranded DNA (ssDNA) [28-33]. HU has similar overall structure and shares 

several conserved regions with IHF [91]. IHF can bend DNA strongly to specific DNA 

sites [64] and participates in forming higher-order DNA structures required for 

replication, site-specific recombination, phage packaging or regulation of transcription 

initiation [73, 74, 92]. It can also influence global transcription in E. coli [93]. IHF can 

also bind to DNA non-specifically and therefore can be substituted by HU. In addition, 

Fis, which is abundant in the early exponential phase of growth, can bend DNA and has 

considerable affinity for non-specific DNA with high AT-content [94].  

From the third family of DNA bridging NAPs, H-NS can form bridges between 

adjacent tracts of double-stranded DNA, preferentially in high AT-content regions [75]. 

The distribution of its binding sites is found in the same location of domain loop 

boundaries [95]. H-NS is widely found in bacteria and have been studied in pathogens 

such as Mycobacterium tuberculosis [96] and Vibrio cholerae [97].  

All those proteins act in concert either with others members of the same family, either 

with NAPs from another family leading to synergistic or antagonistic effects [98, 99]. 

Those antagonistic effects also play a role at the level of global nucleoid organization 

and could be responsible for the considerable heterogeneity within the nucleoid [100]. 

Indeed the action of HU, IHF or Fis could result in regions that are less compact than 

others and this local reorganization of the nucleoid could affect the expression of genes 

that are hundreds of bases away [100].  

All the proteins mentioned above have relatively small size of about 30 kDa for most of 

them. There are also larger proteins called structural maintenance of chromosome 

(SMC) that are able to act on larger distances and might be the most conserved of all 

architectural proteins. They are able to build DNA bridging and can promote long-range 

interactions between DNA segments and condense the chromosome to facilitate its 
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segregation [101, 102]. They were found within or near the origin of replication [103, 

104]. For example, MukB is a SMC homolog protein from E. coli that can also form 

bridges and have a role in efficient segregation of chromosomes during cell division 

[78]. 

NAPs are also altering the level of DNA supercoiling [105]. For example, HU interacts 

with topoisomerase I leading to alterations in the superhelicity of DNA, nucleoid 

structure and gene expression [106]. MukB has been implicated in the formation of 

independent topological domains in the E. coli chromosome probably in association 

with DNA gyrase [107]. Also H-NS and Fis are thought to assist directly the 

supercoiling of domains by forming topological barriers on the E. coli chromosome 

[108]. However, their depletion do not affect the global nucleoid structure [109]. This 

result suggests that additional factors could be important to the maintenance of nucleoid 

structure. In fact, about half the amount of supercoiling is not constrained by proteins 

and is thought to be present in the form of plectonemes. Therefore, it has been proposed 

that transcription from highly active promoters can also introduce new domain 

boundaries [110, 111]. The fact that transcription of ribosomal RNA (rRNA) operons 

takes place in the transcription factories in the cell, which have been linked to a role in 

DNA compaction, might be related to this hypothesis [112]. Rather than being 

important for the stabilization or formation of large DNA loops, NAPs could be 

essential for the local structure of smaller loops within these larger ones [100]. 

Following this hypothesis, a recent study in Caulobacter crescentus revealed that its 

genome is divided into 23 chromosome interacting domains (CIDs) or highly self-

interacting regions, equivalent to the TADs found in eukaryotes, but with a ranging size 

of 30 to 400 kilobases (kb) [113]. Their formation seems to be related to the presence of 

highly expressed genes where the DNA is kept free of plectonemic loops by active 

transcription [113], rather than the deletion of NAP or SMC proteins as it was 

previously suggested [114, 115]. An alternative hypothesis is that domain boundaries 

arise through attachment of DNA to the membrane that might occur during transertion 

and expression of transmembrane proteins [23, 116]. 

In addition to their role in condensing the chromosome, changes in DNA supercoiling 

could control transcription in bacteria [117-120], as promoter activities are sensitive to 

the local level of supercoiling and can be increased or decreased in response to super-
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helical variation [119]. This could be more important in small genomes such as 

Mycoplasma pneumoniae or Mycoplasma genitalium [121] where many structural 

DNA-binding proteins are absent [122], and code for few transcription factors (TFs) and 

only two sigma factors (Table 2). Therefore, in such genomes gyrases and 

topoisomerases might be controlling gene expression through changes in the DNA local 

structure [121]. Indeed M. pneumoniae only has few TFs compared to other bacteria, 

with MPN529: IHF-HU possibly affecting DNA topology [123], MPN426: SMC 

family, MPN 229: SSB binding ssDNA [124], MPN 554: binding ssDNA [125] and 

possible evidence for a homolog of CbpA MPN002: xdj1. 
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Gene number Gene name Protein name 

MPN002 cbpA Curved DNA-binding protein CbpA 

MPN003 gyrB DNA gyrase subunit B 

MPN004 gyrA DNA gyrase subunit A 
MPN089 hsdS Putative type-1 restriction enzyme specificity protein 

MPN122 parB DNA topoisomerase 4 subunit B 

MPN123 parC DNA topoisomerase 4 subunit A 
MPN124 hrcA Heat-inducible transcription repressor hrcA 
MPN229 ssbA SSB binding single stranded DNA (ssDNA)  

MPN239 gntR Probable HTH-type transcriptional regulator gntR 

MPN241 whiA Transcription factor with  WhiA C-terminal domain 

MPN266 spxA Transcriptional regulator Spx 
MPN275 ybaB DNA-binding protein, YbaB/EbfC family 

MPN289 HsdS1B Putative type-1 restriction enzyme specificity protein 

MPN294 araC AraC-like transcriptional regulator 
MPN332 lon ATP-dependent protease La (EC 3.4.21.53) 

MPN352 sigA RNA polymerase sigma factor rpoD (Sigma-A) (EC 2.7.7.6) 

MPN424 ylxM Putative helix-turn-helix protein, YlxM/p13-like protein 
MPN426 smc SMC family, chromosome/DNA binding/protecting functions 

MPN478 yrbC YebC family protein (transcription factor of the tetR family) 

MPN529 ihf Histone-like bacterial DNA-binding protein  

MPN554 ssbB Putative single-stranded DNA-binding protein 

MPN572 pepA Probable cytosol aminopeptidase (EC 3.4.11.1) (Leucine 
aminopeptidase) (LAP) (Leucyl aminopeptidase) 

MPN608 phoU Transcriptional regulator involved in phosphate transport system 

MPN615 hsdS Putative type-1 restriction enzyme specificity protein 

MPN626 mpn626 Alternative sigma factor 
MPN638 hsdS Putative type-1 restriction enzyme specificity protein 

MPN686 dnaA Chromosomal replication initiator protein dnaA 

MPN688 SojA/ParA Member of the ParA family of ATPases involved in plasmid and 
chromosomal segregation 

Table 2: List of Mycoplasma pneumoniae transcription factors, possible DNA binding structural proteins 
and sigma factors. 

 

In summary, the role of individual proteins in chromatin organization has been widely 

studied [56, 61, 79, 100]. However individual and in concert contributions of 

supercoiling, molecular crowding and NAPs to genome compaction are yet to be fully 

elucidated. Indeed as mentioned before, macromolecular crowding increases the 

association of NAPs [42] and moreover the binding of NAPs is enhanced by 

supercoiling. To progress in the understanding of chromatin organization, studying on a 
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global level, rather than understanding in detail the role of specific proteins, has enabled 

elucidating genome structure. For example, fluorescence imaging of living C. 

crescentus cells revealed that its chromosome is orderly arranged [126]. It was therefore 

suggested a chromosome model in which the two arms of the chromosomes are 

arranged linearly as a series of loops perpendicular to the cell axis with the origin of 

replication (Ori) found at the flagellated pole of the bacterium and the terminal of 

replication (Ter) at the opposite end of the cell [95]. Similarly E. coli and B. subtilis 

genomes were also found to fold in the linear order of genes [127-129], although in E. 

coli, Ori and Ter were found in the cell centre. Additionally, it was shown that E. coli 

genome consists of four macro-domains of about 1Mb each and two less-constrained 

regions [130] that influence the segregation and mobility of the chromosome [131]. 

Those studies have shown evidence that chromosomal DNA is not distributed randomly 

within the cell and has a highly conserved organization. More recent approaches such as 

Chromosome Conformation Capture (3C) [132] helped in elucidating the three-

dimensional genome organization of genomes and the processes that shape the 

chromatin structure.  
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1.2  Modeling approaches of 3D genomes and their limitations 

 

The 3D organization of chromosomes has traditionally been studied by imaging 

methods such as fluorescent in situ hybridization (FISH), that uses florescent probes to 

bind to the genomic regions of interest, and then measures the spatial distances between 

pairs of florescent probes. But such techniques are limited by low throughput, low 

resolution and probe sequence specificity, resulting in an analysis of a few hundred cells 

[133]. Complementary to those imaging techniques, the latest developments of 3C-

based techniques [132] enabled the determination of global chromosome organization of 

genomes or genomic domains. Indeed such techniques give information on the physical 

position of genomic regions in the 3D organization of the genome and measure the 

frequency at which those regions interact in the 3D space. In 3C-based technologies 

chromatin is cross-linked with formaldehyde, in such a way that only DNA regions that 

are covalently linked together form ligation products [134]. In this respect, an important 

difference arises between eukaryotes and prokaryotes. While eukaryotic DNA is almost 

fully covered by protein complexes (nucleosomes), prokaryotic DNA, have DNA 

regions not occupied by proteins [135]. This raises the question of how formaldehyde 

crosslinking works since it ligates primary amines and bases. One explanation could be 

the fact that DNA is covered by polyamines that bind unspecifically and neutralize the 

DNA charge. Thus polyamines could act as crosslinking bridges in prokaryotes.  

 

a) Experimental methods 

The principle of 3C-based experiments is based on cells that are first cross-linked by 

formaldehyde, then digested by restriction enzymes, as for example using HindIII, and 

finally the digested fragments that were originally close in the 3D space, are ligated. For 

3C, ligation products are quantified by PCR using locus specific primers to measure the 

relative frequency of interactions of the regions assessed and identify chromatin loops 

formed in regions of several hundreds of kilobases distance. Further development of 

3C-based methods allowed to identify interactions between regions of larger distances, 

with 4C [136, 137], 5C [138] and Hi-C [139]. For 4C, inverse PCR is assessing the 
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interaction frequency of single loci against the whole genome, generating one-to-many 

interaction profiles [136, 137]. 5C generates many-to-many interaction profiles using 

annealing and ligating of oligonucleotides in a multiplex setting [138]. Finally Hi-C 

generates genome-wide interaction profiles using biotin to isolate the ligation products 

[139] (Fig. 2). 

 

 

Figure 3: Hi-C overview. Cells are cross-linked with formaldehyde, resulting in covalent links between 
spatially adjacent chromatin segments (DNA fragments: dark blue, red; Proteins, which can mediate such 
interactions, are shown in light blue and cyan). Chromatin is digested with a restriction enzyme and the 
resulting sticky ends are filled in with nucleotides, one of which is biotinylated (purple dot). Ligation is 
performed under extremely dilute conditions favoring intramolecular ligation events. DNA is then 
purified and sheared, and biotinylated junctions are isolated using streptavidin beads. Finally, paired-end 
sequencing identifies interacting fragments. The figure was extracted from [139]. 

 

More recent high-throughput derivation techniques, which improve the ligation step 

performance, have also been published with Tethered Conformation Capture (TTC) on a 

solid phase support [140] or inside the nucleus with in situ-Hi-C [141]. Additionally, 

chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) [142] can 

detect chromatin interactions bound by specific proteins at base-pair resolution. And the 

latest Capture-C [143] and T2C [144] techniques that use oligonucleotide capture 

technology with 3C and high-throughput sequencing allow to interrogate selected 

genomic regions at high-resolution. 

Compared to the microscopic techniques and other existing 3C-based methods, Hi-C 

technology provides high throughput genome-wide chromatin interaction maps over a 

large population of cells. The preprocessing of paired-end reads obtained from Hi-C 

experiments is an essential step of the Hi-C analysis that allows removing and 
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correcting experimental artifacts. First paired-end reads are mapped to the reference 

genome, then reads are filtered, followed by fragment-level filtering and finally reads 

are pooled into bins to create a Hi-C matrix. The mapping step can be done using 

softwares such as Bowtie [145], GEM [146] or MAQ [147]. Originally, the read length 

was fixed and a pair of reads was conserved only if both reads of the pair map uniquely 

with this fixed length. Otherwise if one of the two reads did not map in a unique site 

with the selected length, the pair of reads was discarded. An alternative was proposed to 

avoid discarding so many pairs of reads, with the iterative mapping strategy [148] that 

supports different read lengths for each read, resulting in a larger number of mapped 

reads. Then, mapped reads are subjected to filtering to discard self-circle and dangling 

ends products, given the directions of the two reads (Fig. 4). Additionally, redundant 

reads due to PCR amplification also need to be removed from the analysis. The 

remaining reads will then be subjected to fragment-level filtering to remove fragments 

whose mappability score is too low, as well as reads from restriction fragments that are 

too short (<100 bp) or too long (>100 kb) in length and to remove the top 0.5% 

fragments with the greatest number of reads which are likely arising from PCR 

amplification artifacts [148]. Finally reads are then pooled into bins or equal sized 

genomic loci to create a contact matrix at a resolution that depends on the total number 

of reads or sequencing depth and the restriction enzyme used.  
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Figure 4: Iterative mapping and filtering pipeline. This flowchart illustrates how read pairs are 
separately mapped to the genome at increasing truncation lengths and collected if uniquely mapped. Later 
reads are classified based on the relative positions and directions of both side, only valid pairs and single-
side are conserved for further analysis and self-circles, dangling ends and unmapped are discarded. This 
image was extracted from [148] 

 

The main sources of biases of Hi-C experiments are restrictions sites that are not 

uniformly distributed along the genome, digestion efficiency, GC content, sequence 

uniqueness and fragments lengths that leads to variable ligation efficiency [149]. 
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Several approaches have been recently proposed to correct and reduce those biases 

[148-150]. The first method published uses a probabilistic framework to remove 

systematic biases and significantly increases the reproducibility between biological 

replicates [149]. An alternative method was proposed, based on Poisson regression 

model, that has a reduced number of parameters and a shorter computing time [150]. 

More recently the iterative correction and eigenvector decomposition (ICE) method, 

which is based on the equal visibility assumption, resulted in good reproducibility 

between replicates with different restriction enzymes [148]. Compared with previous 

methods, which required the specification of known biases, this method can remove any 

type of known or unknown biases. However this normalization method is only valid for 

equal sized genomic loci, or bins. Although those methods are effectively reducing 

biases, additional controls are necessary for further validation such as the 

reproducibility of biological replicates.  

 

b) Modeling methods 

The resulting filtered interaction matrices have been extensively used for 

computationally analyzing the organization of genomes and genomic domains [151]. In 

particular, a significant number of approaches for modeling the 3D organization of 

genomes have recently flourished [140, 152-156]. The main goal of such approaches is 

to provide an accurate 3D representation of the bi-dimensional interaction matrices, 

which can then be more easily explored to extract biological insights. Chromatin 

modeling is performed using two main complementary methodologies to simulate an 

ensemble of 3D conformations of the chromosomes, compatible with input contact 

maps [151]. The first, known as restraint-based (RB) modeling assumes a relationship 

between the frequencies of interactions of genomic regions and their distances in 3D 

space, transforming those frequencies into spatial restraints and aiming to satisfy as 

many distance constraints as possible. The second, called thermodynamics-based (TB) 

modeling, simulate polymer fibers applying physical principles of the chromatin fiber, 

with the aim to identify genome conformations that, as an ensemble, reproduce the 

observed experimental frequencies.  

Within RB approaches, there are two main categories, those that aim to find a single 
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solution of genome conformation and those that explore the variability of the 

experimental data over a population of cells and simulate a large number of solutions of 

genome conformation. The first category that converts the interaction matrix into a 3D 

object [154, 157], are more appropriate for single-cell 3C-based studies [158]. In the 

second category, frequencies of interactions between genomic regions are converted 

into a set of spatial restraints to build 3D models of the genome by satisfying as many 

input restraints as possible using Monte Carlo sampling [140, 156, 159] or Bayesian 

approaches [153, 155, 160]. Some of the approaches are doing several independent 

simulations, based on restraints on the entire interaction map, to reproduce the 

experimental variability, while others approaches are simulating sub-populations of 

genomes, where each subpopulation restraints are based on a selection of interactions, 

and in this case, the sub-populations are representing the experimental variability [140].  

RB approaches are able to simulate genome conformation faster than TB approaches, as 

they do not fully take into considerations the physical properties of chromatin fiber. 

Unfortunately, TB methods simulations are time-consuming and not suitable for 

simulations of full eukaryotic chromosome. Additionally, TB approaches require a 

priori characterization of the chromatin fiber, which could vary across the population of 

cells, or not always be experimentally defined. Whereas RB approaches do not take 

chromatin fiber properties as input in the simulations and therefore might be more 

suitable to reproduce the heterogeneity of population of cells. 

RB methods have been already applied to define chromosomal organization features as 

for example for the identification of chromatin globules in the alpha-globin domain of 

the human genome [161], the ellipsoidal conformation of C. crescentus genome [162], 

the genomic organization of the yeast [159], the spatial organization of the X 

inactivation center in the human genome [156] and the effect of hormones on TADs 

structure [163]. However, no internal and systematic analysis of the accuracy of the 

resulting models has been performed and only an assessment of the reproducibility of 

these 3D reconstruction methods has been addressed [164]. The goal of the first chapter 

of the thesis is to address the lack of such analysis by assessing the limits of 3D 

reconstruction using restraint-based modeling approaches. We focused on a recently 

developed RB method for modeling 3D structures of genomes and genomic domains 

called TADbit  [152], that was developed around the Integrative Modeling Platform 

(IMP, http://integrativemodeing.org), a general framework for restraint-based modeling 
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of 3D bio-molecular structures [165]. Although our analysis was based solely on models 

generated by TADbit, the conclusions are likely to hold for alternative mean-field 

restraint-based approaches.  
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1.3 Application on Mycoplasma pneumoniae to understand the 

impact of structural organization in transcriptional regulation 

 

As previously mentioned, 3C-based approaches helped in elucidating the bacterial 

chromosome organization and its regulation. Such studies have been carried out in B. 

subtilis with a Hi-C map at 30kb resolution [166], E. coli at 20kb [167] and C. 

crescentus at 13kb [162] showing that genome structure is globally related to the 

process of chromosome segregation in C. crescentus and DNA replication and 

transcription in E. coli. More recently, a high-resolution Hi-C map of C. crescentus at 

10kb [113] revealed that its genome is divided into 23 CIDs that are not affected by the 

deletion of HU or SMC proteins. No such domains were described in the lower 

resolution Hi-C maps of B. subtilis and E. coli. Moreover, it was shown that histone-like 

proteins in E. coli do not contribute to the global organization of the genome [167]. 

These bacteria have large and complex genomes with sizes above 4 Mbp, more than 300 

regulatory TFs in E. Coli [168] and 120 TFs in B. subtilis [169], multiple DNA 

structural proteins, and several sigma factors that play key roles in responding to 

physiological and environmental signals [170]. The goal of the chapter two of this thesis 

is to understand how a bacterial chromosome structure organization is achieved and 

identify its role in transcriptional regulation. To do so, we have looked for a genome 

reduced bacterium, M. pneumoniae, a human pathogenic bacterium causing atypical 

pneumonia [171]. 

 

a) Mycoplasmas 

The infection caused by M. pneumoniae is slow to develop and includes symptoms such 

as fever, cough, sore throat and hoarseness. It is commonly treated with antibiotic [172]. 

Like retroviruses, Mycoplasmas have the capacity for cellular invasion, self-replication 

[173] and the initiation of a variety of immune responses. However, unlike viruses, they 

are viable in body fluids and do not require living cell hosts for DNA replication and 

growth. They are distinguished phenotypically by their minute size and a lack of a cell 

wall [174], bounded by a plasma membrane only, which taxonomically separate them 
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from other bacteria in a class named Mollicutes (mollis, soft; cutis, skin, in Latin). The 

term mycoplasma (mykes: fungus and plasma, formed, in Greek) replaced the term 

pleuropneumonia-like organisms (PPLO) that was found in various diseases of animals 

and human in early 1900 [175]. The allusion to a fungus in their name was originally 

describing the growth of Mycoplasma mycoides, but it was conserved afterwards. 

Within the class, there are 102 species of mycoplasmas and they are phylogenetically 

related to the eubacterial subgroup of gram-positive that included the bacilli, 

streptococci and lactobacilli [176]. Additionally, they are characterized by their small 

genomes consisting of a single circular chromosome containing 0.58 to 1.35 kilobases 

(kb) with a low GC content [177]. In 1989, the small subunit of the 16S rRNA was used 

to develop a classification system over 50 mycoplasmas species and their walled 

relatives [178]. The class Mollicutes was therefore divided into five groups: the 

pneumoniae group, the hominis group, the spiroplasma group, the anaeroplasma group 

and a fifth group containing only the Asteroleplasma anaerobiu. Mollicutes are thought 

to have evolved from a common ancestor with Firmicutes through successive genome 

losses [179]. The result of a gradual reduction in genome size from a common ancestor 

is known as degenerative evolution [176]. 

Mycoplasmas usually exhibit tissue preference with M. pneumoniae preferentially found 

in respiratory tract. The closest relatives of M. pneumoniae are the human urogenital 

pathogen M. genitalium [180] and the avian pathogen Mycoplasma gallisepticum [181]. 

In contrast to M. pneumoniae, M. genitalium infections are typically found in the 

urogenital tract [180] and M. gallisepticum infections are in the respiratory tract and 

conjunctiva of avian species [181]. With the lack of a cell wall, Mycoplasmas are 

pleomorphic [182] and have different morphologies ranging from rod-shaped with 

Mycoplasma insons [183], coccus-shaped with Mycoplasma hyopneumoniae [184], to 

flask-shaped with M. pneumoniae.  

 

b) M. pneumoniae morphology 

M. pneumoniae grows forming dense networks on the surface and in colonies composed 

mainly of rounded and elongated forms [185]. Morphological changes from spherical to 

filamentous have been observed with scanning-beam electron microscope (SEM) in 

cultures of cells grown and fixed in liquid suspension, varying during its life cycle 
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[186]. In early growth phase, from 8h to 2 days of growth, the predominant morphology 

is symmetric round forms with aggregates and clusters of tightly packed spherical cells. 

While after 2 to 6 days of growth, cells have filamentous both branched and straight 

forms, as well as flask-shaped in microcolony, to finally turn with asymmetrical and 

larger round forms in later growth phases. The first images of transmission electron 

microscopy (TEM) with carbon replicas [187] showed three-dimensional shape of 

Mycoplasmas attached to surfaced, comparable to those acquired by SEM across the 

growth cycle [188].  

Mycoplasmas represent the smallest self-replicating organisms, in both genome size and 

cellular dimensions [189]. According to our estimation, M. pneumoniae cell has an 

average length of 1.38 µm, which can reach up to 2.5 µm and an average width of 365 

nm (Fig. 5), compared to a length of 1 to 4 µm in a typical bacillus and 0.5 to 1 µm in 

width. Regarding the cell volume, we estimated it to be of 0.08 µm3, compared to 1 µm3 

in E. coli.  

 

 

Figure 5 TEM image of M. pneumoniae cell with quick-freeze deep-etch replica 
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c) M. pneumoniae ultrastructure 

The ultrastructure of Mycoplasmas was studied by electron microscopy, and a 

cystoskeleton-like structure was detected in M. pneumoniae with a rod-like structure in 

the end of the cell, the tip or attachment organelle (AO), as well as thin fibrous 

structures, cytoskeletal filaments, extending in the cell body [190-192] (Fig. 6). Indeed 

the flask shape of M. pneumoniae is conferred by the presence of this polarized 

structure, the AO that has a length between 220-300 nm long and about 50-80 nm width 

with a terminal button and a basal node [190]. 

 

 

Figure 6: Scanning electron micrograph of Mycoplasma Pneumoniae cells grown on glass 
coverslips and schematic of mycoplasma cell. The figure was adapted from [192]. 
 

 

Images from cryo-ultrathin sectioning of the tip show a rod-like structure that striped 

perpendicular to its long axis [193] (Fig. 7). 
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Figure 7: Ultrathin cryosection of M. pneumoniae. The arrow marks a structure in the tip of 
attachment organelle, which is striped perpendicular to its long axis. Bar =100 nm. The image was 
extracted from [193]. 
 

Later studies using cryo-electron tomography were able to visualize the cells three-

dimensionally and resolved the structure of the tip [194] that is surrounded by an 

electron-dense complex and a structure at the proximal end of the rod that attaches the 

rod to the cell membrane. High-resolution images of the electron-dense core detail the 

structure of the core, which can be divided into three regions: a terminal button, a rod 

made up of two parallel subunits and a bowl-shaped base [195].  

 

d) M. pneumoniae gliding motility 

This complex terminal structure AO, that is not found in model bacteria like E. coli 

enables M. pneumoniae to adhere to the host cell surface [196] and give them ability to 

glide on surface like glass [197]. Similarly, M. genitalium, Mycoplasma imitans, M. 

gallisepticum and Mycoplasma pirum have an attachment organelle structure [198-200]. 

This membrane-bound extension of the cell, which is supported by cytoskeleton-like 

structure, is characterized by a dense cluster of the adhesin protein P1 [196, 201, 202] 

that enables the cell to interact productively with host cells by cytoadherence. 

Additionally P30 proteins are only found at the AO [203, 204]. Surface proteins P1 and 

P30 are thought to function as adhesins to allow successful colonization of the 

respiratory tract with mycoplasmas penetrance and adherence to the respiratory 

epithelium [205]. P1 is essential for virulence [196] and is considered to be the primary 
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adhesion protein. Indeed the addition of antibodies against P1 to a population of 

attached and motile cells resulted in a decrease in motility and a final release from the 

substrate [206]. Similarly, antibodies to P30 interfere with the attachment to surface 

[207]. Moreover P30 also plays a role in gliding motility, as mutants missing the protein 

are unable to glide [208] and mutants that are missing some of the C-terminal repeats of 

the P30 are capable of gliding but at a reduced speed [209]. Other essential proteins for 

attachment and gliding were found in the electron-dense core of the AO in addition to 

the adhesins such as HMW1 and HMW2, P24, P28, P65 and P41 [204, 210-213]. Most 

of these proteins are helping in stabilizing or localizing other proteins during the 

assembly of the electron-dense core, ensuring the proper formation of the AO [214]. 

The core proteins are therefore allowing the cytadherence of M. pneumoniae. Indeed 

without a core, the AO does not form properly because the adhesins do not localized in 

the tip and therefore the cell cannot adhere to host cells, making them avirulent [204]. A 

significant number of species of mycoplasmas are motile and the movement is in the 

direction of the AO [215]. Gliding motility is dependent on adherence via the adhesins 

found in the AO, leading the cell in a continuous unidirectional pattern. Mycoplasma 

mobile is the fastest of the species, as indicated by his name, with a speed of gliding 

motility of 2.0-4.5 µm/s [216] without rest periods, compared to an average speed of 

0.3-0.4 µm/s in M. pneumoniae [197]. Their ability to move is related to the 

pathogenicity, allowing the cells to spread out during an infection, which is therefore an 

essential function of M. pneumoniae [217]. 

 

e) M. pneumoniae cell division 

The cell division of the Mollicutes has been less studied than model bacteria such as E. 

coli, B. subtilis and C. crescentus. In M. pneumoniae, the cell division is linked to the 

AO [212], that is the leading end of the cell during gliding motility [182] and the 

location of the gliding motor [218]. AO has been suggested to have an essential role in 

the cell division process.  It was shown that during cell division, the AO duplicates itself 

and move towards the opposite pole of the cell [211] (Fig. 8). Imaging of cells stained 

for P1, that marks the number and position of terminal organelles, and for DNA, using 

4’,6-diamidino-2-phenylindole (DAPI) allow to identify that duplication of the AO is 

also accompanied by an increase in the amount of DNA within the cell, that increases as 
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the distance between the two AO increases [211]. These data strongly suggest that AO 

duplication is linked not only to the cell division but also to DNA replication and might 

also be related to nucleoid segregation. In addition, it was shown that the nucleoid of M. 

pneumoniae appears to occupy nearly the entire volume of the cell [211]. Furthermore, 

in Mycoplasma gallisepticum, attachment organelles were found enriched for newly 

synthesized DNA, in a subcellular fraction of cells [219]. Altogether these results 

suggest a possible interaction between the chromosome and the AO during cell division. 

The segregation of chromosome could be driven by interactions between the 

chromosome and the migrating AO during cell division, further supported by the 

absence of partitioning machinery in M. pneumoniae, compared to model bacteria. We 

have thus investigated whether we observed such interactions between a specific region 

of the chromosome and AO that could give insights into this possible role of AO in 

chromosome segregation. 

 

 

 
Figure 8: Model for cell division scheme in M. pneumoniae in relation to the formation and 
migration of attachment organelles. M. pneumoniae cell is represented with the AO at one cell pole and 
its nucleoid is shown in the center with oblique lines. The cell division process is depicted in the serie of 
images. First the cell has a single AO, then the AO is duplicated and migrate to the opposite cell pole, 
also accompanied by an increase in the amount of DNA. Finally the two cells segregates. The image was 
extracted from [211]. 
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Later studies revealed that the new AO remains attached to the surface while the old AO 

pulls the cell away [220], allowing the migration of the old AO to the opposite pole 

before cytokinesis occurs. On occasion they observed that the duplication and 

separation of AO is followed directly by cytokinesis, as previously described [211], but 

for most dividing cells examined, additional AO developed before new daughter cells 

emerged [220] (Fig. 9). 

 

 

 

 
Figure 9: Model for M. pneumoniae terminal organelle duplication and growth cycle. The yellow 
circle represents the initial terminal organelle, and green, red, and blue circles represent subsequent 
organelles, appearing in that order. The dashed arrows reflect movement of the indicated terminal 
organelle, and open arrows indicate cytokinesis. Solid arrows indicate steps in the cell cycle, with arrow 
size reflecting relative frequency. In most cases, multiple duplications of the terminal organelle occur 
before daughter cells emerge (a), although rarely some cells do undergo a single duplication of the 
terminal organelle followed by cytokinesis (b), according to the previous model for cell division in M. 
pneumoniae [211]. The image was extracted from [220] 

 

These data indicate that AO duplication and cytokinesis are not tightly coordinated. 

Whether the AO duplication is coordinated with DNA replication remains unclear, as 

the previous study was limited to M. pneumoniae cells having only one or two AO 
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[211]. Further characterization of the possible interaction between the AO and the 

chromosome would give insights into the dynamics of DNA replication in M. 

pneumoniae and the possible role of AO in DNA segregation. 

 

f) M. pneumoniae transcriptional regulation 

Mycoplasmas fast evolution has been marked by genome reduction and therefore a 

reduced coding ability, as well as a limited number of metabolic pathways [179]. M. 

pneumoniae has a single circular double-stranded genome of only 816,394 bp [221], 

which is about five smaller than the E. coli genome comprising 4,639,221 bp [222]. It 

codes for 694 ORFs (32 of which are smORFs having less than 100aa), 311 ncRNAs 

and 43 conventional RNAs [223], compared with about 4,300 genes in E. coli [222] and 

more than 20,000 in human [224]. The related species M. genitalium have even fewer 

genes with only 482 protein-coding genes [225]. The small genome of M. pneumoniae 

and its limited biosynthetic capabilities requires a complex medium for their in vitro 

culturing. This organism is particularly sensitive to osmotic stability, due to the lack of 

a rigid cell wall, and desiccation. As its reduced genome is less complex than those of 

other bacteria, M. pneumoniae offers a unique model to understand an entire organism 

that can be grown axenically in a laboratory.   

In 1984, Morowitz was the first researcher to aim at defining the comprehensive 

machine of mycoplasmas [226]. Indeed, the organism is ideal not only to study genomes 

of a minimal cell, but also to understand the evolution of “reduced genomes” and give 

insights into the minimal cellular requirements. In recent years, M. pneumoniae has 

been systematically characterized in a quantitative manner, revealing an unexpected 

complexity of its transcriptome, the main components of its proteome organization as 

well as metabolism organization [223, 227-233]. Altogether, it has been proposed that 

the minimal essential genome for living mycoplasmas is comprised of 33% of the total 

genome (269,410 bp) [223]. Despite its genomic reduction, efficient antisense detection 

and the precise mapping of transcription start sites and untranslated regions, as well as 

transcriptional responses to perturbations, revealed that M. pneumoniae transcriptional 

machinery is much more complex than previously thought [227]. 

With few DNA binding protein, transcription factors (Table 2) and only two sigma 

factors: MPN352 and MPN626 that recognizes a slightly altered version of a standard 
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sigma 70 promoter region [229], this organism is an ideal biological model to study the 

impact of genome architecture organization on transcriptional regulation. Indeed 

compared to the most studied bacteria E. coli, C. crescentus and B. subtilis with several 

TFs and DNA bindings proteins, M. pneumoniae is ideal to uncover the specific role of 

chromatin structure in transcriptional regulation, in the absence of many NAP, which 

are one of the most important factors of DNA compaction. 
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2. ASSESSING THE LIMITS OF RESTRAINT-BASED 3D 
MODELING OF GENOMES AND GENOMIC DOMAINS  

 
 

2.1 Abstract 

Restraint-based modeling of genomes has been recently explored with the advent of 

Chromosome Conformation Capture (3C-based) experiments. We previously developed 

a reconstruction method to resolve the 3D architecture of both prokaryotic and 

eukaryotic genomes using 3C-based data. These models were congruent with 

fluorescent imaging validation. However, the limits of such methods have not 

systematically been assessed. Here we propose the first evaluation of a mean field 

restraint-based reconstruction of genomes by considering diverse chromosome 

architectures and different levels of data noise and structural variability. The results 

show that: first, current scoring functions for 3D reconstruction correlate with the 

accuracy of the models; second, reconstructed models are robust to noise but sensitive 

to structural variability; third, the local structure organization of genomes, such as 

Topologically Associating Domains, results in more accurate models; fourth, to a 

certain extent, the models capture the intrinsic structural variability in the input 

matrices; and fifth, the accuracy of the models can be a priori predicted by analyzing 

the properties of the interaction matrices. In summary, our work provides a systematic 

analysis of the limitations of a mean-field restrain-based method, which could be taken 

into consideration in further development of methods as well as their applications. 
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2.2 Introduction 

Recent studies of the three-dimensional conformation of genomes are revealing insights 

into the organization and the regulation of biological processes, such as gene expression 

regulation and replication [15, 16, 141, 151, 234, 235]. The advent of the so-called 

Chromosome Conformation Capture (3C) assays [132], which allowed identifying 

chromatin-looping interactions between pairs of loci, helped deciphering some of the 

key elements organizing the genomes. High-throughput derivations of genome-wide 

3C-based assays were established with Hi-C technologies [139] for an unbiased 

identification of chromatin interactions. The resulting genome interaction matrices from 

Hi-C experiments have been extensively used for computationally analyzing the 

organization of genomes and genomic domains [151]. In particular, a significant 

number of new approaches for modeling the three-dimensional organization of genomes 

have recently flourished [152-156, 236]. The main goal of such approaches is to provide 

an accurate 3D representation of the bi-dimensional interaction matrices, which can then 

be more easily explored to extract biological insights. One type of methods for building 

3D models from interaction matrices relies on the existence of a limited number of 

conformational states in the cell. Such methods are regarded as mean-field approaches 

and are able to capture, to a certain degree, the structural variability around these mean 

structures [237].  

We recently developed a mean-field method for modeling 3D structures of genomes and 

genomic domains based on 3C interaction data [152]. Our approach, called TADbit, was 

developed around the Integrative Modeling Platform (IMP, 

http://integrativemodeing.org), a general framework for restraint-based modeling of 3D 

bio-molecular structures [238]. Briefly, our method uses chromatin interaction 

frequencies derived from experiments as a proxy of spatial proximity between the 

ligation products of the 3C libraries. Two fragments of DNA that interact with high 

frequency are dynamically placed close in space in our models while two fragments that 

do not interact as often will be kept apart. Our method has been successfully applied to 

model the structures of genomes and genomic domains in eukaryote and prokaryote 

organisms [161, 162, 239]. In all of our studies, the final models were partially validated 

by assessing their accuracy using Fluorescence in situ hybridization (FISH) imaging. 

However, no internal and systematic analysis of the accuracy of the resulting models 
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has been performed and only an assessment of the reproducibility of these 3D 

reconstruction methods has been addressed [164].  

Here, our main objective is to address the lack of such analysis by assessing the limits 

of 3D reconstruction based on mean-field restraint-based modeling. Although our 

analysis is based solely on models generated by TADbit, the conclusions are likely to 

hold for alternative mean-field restraint-based approaches. Over the next sections of the 

manuscript, we detail the methods for simulating “toy genome” structures, deriving 

interaction matrices from them, reconstructing their 3D structure, assessing their quality 

and evaluating their accuracy using the MMP score (Materials and Methods). Next, we 

describe the results of assessing the predictive power for determining the “real” 

assembly structure of “toy genome” structures as well as a priori evaluate the input 

interaction matrices modeling potential (Results). Finally, we summarize our 

conclusions on the limits of mean-field restraint-based approaches and how a measure 

such the Matrix Modeling Potential (MMP) can be used to a priori evaluate the 

reconstructed models (Discussion). 
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2.3 Material and Methods 
 

a) Overall pipeline 
With the aim of assessing the accuracy of restraint-based modeling of genomes and 

genomic domains by TADbit [152, 240] we devised a computational pipeline consisting 

of the following three steps (Fig. 1A). First, using polymer modeling we simulated six 

artificially generated genomes (here called “toy genomes”) of a single chromosome 

with different architectures, from which we extracted 168 simulated interaction matrices 

with increasing noise levels and structural diversity. Second, we reconstructed with 

TADbit three-dimensional (3D) models of the toy genomes based on their simulated 

“Hi-C” interaction matrices. And third, we analyzed the reconstructed models for each 

simulation to assess their structural similarity to the original simulated toy genomes. 

 



 

 36 

 
Figure 1. Matrix generation and model building. (A) Flowchart from toy genome generation to 
reconstructed 3D models. (B) Types of simulated genomic architectures. (C) Genomic density of 
simulated genomes. (D) Structural variability depending on the selection of conformations between 
distant times steps in the simulated genomes. (E) Derivation of interaction matrices from toy genome 
structures based on simulated restriction sites (grey arrows) and distance cut-off. Noise was added by a 
Monte-Carlo procedure with a probability proportional to the distance between the simulated restriction 
sites. 
 

 

b) Matrix generation from toy genome architectures 
The toy genomes were generated using a worm-like chain (WLC) model, which 

provides a coarse-grained description of protein-coated DNA (e.g., the eukaryotic 

chromatin). At the “microscopic level”, a WLC is characterized by three parameters: the 

diameter (nm), the persistence length (nm) and the linear density (bp/nm), which 

respectively account for the physical thickness, the stiffness and the level of DNA 

compaction of the chain. Here, we considered a “chromatin fiber” structure with a 
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diameter of 30 nm and a persistence length of 100 nm, and investigated three densities: 

40, 75 and 150 bp/nm. The toy genomes consisted of a single circular chromosome of 

approximately 1Mb long (Fig. 1B) with a circular architecture to prevent the formation 

of knots during the WLC simulation. For half of the simulations, we forced into the toy-

genomes the formation of a Topologically Associated Domain (TAD)-like architecture 

by defining a limited number of locally interacting regions in the chromosome. To this 

end, we added a harmonic potential between all pairs of loci within the region 

considered as TAD so that they were constrained to remain close-by in space [241]. 

Altogether, considering the combination of the three linear densities and the 

architectural properties (TAD or non-TAD), we investigated six types of genome 

architectures. Using a Monte-Carlo algorithm [242], we then simulated the equilibrium 

folding of these chromosomes in a cube of side 400 nm, which leads to the typical DNA 

density that is found in eukaryotic nucleus (0.015 bp*nm-3). 

Each of the six simulations generated many successive conformations of the 

chromosomes, whose likelihood is dictated by thermodynamic laws [243]. Using the 

outcome of these simulations, we generated simulated Hi-C matrices as explained 

below. To this end, each spatial conformation of the toy genome was segmented into N 

spherical bins of equal lengths, which determined the resolution of the Hi-C matrix. 

Given the ~1Mb length of our simulated chromosomes, we respectively considered bins 

of length 1.6 kb (626 bins), 2.5 kb (402 bins) and 5 Kb (202 bins) for the bp densities 

40, 75 and 150 bp/nm, respectively (Fig. 1C). 

To assess the impact of cell-to-cell variability on our reconstruction method [158], we 

examined the effect of increasing the level of structural variability by selecting 

conformations of the toy genomes at different times of the simulations. For each of the 

six simulations (corresponding to the six chromosome architectures), we created a total 

of seven sets of 100 models, each differing in the number of simulation steps that 

separated them (Δt) from 1 to 1,000,000 steps. The corresponding sets of toy genomes 

were named set 0 to 6. The larger the Δt between two selected models, the larger their 

structural variability (Fig. 1D).  

Finally, for each set of toy genome structures we derived an interaction matrix to obtain 

a “simulated Hi-C matrix” by computationally mimicking the published Hi-C protocol 

[139] (Fig. 1E). We set a restriction enzyme cutting frequency and defined all restriction 

site positions that would be tested for interactions (i.e., contact in the models). We 
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considered about 2,000 restriction sites over the 1Mb toy genome, which resulted in an 

average cutting frequency of 500 bp. We selected this frequency to consider it a middle 

range value of the restriction site frequencies used in the Hi-C experiments [134]. 

Restriction enzymes recognizing a 6-base pair sequence (e.g., HindIII), have an 

approximate cutting frequency of 4 Kb in the Human genome, while restriction 

enzymes recognizing a 4-base pair sequence cut on average every 256 base pairs. The 

genomic position of each restriction site was determined randomly, maintaining the 

defined cutting frequency of 500 bp per genome. Once the restriction sites were 

assigned, we interpolated its 3D coordinates in the simulated toy genomes to obtain 

Euclidian distances between all the restriction sites. Next, we applied a 200 nm distance 

cut-off to generate a contact map between all the restriction sites in a set of structures 

(Fig. 1E); this cut-off can be viewed as a maximum size of protein macro-complexes 

that can lead to Hi-C interactions through formaldehyde cross-linking. In addition, since 

several steps of the Hi-C protocol may affect the detection of interacting fragments 

(e.g., inefficient formaldehyde cross-linking or inefficient digestion and/or re-ligation) 

[134], we simulated the experimental noise by selecting pairwise interactions with a 

probability defined by a Gaussian procedure with an α value varying from 50 to 200 in 

steps of 50. The α parameter is related to the decay of the Gaussian function between 

the probability of interactions and the Euclidian distance between the restriction sites. A 

large α of 200 will increase the total probability of interactions, while a smaller α of 50 

will decrease the total probability of interactions. The selection of the Gaussian 

procedure allowed for a large dynamical range of maps across the tested structural 

variability. The resulting interaction matrices, that is, our “simulated Hi-C matrices”, 

thus contain a varying proportion of noise compared to a direct contact map generated 

from the models (Fig. 1E). Finally, the total number of interactions between restriction 

sites was then pooled into bins according to the linear density of the genome (see 

above). The simulated Hi-C matrices contain thus a varying degree of experimental 

noise (α from 50 to 200), which are then complemented by an increasing degree of 

structural variability (sets 0 to 6) representing cell-to-cell variability in a population of 

millions of cells of a typical Hi-C experiment (Fig. 2). 

Before building models using TADbit, the input matrices were normalized by first 

calculating the weight (Wi,j) for each pair of interactions: 
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where Mi,j is the raw counts in the simulated interaction matrix between bins i and j. The 

normalized matrix resulted from the multiplication of Mi,j by its weight Wi,j, which 

corresponds to a single iteration of the ICE normalization procedure [244]. Next, a 

decimal logarithm transformation was applied to the normalized interactions and its 

Zscorei,j was computed for non-zero interaction cells in the matrix as: 

𝑍𝑠𝑐𝑜𝑟𝑒!,! =   
𝑙𝑜𝑔!" 𝑀!,!×  𝑤!,! −   𝜇

𝜎  

where the average µ and the standard deviation σ from the entire matrix were obtained 

as: 
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The resulting Z-scored matrices were used as input for modeling with TADbit. 

 

c) Model building by TADbit 
To build the 3D models of the genomes, we used the TADbit python library developed 

around the Integrative Modeling Platform (IMP), which involves the translation of the 

data into particles; the assignment of spatial restraints between them and the search for 

optimal solutions maximizing the satisfaction of the imposed restraints. Next, we 

describe the used of our modeling protocol, which has been previously detailed [240]. 

Briefly, 3D models in TADbit are defined by N particles determined by the resolution 

of the input interaction matrix. Each particle has an excluded volume defined as a 

sphere with a radius proportional to the number of base-pairs in each particle. Here, we 

consider an inverse relationship between spatial distances and the corresponding 

frequencies of interactions. Given this assumption, TADbit transforms the frequencies 

of interactions into spatial restraints differently for consecutive and non-consecutive 

particles. Two consecutive particles are spatially restrained (that is, kept at an 

equilibrium distance) according to their occupancy, which corresponds to the sum of 

their radii. Non-consecutive particles are restrained based on empirically identified 

parameters that define a set of restraints, their distances, and the forces applied to them. 

TADbit empirically identifies three optimal parameters using a grid-search where a 

limited number of models are built for each set of parameters. The three parameters are: 

the proximal distance between two non-interacting particles, a lower-bound cut-off to 
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define particles that do not interact frequently and an upper-bound cut-off defining 

particles that do interact frequently. The resulting models for each combination of 

parameters are then used to calculate a contact map to compare it to the input interaction 

matrix by calculating the Spearman correlation coefficient between the two matrices 

(here called IMPSCC). Thus, similarly to many restraint-based methods for 3D genome 

reconstruction, TADbit sampling aims at identifying a set of models that maximizes the 

similarity between the models contact map and the Hi-C interaction matrix. Once the 

optimal parameters are identified, restraints are applied to the particles. Pairs of particles 

with contact frequencies above the upper-bound threshold are restrained to be at a given 

equilibrium distance. Pairs of particles with contact frequencies below the lower-bound 

threshold are maintained further than an equilibrium distance. Finally, TADbit uses a 

Monte Carlo simulated annealing sampling procedure to identify a set of 3D models that 

best satisfy the imposed restraints. 

 

d) Model accuracy 
We assessed the structure similarity between the original toy genome architecture sets 

and the reconstructed models by computing two different measures. First, the distance 

Root Mean Square Deviation (dRMSD) between the best-reconstructed model and each 

of the 100 original selected structures was calculated after optimal superimposition of 

their structures by: 

𝑑𝑅𝑀𝑆𝐷 =    𝑂!,! −   𝑅!,!
!

!!

 

 

where Oij and Rij are the distance vectors between particle i and j in the original structure 

and in the reconstructed model, respectively. The dRMSD is a measure that varies 

between 0, when the two structures are identical, and a large number, proportional to the 

size of the object measured, when the two structures are completely different. The 

maximum dRMSD depends on the size of the object and the number of particles 

compared. Therefore, the reconstructed models were scaled to have the same 

dimensions in the three axes as the toy structures before structural superimposing them. 

The scale factor was calculated as the average ratio between the maximum distances in 

x-, y- and z-axis of the reconstructed models and the toy structures. Second, a Spearman 

correlation coefficient (dSCC) between all pairwise distances of particles in the best-
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reconstructed model and the corresponding ones in each of the 100 original toy 

structures was calculated. The dSCC measure varies between -1.0 and 1.0 for 

comparisons where the distances perfectly anti-correlate or correlate, respectively. 

Therefore, a model with a dSCC of 1.0 indicates good accuracy regardless of the scale 

of the compared structure. 

 

e) Matrix Modeling Potential 
With the aim of identifying a priori whether an interaction matrix has the potential of 

being use for modeling, we calculated from each of the 168 simulated Hi-C matrices 

three different measures: (i) the contribution of the significant eigenvectors from the 

matrix, (ii) the skewness and (iii) the kurtosis of the distribution of Z-scores in the 

matrix. 

The contribution of the significant eigenvectors (SEV) score was obtained by first 

calculating the eigenvectors of the interaction matrix and the percentage of contribution 

of their corresponding eigenvalues. Next, we randomized 100 times the interaction 

matrix by shuffling the cells in the matrix that are equidistant from the diagonal. This 

shuffling strategy preserved the expected exponential decay of interactions as we go 

from the diagonal to the anti-diagonal corners of the matrix. From the 100 randomized 

matrices, we also calculated their eigenvectors and the percentage of contribution of 

their corresponding eigenvalues. We then set as “significant eigenvector” those with 

eigenvalues above the mean eigenvalue plus two standard deviations of the equivalent 

eigenvectors in the random set of matrices. The final SEV score was the sum of the 

differences of the contribution of eigenvalues of all significant eigenvectors: 

𝑆𝐸𝑉 =    𝑒𝑣! −   𝑟𝑒𝑣!
!

 

where 𝑒𝑣!   corresponds to the contribution of the eigenvalue of the significant 

eigenvector i in the interaction matrix and rev! is the average contribution of the 

eigenvalue of the same eigenvector in the randomized 100 interaction matrices. Overall, 

large SEV scores are indicative of good potential for modeling. Intuitively, they indicate 

the presence of specific contacts that are not just the results of a random conformation 

of the chromosome. 

The other two descriptive statistics were calculated directly from the distribution of Z-

scores in the Hi-C matrices. First, the skewness statistic (SK) assesses in a single 

measure whether a score is skewed towards the right or left tails of its distribution. The 
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kurtosis statistic (KT) complements the interpretation of the skewness. For example, 

matrices with skewness close to zero may result from multi-modal distributions of Z-

scores. In such cases, the distribution will result in large KT scores. Therefore, the SK 

score will indicate skewness of the matrix towards positive or negative Z-scores and the 

KT score will indicate whether a matrix results or not in single-peaked distribution of Z-

scores.  For optimal modeling in TADbit, we expect no skewness and a single peak in 

the Z-score distribution. Both the skewness and the kurtosis statistic where estimated 

using the SciPy python library (http://www.scipy.org). The SK and KT are calculated 

as: 

𝑆𝐾 =      !!!  ! !!
!!!

!!!  ! !! !!
!!!

     and    𝐾𝑇 =      !!!  ! !!
!!!

!!!  ! !!!
!!!

      

 

where N is the number of bins in the Z-score distribution and xi corresponds to the 

frequency of a given bin i. 

Finally, to calculate the Matrix Modeling Potential (MMP) score, we used the size 

(number of bins in the matrix), SEV, SK and KT for all 168 simulated Hi-C matrices as 

input to train a classifier with a linear regression kernel using Weka [245]. During the 

training of the classifier, we used the actual accuracy of the produced 3D models (that 

is, the dSCC measure) as a target goal. We decided to use the dSCC measure instead of 

the dRMSD accuracy measure because it is independent of the scale and size of the 

objects to compare. The classifier, thus, aims at identifying a linear combination of the 

four matrix measures to produce a final score that best correlates with the dSCC of the 

models. We trained the classifier with a 10-fold cross-validation procedure, which 

resulted in a correlation coefficient of 0.84 between the MMP score and the dSCC 

measure. The MMP score is calculated as: 

 

𝑀𝑀𝑃 = −0.0002 ∗ 𝑆𝑖𝑧𝑒   +   0.0335 ∗ 𝑆𝐾 − 0.0229 ∗ 𝐾𝑈 + 0.0069 ∗ 𝑆𝐸𝑉 + 0.8126 
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2.4 Results 

a) Toy genome structures and derived matrices 

We investigated the reconstruction efficiency of six types of toy genomes hereafter 

labeled by ch40, ch75, ch150, ch40_TAD, ch75_TAD and ch150_TAD depending on 

the bp density along the chromosome and on the presence, or not, of TAD-like 

organization. To this end, for each toy genome, we generated seven sets of 100 different 

conformations, corresponding to seven different structural variability levels. More 

precisely, the nth set was generated by extracting 100 conformations separated by a time 

step of (Δt = 10n) iterations in the corresponding worm-like chain simulation (Fig. 2). 

Altogether, for each toy genome we generated 700 different chromosome conformations 

that were distributed among seven different sets, with set 0 having the lowest structural 

variability (Δt = 1) and set 6 the highest (Δt = 106). Such structural sets were then used 

to derive four contact maps with varying levels of experimental noise (that is, with α = 

50, 100, 150 and 200), which simulate the results of a hypothetical Hi-C experiment. 

Finally, the contact maps were input to TADbit to build 3D models using a previously 

implemented protocol [152]. The initial structural sets for the 6 tested toy genome 

architectures, their derived interaction matrices and the reconstructed 3D models are 

available at http://www.3DGenomes.org/datasets. Specific details on the construction of 

the toy genomes and the derived models are given in the Materials and Methods. 
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Figure 2. Simulated Hi-C interaction matrices. Simulated Hi-C interaction matrices for the toy genome 
architecture of chr75_TAD with noise levels α=50. Each row shows the calculated matrix, the distribution 
of Z-scores and four randomly selected input structures, which are colored from particle 1 in blue to 
particle N in red, the start and end particles are highlighted with spheres. From top to bottom the figure 
depicts the simulated matrices from sets 0 to 6  (Δt = 1 to Δt = 1,000,000). 
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b) Overall accuracy of the generated models 

To assess the accuracy of the genomic 3D models built by TADbit, we calculated two 

different accuracy measures between the reconstructed models and the toy genomic 

structures (that is, the distance Root Mean Square Deviation (dRMSD) and the distance 

Spearman Correlation Coefficient (dSCC)). Both measures of accuracy were calculated 

for all reconstructed models and averaged over architecturally similar toy genomes 

(Table 1). In total, we generated 168 simulated Hi-C matrices for the 6 toy genome 

architectures (that is, 6 architectures with 7 levels of structural variability and each with 

4 levels of noise in the data). The reconstructed architecture that best fitted the input 

structures corresponded to the 40 bp/nm density with a TAD-like architecture 

(chr40_TAD), with an average dRMSD of 60.5 nm and dSCC of 0.79. The architecture 

most difficult to reconstruct corresponded to 150 bp/nm density with no TAD-like 

features (chr150), with an average dRMSD of 86.4 nm and dSCC of 0.51. These values 

correspond to average measures over the 28 simulated Hi-C matrices per architecture, 

which include varying degrees of noise and structural variability. For example, within 

the chr40_TAD architecture, one of the best reconstructions corresponded to the matrix 

with mid noise level (α = 100), and low structural variability (Δt = 10), which resulted 

in a 3D model with dRMSD of 32.7 nm and dSCC of 0.94 (Fig. 3A top). Similarly, for 

the low-resolution architecture 150T, the best result (dRMSD = 45.4 nm and dSCC = 

0.86) corresponded to low level of noise (α = 50) and low structural variability (Δt = 1) 

(Fig. 3A bottom). In summary, TADbit was able to produce accurate models for all six 

toy genome architectures with a varying degree of accuracy depending on the levels of 

noise and structural variability in the simulated Hi-C matrices. 

 

Name 
Dens. 
(bp/nm) TAD Size 

<Restraints 
per 
particle> 

<Spearman 
CC> <dRMSD> <dSCC> 

Chr40 40 No 626 104.4 0.84 71.12 0.78 

Chr40_TAD 40 Yes 626 113.7 0.86 60.49 0.79 

Chr75 75 No 402 91.8 0.84 82.14 0.69 

Chr75_TAD 75 Yes 402 79.9 0.86 68.56 0.74 

Chr150 150 No 202 46.3 0.82 86.42 0.51 

Chr150_TAD 150 Yes 202 53.5 0.86 72.63 0.64 

Table 1. Toy genome architectures and overall reconstruction accuracy. 
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Figure 3. Model assessment. (A) Comparison of a 3D model ensemble of genome architectures for the 
chr40_TAD (top) and chr150_TAD (bottom) architectures. Superimposed input structures for set 0 (left 
models) and superimposed reconstructed 3D models (due to mirroring, TADbit generates right- and left-
handed models [152]). Models are colored from particle 1 in blue to particle N in red, the start and end 
particles are highlighted with spheres. (B) Correlation between the restraints per particle and the accuracy 
of the reconstructed models as measured by the average dSCC score per architecture. Circle symbols 
correspond to non-TAD-like architectures. Rhomboid symbols correspond to TAD-like architecture. The 
colors indicate the toy genome density (green, blue and orange for 40, 75 and 150 bp/nm, respectively).  
(C) dRMSD distributions with respect to genome architecture. Colors correspond to the three density 
values with dark and pale colors corresponding to TAD-like and non-TAD-like architectures, 
respectively. Horizontal grey line and shade corresponds to the dRMSD distributing of comparing a 
“random genome” of the same size and number of particles as the reconstructed models but with 
randomized coordinates. (D) Model accuracy as measured by dRMSD (left) and dSCC (right) with 
respect to the model density. Each density is colored as in panel A and contains 7 distributions from the 7 
sets of structures from set 0 (Δt = 1) to high structural variability set 6 (Δt = 106) with dark to pale 
colors, respectively. Horizontal grey lines and shade as in panel C. (E) Correlation between the dRMSD 
values per reconstructed models and the Spearman correlation coefficient of the contact map from the 
reconstructed models and the original toy-genome structures (TADbit- SCC). The points are colored 
proportional to the level of structural variability in the matrix (yellow to red from low set 0 (Δt = 1) to 
high structural variability set 6 (Δt = 106)). Shapes represented as in panel B. (F) Same as panel E but 
now the points are colored by the level of noise in the data (yellow to red for low to high levels of noise, 
that is from α = 50 to 200). The regression coefficients indicate the correlation per noise level α. (G) 
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Correlation between structural variability in the toy genome structures and in the reconstructed models. 
Colors and shapes as in panel B. 
 

c) Genome architecture and model accuracy 

We tested two features of the toy genome architecture: its density (or resolution) and the 

presence or absence of local compact regions representing TADs. Models based on 

higher-resolution matrices resulted in a higher number of imposed restraints per particle 

in the reconstructed 3D models (Table 1). As expected, we observed a linear 

relationship between the number of restraints per particle imposed during modeling and 

the dSCC value (r=0.9, Fig. 3B), which in turn depends on the resolution of the input 

matrices determined by the density of the toy genomes. Despite the relative low 

accuracy of models for high-density genomes (i.e., low-resolution genomes), TADbit 

was able to generate topologies very similar to the input structures (Fig. 3A). 

Altogether, these results indicate that the choice of genomic density and, with it, the 

resolution representing the genome alter the accuracy of the reconstructed models. The 

existence of a TAD-like organization in the genome had also an effect on the accuracy 

of the reconstructed models. All simulated matrices with genome architectures at 40 

bp/nm density with TAD-like architecture resulted in an average dRMSD of 60.5 nm 

while genome architectures with no TADs resulted in an average dRMSD of 71.1 nm 

(Table 1). This trend was observed for all resolutions where the TAD-like architecture 

resulted in lower average dRMSDs (t-test p-value <0.001, Fig. 3C). Overall, both high 

resolution simulated matrices and the existence of a TAD-like structures in the toy 

genomes resulted in more accurate reconstructed 3D models. 
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d) The accuracy of the models is sensitive to structural variability but 

robust to noise 

3C-based experiments are performed on tens of millions of cells and thus are a 

population-based interrogation of the genome. It is therefore likely that the interrogated 

cell population harbors structurally different conformations of their genome, due to the 

unsynchronized cell cycle or to natural cell-to-cell variability, among many other 

factors. To simulate such situation, we increased the structural variability in the input 

matrices by selecting structures from the architectural genomes at different simulation 

time steps (Materials and Methods). Simulated Hi-C matrices with increasing variability 

provided less detail of local chromosome structuring but captured the large-scale 

organization of the toy genomes such as the existence of TADs (Fig. 2). As expected for 

any mean-field reconstruction method, the accuracy of our reconstructed genomes 

decreased with the increase in the input structural variability (Fig. 3D and E). For all toy 

genomes with different architectures, the accuracy of the models was maintained up to 

the structural variability set 3 (Δt = 1000). The models resulting from the sparse 

matrices based on the structural sets 4 to 6 (Δt ≫ 10,000) had significantly higher 

dRMSD values as compared to the other models. Indeed, model reconstruction based on 

low-resolution matrices (150 bp/nm genomes) and large structural variability, resulted 

in models with poor accuracy (dRMSD > 90 nm). At the highest levels of structural 

variability (i.e., set 4 to 6 or Δt ≫ 10,000), the interaction matrices were predominantly 

populated in the proximity of the diagonal, or the TAD structures, as the only common 

interacting regions between the different input structures for both the non-TAD-like and 

TAD-like architectures, respectively (see for example Fig. 2 bottom rows). 

Interestingly, the reconstruction of 3D models with TADbit was robust to noise (Fig. 

3F). In fact, the accuracy of the models was constant to mid levels of noise in the data 

(average dRMSD of 70.7, 71.5, 74.3 and 78.7 for α values of 50, 100, 150 and 200, 

respectively). Nevertheless, the correlation between the TADbit-SCC and the dRMSD 

was higher at the mid level of noise compared to the low level of noise (0.77 for α = 50 

and 0.87 for α >= 150). In summary, the reconstruction of 3D models based on noisy 

data is robust but mean-field methods are sensitive to structural variability in the 

simulated Hi-C interaction matrices. 
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e) The TADbit-SCC is an accurate scoring function for modeling 

TADbit model building depends on the imposed restraints for modeling, which in turn 

are determined by three optimized parameters. The three cut-offs are determined by 

maximizing the Spearman correlation coefficient between a contact map calculated 

from the reconstructed 3D models and the input simulated Hi-C matrix (here called 

TADbit-SCC). To test whether the TADbit-SCC measure is a good proxy for model 

accuracy, we compared it the dRMSD of the resulting reconstructed genomes. The 

results clearly indicate that the use of the TADbit-SCC as a scoring function to identify 

the best models is reasonable (Fig. 3E) as high values of TADbit-SCC are indicative of 

low dRMSD (r=-0.67). However, the relationship is not perfect and has two main 

properties that affect its adequacy for identifying good models: (i) a range of low 

dRMSD values may result in very similar TADbit-SCC, and (ii) the dRMSD value 

saturates for low TADbit-SCC values. Altogether, the analysis indicates that the use of 

Spearman correlation coefficient (TADbit-SCC) as a scoring function during modeling 

is a good proxy for model accuracy but needs to be complemented by additional 

measures (see below). 

 

f) Reconstructed models capture part of the structural variability in the 

matrices 

Mean-field restraint-based modeling methods assume that the interaction matrix reflects 

an average structure of the genome with a limited number of different conformations. 

Thus, such methods have intrinsic difficulties in capturing the variability of the data. To 

test whether our reconstructed models reflect the structural variability in the matrices, 

we calculated the dRMSD between the 100 input toy genome structures in each of the 

168 matrices. We also calculated the dRMSD between 100 generated models per 

simulated matrix. In all the genomic architectures, we observed a correlation between 

the variability in the toy genome structures and the resulting variability in the 

reconstructed models (Fig. 3G). The captured variability decreased with the increased 

number of restraints per particle (Fig. 3B). That is, higher-resolution matrices that 

resulted in more restrained models, have less structural variability in the output 

structures. Importantly, the degree of variability is about two fold less in the resulting 
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models compared to the input toy structures. Nevertheless, and despite the intrinsic 

limitations, the resulting models capture part of the structural variability in the matrices.  

 

g) Statistics of the input matrices correlate with the accuracy of the models  
To assess which features from the interactions matrices could be useful to predict the 

accuracy of the reconstructed models, we have calculated three statistical measures from 

the simulated Hi-C matrices (Materials and Methods). In particular we measure the 

contribution of the significant eigenvectors from the matrix (SEV), the skewness (SK) 

and the kurtosis (KT) of the distribution of Z-scores. These three measures are 

indicative of the internal correlations in the matrix (SEV) and the deviation from 

normality of the distribution of interaction counts (SK and KT). These features are 

relevant for the modeling with the TADbit protocol since they determine the quantity 

and quality of the imposed restraints during modeling [152]. In principle, an input 

matrix with high contribution of the significant eigenvectors, skewness close to zero and 

low negative kurtosis is optimal for 3D reconstruction. For example, the toy genome 

architecture chr40_TAD, which results in accurate 3D reconstructed models (dRMSD = 

47.2 nm and dSCC = 0.91), has a SEV of 32.3%, a SK of -0.32 and a KT of -0.69 (Fig. 

4A). Indeed, the three statistical measures from the simulated Hi-C matrices correlate 

with the final accuracy of the reconstructed models (Fig. 4B). dRMSD correlates with 

SEV, SK and KT with a -0.53, 0.63 and 0.75 regression coefficient, respectively. dSCC 

correlates with SEV, SK and KT with an 0.70, -0.60 and -0.54 regression coefficient, 

respectively. Moreover, we observed that the SK statistic, which measures whether a 

matrix has a Z-score distribution skewed towards positive or negative values, could be 

used to discern between matrices with high structural variability from those with high 

experimental noise (Fig. 4C). All but one of the simulated Hi-C matrices with large 

noise content (α = 200) and low structural variability (set 0) result in negative values of 

SK score. Similarly, all but two of the simulated Hi-C matrices with low noise content 

(α = 50) and high structural variability (set 7) result in positive values of SK score. In 

summary, we introduced here three simple statistics from the Hi-C matrices that can 

help us assess the likeliness of an interaction matrix to result in accurate reconstructed 

models. 
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Figure 4. Matrix entropy. (A) Statistical measures for interaction matrix for chr40_TAD architecture. 
Simulated Hi-C matrix (left), statistical measures and Z-score distribution (middle) and eigenvalues plot 
(right). The eigenvalues plot shows the real distribution of values (green solid line) and the distribution 
for random matrices (orange solid line). The green area corresponds to the contribution of the significant 
eigenvalues (i.e., the SEV score). (B) Correlation of the statistical matrix properties (SEV, SK and KT) 
with the reconstructed model accuracy measures (dRMSD and dSCC). (C) Correlation plot between 
Skewness and dRMSD for the 168 simulated Hi-C matrices. Dots are colored with respect to the 
structural variability in the matrix (yellow to red for set 0 to set 6). The size of the dots is proportional to 
the level of noise in the matrix (small for α = 50 and large for α = 200). Highlighted red small dots 
indicate low noise and high structural variability matrices. Highlighted yellow large dots indicate high 
noise and low structural variability matrices. 
 

h) The Matrix Modeling Potential (MMP) score 

To assess whether we could a priori evaluate the adequacy of the input matrix for 3D 

reconstruction, we calculated a single score, here called Matrix Modeling Potential 

(MMP), combining four measures from the interaction matrices: its size, SEV, SK and 

KT values. We trained a linear regression with the four measures for the 168 simulated 

Hi-C matrices to obtain a single score that correlates the most with the dSCC accuracy 

measure of the 168 reconstructed models. The training set contains, thus, a variety of 

resolutions, experimental noise and structural variability. Using a 10-fold cross 

validation the MMP score resulted in a final correlation with the dSCC of the 

reconstructed models of 0.84 (Fig. 5A). The mean absolute error of the MMP score in 

predicting the dSCC accuracy of the models is 3.1%, which provides a clear predictive 
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power to the new score. Indeed, the MMP score behaves as expected (Fig. 5B). 

Simulated matrices built from toy genomes with TAD-like structure results in higher 

MMP score, which also increases with a slight presence of noise in the matrix and is 

clearly affected by the increase of structural variability. In summary, combining the 

three statistical scores from the simulated Hi-C matrices as well as its size into a single 

MMP score, provides a means to a priory evaluate the modeling potential of the matrix. 

Matrices with high MMP scores are likely to result in accurate 3D reconstructed 

models. 

 

To test the applicability of our new score, we selected three datasets of real Hi-C 

experimental data from human [239], fly [246], and bacterial [113] genomes and 

calculated their MMP score (Fig. 5C). Of the three example matrices, the human 

genomic domain results in a MMP score of 0.82, which predicts a dSCC of 0.81 (0.69-

0.92 at 95% confidence range). The best individual score for the human genomic 

domain is the skewness of the distribution, which approximates zero (SK = 0.20). 

However, the contribution of the significant eigenvalues is small (SEV = 3.61). 

Similarly, the Caulobacter crescentus genome matrix has good SK and KT values but 

poor SEV (0.26, -0.25 and 3.05, respectively). The resulting MMP score is 0.77, which 

predicts a dSCC of 0.73 (0.62-0.85 at 95% confidence range). Finally, the fly genomic 

domain is the one with the best MMP score (0.83) of the three real Hi-C matrices, which 

resulted in a predicted dSCC of 0.83 (0.72-0.94 at 95% confidence range). This result 

shows that, at different levels of predicted accuracy, real Hi-C matrices could be used in 

TADbit for 3D reconstruction of genomes and genomic domains.  
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Figure 5. Predicting the accuracy of the reconstructed models. (A) Correlation between the MMP 
score and the dSCC accuracy measure. Points are colored by the density of the simulated Hi-C matrices 
(green 40, blue 75 and orange 150 bp/nm) Shaded area corresponds to the correlation confidence band. 
(B) MMP score distributions depending on genome architecture, noise and structural variability of the 
simulated Hi-C matrices. Panels from left to right show existence of TAD-like architecture, noise levels 
(yellow to red for α from 50 to 200), and structural variability (yellow to red from sets 0 to 6). (C) 
Example of MMP score and the predicted dSCC of the resulting models for genomic domains or entire 
genomes in real Hi-C matrices. For each panel we show the actual Hi-C matrix in Z-score scale (red to 
blue from positive to negative Z-scores), the four input statistics as well as the MMP score, the Z-score 
distribution shape and the predicted range of dSCC (green bar at 95% confidence level). Left panel for a 
genomic domain in chromosome 1 of the human genome [239], middle panel for a genomic domain in 
chromosome 2L of the fly genome [246], and right panel for the entire Caulobacter crescentus genome 
[113]. 
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2.5 Discussion 
 

Recently, chromatin interaction matrices from 3C-based experiments have been used for 

modeling the three-dimensional organization of genomes and genomic domains [151]. 

Those approaches aim at providing a 3D representation of the bi-dimensional 

interaction matrices that can be explored to extract biological insights. Here, we have 

introduced a comprehensive analysis of the limitations of chromatin model building 

using a restraint-based mean-field approach. To do so, we have derived a series of 

simulated Hi-C matrices where the genomic architectures are pre-defined and the 

amounts of noise and structural variability is controlled. The entire set of 168 simulated 

Hi-C matrices can be considered as a benchmark set for assessing the future 

developments of restraint-based methods for modeling genomes and genomic domains. 

To our knowledge, this is the first fully available dataset for benchmarking 

reconstruction methods, which can be freely accessed here: 

http://www.3DGenomes.org/datasets. 

In our analysis, a total of six different genomic architectures were benchmarked. Those 

varied the resolution (or genomic density) as well as the presence of locally compacted 

regions resembling TADs observed for many organisms [239, 247, 248]. The overall 

accuracy of the reconstructed models points to three main conclusions. First, 

independently of the genomic architecture, restraint-based mean-field modeling can 

provide accurate models with dRMSD as low as 30nm and dSCC as high as 0.99 with 

the major variability in accuracy originating from the structural variability in the input 

matrices. Second, an increase of the matrix resolution (that is, low density models with 

larger proportion of restraints per particle) results in more accurate reconstructed 

models. Therefore, increasing the sequencing depth of a Hi-C experiment will result not 

only in higher-resolution models (i.e., more bins in the interaction matrix) but also in 

models of higher overall accuracy. And third, the presence of a TAD-like architecture 

results in more accurate models at any levels of noise and structural variability. This 

increased accuracy can be interpreted as the result of a sharper structuring of the input 

Hi-C matrix for scales equal or larger than that of TADs, which are expected to be 

found under the form of compact globules [153]. In vertebrates, these globules are 

believed to be the result of multiple specific chromatin loops induced by the bridging of 

several protein complexes, with CTCF as a major factor [141, 249]. Indeed, such 
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specific loops can be easily integrated in polymer models of chromosomes [250], and 

should facilitate the inner reconstruction of TADs. 

Typically, Hi-C experiments capture a limited number of all possible interactions in 

each cell [158, 251] and thus are performed on a population of tens of millions of cells. 

This results in interaction matrices that have two main sources of variability originating 

from noise in the experiment and/or the natural conformational differences between 

genomes in each cell. Here we have simulated these two sources of variability by first 

varying the probability of capturing an interaction from the toy models (experimental 

noise) and second by deriving simulated interaction matrices from models of varying 

structural similarity. The results of our test clearly indicate that restraint-based mean-

field reconstruction is robust to experimental noise but sensitive to high levels of 

structural variability. Indeed, at all levels of experimental noise, our method was able to 

reconstruct accurate models when structural variability was low. However, the 

reconstruction of models degraded significantly when the level of structural variability 

was high, indicating that mean-field methods may have difficulties capturing the entire 

structural diversity of the input matrices. It is important to note that our simulated Hi-C 

matrices with high levels of structural variability (set 6) contain homogenous structural 

variability where each of the toy structures can be considered as a “single cell state” that 

is equally different to all other structures in the set. Despite these limitations, our 

approach was also able to capture part of the structural variability in the original set. 

Altogether, our results conclude that Hi-C interaction matrices from as homogenous as 

possible population of cells (e.g., synchronized in cell cycle, same cell state, unique cell 

type, etc…) are more adequate for 3D reconstruction. Interestingly, we also show that 

experimental noise, which could originate from limitations in any of the four main steps 

in 3C-based methods (that is, cell fixation, DNA fragmentation, DNA ligation and read-

out by sequencing), is not highly relevant for 3D reconstruction. 

Most of the reconstruction approaches, either those mean-field or population-based 

approaches, have a scoring function to minimize. The specific scoring function varies 

between methods but all aim at correlating the observed 3C-based interactions with 

those obtained from the re-constructing models. In our approach we find optimal 

parameters for the simulation by maximizing the Spearman correlation coefficient 

(TADbit-SCC) between the input interaction matrix and a contact map obtain from the 

models. We have shown here that this scoring function is appropriate for 3D 
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reconstruction and that high TADbit-SCC result in accurate models, which validates our 

protocol for 3D reconstruction by TADbit. In practice, with our method the TADbit-

SCC can be taken as a proxy of model accuracy. Additionally, we also provide, for the 

first time, a single measure (the Matrix Modeling Potential or MMP) calculated from 

the interaction matrix that highly correlates with the accuracy of the resulting models (r 

= 0.84, p-value < 0.001). The MMP score is composed of a weighted sum of four 

properties of the matrix (that is, its size, the percentage of contribution of significant 

eigenvalues in the interaction matrix as well as the skewness and kurtosis of the 

distribution of Z-scores in the interaction matrix). Interestingly, the skewness of the 

distribution has an additional property that allowed us to differentiate between matrices 

rich in experimental noise from those high in structural variability. Negative skewness 

matrices (that is, with a long positive tale) are likely to contain a large proportion of 

experimental noise. Positive skewness matrices (that is, with a long negative tail) are 

likely to be obtained from a population of cells with large structural variability. We 

applied our new MMP score to three published Hi-C interaction matrices. The results 

indicate that the 3D reconstruction of two genomic domains from the human and fly 

datasets as well as the entire Caulobacter crescentus genome could result in accurate 

models. 

In summary, we provide a dataset of simulated toy structures and their respective Hi-C 

matrices that can be used for benchmarking restraint-based methods for 3D 

reconstruction. Our dataset was used to show that such methods are adequate for 

building 3D models of genomes and genomic domains. Moreover, we have shown that 

these methods are robust with respect to experimental noise but are more sensitive to 

structural variability in the input matrices. Experimentalists aiming to generate 3C-

based interaction matrices for 3D reconstruction are thus encouraged to obtain the most 

homogenous cell population before performing the experiments. Finally, we provide for 

the first time a new score (here called MMP score) that allows predicting a priori the 

accuracy of the resulting models by calculating a limited number of properties of the 

input interaction matrices. Such score may probe very useful for defining whether a 

newly generated interaction matrix can be useful for obtaining accurate 3D models, 

which can then be more easily explored to extract biological insights. 
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2.6 Availability 

The initial structural sets for the 6 tested toy genome architectures, their derived 

interaction matrices and the reconstructed 3D models are available at 

http://www.3DGenomes.org/datasets. 
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3. DEFINED CHROMOSOME STRUCTURE IN A MINIMAL 
CELL 
 
 
3.1 Abstract 
 
By combining electron microscopy, super-resolution localization microscopy and Hi-C, 

we have determined the 3D structure of the chromosome of the genome-reduced 

bacterium M. pneumoniae at 20 kb resolution. We find that despite having a reduced 

number of structural proteins, the chromosome of this bacterium still has a defined 

structure. There is a global symmetry between the two chromosomal arms connecting 

the Ori and Ter, which are located at the two opposite poles of the structure. Analysis of 

local structures at 5 kb resolution indicates that the chromosome is organized into 

domains ranging from 15 kb to 35 kb, establishing a fundamental principle of genome 

organization. We provide evidence that the genes within the same domain tend to be co-

regulated, suggesting that chromosome organization could influence transcriptional 

regulation. The inhibition of supercoiling resulted in a decrease in domain sizes and 

interaction frequencies, indicating that supercoiling affects domain formation. This 

study extends the current understanding of bacterial genome organization and 

demonstrates that a defined chromosomal structure is a universal feature of living 

systems. 
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3.2 Introduction 

Recent studies have revealed novel insights into chromatin dynamics and their effect on 

gene expression regulation and replication [1-4, 16, 235]. Such interplay suggests that 

chromatin organization might have a role in regulating gene expression at both the 

global and gene-specific level [6, 9-15]. In all kingdoms of life genome organization 

occurs in a functional and dynamic manner, packaging the genome into the nucleus in 

the case of eukaryotes and packing it into the cell in the case of bacteria. 

Simultaneously, DNA-based processes such as transcription, replication and repair are 

efficiently accommodated. Although technical limitations for chromosome visualization 

have hampered the understanding of the detailed organization of bacterial 

chromosomes, several levels of regulation have been identified. At the molecular level, 

bacteria have evolved mechanisms that condense their chromosomes, such as DNA 

supercoiling [24, 31] and nucleoid-associated proteins (NAPs) mediated folding [56, 57, 

83]. Negative supercoiling forms plectonemic loops of 10 to 100 kilobases (kb) [28, 

29], which are maintained by both gyrases and topoisomerases [28, 30] as well as the 

likely contribution of NAPs [115]. Moreover, NAPs also play a role in chromosome 

segregation and DNA repair [55-57]. It has been shown that changes in DNA 

supercoiling can control transcription in bacteria [117-120]. This could be more 

important in small-genome bacteria such as Mycoplasma genitalium [121] where, 

despite the absence of many structural DNA-binding proteins [122], both gyrases and 

topoisomerases are present to control gene expression through changes in the DNA 

local structure [121]. On a larger scale, it has been shown that the Escherichia coli 

genome consists of four macrodomain-like regions of about 1 megabase (Mb) each and 

two less constrained regions [130], all of which influence the segregation and mobility 

of the chromosome [131].  

In the past, diffraction-limited resolution has impaired the detailed characterization of 

chromosome structure. However, more recent developments in super-resolution 

localization microscopy [252-255] and chromosome conformation capture (3C)-based 

techniques [132] have enabled the determination of global chromosome organization of 

some bacteria [8, 18, 256]. High-throughput derivations of genome-wide 3C-based 

assays such as Hi-C technologies [139] have been used to generate high-resolution 

contact maps of genomes, which when combined with modeling, can provide three-

dimensional (3D) representations of the genome structure [113, 162, 163, 240]. Such 
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studies of bacterial chromosome organization and regulation have been carried out in 

Caulobacter crescentus with a Hi-C map at 13 kb [162], E. coli at 20 kb [167] and 

Bacillus subtilis at 30 kb resolution [166]. These studies have shown that genome 

structure is globally related to the processes of chromosome segregation in C. 

crescentus and to DNA replication and transcription in E. coli. More recently, a higher 

resolution Hi-C map of C. crescentus at 10 kb [113] revealed that its genome is divided 

into 23 chromosome interacting domains (CIDs) or highly self-interacting regions, 

similarly to the topologically associating domains (TADs) found in eukaryotes [19, 20], 

but with a size ranging from 30 to 400 kb [113]. In C. crescentus, the strongest 

determinant of these domain boundaries was the presence of highly expressed genes, 

whereas surprisingly the absence of the NAP heat unstable (HU) histone-like proteins 

and structural maintenance of chromosomes (SMC) proteins did not affect domain 

boundaries significantly [113]. No such domains were described in the lower resolution 

Hi-C map of B. subtilis and E. coli. Nevertheless, it was found that histone-like proteins 

such as factor for inversion simulation (Fis), integration host factor (IHF) and histone-

like nucleoid structuring (H-NS) do not contribute to the global organization of the E. 

coli genome [167].  

The above mentioned bacteria all have large and complex genomes with sizes above 4 

Mb coding for hundreds of transcription factors (TFs) [168, 169], multiple DNA 

structural proteins, and several sigma factors that play key roles in the response to 

physiological and environmental signals [170]. How this structural organization is 

achieved and what its impact is in transcriptional regulation remains an open question. 

Furthermore, whether smaller bacteria with reduced genomes and few structural 

proteins keep a defined chromosome structure is also undetermined. To address this 

question, we studied the chromosome organization of the genome-reduced bacterium, 

Mycoplasma pneumoniae, which has minimal genetic components and several structural 

DNA-binding proteins absent [122]. M. pneumoniae is one of the smallest self-

replicating organisms [189] that causes atypical pneumonia in humans [171]. This 

bacterium does not have a cell wall and possesses an attachment organelle (AO) that is 

located at one cell pole [211] and is involved in adherence, motility and cell division 

[197, 201, 205, 257]. It has no defined nucleoid, but rather the chromosome occupies 

the available space [211]. M. pneumoniae only has a few known NAPs compared to 

other bacteria (Table 1): with MPN529, IHF-HU possibly affecting DNA 

topology [123]; MPN426, SMC family; MPN 229, SSB binding single stranded DNA 
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(ssDNA) [124]; MPN 554, binding ssDNA [125] and possible evidence for a homolog 

of CbpA, MPN002, Xdj1. It also has very few TFs and only two sigma factors are found 

in its genome (Table 1) [258]. In addition, M. pneumoniae has been systematically 

characterized in a quantitative manner by transcriptomics, proteomics and metabolomics 

studies [223, 227-232].  

 
 
Gene 
number 

Gene 
name Protein name 

MPN002 cbpA Curved DNA-binding protein CbpA 

MPN003 gyrB DNA gyrase subunit B 

MPN004 gyrA DNA gyrase subunit A 
MPN122 parB DNA topoisomerase 4 subunit B 

MPN123 parC DNA topoisomerase 4 subunit A 
MPN124 hrcA Heat-inducible transcription repressor hrcA 

MPN229 ssbA SSB binding single stranded DNA (ssDNA)  

MPN239 gntR Probable HTH-type transcriptional regulator gntR 
MPN241 whiA Transcription factor with  WhiA C-terminal domain 

MPN266 spxA Transcriptional regulator Spx 

MPN275 ybaB DNA-binding protein, YbaB/EbfC family 
MPN294 araC AraC-like transcriptional regulator 

MPN332 lon ATP-dependent protease La (EC 3.4.21.53) 

MPN352 sigA RNA polymerase sigma factor rpoD (Sigma-A) (EC 2.7.7.6) 

MPN424 ylxM Putative helix-turn-helix protein, YlxM/p13-like protein 
MPN426 smc SMC family, chromosome/DNA binding/protecting functions 

MPN478 yrbC YebC family protein (transcription factor of the tetR family) 

MPN529 ihf Histone-like bacterial DNA-binding protein  
MPN554 ssbB Putative single-stranded DNA-binding protein 

MPN572 pepA Probable cytosol aminopeptidase (EC 3.4.11.1) (Leucine aminopeptidase) (LAP) 
(Leucyl aminopeptidase) 

MPN608 phoU Transcriptional regulator involved in phosphate transport system 
MPN626 mpn626 Alternative sigma factor 

MPN686 dnaA Chromosomal replication initiator protein dnaA 

MPN688 SpoJ/ParA Member of the ParA family of ATPases involved in plasmid and chromosomal 
segregation 

 
Table 1: List of assigned transcription factors, sigma factors and structural proteins 
 

Here, by combining electron microscopy, super-resolution light microscopy and Hi-C, 

we have determined the 3D structure of M. pneumoniae chromosome at 20 kb resolution 

and 5 kb for local structures. We observed a general symmetry along the axis of the 

origin (Ori) and terminus (Ter) of replication and found that Ori and Ter are located at 
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the two opposite poles of the chromosome structure. Moreover we detected that the 

chromosome is organized into 24 CIDs, ranging from 15 kb to 35 kb, which are smaller 

than the CIDs previously described for C. crescentus [113]. Inhibiting supercoiling 

induced a decrease in the domain sizes and interaction frequencies, suggesting that 

supercoiling might play a role in the regulation of these domains. Interestingly, we 

provide the first evidence that genes inside CIDs tend to be co-regulated, suggesting that 

chromosome organization could influence transcriptional regulation. Our results, 

together with previous 3D structures of other bacterial chromosomes and data on 

eukaryotes, indicate that chromosome organization in cells is a widespread phenomenon 

in life. 
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3.3 Material and Methods 
 

a) Overview of Methodology 
With the aim of reconstructing the 3D genome structure of the M. pneumoniae 

chromosome, we first performed Hi-C, enabling the purification of ligation products 

and subsequent massive parallel sequencing [139]. Next, all fragments of reads were 

mapped to the M. pneumoniae genome with the iterative mapping pipeline ICE hiclib 

[148], which were further filtered and normalized as previously described [148] to 

obtain a genome-wide chromatin contact map. Next the MMP score of the matrix [259] 

was computed to assess its modeling potential. Finally 3D models of the M. pneumoniae 

genome were generated using TADbit [240]. To validate the obtained 3D architecture of 

the genome, fluorescent and electron microscopy was performed to estimate the cell 

dimensions and volume as well as distances between different chromosomal regions. 

 

b) Chromosome conformation capture with next generation sequencing 
 

Hi-C protocol with a 6-cutter [139] 

To fix the long range DNA interactions, 3·109 M. pneumoniae M129 cells were grown 

in 150 cm2 dishes for 6h (exponential phase) or for 96 h (stationary phase) and were 

cross-linked with 1% formaldehyde (methanol free, Pierce) for 10 min at room 

temperature (RT). The reaction was stopped with 0.125 M glycine and cells were 

washed prior to lysis. Four mL of lysis buffer (10 mM Tris·HCl pH 8.0, 10 mM NaCl, 

0.2% NP-40, protease inhibitors from Roche, 1 mM EGTA) was added and cells were 

broken with the help of a syringe/G25 needle (5x). The lysate was distributed into four 

tubes and spun in a tabletop centrifuge at 5,000 rpm for 5 min. The supernatant was 

removed and three pellets frozen for later use. One chromatin pellet was washed twice 

with 1.4 mL NEBuffer 2/3 (HindIII). After resuspension in 1 mL NEBuffer 2/3, 10 µL 

10% SDS was added, mixed carefully and incubated at 65ºC for 10 min to allow 

accessibility of restriction enzymes. Tubes were placed back on ice immediately after 

incubation. SDS was quenched by adding 110 µL 20% Triton X-100 and mixed 

carefully. Chromatin was digested by adding 100 µL 20,000 U/mL HindIII + 5 mM 

EGTA and incubated at 37ºC overnight (O/N) while shaking. The next steps include 

marking the DNA ends with biotin and performing blunt-end ligation of cross-linked 
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fragments. This last step allows ligation junctions to be purified later. To fill in the 

restriction fragment overhangs and mark the DNA ends with biotin, 5 µL of a mixture 

containing 10 mM dATP, dGTP and dTTP, 62.5 µL 0.4 mM biotin-14-dCTP, and 41 

µL 2 U/µL Klenow was added to the Hi-C tubes, mixed carefully and incubated for 45 

min at 37ºC. To inactivate the enzymes, 250 µL 10% SDS was added to the Hi-C tubes, 

before incubation at 65ºC for exactly 30 min and placed on ice immediately afterwards. 

The ligation is performed under extremely dilute conditions in order to favor ligation 

events between cross-linked fragments. Working on ice, 9 mL ligation mix (0.5 mL 

20% Triton X-100, 1 mL 10x T4 ligation buffer, and 7.5 mL water) was added to a 50 

mL falcon tube and the digested chromatin was incorporated into the mixture to the 

corresponding tube. After mixing by inverting the tubes, the ligation was performed for 

4 h at 17ºC. Cross-links were reversed and proteins degraded by adding 50 µl 20 mg/mL 

proteinase K per Hi-C tube and incubating the tubes O/N at 65ºC. An additional 50 µl 

20 mg/mL proteinase K was added per tube the next day and incubated at 65ºC for 

another 2 h. The reaction mixture was cooled to RT and DNA was purified by 

performing an extraction in Maxtract tubes (Qiagen) with one volume phenol pH 8.0 

and then with phenol/chloroform/IAA (25:25:1) (at each step the tube was vortexed for 

2 min, spun for 5 min, 1500g, RT and carefully as much of the aqueous phase as 

possible and was transferred to a new 50 mL tube). Then DNA was precipitated by 

adding 2 µl glycogen, 0.1x volume of 3 M sodium acetate, pH 5.5 and 2x volumes 

ethanol, left 30 min at -20°C and spun 25 min at 12,000 rpm (Beckman-Coulter 25,50 

rotor) at 4ºC. The pellet was washed with ~5 mL 75% ethanol and air-dried before 

dissolving it in 400 µL TE (10 mM Tris·HCl pH 8.0, 1 mM EDTA). The DNA mixture 

was transferred to a clean 1.5 mL centrifuge tube and an agarose gel was run as a 

control. Another round of purification was performed by doing one 

phenol/chloroform/IAA extraction and DNA precipitation by adding 0.1x volume of 3 

M sodium acetate, 2x volume of ethanol and incubating 30 min at -80ºC. After spinning 

down the precipitated DNA, the DNA pellet was washed with 70% ethanol and 

resuspended in 25 µL TE. To degrade any RNA that might be present, 1 µL 1 mg/mL 

RNAse A was added per tube and incubated for 30 min at 37ºC. Some fragments do not 

get ligated: to avoid pulling them down later, biotin was removed from these unligated 

ends using the exonuclease activity of T4 DNA polymerase, as follows: Ca. 5 µg (~25 

µL) of Hi-C DNA was mixed with 1 µL 10 mg/ml BSA, 10 µL 10x NEBuffer 2, 1 µL 
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10 mM dATP, 1 µL 10 mM dGTP and 5 U T4 DNA polymerase in a total volume of 

100 µL and incubated at 12ºC for 2 h. The reaction was stopped by adding 2 µL of 0.5 

M EDTA pH 8.0. To purify the DNA, a phenol/chloroform/IAA extraction was done 

followed by ethanol precipitation as above. The supernatant was discarded and the DNA 

pellets resuspended in 50 µL water. Then the DNA was sheared and size selected, to 

obtain a uniform size suitable for high-throughput sequencing. The DNA must be 

sheared to a size of 300-500 bp with a Covaris nebulizer (10% duty cycle, intensity: 

2,200 cycles, 45 s at 4ºC) in a minimum of 55 µL TE. The size was checked on a 2% 

agarose gel and the concentration was measured with Qubit (DNA, High sensitivity, 

Invitrogen). To repair the sheared DNA ends, the Next (NEB) protocol was followed 

(blunting and A tailing). Subsequently the junctions were enriched by biotin pull-down, 

thus allowing for the identification of interacting chromatin fragments by paired-end 

sequencing, as follows: Ligation junctions were purified from the DNA pool, first, 150 

µL resuspended streptavidin Dynabeads (Invitrogen) beads were washed twice with 400 

µL Tween Buffer (TB: 5 mM Tris·HCl pH 8.0, 0.5 mM EDTA, 1 M NaCl, 0.05% 

Tween). All washes were done in the same manner: (i). buffer added to the beads, (ii) 

sample rotated for 3 min at RT, (iii) sample spun briefly to collect all of the suspension, 

(iv) beads reclaimed using a magnetic particle concentrator, and (v) supernatant 

removed and beads were resuspended in 600 µL No Tween Buffer (NTB: 5 mM Tris-

HCl pH 8.0, 0.5 mM EDTA, 1 M NaCl) plus Hi-C DNA (~500 ng). Binding was 

allowed by incubating the mixture at RT for 15 min with rotation, and reclaiming the 

DNA bound streptavidin beads as above, before washing in 400 µL NTB followed by 

100 µL T4 ligase buffer (NEB). Finally the beads were resuspended in 50 µL ligation 

buffer and Illumina paired end adapters were ligated (ratio: 1 µL 2 µM primers per 10 

ng DNA) with 1,200 Units T4 DNA Ligase (NEB) for 2 h at RT. Non-ligated adapters 

were removed by reclaiming the Hi-C DNA bound beads and washing the beads twice 

with 400 µL TB, once with 200 µL NTB, and finally once with 200 µL and then 50 µL 

NEBuffer 2. After the last wash, the beads were resuspended in 25 µL NEBuffer 2. The 

library was PCR amplified with Phusion (Next kit, NEB), 2 µl of the suspension in a 50 

µL reaction, and 1.0 and 2.1 Illumina primers (1 µL 10 uM), for 16 cycles and 

sequenced in the HiSeq Illumina platform.  
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Hi-C protocol with a 4-cutter [167] 

Chromatin was prepared as above. When indicated, 100 µg/mL novobiocin (Sigma) was 

added directly to the medium 30 min prior to fixation. Cells were lysed with 4 mL Hi-C 

Lysis buffer (10 mM Tris·HCl pH 8.0, 10 mM NaCl, 0.2% NP-40, 5 mM EGTA and 

protease inhibitors) at 4ºC, passed 5x through a syringe/G25 needle and chromatin was 

collected by centrifugation (5,000 rpm for 5 min, 4ºC, tabletop centrifuge). Only one 

pellet was used (the rest were frozen at -80ºC), and was washed twice in 1 mL of 

NEBuffer 1 plus 5 mM EGTA at 4ºC. Before digestion chromatin was solubilized by 

adding 300 µL NEBuffer 1, 5 mM EGTA and 0.1% SDS and incubated 1 h at 37ºC, and 

stopped with Tx-100 (2% final). Afterwards, 100 U HpaII was added and incubated 

O/N at 37ºC. The reaction was stopped adding SDS to a final concentration of 1.3% and 

incubated for 1 h at 50ºC. Half of the sample was ligated by adding 5 mL 10x NEB T4 

Ligase buffer, 2.5 mL 20% Tx-100, 0.5 mL 0.5M EGTA, in a final volume of 50 mL; 

and ligated with 20U (50 µL) T4 DNA ligase, O/N at 16ºC. The sample was 

decrosslinked with 375 µL proteinase K, 2h at 65ºC and purified with phenol extraction 

and Maxtract resin and ethanol precipitated as above. Further fragmentation was 

performed with Covaris to reduce the size of DNA to ~200-500 bases (Duty cycle: 10%, 

int.: 2, 200 cycles, 20 s at 4ºC). DNA was submitted to the CRG Ultrasequencing 

facility for standard Illumina library prep and paired-end sequencing. 

 

Genomic DNA prep 

For the controls without formaldehyde fixation, genomic DNA was prepared as in [229] 

and digested and religated as above (without the need of decrosslinking). The same 

equivalent concentration was used in order to keep the infinite dilution conditions.  

 

c) Generation of contact matrix 
To construct the interactions maps of the M. pneumoniae genome, read pairs of 50bp 

were uniquely mapped to the MPN129 reference genome (NC_000912, NCBI) covering 

816,394 bp, using Bowtie2 [145] and following the iterative mapping strategy ICE from 

hiclib Python library [148]. The optimal start and end positions for mapping were 

determined using the fastq quality of the read and set to 4 and 44, and the minimal size 

for mapping was set to 25 bp. We constructed a genome wide matrix M of different 

resolutions 5, 10, 15 and 20 kb by dividing the genome into 5, 10, 15 and 20 kb bins, 
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pooling interactions into their corresponding bins. To correct for possible artifacts of 

Hi-C experiments, the matrix was then filtered and normalized using the methodology 

of iterative correction with hiclib Python library [148] as done in a previous study in C. 

crescentus [113]. The total number of reads before and after filtering are shown in Table 

S2. In addition, using a control library without formaldehyde fixation, we filtered 

interactions off-diagonal and off-diagonal plus one, that are not due to 3D contacts in 

the chromosome, representing about 8% of the total number of cells in the matrix. These 

interactions were found in two regions with a high sequence similitude computed by the 

Needleman-Wunsch global sequence alignment with EMBOSS Needle [260], which 

justifies possible PCR artifact amplification for repetitive sequences. The affected bins 

were: 1, 3, 4, 5, 6, 7, 9, 10, 11, 13, 17, 18, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 

34, 35, 36, 37, 39, 40, and 41. 

 

d) Reproducibility of Hi-C data 
To analyze reproducibility between HindIII1 and HindIII2, and HpaII and HindIII1 in 

stationary phase, and HpaII in exponential and stationary phase, we decomposed the 

two-dimensional matrices of normalized and filtered datasets into two one-dimensional 

vectors row-by-row and computed Pearson correlation between the two vectors with R. 

 

e) Matrix Modeling Potential using MMP score 
We computed the matrix modeling potential (MMP) score of the matrix to assess its 

potential for modeling, using the MMPscore python script [259]. This score is based on 

the matrix size, the contribution of significant eigenvectors in the matrix and the 

skewness and kurtosis of the z-scores distribution of the matrix. 

 

f) Integrative 3D Modeling with TADbit 
The HpaII Hi-C matrix was used for modeling at a resolution of 20 kb after filtering by 

hiclib methodology [148] and additional filtering using a control library as previously 

mentioned. To build the 3D models, we applied a restraint-based modeling approach 

using the TADbit python library [240, 259]. The genome was defined by 41 particles, 

determined by the resolution of the contact map at 20 kb. Each particle had a radius of 

36 nm that was determined empirically with the scale parameter of 0.0036 nm/bp. First, 

TADbit identified empirically three optimal parameters using a grid search: (i) the 
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proximal distance between two non-interacting particles set as 100nm, (ii) a lower-

bound cut-off to define particles that do not interact frequently, set as -0.6 and (iii) an 

upper-bound cut-off to define particles that do interact frequently, set as -0.2. 

Subsequently, considering an inverse relationship between the frequencies of 

interactions of the contact map and the corresponding spatial distances, TADbit 

translated the frequencies of interactions into spatial restraints between particles. Two 

consecutive particles were spatially restrained at an equilibrium distance, which 

corresponds to the sum of their radii. Non-consecutive particles with contact frequencies 

above the upper-bound cut-off were restrained at an equilibrium distance, while those 

below the lower-bound cut-off were maintained further than an equilibrium distance. 

Second, TADbit used a Monte Carlo simulated annealing sampling procedure to 

identify 3D models that best satisfy all of the imposed restraints. A contact map 

obtained from the final models resulted in a Pearson correlation of 0.83 to the input Hi-

C interaction matrix, which is indicative of good model accuracy [259]. 

 

g) TEM imaging 
Mycoplasma cells were recovered into fresh growth medium at 50-fold the 

concentration of the original culture.  The cell suspension was put on a 3×3 mm piece of 

glass and left at 37ºC for 15 min.  The cells on the glass were fixed with 1% 

glutaraldehyde in PBS consisting of 75 mM sodium phosphate (pH 7.3) and 68 mM 

NaCl for 3 min at RT, rinsed with 0.2 mL PBS once and then thoroughly washed in 

water. The fixed cells were frozen at a liquid nitrogen temperature using CryoPress 

(Valiant Instruments, St. Louis, MO), deep-etched, rotary-shadowed by platinum at an 

angle of 30 degrees, and backed with carbon in a JFDV freeze-etching machine (JEOL 

Ltd, Akishima, Japan). Replicas were floated from the glass by slow immersion along 

the surface of full-strength hydrofluoric acid, cleaned with a commercial bleach, rinsed 

in water, and picked up onto Formvar-coated 400-mesh copper grids as described [261].  

The series of replica images were taken by tilting the sample stage for 30 degrees to 

both sides with 5 degrees intervals, by a transmission electron microscope (JEM1010, 

JEOL) at 80 kV. 
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h) 3D reconstruction and cell volume 
 
TEM images tilted with angles –30, 25, 20, 15, 10, 0, 5, 10, 15, 20, 25, 30 were 

registered by cross-correlation with Matlab and rotated to ensure a vertical rotation axis. 

The outline of the cell in each image was determined by thresholding using Fiji, 

followed by manual removal of background contamination and filling of gaps inside the 

bacteria. From these binarized images the sample area could be extracted by counting 

pixels within the cell area. 

The volume of the cell was then calculated by assuming each cell is rotationally 

symmetric along its long axis (Video S2). The cell was segmented into cylinders and 

cones along this axis, and the volume was computed as the sum of the 

cylinders’volumes and the cones’ volumes as follows: 

𝑉!"# =   𝜋  ×  𝑟!×  ℎ    and   𝑉!"#$ =
!
!
  𝜋  ×  𝑟!×  ℎ 

where Vcyl is the volume of a cylinder of height h and radius r and Vcone is the volume of 

a cone of height h and radius r. 

To reduce the error due to inaccuracies in the manual image editing or a lack of 

rotational symmetry, the final volume was calculated as the average of the volume of 

the individual images. 

 

i) Estimation of chromosome dimensions and volume 
The mean length, mean width and mean volume of the chromosome were computed 

over the 1000 models lengths, widths and volumes. The length of the chromosome in 

each model was estimated as the distance between the two most distant particles of the 

model and the width as the double of the radius of gyration of the model. To calculate 

the volume of the model, we first computed the diagonal of a cube where the height, 

length and width were given by the difference between the minimum and maximum 

coordinates for each the x, y and z axis, and we computed the volume of the cube where 

the height, length and width were equal to this diagonal, that would enclose the whole 

model. 
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j) Fluorescence In Situ Hybridization (FISH) combined with 

Immunofluorescence 

We estimated the distances between four regions of interest corresponding to the four 

quarters of the circular genome of M. pneumoniae, namely Ori, Right, Ter and Left as 

shown in Table S3, performing FISH of those regions combined with 

immunofluorescence of the P1 protein localized in the AO [196, 197, 201]. 

The resolution of a regular fluorescence microscope image is limited by diffraction of 

about half the wavelength of the emitted light, which due to the small size of M. 

pneumoniae does not allow localizing the region marked by the fluorescent probe. To 

overcome the diffraction limit, we used a high-resolution microscope with ground-state 

depletion followed by individual molecule return (GSDIM) that improves resolution 

down to 20 nm [252-255]. The principle resides in ensuring that only a few illuminated 

fluorophores are able to emit simultaneously, allowing each one to be localized 

individually with a resolution below the diffraction limit. To do so, a strong continuous 

excitation light source is used so that most of the fluorophores instantly go into a 

temporary dark state and only a few switch stochastically to an active state and are able 

to fluoresce [252-254]. The microscope records the precise position of the fluorophores 

over a series of imaging cycles. Because in our setup each color needs to be imaged 

sequentially, we have not been able to observe two genomic probes of the genome 

marked by FISH simultaneously, as the second probe was not resistant to two 

consecutive sessions of strong illumination. To overcome this technical limitation, we 

combined one genomic probe marked by FISH with the immunofluorescence of the 

protein P1 adhesin of the attachment organelle. We first observed the genomic probe 

and then the region marked by immunofluorescence in a second session, which proved 

to be resistant to photobleaching. We found that the Ter probe was close to the AO, and 

therefore we could deduce the distances between Ori-Ter, Right-Ter and Left-Ter, 

approximated as their median distance to AO minus the median distance between Ter-

AO. 

 

DNA probes preparation for FISH 

Standard PCRs were performed with genomic DNA to amplify four regions of interest, 

with the following pairs of primers Ori (F_Ori,R_Ori), Ter (F_Ter, R_Ter), Right 

(F_90C, R_90C) and Left (F_270C, R_270C) (Table S3). The different amplified 
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fragments were labeled by adapting the protocol from the Random Primed DNA 

Labeling Kit (Roche). Briefly, the probes were denatured by incubating 10 min at 100ºC 

and mixed with the following reagents: 5 µL 10x Klenow buffer, 0.25 µL 100 mM 

dATP, dCTP, dGTP, 0.16 µL 100m dTTP, 2.5 µL 1 mM ChromaTide Alexa Fluor 568-

5-dUTP (Life Technologies), 1.6 µL 3 µg/µl random hexamers and 0.25 µL 10 U/µL 

Klenow fragment, before O/N incubation at 37ºC. The reaction was stopped by adding 2 

µl of 0.2M EDTA and incubated 10 min at 65ºC. The labeled probes were then purified 

by ethanol precipitation. 

 

FISH labeling 

M. pneumoniae cells were grown in a 75 cm2 flask in Hayflick medium for 4 days under 

standard conditions. After 4 days, the medium was removed and cells were re-

suspended in 5 mL of fresh medium (Hayflick), then scrapped and collected. Cells were 

then passed through a syringe/G25 needle (10x) and a filter (0.45 µm) and mixed with 5 

mL of 6% gelatin. Then cells were grown on borosilicate and CC2 coverglass slides 

(Thermo Scientific) for 6 h, as replicates. Cells were fixed in a final concentration of 

4% formaldehyde (Pierce) for 20 min at RT followed by 40 min at 4°C, before further 

fixing with cold methanol at -20°C O/N. 

After washing twice with PBS, two washes were done with 2x SSC /Tween-20 for 5 

min, then with 2x SSC/formamide at 37ºC for 30 min. Each genomic probe was then 

mixed with a hybridization buffer (2x SSC, 50% formamide 100 µg/mL salmon DNA 

sperm) and warmed at 95ºC for 10 min. In parallel the slides were also warmed at 95ºC 

for 2 min before adding the probes to the slides and incubated at 42ºC O/N. 

Several washes were then done, twice with 2x SSC/formamide for 30 min at 37ºC, then 

with SSC 2X/ 25% Form for 10min, 3x with 2x SSC for 10 min and finally briefly with 

PBS. 

When immunofluorescence localization of P1 protein was required, samples were 

blocked during 1 h by using 2% Elisa reagent Blocking solution (Roche). Then, a 

primary antibody from rabbit recognizing P1 adhesin protein of the Attachment 

Organelle (Organelle 65114, provided by Prof. Richard Herrmann) was incubated for 1 

h at RT with blocking solution. After three washes with PBS 1x/Tween-20 0.05% for 15 

min at RT, the secondary antibody (anti-rabbit marked with Alexa 488) was added to 

the slides in blocking solution for 1h at RT. After three washes with PBS 1x/Tween-20 
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0.05% of 15min at RT, the removable slide chambers were dried and mounted on glass 

slides using the Prolong Gold antifade reagent (Life Technologies). 

 

k) FISH imaging acquisition and processing 

The super-resolution microscope used to acquire the data was a ground-state depletion 

(GSD) Multiline TIRF microscope (Leica, Wetzlar, Germany) using the proprietary 

Leica software, equipped with a 1.46 NA 100x TIRF objective and an Andor iXon 

EMCCD camera. We processed the data using rapidSTORM [262] and used 

PALMsiever [263] for filtering and rendering. Finally, using Fiji [264], the distances 

were calculated between the center of mass of the observed probes. 

 
l) Domain detection on Hi-C contact map 

The filtered raw HpaII matrix at 5 kb resolution was used for domain detection. First, 

TADbit program normalized the matrix with a single iteration of ICE. Then TADbit 

returned the optimal segmentation of the chromosome under BIC-penalized likelihood. 

The algorithm for the domains detection uses a change-point algorithm, inspired by 

methods used to detect copy number variations in CGH experiments [265]. The model 

assumes that counts have a Poisson distribution and that the expected value of the 

counts decreases like a power-law to the linear distance on the chromosome. The details 

of the implementation of TADbit will be further defined elsewhere (Serra et al., 

manuscript in preparation). 

 

m) Co-expression levels analysis (RNA-seq) 

A co-expression tendency was computed based on RNA-seq expression over 282 

conditions and represents the fraction of conditions in which the pair of genes vary in 

the same direction minus the conditions in which they vary in opposite directions 

(Junier, Ünal, Yus, manuscript in preparation). 

 

n) HpaII sites number on domains borders 

We computed the number of sites on the 48 domain borders, with each domain border 

being defined by two bins, the last bin of the previous domain and the first bin of the 

next domain. We evaluated whether it is significant using a permutation test, where all 
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48 domain border positions were shifted across the genome, but conserved both the size 

and number of domains. We obtained a number of sites per domain border for each 

permutation that we could compare to the original case. We obtained an empirical p-

value, calculated as the ratio between the number of values that are higher than or equal 

to the observed value in the original domain border case. 

 

o) High co-expression levels within domains 

We computed the mean co-expression levels between pairs of genes within the same 

domain, compared to pairs of genes where the first gene is localized within one domain 

and the second gene in a different domain. Then we computed the Mann–Whitney test 

p-value to compare the two distributions. 

 

p) Low co-expression levels surrounding domains borders 

To assess whether there is a significant low co-expression in the domain borders, we 

performed a permutation test, where all domain border positions were shifted across the 

genome, but conserving both the size and number of genomic domains. Then, for each 

permutation, we calculated the mean co-expression levels of the genes present in the 

domain borders. Finally we computed the empirical p-value as the ratio between the 

number of values that are lower than or equal to the observed value in the original 

domain border case. 
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3.4 Results  
 

a) Generation of the Hi-C map of the M. pneumoniae genome 
Here, we have studied the M. pneumoniae genome during stationary phase, using the 

four-cutter enzyme HpaII and the six-cutter enzyme HindIII, which have average 

cutting frequencies of 450 bp and 1810 bp, respectively. Although the Hi-C interaction 

maps obtained at exponential and stationary phase display similar features, the analysis 

of the chromosome structure at exponential phase could be hampered by heterogeneity, 

as it is not possible to synchronize M. pneumoniae. Therefore we concentrated on the 

stationary phase samples. To analyze the Hi-C datasets, the paired-end library reads 

were first mapped and then further filtered and normalized as previously described 

[148] (Methods). Next, the interaction frequencies were grouped into 41 genomic loci of 

20 kb each, called bins. The final frequencies of interactions were represented as two 

dimensional matrices where M(i,j) indicates the relative frequency of interactions 

between fragments in bins i and j. The decision to use the resolution of 20 kb was 

determined based on the correlation between all replicates at 5, 10, 15 and 20 kb 

resolutions (Fig. S1) as well as the matrix modeling potential (MMP) score [259] of the 

resulting matrices (Table S1). The HindIII dataset resulted in an MMP score of 0.80, 

with a predicted model accuracy of 0.78 (0.66-0.89 at 95% confidence interval). The 

HpaII dataset resulted in an MMP score of 0.80 with a predicted model accuracy of 0.79 

(0.67-0.90 at 95% confidence interval). Additionally, the matrices were highly 

reproducible between biological replicates (r=0.93) as well as between HindIII and 

HpaII datasets (r=0.95). Even though no significant differences were found between the 

two enzymes, since the HpaII enzyme has a higher frequency of cutting, we decided to 

use the HpaII interaction matrices at 20 kb resolution for modeling and subsequent 

analysis. 

The resulting Hi-C interaction map had two diagonals intersecting near the center of the 

chromosome (Fig. 1a). The potential Ori was predicted by the position of the dnaA 

boxes [266] but the exact localization of the Ter has not been experimentally 

determined in this bacterium. Since in bacteria the Ter is located opposite to the Ori 

[267, 268], we predicted it to be at this intersection point (~400 kb). The main 

prominent diagonal, characteristic of Hi-C maps, results from the local contact of 

proximal genomic regions. The second less prominent diagonal (from the lower right to 
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the upper left corner) reflects both the circularity of the genome and the interactions 

between fragments located on the opposite arm of the chromosome. All together this 

indicates that the chromosome has a global symmetry within the cell extending from the 

Ori-Ter axis. Interestingly, such symmetry is also observed in the linear organization of 

the genome where genes are distributed in opposite strands both in the left and the right 

arms of the chromosome (Fig. 1b). 

 

 

Figure 1: Hi-C matrix and 3D models of the M. pneumoniae chromosome reveal a global symmetry 
with Ori and Ter located at the two opposite poles. (a) Normalized HpaII Hi-C contact map of M. 
pneumoniae, in stationary phase with 20 kb resolution. The frequency of interactions between a given pair 
of bins is found at the intersection of the row and column corresponding to those bins. The color of the 
contact map, from blue to red, indicates the log2 contact frequency. The bar underneath indicates genome 
position with Ori being located at a genome coordinate of 0 and Ter located at ~ 400 kb. (b) Simplified 
genomic map showing the gene distribution across the chromosome, with black lines delimitating the 
genes. The color indicates the strand position, with pink being the - strand and green the strand +. (c) 3D 
density map representations of the first cluster of M. pneumoniae genome models with Ori and Ter 
represented by red and purple circles, respectively. A color tube shows the centroid model, following the 
same color code of the bar as in (a) and the lighter color represents the space occupied by all the models 
in the cluster, i.e. the variability across the cluster. 
 

b) 3D modeling reveals a chromosome structure with Ori and Ter localized 

at the two opposite poles 
To assess whether the overall symmetry is also reflected in the spatial organization of 

the genome, we built 3D models of the genome of M. pneumoniae based on the filtered 

and normalized Hi-C matrix at 20 kb. Briefly, based on the hypothesis that chromatin 

interaction frequencies are a proxy for spatial proximities between loci [139, 269], we 
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used TADbit [240, 259] to search for 3D conformations that best satisfy the spatial 

distances between genomic loci inferred from the frequencies of our Hi-C matrix. A 

total of 5,000 models were built by an optimized protocol where the loci were initially 

placed randomly in 3D space and their positions were modified iteratively using 

simulated annealing and Monte-Carlo sampling to satisfy as many restraints as possible. 

Finally, we selected the 1,000 models with minimal penalty for not satisfying the 

imposed restraints and clustered them based on their structural similarity. We found two 

main clusters corresponding to mirror images of each other, one containing 510 models 

and the other 490 models. The variability of the models within the cluster is 

homogeneous along the entire chromosome (Fig. 1c). Similarly to what was observed 

for the 3D organization of C. crescentus [113, 162], the circular chromosome obtained 

has a global symmetry between the two chromosomal arms connecting the Ori and Ter, 

which are located at the two opposite poles of the structure (Fig. 1c, Video S1).  

 

c) Chromosome occupancy is about two-thirds of the total cell volume 
To ensure that the predicted dimensions and volumes of the models fit within the cell of 

M. pneumoniae, we examined cells by transmission electron microscopy (TEM) using 

the quick-freeze deep-etch replica method [270] (Fig. 2a). We measured a median cell 

length of 1,389 nm (with standard deviation of 337 nm) and width of 359 nm (sd of 65 

nm), compared to a median chromosome length of 268 nm and mean width of 194 nm 

obtained from the 3D models (Fig. 2b). We also acquired tilted TEM images of cells 

that were used for 3D reconstruction (Video S2). Although technical limitations did not 

allow for a full 3D reconstruction of the whole cell, we could still detect a rotational 

symmetry along the long cell axis thereby allowing us to estimate the cell volume. In 

stationary phase, the chromosome volume estimated from the 3D models is 0.050 µm3, 

which when compared to a median cell volume of 0.075 µm3 is about two thirds of the 

total cell volume. Altogether, in contrast to what was previously shown [211], these 

results indicate that the modeled 3D genome fits within the cell without occupying the 

entire available space. 
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Figure 2: Chromosome occupancy is approximately two thirds of the total cell volume. (a) Quick-
freeze deep-etch replica TEM imaging of a M. pneumoniae cell. (b) Comparison of the estimated heights 
and widths of cells and chromosome models in nm. Boxplot distribution and median values of height and 
width over 25 cells, here shown in red, estimated from TEM imaging. Boxplot distribution and median 
values of height and width, estimated over 1000 chromosome models, shown in blue. (c) Distribution and 
median volume estimated over 25 cells as shown in red, and estimated volume over 1000 chromosome 
models as shown in blue, in nm3.  
 
 
 
d) Validation of 3D models with fluorescent imaging 

The orientation of the chromosome in the cell body was assessed by using 4’6-

diamidino-2-phenylindole (DAPI) combined with immunofluorescence of the P1 

adhesin protein localized at the AO [201, 204]. We analyzed cells in exponential phase 

since in stationary phase M. pneumoniae clumps in large aggregates. The resulting 

exponential and stationary contact matrices significantly correlated (r=0.85, p<0.0001, 

Fig. S2) suggesting that the overall conformation of the chromosome does not 

significantly change between the two states. Distances between different genomic 

regions were determined by super-resolution localization microscopy (Fig. 3a and 3b). 

We measured distances between fluorescent DNA probes (Fluorescence in situ 

hybridization imaging; FISH) mapped to the Ori (0-1 kb), Right (204 kb-205 kb), Ter 

(390 kb-391 kb) and Left (612 kb-613 kb) loci (Table S3), in conjunction with the 

immunofluorescence localization of P1 adhesin (Fig. 3a).  
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Figure 3: Validation of 3D models with super-resolution imaging. (a) (Top) FISH imaging with red 
(Alexa Fluor 568) indicating genomic probes Ori, Right, Left, Ter respectively, and green (Alexa Fluor 
488) representing the P1 adhesin, attachment organelle protein. Scale bar = 200nm. (Bottom) Boxplot 
distribution and median distances estimated between the genomic probes and AO over about 100 cells. 
(b) Pearson correlation between the Ori-Ter, Right-Ter and Left-Ter estimated distances from 
chromosome models in the x-axis and experimental FISH imaging in the y-axis. Black lines indicate the 
variability within the estimated distribution. (c) 2D map representation of chromosomal models from the 
first cluster shown in blue, with x and y coordinate positions shown in the x-axis and y-axis, respectively. 
Ori, Left, Right and Ter positions across the first cluster of chromosome models are shown in red, pink, 
purple and green, respectively. 
 

The Ter-AO measurements displayed the smallest median separation distance of 91nm, 

while the Left-AO and Right-AO distances were larger (167 nm and 186 nm, 

respectively). Finally, the Ori-AO distances had the largest separation with a median 

distance of 240 nm. Additionally, we calculated approximate distances between Ter-

Left, Ter-Right and Ter-Ori from their respective distances to the AO by deducting the 

median Ter-AO distance of 91nm (Fig. 3b). The fact that the Ori-AO measurements 

have a larger variability compared to the others, particularly to the Ter-AO 

measurements, probably suggests that after duplication the Ori moves toward the 

opposite pole, whereas the unduplicated Ter remains fixed throughout the replication 

process, similar to what was observed during B. subtilis replication [127, 271].  

Next, to assess whether the distances obtained from the 3D models were congruent with 

the distances obtained experimentally, we computed the Euclidian distances between 

Ter-Ori, Ter-Right and Ter-Left given their respective 3D coordinates in the models. 

The Ter-Left and Ter-Ori distances were respectively the smaller and larger median 

distances estimated both from the 3D models (144 nm and 236 nm) and the imaging 

data (76 nm and 149 nm) (Fig. 3b). Although the distances estimated from the 3D 

models are overall larger than the experimental ones, a Pearson correlation of 0.98 is 

found between the median distances Ter-Left, Ter-Right and Ter-Ori estimated from 

both the 3D models and the fluorescent imaging (Fig. 3b). Overall, our imaging data 

qualitatively validate our 3D models and we conclude that, as was shown in B. subtilis 

and C. crescentus [86, 127, 272, 273], the folding of the chromosome is consistent with 

the linear order of genes along the DNA (Fig. 3c). 

 

e) Genes are co-expressed within chromosome interaction domains 

In Hi-C interaction maps, a significant proportion of the signal lies in the vicinity of the 

diagonal where most of the interactions occur. We have used this property to further 

increase the resolution of our maps to 5 kb bins. Although such maps have relatively 
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low scores for accurate 3D modeling (the MMP score of the maps at 5 kb was 0.65, 

Table S1), they can be used for studying the local organization of chromatin, omitting 

long-range interaction data. We used the TADbit program to segment the HpaII matrix 

at 5 kb resolution into CIDs (Fig. 4a).  

 
Figure 4: M. pneumoniae chromosome is partitioned into domains of co-expressed genes. (a) Hi-C 
HpaII filtered and normalized contact map at 5 kb resolution, rotated 45º with domain density plots. Each 
domain is represented by a grey-filled arc and delimited by a colored line. The color code from blue to 
red, numbered 1 to 10, indicates the border strength or confidence score of the identification of domains. 
The y-axis displays the relative Hi-C interaction frequencies and the horizontal line at y=1 indicates the 
expected frequency, given the domain size. (b) Absolute mean co-expression distribution of gene pairs, 
when both genes are located within the same domain as shown in green, or genes between two different 
domains as shown in blue. (c) Detailed absolute mean co-expression distribution across the 24 domains. 
Point sizes are proportional to domains scores. The color depicts, as before, the two cases of genes pairs 
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within the same domain, shown in green, and genes pairs between different domains, shown in blue. (d) 
Absolute mean co-expression distribution as a function of genomic distance, with distances between 
genes pairs smaller than 60 kb for the same two cases as in (a) and any genes pairs across the whole 
genome, as shown in white. 
 

Moreover, TADbit assigned a confidence score to each domain border ranging from 1 to 

10, the higher the score, the higher the confidence (Fig. 4a). The CID sizes ranged from 

15 kb to 65 kb, with a median of 30 kb, smaller than those previously found in C. 

crescentus which range from 30 to 420 kb [113]. To ensure that the identified domain 

borders were not artifacts arising from the localization of restriction sites, we calculated 

the number of HpaII sites present in borders. The analysis confirmed that the domain 

borders were not significantly enriched with HpaII sites (permutation test p-

value=0.66). We also looked at other properties such as gene localization, COG 

function, TFs enrichment, termination of genes, methylation levels and convergent and 

divergent pairs of genes, but none of them were found to be significantly enriched with 

the permutation test. Only GC content was found to change significantly with a lower 

percentage value at domain borders (permutation test p-value=0.012). 

To assess whether the local organization of the M. pneumoniae genome into CIDs is 

related to transcriptional regulation, we compared the absolute mean co-expression of 

pairs of genes within and between domains. Interestingly, we found that genes are 

significantly co-expressed within domains (t-test p-value<0.0001) (Fig. 4b). 

Specifically, higher mean absolute co-expression values were observed for genes in 18 

domains out of the 24 domains (Fig. 4c). These results also indicated that the higher co-

expression levels for genes within CIDs are not only an effect of genomic linear 

proximity (Fig. 4d). Indeed, independently of the CID in which the genes are located, 

proximal genes have higher co-expression than distant genes (> 5 kb). However, the 

correlation trends are reversed when comparing gene co-expression within or between 

CIDs (Fig. 4d). Interestingly, the correlation of expression is stronger for proximal 

genes (< 5 kb) when those genes are located within the same CID, while it is weaker for 

genes localized in different CIDs (that is, separated by a CID border). Moreover, a 

border permutation test confirmed that the genome is partitioned into domains of co-

expressed genes and a significantly low co-expression is found at the border of these 

domains (p-value<0.0001). Altogether, our results suggest that the mean co-expression 

level observed for genes of the same domain is higher than the mean co-expression level 

observed for genes in close proximity. 



 

 84 

f) Inhibiting supercoiling decreases domain sizes and interaction 

frequencies 

To study the effect of inhibiting supercoiling on chromosome structure, we performed 

Hi-C on cells treated with novobiocin, a drug that inhibits DNA gyrase and DNA 

negative supercoiling. The outcome of inhibiting DNA gyrase with novobiocin is the 

relaxation of the DNA [274]. The novobiocin treated cells resulted in Hi-C interaction 

maps with 27 CIDs (Fig. 5a), ranging from 20 kb to 50 kb and with a median size of 25 

kb (Fig. 5b). Interestingly, the TADbit median confidence score for the border domains 

was 5 out of 10 (the higher the score, the higher the confidence) compared to 8 for non-

treated cells (Fig. 5b). Similarly, the domain densities, associated to the relative number 

of interactions given the domain size, were lower in novobiocin-treated cells, with 12 

out of 27 domains having densities lower than expected and a median density of 1.05 

compared to 1.02 in the other case (Fig. 5b). Taken together, and as reported in C. 

crescentus [113], novobiocin reduces the CID sizes, the sharpness of its borders and the 

frequency of interactions within the domains, therefore suggesting that supercoiling 

may regulate domain formation in bacteria. 
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Figure 5: Inhibiting supercoiling decreases domain sizes and interaction frequencies. (a) Same as 
Fig. 4a, but with Hi-C HpaII Novobiocin-treated contact map at 5 kb resolution. (b) Comparison of CID 
size, border strength with median values, and density distribution in wild-type (red) and Novobiocin-
treated (yellow) cells. 
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3.5 Discussion 
 
Chromosome conformation capture based experiments coupled with deep sequencing 

have been used to explore bacterial genome organization and its role in transcriptional 

regulation [113, 162, 166, 167]. Here, we have analyzed the 3D genome organization of 

the M. pneumoniae bacterium, a model organism with a small genome size and a 

simplified gene regulatory network. Indeed, compared to other bacteria, M. pneumoniae 

has a lower number of TFs and only two sigma factors to coordinate gene transcription. 

By combining Hi-C and super-resolution fluorescent imaging, we were able to identify 

fundamental principles of genome organization such as the partitioning of a reduced 

genome into domains. Furthermore, we provide evidence that genes inside CIDs tend to 

be co-regulated, indicating that the chromosome structure has a role in transcriptional 

regulation. 

The M. pneumoniae genome contact map revealed a double diagonal intersecting near 

the center of the chromosome, corresponding to the Ter and reflecting the global 

symmetry of the genome along the Ori-Ter axis. The 3D models generated of the 

genome conformation resulted in the Ori and Ter loci being located at the two opposite 

poles of the structure. In addition, our TEM images indicate that the 3D chromosome 

models fit within the cell of M. pneumoniae. DAPI staining of the chromosome showed 

that M. pneumoniae does not have a defined nucleoid in its center but rather the 

chromosome occupies the available volume [211]. However, we estimated that the 

chromosome is only occupying about two-thirds of the total cell volume. This can be 

explained by the limited resolution of our models (20 kb) from which it cannot easily be 

assessed the actual occupancy of a bin within the cell. 

Using super-resolution fluorescent imaging, we corroborated our 3D models of 

chromosome conformation. Imaging indicates that the Ter locus is the closest of all 

tested loci to the AO. In M. pneumoniae, the duplication of the AO was reported to be 

coordinated with cell division, which occurs by binary fission [182]. Moreover, during 

cell replication and before nucleoid separation, the migration of the AO to the opposite 

pole of the cell was observed in fixed cells, which suggests a coordination between AO 

duplication and DNA replication [211]. Once a new organelle is formed, it remains 

attached to the surface, and the old attachment organelle pulls the dividing cell away 

from the nascent organelle, positioning itself at the opposite pole [220]. Similarly, as 

described for the analogous species Mycoplasma. gallisepticum [219], our findings 
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suggest possible anchoring of the DNA near the Ter to the AO. Unfortunately, the 

observed cell-to-cell variability in Ori-AO and Ter-AO distances could not demonstrate 

that the AO is attached to a specific chromosome region as division occurs. Technical 

limitations of the FISH protocol only allowed the study of fixed cells, limiting a deeper 

understanding of cell division in M. pneumoniae. 

Previously, a double diagonal was observed in the contact map of the phylogenetically 

closely related gram-positive bacterium B. subtilis [166] and also in two other gram-

negative bacteria C. crescentus [113, 162] and Vibrio cholera [166]. Interestingly, this 

symmetry observed along the two replichores was not observed in E. coli, which has an 

open chromosome structure (Fig. 6a) [166, 167], likely due to the orientation of the 

chromosome within the cell. Indeed in B. subtilis and C. crescentus, the Ori and Ter are 

preferentially located at opposite poles early in the cell cycle [86, 273], with the Ter 

situated at the new pole and the Left and Right extending along the cell in C. crescentus 

[162] (Fig. 6b,c).  
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Figure 6: Models of bacterial chromosome organization. Models of nucleoid organization with Ori 
and Ter represented by red and purple circles (a) Model of E. coli genome with the four macro-domains 
Ori, Ter, Left, Right, represented by circles in red, purple, pink, nd blue respectively. (b) Model of B. 
subtilis genome adapted from [273]. (c) 3D models of C. crescentus genome conformation [162]. (d) 3D 
models of M. pneumoniae genome conformation. 

 
Similarly they both have an origin proximal region parS (partition system) that assists in 

the orientation of the chromosome during replication [275, 276], whereas in E. coli Left 

and Right are situated toward the two poles and Ori and Ter are close to the middle of 

the cell [277, 278] (Fig. 6a). The chromosome organization of C. crescentus is similar to 

that of M. pneumoniae, with the Ori and Ter being localized at the two opposite poles 

(Fig. 6d), but in contrast has an ellipsoidal form with periodically arranged arms 

twisting around each other (Fig. 6c) [162]. 

Several published studies have previously shown that mammalian genomes are 

partitioned into the so-called topological associating domains (TADs) [19, 20], which 

range from 200 kb to 1 Mb and are conserved across different species and cell types. 

These studies suggest thus, that chromosomal domains could be a fundamental principle 

of genome organization. Our analysis allowed the detection of bacterial TAD-like 

domains (CIDs) for the first time in M. pneumoniae. Indeed, M. pneumoniae is 

partitioned into a total of 24 CIDs ranging from 15 kb to 65 kb, which are smaller to 

those reported in C. crescentus [113]. We also observed as previously reported in C. 

crescentus [113], that inhibition of supercoiling by novobiocin significantly reduced the 

sharpness and sizes of CIDs. Our finding suggests that supercoiling could be regulating 

domain formation in bacteria. Interestingly, our analysis also indicates that genes inside 

CIDs tend to be co-regulated, with lower co-expression levels between genes being 

detected at the domain boundaries. It was previously reported in C. crescentus that 

domain borders correlated with the presence of highly expressed genes, being as the 



 

 89 

DNA is kept free of plectonemic loops by active transcription [113]. Although we did 

not observe such findings, we established that borders are characterized by low GC 

content levels. This could be related to the physical properties of DNA such as DNA 

curvature, which has previously been linked to the AT content [279]. Similarly, it has 

also been reported in E. coli and Salmonella typhimurium that the localization of 

domain loop boundaries is found in AT-rich regions [95]. Even though the contribution 

of NAP and SMC in the global genome organization was recently refuted in E. coli 

[167] as well as their role in the formation of CIDs in C. crescentus [113], the formation 

of these domains was consistent with the distribution of histone-like proteins binding 

sites, such as H-NS, HU, Fis and IHF [90, 95]. As M. pneumoniae however has few 

copies of the histone-like IHF protein [230], thereby making it difficult to maintain the 

CID boundaries, it is likely that additional factors contribute to the formation of such 

domain loops. Since M. pneumoniae only has a handful of DNA-binding proteins and 

very few TFs (Table 1), it is intriguing that it can establish a well-defined chromosome 

structure as well as maintain its CID boundaries. We speculate that very few factors 

may be necessary to define a 3D chromosome structure and provided evidence that 

other elements like supercoiling could regulate these domain boundaries, which are 

characterized by low GC-content and might be related to the physicochemical properties 

of DNA. 
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Figure S1: Pearson correlation between HpaII and HindIII datasets at different resolutions. 
Comparison of normalized and filtered Hi-C matrices of HindIII1, HindIII2 and HpaII datasets across 5, 
10, 15 and 20 kb resolutions, shown in the x-axis, by Pearson correlation, shown in the y-axis.
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Figure S2: Normalized HpaII Hi-C contact map of M. pneumoniae, in exponential phase with 20 kb 
resolution. The frequency of interactions between a given pair of bins is found at the intersection of the 
row and column corresponding to those bins. The color of the contact map, from blue to red, indicates the 
log2 contact frequency. The bar underneath indicates genome position with Ori being located at a genome 
coordinate of 0 and Ter located at ~ 400 kb. 
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Resolution (bp) MMP score 
1000 0.191 
3000 0.611 
5000 0.652 
8000 0.696 
10000 0.708 
15000 0.762 
20000 0.802 
 
Table S1: MMP score at different resolutions for the HpaII dataset. MMP score of normalized and 
filtered HpaII datasets was computed for the given resolutions. 
 
 
Enzyme HpaII HindIII Rep.1 HindIII Rep.2 

Total reads numbers 

 

111,545,820 107,768,945 186,752,960 

Final interaction numbers after 

hiclib filtering 

3,289,717 1,361,843 3,035,901 

 
Table S2: Hi-C datasets statistics. Total reads numbers and interaction numbers after filtering, obtained 
with hiclib Python library. 
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Primers Annotation Start 

position 

End 

position 

Genomic Sequence 

F_Ori Ori forward 

strand 

1 26 TATTTACCGACGAAATTAATACCATC 

R_Ori Ori reverse 

strand 

974 1000 TTTTGTTTTGACTAAAAGAGTTTGATC 

F_90C Right forward 

strand 

204000 204020 TTGCACCAACTCCAGCAAGAC 

R_90C Right reverse 

strand 

204974 205000 TGCTTGTCAATCATGTACTCAATTAAC 

F_Ter Ter forward 

strand 

390000 390021 CGTAACATAAAAGAAGCACGTG 

R_Ter Ter reverse 

strand 

390982 391000 GTTGTTTAGCGCGGGCTTC 

F_270C Left forward 

strand 

612000 612016 CAAGCGCTCGCCTGGTC 

R_270C Left reverse 

strand 

612971 613000 AATTTGAACAATTTCAACTAATTTATCAAC 

 
Table S3: Regions of interest marked by FISH. Primer sequences and respective positions of the four 
regions marked by FISH. 
 
 
 
Video S1: 3D model of the first cluster of M. pneumoniae genome models. 
 
Video S2: 3D reconstruction of a M. pneumoniae cell from EM imaging. 
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Discussion 
 

Here, our first objective was to evaluate 3D modeling of genome conformation using a 

RB mean-field approach, called TADbit. Such objective was essential for using this 

approach to determine the 3D structure of M. pneumoniae genome. After that, our 

second objective was to evaluate the impact of chromosome organization in the 

transcriptional regulation of a genome-reduced bacterium M. pneumoniae. 

 

In the second chapter of the thesis, we used TB modeling to simulate population of “toy 

genomes” with different architecture, different resolution and different levels of 

heterogeneity within the populations. We then derived Hi-C contact matrices from those 

“toy genomes” population, adding increasing levels of noise that mimic Hi-C 

experimental artifacts and biases. Therefore, we generated the first dataset of simulated 

toy genome structures and their respective Hi-C matrices, for benchmarking RB 

modeling approaches, which comprises 168 simulated Hi-C matrices. Next, using 

TADbit, we determined the 3D genome structure based on those simulated Hi-C 

matrices to evaluate and compare the 3D models obtained to the original “toy 

genomes”.  

 

Resolution  

The main conclusions are that RB mean-field modeling reproduces with accuracy the 

3D genome structure and especially the TADbit protocol for 3D reconstruction and 

scoring function were validated. Interestingly, the accuracy of the reconstructed models 

is dependent on the resolution of the Hi-C map, as a result of the proportion of restraints 

per particle. As the sequencing depth experimentally defines the resolution, it is strongly 

recommended to increase the sequencing depth of Hi-C experiments that will result not 

only in higher-resolution models but also in models with higher overall accuracy.  

 

Chromosomal architecture 

Additionally, the comparison of Hi-C matrices of genomes with and without TAD-like 
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architecture revealed that having a genome partitioned into TAD resulted in more 

accurate reconstructed models. One could think that genomes with TAD architecture 

would result in a higher proportion of restraints per particle compared to genomes 

without TAD, as domains are defined as highly interacting. However we observed that 

this is not always the case as local interactions might also have high interactions, 

resulting in a higher number of restraints. A recent study identified chromatin loop 

using high-resolution matrices at 1kb, that often demarcate domains, which are 

anchored in regions associated to CTCF sites [141]. The fact that loop anchors occur at 

domain boundaries limits the possible conformations adopted for those loops and 

therefore the possible conformation of the domain at the boundary. A limited number of 

conformations would facilitate the 3D reconstruction of TAD, which further supports 

our findings. 

 

Variability 

In this study, we have considered two sources of variability with four levels of 

experimental noise as well as seven levels of structural heterogeneity between genomes 

over a population of cells. The first one was generated by varying the probability of 

capturing an interaction, which simulated Hi-C experimental artifacts affecting the 

detection of interacting fragments. The second source of variability was obtained by 

considering toy model genome populations of varying structural similarity. Although 

high levels of heterogeneity in the population alter the reconstruction of genome 

structure, TADbit is robust to high levels of experimental noise but sensitive to 

structural variability. Even if RB approaches are able to handle the simulations of 

different chromatin fiber properties compared to TB approaches, future optimization 

should be done to reproduce the heterogeneity of populations of cells, as for example 

non-synchronised cells where genomes would be at a different state of the cellular 

cycle. Population-based approaches [140] are addressing this limitation where sub-

populations are representing the experimental variability, but the prior characterization 

of heterogeneity within Hi-C dataset remains an important challenge.  

 

MMP score 

In addition, relating the input Hi-C matrix to the corresponding accuracy of the resulting 
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models, allow us to compute a score, called MMP, to a priori evaluate any Hi-C matrix 

and predict its potential for accurate 3D modeling. Indeed this is the first evaluation that 

has been proposed to guide experimentalist as well as modelers in their choice of 

datasets. Up to now, the evaluation of Hi-C matrices was solely based on the correlation 

between technical replicates and between different restriction enzymes, when available. 

As an alternative, the MMP score provides a complementary characterization of Hi-C 

matrix and gives insight into the structural variability and experimental noise present in 

the matrix, evaluated by the skewness of the distribution. Additionally, the MMP score 

can guide the choice of resolution that is a critical step in the preprocessing of Hi-C 

datasets and not always obvious to distinguish between an adequate or sparse matrix at a 

given resolution that would result in accurate or inaccurate 3D models.   

 

Summary 

In summary, we proposed here the first framework to evaluate 3D modeling approaches, 

assessing how those approaches cope with heterogeneity and experimental noise. The 

outcomes of such evaluation is useful to understand the advantages and limitations of 

any restraint-based 3D modeling approaches, especially to guide experimentalist to a 

priori select Hi-C matrices that would result in accurate 3D models. The benchmarking 

of others modeling approaches using the same dataset would complement our 

conclusions based on TADbit modeling approach, and evaluate which modeling 

approaches are more appropriate according to the type of data, as for example single-

cell 3C-based or heterogeneous Hi-C cell populations studies. 
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In the third chapter of the thesis, we selected M. pneumoniae as a model organism with 

small genome size and simplified regulatory network, to unveil the role of chromosome 

structure in transcriptional regulation. Indeed, compared to other bacteria, 

transcriptional regulation in M. pneumoniae appears simple, with a small number of 

DNA-binding proteins, few transcription factors and two sigma factors, leaving few 

alternatives for this the bacterium to modulate its transcriptional activity. Nevertheless, 

M. pneumoniae exhibits specific and complex transcriptional regulation in response to 

different stimuli [227, 229]. Understanding how this transcription is achieved in one of 

the smallest self-replicating genome is fundamental not only from the perspective of 

synthetic biology, but also to understand the evolution of gene regulatory circuits in 

“reduced genomes” and give insights in the fundamental requirements to control gene 

expression. Here, we focus on the role of chromosome structure to identify whether it 

can influence gene expression through changes in the local structure of the DNA or 

global rearrangements. To do so we determined M. pneumoniae 3D genome structure by 

combining electron microscopy, high-resolution light microscopy (STORM) and Hi-C. 

The resulting 3D models obtained with TADbit elucidated the global organization of the 

chromosome that present symmetry along the Ori–Ter axis with Ori and Ter located at 

opposite poles.  

 

Cell Volume 

Although DAPI staining of the chromosome revealed that M. pneumoniae does not have 

a defined nucleoid but rather the chromosome occupies the available volume [211], we 

estimated, by reconstruction of EM imaging, that the chromosome occupies about two 

thirds of the total cell volume. These differences can be explained by the limited 

resolution of DAPI imaging to accurately estimate the nucleoid occupancy. Moreover, 

the limited resolution of our models at 20kb could also explain this apparent shrinking 

of the chromosome dimensions, as the actual occupancy of a bin is not determined. The 

resolution was indeed set to 20kb to depict the global genome organization, limited by 

the total number of interactions obtained after filtering of Hi-C data. Finally, we cannot 

discard that the chromosome or cell volume changes between stationary and exponential 

phases. Since M. pneumoniae clumps in large aggregates in stationary phase, our 

experimental validation was done in exponential phase. We have experimentally 

calculated its cell volume, as well as measured distances between regions of the 
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chromosome by FISH in exponential phase, although the 3D modeling was done based 

on the Hi-C contact map in stationary. Indeed the analysis of the chromosome structure 

at exponential phase could be hampered by heterogeneity, as it is not possible to 

synchronize M. pneumoniae. However, the resulting exponential and stationary contact 

matrices significantly correlated (r=0.85) suggesting that the overall conformation of the 

chromosome does not significantly change between the two states, still the overall 

compaction could be different [57].  

 

Validation by FISH 

Using super-resolution imaging, we estimated by FISH the distances between the 

selected four quarters of the chromosome Ori, Right, Ter and Left and AO. Therefore, 

we deduced approximated distances between Ter-Ori, Ter-Right and Ter-Left to 

validate our 3D models of chromosome conformation, which resulted consistent with 

high-resolution fluorescent imaging. The distances estimated from 3D models obtained 

from Hi-C data in stationary phase were overall larger than the ones obtained from 

super-resolution imaging on cells in exponential phase. Indeed in stationary phase, there 

is less transcriptional activity and a corresponding relaxation of looped domain structure 

of the nucleoid [57]. Moreover, the limitation of super-resolution light microscopy 

imaging is that cells cannot be identified by phase contrast or bright field, which 

introduces a bias in the analysis towards short distances, compared to larger distances 

that might be discarded as they could belong to two different cells. As the 3D genome 

models are scaled according to the distances obtained by super-resolution imaging, the 

dimensions of the chromosome could also appear smaller than they are. This would also 

explain the difference previously mentioned between chromosome volume estimated 

from the model and DAPI staining.  

 

Cell division 

Additionally, we observed that Ori-AO measurements have a larger variability 

compared to Ter-AO, which would suggest that after duplication the Ori move toward 

the opposite pole whereas the unduplicated Ter remains located throughout the 

replication process. This dynamics of Ori and Ter were also observed in B. subtilis 

replication [127, 271].    
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In analogous species Mycoplasma gallisepticum [219], attachment organelles were 

found enriched for newly synthesized DNA, suggesting a possible interaction between 

DNA and AO during cell division. A previous study suggested that the migration of the 

AO to the opposite pole of the cell is coordinated with DNA replication [204]. One 

possibility is that the AO is anchored to the Ori and the AO is driving the new replicated 

DNA towards the opposite pole during its migration. Another possibility is that the AO 

is anchored to the Ter and once the DNA is fully replicated, the AO migrates toward the 

opposite pole to efficiently segregate the new replicated DNA from the old one. 

However, although imaging indicates that the Ter locus is the closest loci to the AO, the 

observed variability for Ori-AO and Ter-AO could not demonstrate that the AO is 

specifically attached to a chromosome region as division occurs. To address this 

question it would be interesting to track the Ori and Ter regions with respect to the AO, 

during DNA replication, to understand whether the migration of the nascent AO to the 

opposite pole is helping in DNA segregation by gliding motility and how such 

mechanism happens. Unfortunately the FISH protocol only allows studying fixed cells 

and as a consequence, we were not able to investigate in details the dynamic 

relationship between chromosome orientation and cell division in M. pneumoniae. 

 

Comparison with other bacteria 

The interaction map of M. pneumoniae is comparable to that of the phylogenetically 

closer related gram-positive bacterium B. subtilis with a double diagonal, suggesting a 

similar genome organization [166]. In fact, imaging of B. subtilis as well as C. 

crescentus showed that chromosomes are arranged linearly with Ori and Ter having 

preference for opposite poles [86, 127, 272, 273]. Similarly they both have an origin 

proximal region parS that assists the orientation of the chromosome during replication. 

Whereas in E. coli, Ori and Ter are located close to the middle of the cell and no double 

diagonal were observed in the E. coli contact map [128, 129].  

C. crescentus genome structure was resolved combining similar approaches of 5C with 

light microscopy imaging [162] and its genome shares similar organization with M. 

pneumoniae but has an ellipsoidal form with periodically arranged arms that twist 

around each others. In conclusion, the linear ordering of loci seems to be a common 

principle in bacteria but the orientation of bacterial genome within the cell differs. This 

could be related to the different manners in which chromosome replication takes place 
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in different bacteria [162, 167]. 

 

Resolution 

The fact that we could not model at higher resolution is mainly related to the sequencing 

depth and restriction enzymes used, but it could also be due to structural heterogeneity 

or experimental noise. Interestingly, as described in the first chapter, the skewness of 

the Hi-C matrices distribution allowed us to differentiate between matrices rich in 

experimental noise from those high in structural variability. The positive skewness 

obtained from HpaII dataset of 2.4 might suggest that the Hi-C matrix is richer in 

structural variability than experimental noise. Indeed positive skewness matrices with a 

long negative tail are likely to be obtained from a population of cells with large 

structural variability. However, we obtained a high MMP score of 0.8, which predicts a 

good potential for the 3D reconstruction of this HpaII matrix at 20kb.  

 

Transcriptional domains 

Several published studies have previously shown that mammalian genomes are 

partitioned into TADs [19, 20], which range from 200 kb to 1 Mb and are conserved 

across different species and cell types. Analysis of local chromatin structures revealed 

that M. pneumoniae is organized into 24 CIDs ranging from 15 kb to 65 kb, which are 

smaller than the CIDs reported in C. crescentus [113]. Those findings suggest that 

domains are a fundamental principle of genome organization. We further demonstrated 

that those domains are constituted by genes that tend to co-regulate and lower co-

expression levels are found at the domains boundaries. Our findings indicate that 

physical clustering within CIDs may be used to coordinate gene expression. 

It was previously reported for C. crescentus bacteria that domain borders correlated 

with the presence of highly expressed genes, where the DNA is kept free of plectonemic 

loops by active transcription [113]. Although we did not observe such findings, we 

established that a low GC content level characterizes borders. This could be related to 

physical properties of DNA such as DNA curvature, which has previously been linked 

the percentage of AT content [279]. Similarly, it has also been reported in E. coli and S. 

typhimurium, that the domains loops boundaries are found in AT-rich regions [90, 95]. 

Even though the contribution of NAP and SMC in the global genome organization was 
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recently refuted in E. coli [167], as well as their role in the formation of CIDs in C. 

crescentus [113], those domains formation were related to the distribution of NAPs [90, 

95]. Nevertheless M. pneumoniae has few NAPs and few TFs, which make it difficult to 

maintain the CIDs boundaries and suggests that additional factors should contribute to 

the formation of those domain loops.  

Topological domains are also thought to be dynamic with domains boundaries that 

would be formed as the result of transcription, translation or replication, without any 

particular protein binding [29]. Therefore it has been proposed that the local chromatin 

structure could be organized by transiently associated factors such as the coupled 

transcription and translation of membrane proteins, called transertion [21-23] or the 

transcription of some highly active promoters, in the absence of membrane translocation 

[110, 111]. Following this hypothesis, small dynamic domains that are non-specific 

would allow the chromosome to be compacted to fit within the cell and at the same 

permit efficient transcription and replication. In that sense, the chromosome will be 

structured without imposing rigidity [29].  

In addition, although the global genome organization does not change with inhibition of 

supercoiling by novobiocin, we observed as previously reported in C. crescentus [40] 

that the sharpness and positions of CIDs were significantly reduced. Our results indicate 

that supercoiling is related to the local chromatin structure and could be regulating those 

domains formation in bacteria. Indeed, negative supercoiling is forming plectonemes 

loops that are maintained by gyrases and topoisomerases [27-29] to prevent relaxation 

of the entire chromosome. Nevertheless some domains borders remain intact after 

novobiocin treatment, indicating that domain formation might arise not only from the 

supercoiling but from a combination of the factors previously mentioned. 

Furthermore, Hi-C data reflects the averaged dynamics of a population of millions of 

cells and it is unclear what does a CID represent in a single cell. Domains would appear 

randomly distributed over a population of cells, even though they might have some 

sequence specificity. Super-resolution imaging would assess whether CIDs are stable 

and present in every cell within a population or whether domains are randomly formed 

and vary across a cell population. Such analysis has been done in eukaryotes using 

fluorescent probes spanning several hundreds of kilobases across TADs and revealed 

that they do differ in size and degree of clustering from one cell to another [20]. More 

recently, using 3D FISH in mouse, the chromatin conformation within a TAD was 
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revealed to be highly variable, though not random and they proposed that structural 

fluctuations within TADs contribute to transcriptional variability by stochastically 

modulating interactions between regulatory sequences [156]. Future work of super-

resolution imaging of CIDs could estimate how variable are CIDs in prokaryotic cell 

compared to the previous results of TADs in eukaryotes. 

 

Summary 

In summary, this study expands the current understanding of bacterial genome 

organization. We defined here fundamental principles of genome organization with the 

partition of a reduced genome into domains and provide evidence that genes inside 

CIDs tend to be co-regulated, indicating that the chromosome structure has a role in 

transcriptional regulation by defining the limits of regulatory neighborhood. One of the 

smallest replicating bacterium that has few DNA-binding proteins can establish a 

defined chromosomal structure, as well as maintain the CIDs boundaries. We speculate 

that few factors may be necessary to determine a 3D chromosome structure and we 

provided evidence that other element like supercoiling could be regulating those 

domains boundaries. Although we have shown that CIDs have a role in local chromatin 

folding and transcriptional regulation, it will be interesting to know whether disruption 

or deletion of CIDs boundaries are accompanied by long-range transcription changes, 

similarly to the deletion of TADs boundaries in eukaryotes [20]. Additionally, 

estimating whether CIDs are stable in every cell or variable across the cell population 

and compare it to the TADs variability observed in eukaryotes would determine whether 

similar mechanisms are determinants of domains formation in bacteria and eukaryotes. 

Future work will clarify the mechanism underlying those domains formation and to 

what extent they contribute to the transcriptional regulation.  
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