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Abstract

Most of the cellular functions are driven by small-molecules that selectively
bind to their protein targets. Is such their importance, that the pharmaco-
logical intervention of proteins by small molecule drugs is frequently used
to treat multiple conditions. Herein I present a thesis that leverages a three-
dimensional study of small molecule protein interactions to improve their ther-
apeutic relevance. More specifically, it introduces nAnnolyze, a method for
predicting structurally detailed protein-ligand interactions at proteome scale.
The method exemplified its applicability by predicting the human targets of
all small molecule FDA-approved drugs. A second application of nAnnolyze
in Mycobacterium tuberculosis identified the bacterial targets for two sets of
compounds with known antitubercular activity. Finally, the thesis describes a
computational model that predicts cancer associated mutations with the highest
chances to confer resistance to a targeted cancer therapy. Additionally, for those
mutations identified as responsible of resistance, the model also suggested al-
ternative non-resistant treatments.

Resumen

La mayorı́a de las funciones celulares están dirigidas por pequeñas moléculas
que selectivamente se unen a sus proteı́nas diana. Es tal su importancia que la
intervención farmacológica de proteı́nas mediante pequeñas moléculas es fre-
cuentemente usada para tratar múltiples enfermedades. A continuación pre-
sento a una tesis que utiliza un estudio tridimensional de las interacciones
entre pequeñas moléculas y proteı́nas para mejorar su relevancia terapéutica.
Especı́ficamente, presento nAnnolyze, un método que predice interacciones
proteı́na-ligando estructuralmente detalladas y a nivel de proteoma. El método
ejemplifica su aplicabilidad a través de la predicción de dianas terapéuticas hu-
manas para todas las pequeñas moléculas usadas como fármacos aprobados por
la FDA. Una segunda aplicación de nAnnolyze en Mycobacterium tuberculosis
identificó las proteı́nas diana para dos conjuntos de compuestos con actividad
contra dicha bacteria. Finalmente, la tesis describe un modelo computacional
que predice mutaciones asociadas a cáncer con alta probabilidad de conferir
resistencia a una terapia dirigida. Además, para aquellas mutaciones identifi-
cadas como responsables de producir resistencia, el modelo también sugiere
terapias alternativas predichas como no resistentes.
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Preface

I never expected to become a computational biologist. To be honest when I was
doing my computer science degree, I didn’t even know such a thing existed. I
remember the first time I heard the term bioinformatics. I was on a seminar,
doing my degree’s last year, and I though that it sounded like some fancy thing
where crazy scientist were working with computers to analyze the DNA. But
that was precisely what I always wanted to be: a crazy scientist who wears a
lab coat and writes on white boards.
Months later, after a quick chat with Dr. Luis Vazquez, I decided to enroll into
the UCM Bioinformatics master in Madrid. I have to confess that, when the
course started, I was completely lost with the biological part. At that point, I
though it wasn’t so important to know all the details of how biology works, at
the end I was a computer scientist, and I always would be. Years later I realized
that understanding the biology behind your problem makes the difference.
Over the course I became interested in proteins, and more in particular, in how
proteins interact with small molecules. How famous drugs such as Ibuprofen
or Viagra, which all of us are familiar with, really work in our body? That was
amazing, I loved it! So I decided to do a three months internship at the Marc
A. Marti-Renom’s lab, working on protein ligand interactions.
I was 23 years old when I started in Marc’s lab. At that time, we were four
people in the lab: Marc, Davide, David and me. From the first day, I knew that
was going to work for me. I liked the work, I liked the people, and I was doing
the thing I like the most: learning. I was not only learning biology but also
how research works. It was striking, outside of the research community, there
is a oversimplification about how research works. There is a huge gap between
research and society, a gap that we must bridge...
Soon after, Marc offered me the possibility of doing the PhD at his lab. In spite
of there were different project options, I was committed to work on the very
same topic: drug-protein interactions.

Four years later, I’m writing this thesis where I describe the work I’ve done over
the course of my PhD. Things have significantly changed, we are more than ten
in the lab, I often read biology stuff not related to my work, I become a decent
cook, my hair is becoming white and I even speak Catalan (OK, that’s not true
but at least I try my best on it...). Sadly, I don’t wear a lab coat and I don’t write
on white boards neither... but I now consider myself a crazy scientist!! I hope
you enjoy the scientific part of this story.
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Introduction

1.1. Protein are essential molecules

The importance of proteins in biological chemistry is implicit in their name, de-
rived from the Greek word proteios, and that means ”of the first rank” 1. Their
presence is so essential that they constitute most of the cell dry mass [1]. They
are not only the cell’s building blocks, but also they perform nearly all the cell’s
functions. Some roles of proteins include serving as structural components of
cells and tissues (e.g., keratin or collagen), transmission of information between
cells by hormones such as the insulin or the oxytocin, facilitating the transport
and storage of small molecules (e.g., the transport of oxygen by hemoglobin)
or providing a defense against foreign invaders (e.g., antibodies). Other pro-
teins such as the actin and the myosin are responsible of muscle contraction
and therefore our movement. However, the most fundamental role of proteins
is their ability to act as enzymes, which catalyzes most of the chemical reac-
tions in biological systems. In summary, proteins are crucial macromolecules
that are present in most of the processes carried out by the cell and, in spite
of being extensively studied for many years, they still carry many unanswered
questions.

1.1.1. Protein structure

A protein is a molecule made from a long chain of amino acids linked thor-
ough a covalent peptide bond. Proteins are therefore also known as polypep-
tides. Attached to this repetitive chain are those portions of the amino acids that
are not involved in the covalent bond, the side chains. Side chains confer the
different physico-chemical properties of each of the 20 types of amino acids
[2]. The composition of the amino acid sequence determines the function and
the structure of a protein. That is a unique sequence creates a specific pattern
of attractive and repulsive forces between amino acids along the polypeptide

1The term protein was coined by Jons Jacob Berzelius in 1838. It was first used
by Gerardus Johannes Mulder, advised by Berzelius, in its publication Bulletin des
Sciences Physiques et Naturelles en Néerlande (1838). pg 104. SUR LA COMPOSI-
TION DE QUELQUES SUBSTANCES ANIMALES, where he observed that all proteins
seemed to have the same empirical formula and came out to the erroneous idea that
they might be composed of a single type of very large molecule. Berzelius proposed
the name because the material seemed to be the primitive substance of animal nutrition
that plants prepare for herbivores.
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leading to a folding process that results in a specific three-dimensional (3D)
structure. These forces are usually non-covalent interactions between the side
chains of the amino acids. Non-covalent interactions are weaker than covalent,
allowing the folded structure to certain degree of conformation mobility. This
phenomenon is really important to enable the interaction with other molecules
as we will explore further in Subsection 1.1.6.

Protein structures are complex conformation of atoms organized in a hierar-
chical manner (Figure 1.1). The first level of this hierarchy, referred to as the
primary structure, is the ordered sequence of amino acids of the polypeptide.
Certain segments of these chains, tend to form simple shapes such as helices,
strands, turns or loops. These folding patterns are referred to as secondary el-
ements and collectively constitute the secondary structure of the protein. The
two most frequent type of secondary elements are the α-helixes and the β-
sheets [3]. The overall chain tends to fold further into a 3D tertiary structure.
Contrary to the secondary structure, the tertiary structure folding is driven by
interactions from amino acids far apart in the primary sequence. The tertiary
structure, is generally the most stable form of the protein, that is, the one that
minimizes its free energy [4]. Furthermore, the tertiary structure is also the
biologically active form of the protein, and its unfolding usually leads towards
partial o total inactivation of the protein. Finally, some proteins are composed
by multiple folded chains. In such cases, each folded subunit folds indepen-
dently and then joins the others forming a biologically active complex. This
type of organization is considered as the quaternary structure.

The traditional paradigm of protein structure has been challenged by some ex-
ceptions of proteins lacking of a fixed or ordered 3D structure. The intrinsically
disordered proteins (IDPs) cover a wide spectrum of states from fully unstruc-
tured to partially structured including conformations such as random coils or
molten globules. Moreover, some factors may lead to the permanent loss of
structure of a protein, and when that occurs, they endanger the entire organ-
ism. How problematic protein misfolding can be for the organism is illustrated
by examples such as cystic fibrosis, Alzheimer’s, Parkinson’s and Huntington’s
diseases.
Chothia and Lesk in the 80s [5] helped to set up the fundamentals of what is
considered a central paradigm in protein evolution: protein structure is more
conserved than sequence (Figure 1.2). However, not all the regions in a protein
structure are equally conserved. It has been shown that functionally important
amino acids, responsible of the interaction with other molecules, are more con-
served than the rest of the protein structure [6]. Additionally, the structural
core is more conserved than the surface [7]. The high degree of conservation
of the protein core enables the protein to maintain the global shape, while the

2



Figure 1.1: Hierarchical distribution of layers in protein structure. Image Credit:
Mariana Ruiz Villarreal (https://commons.wikimedia.org/wiki/File:
Main_protein_structure_levels_en.svg)
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surface is free to change [8]. These evolutionary mechanisms are in accordance
with the central sequence→ structure→ function paradigm that prevails in the
protein evolution field.

Figure 1.2: The original plot of the relation of residue identity and the RMSD devia-
tion of the backbone atoms of the common cores of 32 pairs of homologous proteins.
Figure extracted from [5]

1.1.2. Protein Structure Determination

Since 1960, when the Brithis biochemist John Kendrew determined the myo-
globin structure [9], more than 37,000 different protein structures have been de-
posited in the Protein Data Bank (PDB) [10]. The PDB is a repository created
in the 1970s with the aim of storing all the 3D protein structures and unifying
their format. Figure 1.3a shows the variation of the number of deposited struc-
tures over the time. The number of PDB structures has significantly increased
over the last years thanks to initiatives such as the Protein Structure Initiative
(PSI) [11] or the Structural Genomics Consortium [12]. The later, was born
with the aim of determining the structure of all human proteins. However,
soon after, they realized that the goal was unrealistic. Fortunately, the number
of folds which represent the complete fold space observed in nature is much
smaller that the number of proteins. Therefore, the current goal is to determine
the structure of a representative set of proteins, that is, at least one protein per
fold class. Subsequently, using the structure of representative proteins as tem-
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plates, and thanks to the homology modeling techniques (Subsection 1.1.4), it
is usually possible to infer the structure of other proteins belonging to the same
fold class as we will explore further in the next Subsection 1.1.3.

Several methods are currently used to experimentally determine the 3D struc-
ture of a protein. More than 99% of structures deposited in the PDB have been
determined by the three main methods: X-ray crystallography (X-ray), nuclear
magnetic resonance spectroscopy (NMR) and electron microscopy (EM) (Fig-
ure 1.3b). These methods provide experimental data that helps scientist to elu-
cidate the final structure of a protein. However, in most cases, the experimental
data is not sufficient by itself to build an atomic model. Additional knowledge
about the molecular structure most be added. For example, the preferred ge-
ometry of atoms in a standard protein, the patterns of repulsion and attraction
of amino acids, etc. All this information allows the building of the final model
that is consistent with both the experimental data and the prior knowledge of the
3D geometry of the molecules. I next briefly explain the three aforementioned
methods:

(a) X-ray crystallography. Currently, it is the most widely used method in
protein structure determination. Almost 90% of the structures deposited
in PDB come from X-ray crystallization (Figure 1.3b). In this method,
X-rays fired at a crystal of the molecule are diffracted by the electron
clouds of the protein atoms, forming an unique pattern that is printed as
a picture of the atomic density map. Subsequently, the diffraction pattern
is combined with other physio-chemical knowledge of the protein, such
as composition or atomic geometrical restrictions, in order to build the
final 3D model [13].

Before the X-ray exposition, it is then necessary a prior step of crys-
tallization of the molecule. Unfortunately, the crystallization step in-
troduces several limitations. The flexibility of proteins is one of the
these limitations. The flexible nature of proteins makes really diffi-
cult the creation of an accurate and homogeneous alignment of multiple
molecules used to create the crystal. Another important limitation is the
different conditions required for crystallizing each different molecule.
These limitation are especially noteworthy in membrane proteins. De-
spite of nearly 30% of eukaryotic proteins are membrane proteins, only
604 unique membrane protein structures have been solved to date (data
extracted from http://blanco.biomol.uci.edu/mpstruc/,
March 2016). Therefore, alternative innovative techniques are needed
to overcome the numerous obstacles associated with X-ray structure de-
termination of membrane proteins [14].
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Figure 1.3: a) Growth of released structures per year. Data extracted from PDB. b)
Pie chart with the percetange of structures determined by the different methods. Data
extracted from PDB.
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The accuracy of the final atomic structure relies on the quality of the
generated crystals. Two important measures of the accuracy of a crystal-
lographic structure are the atomic resolution, which refers to the smallest
separation between crystal lattice planes that is resolved in the diffrac-
tion pattern [15], and the R-factor, which measures how well the refined
structure predicts the observed data [16].

(b) NMR spectroscopy. The NMR spectroscopy technique has been used
for years to determine the structure of proteins. Currently, almost 10%
of the structures deposited in PDB have been determined by this method
(Figure 1.3b). In NMR spectroscopy, the protein is purified, placed in
a strong magnetic field, and eventually probed with radio waves. The
observed set of atomic resonances is then analyzed to retrieve a list of
atomic nuclei that are close in the space. Similarly to X-ray crystallog-
raphy, this set of restraints is subsequently used to build the structural
model of the protein that contains the 3D conformation of each atom in
the space [17].

NMR spectroscopy has a major advantage over X-ray crystallography:
it provides information on proteins in solution. Therefore, this method
is the main method for studying the atomic structure of highly flexible
proteins. A standard NMR structure includes an ensemble of protein
structures, all of them being consistent with the experimentally observed
set of restraints. The ensemble of structures are very similar in those
regions with strong restrains, less constrained regions of the proteins,
on the other hand, show less agreement in the generated models. These
lack of restriction areas are presumably the flexible regions of the protein
since they do not provide a strong signal in the experiment.

A limitation in comparison with X-ray crystallography is its applicability,
this technique is usually limited to proteins smaller than 35 kDa. More-
over, NMR can only be applied to soluble proteins that do not aggregate
and are stable during the NMR experiment. NMR is also inherently in-
sensitive and milligram amount of proteins are required [17].

(c) Electron microscopy (EM) methods. EM methods are emerging as a
very versatile tool for determining the structure of large macromolecular
complexes. To date, less than 1% of proteins in PDB have been deter-
mined by EM methods (Figure 1.3b). However, in recent years there has
been dramatic increase in the number of complexes determined by EM
technologies. The revolution in the structural biology field is perfectly
manifested by the cryo-electron microscopy (cryoEM) method: in 2015
alone, cryoEM was used to map the structures of more than 100 different
molecules [18]. In cryoEM a beam of electrons is fired at a frozen protein
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solution. The emerging scattered electrons pass through a lens to create
a magnified image on the detector, and the structure can then be deduced
afterwards.
The utility of cryoEM and others EM tools lies on the fact that it allows
the observation of molecules that have not been fixed in any way, show-
ing them in their native environment. This is the opposite of the crys-
tallization step in X-ray crystallography, which many times hampers the
success of the whole procedure. CryoEM has traditionally been applied
to large molecules such as ribosomes [19] or the V-ATPase [20], but it
has also shown potential in small membrane proteins [21] and medically
relevant proteins [22].
However, there is a big a room for improvement for EM methods. De-
spite of recent advances in the resolution, most of supervisorthe cryoEM
structures have lower resolution than the X-ray ones. Furthermore, there
are numerous unsolved technical problems that need to be addressed to
make easier its standardization and systematic application.

1.1.3. Protein Structure Prediction

Despite of the advances in methods for protein structure determination, most of
the known proteins lack of deposited structure in the PDB. There are more than
65 billion protein sequences in UniProtKB (http://www.uniprot.org,
August 2016), including 551,705 manually annotated and reviewed. However,
only about 4% of the later group (i.e., 23,195 different protein sequences)
have a link to a PDB structure. Therefore, there is a gap between the num-
ber of known protein sequences and the number of determined structures, the
so-called sequence-structure gap [23]. Computational methods for structure
determination are helping to bridge this gap. The prediction of the 3D structure
of a protein from its amino acid sequence has always been one of the most de-
sirable goals in computational biology. It would save a lot of resources, and it
would set a milestone in the structural biology field. Unfortunately, we are still
far from being able to predict the structure of many proteins from their primary
sequence. Overall, four different approaches are commonly used. The first, and
most extensively used, is the homology or comparative modeling, that uses sim-
ilar experimentally determined structures to model the structure of the protein
of interest (Subsection 1.1.4). Second, fold recognition and threading methods
are used to model protein structures with low similarity to known protein struc-
tures [24, 25]. Third, de novo or ab initio methods make their predictions by
combining the principles of physics that rule protein folding, with information
derived from known structures but without relying in any type of similarity or
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evolutionary relationship to known folds [26]. Finally, the integrative or hy-
brid methods combine different computational and/or experimental sources to
perform the structure prediction [27].

1.1.4. Homology modeling

Figure 1.4: Workflow in comparative protein structure modeling. The figure has been
extracted from [28]

This type of protein structure prediction method exploits the evolutionary re-
lationship between the target protein (i.e., the protein being modeled) and the
template(s) with known experimental structure. They are based on the bio-
logical premise that evolutionary related sequences tend to have similar 3D
structures (Subsection 1.1.1 and 1.1.2). Figure 1.4 shows the regular steps in
comparative protein structure modeling:
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1. Identification of suitable template(s) structure(s) similar to the tar-
get protein. This step consists on a search for similar sequences with
known 3D structure. This task is easy when the 3D structure of a close
homologue of the target protein has been experimentally determined. Ini-
tiatives such as the PSI [11] are helping to this issue by increasing the
number of modellable proteins. However, there are still many proteins
lacking of homologous proteins in PDB. In these cases, alternative meth-
ods such as ab initio modeling might be used.

2. Alignment between the target and the template(s) sequence(s). The
sequence identity of the target-template alignment is the most frequently
used measure for similarity. Consequently, the sequence identity is also
a good predictor of the final 3D model quality. The overall accuracy of
models calculated from alignments with sequence identity higher than
40% is usually good (i.e., RMSD 2 lower than 2.0Å). In the 30%-40%
identity range, errors can be more severe and are often locate in loops
and highly flexible regions. Below the 30% of sequence similarity, often
referred to as twilight region, serious errors occurs including the basic
fold being mispredicted [29, 30]. Figure 1.5 shows an empirical thresh-
old for homology modeling extracted from [31]. The region below the
curve gathers those cases where the alignment does not carry enough
information to model the 3D structure, while area above the threshold
curve, include those cases where homology modeling is applicable.

3. Modeling and refinement of the structurally conserved regions and
prediction of the structurally variable regions. There are different al-
gorithms to assign the spatial coordinates of the target protein using the
template(s)-target alignment information. Highly conserved regions are
generally well modeled, while those regions with insertions or gaps are
more prone to include errors and suboptimal atomic orientations. Next,
the model is refined to idealize bond geometry and to remove errors that
may have been introduced in the modeling step. The refinement process
pursues the free energy minimization of the generated 3D protein model.
Many different algorithms have been applied to perform the minimiza-
tion step, including molecular mechanics force fields [32], molecular dy-
namics [33], Monte Carlo simulations [34] or genetic algorithms [35].

4. Evaluation of the model(s). Model evaluation seeks for the identifica-

2Root Mean Square Deviation is the measure of the average distance between the

atoms of two superimposed proteins. Equation RMSD =

√
1
N

N∑
i=1

δ2i where δi is the

distance between the Ni pair of equivalent atoms (usually the Cα).
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Figure 1.5: Homology threshold curve as a function of alignment length. Data ex-
tracted from [31]

tion of the different errors that might have occurred during the modeling
process. Multiple methods have been developed to assess the quality of
a 3D model. In fact, 3D model assessment was included from the sev-
enth edition of the CASP experiment [36]. The general question of how
accurate is a model can be reformulated in several specific questions:

I Is the selected fold correct? The fold assessment consist of decid-
ing whether a given protein model has the right fold. Residue-based
combined accessible surface and distance-dependent scoring func-
tions have shown the best performance in this task [37].

II How do we select the best model among the set of decoys or al-
ternative solutions? Several models can be generated by mak-
ing changes in the template-target alignment, by selecting different
template(s) structure(s) or by using different seeds in the refine-
ment non-deterministic algorithms. Atom-based distance-depend
scoring functions have proved to be useful for this particular task
in some cases [38]. However, there is not a gold standard for rank-
ing the generated 3D models. Thus, the model selection eventually
relies on the expertise of the person running the experiment.

III Which is the overall accuracy of the model? Which is the accuracy
of the model in a particular region of the model? These questions
can be addressed by defining scores that correlate with the RMSD
after superimposing a model and its native structure. Numerous
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scoring functions have been implemented to address this issue. The
physics-based scoring functions attempt to approximately calculate
the atomic interaction energies in the system. These scoring func-
tions usually encode a set of parameters that describes the energy of
a system of particles. Examples of these scoring functions are AM-
BER [39], CHARMM [40] or MM-PDBSA [41]. Differently, the
knowledge-based potentials or potentials of mean force, are scor-
ing functions derived from an analysis of empirical information.
The physical meaning of potentials of mean force has been widely
disputed since their introduction [42]. Nevertheless, since they fre-
quently correlate with the actual free energy differences, they have
been broadly used with significant success [43, 44, 45].

The application of comparative modeling is limited by several aspects. First, is
the availability of a suitable template. Despite of the efforts made to determine
at least one structure per known fold [11], divergences between the template
and the target hampers the modeling of a correct 3D structure. In fact, models
based on alignments with sequence identity below 30% may be unsatisfactory
(Figure 1.5). The lack of template problem is even more noticeable in mem-
brane proteins. The limited number of membrane proteins with 3D experimen-
tally determined structure available makes their modeling an extremely difficult
task. However, the high value of these proteins in diverse therapeutic areas [46,
47] is fostering the development of specific membrane protein modeling meth-
ods [48]. Another aspect restricting the success of homology modeling is the
innate flexibility of proteins. Highly flexible regions are more difficult to model
and consequently are more prone to errors than more rigid parts of the structure.
Despite of these limitations, homology modeling has been successfully applied
to many proteins and its currently the main approach to computationally model
the 3D structure of proteins3.

There are many computational methods to predict the 3D structure of proteins
(Table 1.1). Each of these methods have their own strengths and weakness and
none of them clearly outperform the others for all cases.

1.1.5. Protein function

One of the main questions in the protein biology field is to understand the pro-
tein sequence-structure-function relationship. It is known the structure of a

3For a comprehensive review of homology modeling methods, applications and
limitations please consider [49, 50]
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Modeling Tool Website Reference(s)

Modeller https://salilab.org/modeller/ [28, 51]

SwissModel http://swissmodel.expasy.org [52]

HHPred http://toolkit.tuebingen.mpg.de/hhpred [53]

I-Tasser http://zhanglab.ccmb.med.umich.edu/I-TASSER/ [54, 55, 56]

Rosetta http://robetta.bakerlab.org/ [57]

RaptorX http://raptorx.uchicago.edu/ [58]

3DJIGSAW http://bmm.crick.ac.uk/˜3djigsaw [59]

WhatIf http://swift.cmbi.ru.nl/whatif/ [60]

Table 1.1: Examples of public protein modeling tools alongside their website and
original references.

protein determines its biological function. However, different regions of the
structure can perform semi-independent functions from each other. These re-
gions are referred to as protein domains. A domain is a substructure produced
by any part of the polypeptide chain, which folds independently into a compact
and stable structure [61, 62, 63]. Domains on average range 80-250 residues
[64]. Estimates of the number of domains per protein say that more than 70%
of procaryotik proteins and 80% of eukaryotic proteins include more than one
domain [65, 66]. Among this multi-domain proteins, 95% of them contain two
to five protein domains [65]. Domains are not only the basic functional units
of proteins but also their evolutionary units. As proteins have evolved, do-
mains have been modified and combined to build new proteins [67, 68]. Such
is the importance of domains in protein evolution, that they have been included
in current protein classification methods as one of the major classification pa-
rameters. Some of these domain classification methods such as SCOP [69] or
CATH [70] are purely based on the structure, while others such as Pfam [71] or
INTERPRO [72] include information about the function in their classification.

Domains, and consequently proteins, perform its biological activity by interact-
ing with other molecules. Proteins can interact with other proteins, constructing
a protein-protein complex; with ions or with small-molecules. The substance
that is bound to the target protein is called the ligand, while the region of the
protein where the ligand is binding is called ligand’s binding site 4. The next
section is focused on protein-compound interaction presenting the basis for all
the work developed during the thesis.

4For simplicity, in this thesis, unless otherwise indicated, the term ligand will only
refer to small molecules ligands, while proteins ligands will be explicitly named as
protein-protein interactions.
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1.1.6. Protein-Ligand Interactions

The roles played by the protein ligands are diverse. Catalysis of enzyme sub-
strates, regulation of the protein activity, cellular communication or defense
from external attackers are just few examples of the multiple functions that
small-molecule ligands perform in living organisms. All these functions are
performed by small-molecules that selectively bind to their target proteins.
However, given the vast amount of proteins and small molecule ligands in
the cytoplasm, how do the small molecule ligands select their protein targets?
There have been several protein-ligand binding theories. In the Lock and Key
theory [73], Emil Fischer proposed a system where the binding sites of en-
zymes are rigid and pre-adjusted geometrically to the natural substrate (Figure
1.6a). This theory became widely accepted for years. Nevertheless, during
subsequent years, evidence started to accumulate suggesting that the binding
sites of proteins do not match perfectly their ligands, but rather the binding
process triggers some conformational changes in the enzyme. Therefore the
obsolete Lock and Key model was replaced by the Induced fit theory [74]. The
induced fit theory proposes that initially enzymes do not perfectly match their
substrate geometrically. Rather, the binding process triggers a set of conforma-
tional changes in the protein binding site that improves the match (Figure 1.6b).
More recently, another theory called the Monod-Wyman-Changeux model or
MWC model came up [75]. This theory contends that proteins are able to shift
spontaneously between multiple conformations called substates [76, 77]. This
model could also explain allostery, a phenomenon in which the binding of the
molecule to the catalytic site is affected the binding of other ligand to a dif-
ferent site. This theory has undergone some changes and the current accepted
theory posits that ligands bind preferentially to one of the conformation sam-
pled spontaneously by the protein, and therefore stabilizes it. It means that, by
changing the protein’s energy landscape, ligands change a less favorable con-
formation into the most favorable one. This model does not necessarily refute
the induce fit theory since in many cases, the restrains applied by the ligand on
the binding site is expected to induce some conformational changes that will
further stabilize the interaction [78, 79].

1.1.7. Protein-ligand binding energetics

The high variety of functions that ligands perform by binding to proteins is
also reflected in the diversity of their binding affinity. Binding energies usually
range from -2.5kcal/mol to -22kcal/mol [80]. The binding strength displayed
by proteins matches the biological goal of the binding. For instance, ligands

14



(a) Fischer’s Lock and Key model. The protein is represented
in green and the ligand in red. The ligand’s binding site of the
protein matches the ligand perfecltly.

(b) Koshland’s induced fit model. The protein is represented
in green and the ligand in red. The overall shape of the ligand
matches the binding site. The ligand bindings causes some
conformational changes that improves the interaction.

(c) MWC model’s representation. The protein changes its con-
formation constantly (one color per conformation), with at least
one these conformation matching the ligand. Its binding triggers
some conformational changes that improves the protein’s energy
landscape.

Figure 1.6: Schematic representation of the three classic protein-ligand binding
theories.
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involved in protein communication tend to bind weakly to enable a quick state
switch. Cofactors binding to enzymes, on the other hand, tend to bind strongly
to their targets. The negative sign of the values reflects that is a favorable bind-
ing that releases energy: the binding free energy. This energy can be measured
experimentally, thorough the equilibrium constant of the binding, or it can be
calculated computationally. Formula 1.1 and 1.2 shows, under thermodynamic
equilibrium conditions, the relationship between the Gibbs free energy or bind-
ing affinity and the equilibrium constant of the binding. R represents the ideal
gas constant, T is the temperature, [C] the complex concentration and [P ] and
[L] the protein and ligand concentration respectively.

4G = −RTlnKbind (1.1)

Kbind =
[C]

[P ] ∗ [L]
(1.2)

These equations show that the binding free energy can be measured experimen-
tally. However, in many cases the experimental measurement are unfeasible or
very difficult due to technical problems. Additionally, the expenses associated
with these experiments often restricts its broader application. In such cases,
computational methods to calculate the free binding energy are needed. The
calculation of binding free energy have acquired a remarkable importance in
the drug discovery field where the calculation of ligand-target affinity is cru-
cial for pre-clinical phases (Subsection 1.2). Unfortunately, calculation of the
ligand-target binding affinity is a extremely challenging task. The main points
that should be addressed to accurately calculate the binding free energy are:

1. The free energy of binding (Formula 1.1) is the difference of two
large energies. The energy of the complex (Epl) and the energy of the
unbound partners (Ep + El) (Formula 1.3):

4Gbind = Epl − (Ep + El) (1.3)

2. There are two opposite and complex energies driving the process.
The binding enthalpy (4Hbind) and the loss of entropy of both the ligand
and the protein (4Sbind):

4Gbind = 4Hbind − T 4 Sbind (1.4)

3. Non explicit representation of the energetic interactions of the sys-
tem. Small molecule binding events on a protein cavity implies the
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displacement of solvent molecules (i.e., usually water molecules). The
energy generated by the this exclusion of water molecules is the main
driving force in ligand-protein binding [81]. Unfortunately, explicit rep-
resentation and simulation of all the forces involved this event is compu-
tationally very expensive. A popular approach to model is to use implicit
solvent force fields [82, 83, 84], where the water molecules are repre-
sented as a continuous medium instead of individual explicit molecules.
The implicit solvation model is justified in liquids, where the potential
of mean force are applied to approximate the behavior of many highly
dynamic solvent molecules. However, there could be other medias with
specific solvation or dielectric properties that are continuous, but not nec-
essarily uniform, since their properties can be described by different an-
alytic functions [85]. Among the most famous implicit models we can
find those based on the Poisson-Boltzmann theory (PB) [86] and those
based on the Generalized-Born (GB) approximation [87].

Hydrogen bonds and salt bridges between the ligand and the protein can
also be a source of free energy gain upon ligand binding. This energy
gain comes from the displacement of water molecules bound to the pro-
tein. The net gain of energy upon hydrogen bond is around 1-2 kcal/mol.
Some scoring functions treat all hydrogen bonds equally, while others,
distinguish between neutral and charged ones. Other energies that could
be modeled and that contribute to the binding affinity calculations are
those generated by interactions with metal ions [88]. However, because
there may be a covalent component in this type of interactions, its over-
all binding energy contribution is difficult to model. Finally, nonspecific
Van Der Waals and hydrophobic interactions are also included in some
methods as additional energy contributors to the overall free energy of
binding [89].

One of the main applications of binding free energy calculation is predicting
whether a ligand is binding a particular protein target. In other words, given the
predicted binding free energy determine whether a specific compound targets a
specific protein binding site. In the next section we will explore further these
and other approaches aiming at protein-compound interaction prediction.
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1.1.8. Protein-ligand prediction5

The importance of ligand-protein interaction prediction is reflected by the large
number of available methods that use multiple different approaches [90, 91].
We can distinguish between free structure methods (i.e., methods that do not
rely on the protein structure to perform its predictions) and structure-based
methods.
Free structure methods usually use prior knowledge on protein compound in-
teractions, to further extend the interactions to new and unseen compounds.
The development of these methods can be split in two phases. The first step
consist on the creation of a predictive model that uses collection(s) of protein-
compound interactions to learn hidden relationships between compound and
their protein targets. In the second step, these predictive models are used to
extrapolate this knowledge to new and unseen compounds (or targets). The
extrapolation relies on different measures of compound or protein similarity.
Knowledge-based free structure methods have been assisted by the emergence
of new high-thorughpout screening methods (HTS) that enabled the creation of
large computational compound-protein databases such as ChEMBL [92], Ther-
apeutic Target Database (TTD) [93], Binding MOAD [94], BindingDB [95],
PubChem [96, 97] or ZINC, among others [98]. The recent growth of these
collections is accordingly improving their accuracy and coverage. Moreover,
since they do not rely on protein structure they can be theoretically applied to
any protein or to any compound. Nevertheless, free structure methods do not
provide detailed information about the ligand-protein relationship. Information
such as binding localization, type of interaction (e.g., allosteric, on-target or
off-target) or predicted free energy of binding; that is absolutely essential in the
drug discovery process (Figure 1.7). Consequently, free structure methods are
mostly employed in early stages of the drug discovery pipeline.

Structure based target prediction methods leverage protein’s 3D structure to de-
termine whether a small-molecule interact with a protein target. Virtual dock-
ing methods have traditionally dominated the structure-based target prediction
field. Virtual docking consist on predicting the preferred orientation of one
molecule (i.e., the ligand) to a second (i.e., the protein). The process of find-
ing the best orientation of molecule, the so-called binding pose, to the protein
target is not simple. Several entropic, enthalpic and environmental factors have

5In Subsection 3.1 we present nAnnolyze, a method for protein-ligand interaction
prediction. In the introduction of the mentioned manuscript, there is a discussion of
the current state-of-the-art methods in protein-ligand interaction prediction. Therefore,
this section is focused in explaining the classification, underlying basics, advantages
and disadvantages of the different approaches.
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Figure 1.7: Classification of the methods for ligand-target interaction prediction
alongside their advantages and disadvantages. The red arrow represent the increase in
the computational time of the calculus needed for each prediction. The green arrow
represents the level of detail of the given output.
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an impact on the interactions between them (Subsection 1.1.7). The underly-
ing idea of this approach is to generate a comprehensive set of ligand-protein
conformations, and then to rank them accordingly to a specific scoring func-
tion [99]. The importance of virtual docking methods is not only reflected by
the large number of published methods, which include AutoDock [100, 101],
DOCK [102], FLEXX [103], GOLD [104] or GLIDE [88], among others; but
also by their success in drug discovery applications [105, 106, 107] 6. However,
virtual docking methods also have some limitations. The most apparent one is
that they rely on protein structure. As mentioned above (Subsection 1.1.3), the
coverage of the human structural proteome is below 40%. Thus, some of the
most interesting targets in drug discovery lack of experimentally determined
3D structure. In addition to these structurally inherent problems and despite
of some massive applications [109], virtual docking methods are still computa-
tionally very expensive (Figure 1.7). Additionally, they need the prior knowl-
edge of the binding localization on the protein surface, which many times is
unknown before the screening.

1.1.9. Comparative docking approach

To overcome the computational limitations of virtual docking approaches,
some structure-based methods use the so-called comparative docking approach,
which solely relies on structural comparisons, both of compounds and protein
targets, to infer new interactions. Comparative docking methods are based on
the biological premise that structurally conserved proteins tend to conserve the
biological function [110, 111, 112, 113]. In other words, structurally similar
protein binding sites tend to bind similar ligands. Unlike virtual docking meth-
ods, comparative docking approaches do not require the computationally ex-
pensive calculations needed to obtain the structural orientation (i.e., the binding
pose) of the compound at the protein binding site. Rather, they provide a more
simplistic representation, where the output is usually limited to the binding lo-
cation on the protein surface, omitting information about the exact binding ori-
entation. Consequently, comparative docking approaches are generally faster
and more suitable for large scale virtual screenings than virtual docking meth-
ods (Figure 1.7). Several ligand-target interaction prediction methods leverage
comparative docking approaches to perform their predictions [114, 115, 116,
117, 110]. Subsection 3.1 presents nAnnolyze, a network-based version of
Annolyze [110], which is focused on predicting ligand-target interactions at
proteome scale. The nAnnolyze chapter further discusses the applications, ad-

6For a comprehensive review of virtual docking methods an applications please
consider [108]
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vantages, disadvantages and limitations of comparative docking approaches in
general, and nAnnolyze, in particular.

1.2. Drug discovery

Drug discovery is the process by which potential new medications are dis-
covered. It involves a wide range of scientific disciplines, including biology,
chemistry, pharmacology and recently also the computational branches of these
fields. Historically, drugs were discovered through the identification of the ac-
tive ingredient from traditional remedies or by serendipitous discovery. Later,
the development of synthetic methods allowed the generation of purely syn-
thetic structures that were not found in nature and that were investigated as
potential therapeutic agents. More recently, the advent of new genomics, pro-
teomics and HTS techniques, resulted in the identification of large number of
novel targets for future drug discovery research. In addition to this technolog-
ical revolution, the advances in bioinformatics and system biology field has
prompted the change in drug discovery paradigm towards a more target-centric
approach. This modern drug discovery paradigm usually implies the screening
of thousands of molecules to identify those that have the desirable therapeutic
effect in the previously validated protein target [118, 119]. Figure 1.8 shows the
current drug discovery pipeline alongside the estimated cost and time of each of
the phases. Most modern drug discovery programs begin with the identification
of a bio-molecular target whose pharmacological intervention is theoretically
beneficial for the treating disease. A target is a broad term that can be applied
to a range of biological entities including proteins, DNA and RNA. The target
needs to be accessible to the putative drug molecule(s), this property is referred
to as target druggability. Wrong selection of the target (i.e., weak associa-
tion between the target and the treating disease) implies lack of the expected
efficacy, which is the most important cause of project failure in clinical trials
[120, 121]. During the hit-identification stage, the target is screened against a
set of candidate molecules seeking for the identification of those which able to
perform the desired therapeutic activity. Alternatively, in some cases the first
step of the discovery process is based on a Phenotypic screening of a collec-
tion of molecules. This screening pursues the identification of those molecules
that perform a predefined function in a biological model. In any case, prior
knowledge of the bio-molecular target of the therapeutic activity is generally
associated with better outcomes in clinical trials [122]. However, there are
various drugs in the market with unknown mechanism of action (i.e., the drug
target remains unknown) [123], most of them coming from the traditional drug
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discovery paradigm. After hit(s)7 identification, at the hit-to-lead stage, molec-
ular hits are evaluated and undergo limited optimization to identify promising
lead compounds for further stages. The optimization to convert a hit to a lead
molecule, implies several properties, including the potency, the selectivity and
the pharmacokinetics (PK) properties. These lead compounds undergo more
extensive optimization in a subsequent step of drug discovery called lead opti-
mization (LO). The main goal of this stage is to maintain favorable properties of
lead compound(s) while improving on deficiencies in the lead structure(s). Fi-
nally, the selected lead(s) enters into the preclinical stage where the main goals
are to determine the safe dose for First-in-man study and the first assessment
of the product’s safety profile. Estimates say that, on average, of every 5,000
to 10,000 compounds that begins the pre-clinical stage, only one becomes an
approved drug [124].

According to the The Tufts Center for the Study of Drug Development (http:
//csdd.tufts.edu), the development and marketing approval for a New
Molecular Entity (NME) takes more than 13 years and around $2.6 billion (Fig-
ure 1.8). In fact, the cost of developing a new drug has dramatically increased
since the 1970s (Figure 1.9). Currently, the cost of developing a NME is more
than two times the 1990s cost, and more than ten times of the cost of the 1970s.
The raise in the drug development cost has led to a dramatic shrinkage of the
efficiency, measured in terms of the number of new approved drugs per billion
US dollars of research and discovery (R&D) spending [126]. Both research
and development phases have significantly raised their expenses (Figure 1.9).
Factors that have contributed to the raise of clinical costs include increased
clinical trial complexity, larger clinical trial size, greater assessment of safety
and toxicity drug profiles or evaluation on equivalent drugs to accommodate
payer demands for comparative effectiveness data [126]. Similarly, factors such
as the complexity of the target disease, expenses associated with the applica-
tion of high-throughput technologies or the complexity of mechanism of action
are increasing the prizes of pre-clinical stages. However, pre-clinical associ-
ated expenses may be narrowed down with a rational use of the state-of-the-art
technologies. In this matter, computational methods are emerging as a tool to
speed-up the process by enabling the management of the massive amount of
data generated during the discovery stages. Next section introduces different
computational methods currently applied during the drug discovery pipeline.

7 A hit compound could have several definitions. Here we use the one from [122]
where they defined a hit as being a compound which has the desired activity in a
compound screen and whose activity is confirmed upon retesting.
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Figure 1.9: Cost of developing a new drug. Blue bars indicate expenses in clinical
phases while red represents expenses in pre-clinical stages. Costs are shown in $
millions. Data extracted form: Tufts Center for the Study of Drug Development
(http://csdd.tufts.edu/news/complete_story/pr_tufts_csdd_
2014_cost_study).
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1.2.1. Computational drug discovery

Over the last thirthy years, computer-aided drug discovery (CADD) methods,
have played a key role in the development of therapeutic drugs [127]. The
modern drug discovery pipeline includes multiple CADD approaches assisting
during the drug discovery process:

1. Target identification and validation methods. Many different compu-
tational approaches are used to identify and validate new targets. The
genomics revolution caused by Next-Generation Sequencing methods
(NGS) have significantly increased the development of methods that pri-
mary rely on the genetic association between targets and the treating
diseases. In some cases, the data is combined with additional informa-
tion enabling a more precise evaluation of the target viability. Examples
of the complementary data include structural data, such as experimental
structure availability or druggability assessment; system-biology infor-
mation such as protein-protein interactions, protein pathway analysis or
sub-celullar target localization [128]. Recently, the inclusion of pharma-
cological data by drug reporpousing or repositioning methods has be-
come very popular [129, 130, 131]. These methods leverage information
of whether the protein is targeted by any FDA approved drug, to priori-
tize those targets with annotated FDA approved drug(s). Such drug(s) are
subsequently applied to the treating disease to validate the target testing
hypothesis. Computational methods for target identification and valida-
tion have been applied to great variety of diseases, including infectious
diseases such as Tuberculosis [132] or Malaria [133], cancer [134] and
neurogeneretive diseases [135].

2. Ligand-target prediction. Once the target has been validated, CADD
methods can help in the search of potential target hits. This is one of
the fields where CADD methods have been more successful either by
making the predictions from scratch or in combination with phenotypic
screenings [136]. Section 1.1.8 specifies the different methods and their
current applications.

3. Quantitative structure-activity relationship (QSAR). QSAR is an ap-
proach designed to find relationships between chemical structure and the
biological activity of small molecules. QSAR methods are based on the
assumption that variations in the biological activity of a series of chem-
icals targeting a particular protein are correlated with variations in their
structural, physical, and chemical properties [137]. QSAR methods have
become an essential tool in the pharmaceutical industry where they play a

25



major role in the hit-to-lead and lead optimization stages. Traditionally,
these methods have been used to improve compounds bioactivity. Re-
cently, the applications have been extended to the improvement of AD-
MET (adsorption, distribution, metabolism, elimination, toxicity) prop-
erties [138, 139] and the oral bio-availability [140]. QSAR methods have
undergone rapid changes over the last years. The first 2D-QSAR models
were based on descriptors derived from a two-dimensional graph repre-
sentation of a molecule. These descriptors tried to characterize the most
important molecular properties for the molecular interaction. However
2D-QSAR had important limitations for designing new molecules due to
the lack of consideration of the 3D structure. Later, 3D-QSAR methods
integrated 3D properties of the ligands to predict their biological activity
[141]. The first QSAR model that integrated the 3D geometry to perform
the predictions was the Comparative Molecular Field Analysis (CoMFA)
[142]. In CoMFA, steric and electrostatic features of protein target are
mapped onto a surface grid, which envelops a set of compounds super-
imposed in their active conformation. This grid acts as a surrogate of
the binding site of the protein receptor and is frequently referred to as
pharmacophore. However, this approach has an important limitation: a
ligand molecule can only be represented by a single entity. Therefore,
if a ligand binds with different conformations, only one of them can be
represented in a 3D-QSAR model [141]. This limitation was overcome
by 4D-QSAR methods, which include conformational flexibility and the
freedom of alignment by ensemble averaging in the conventional three
dimensional descriptors found in 3D-QSAR methods [143]. 4D-QSAR
models have been succesfully applied to simulate binding to cytochrome
P450 3A4 [144], HIV-1 protease [145] or to the p38-mitogen-activated
protein kinase (p38-MAPK), [146] among others [147]. More recently,
a 5D-QSAR model has been proposed [148]. This model includes a new
degree of freedom, the fifth dimension, that allows for a multiple rep-
resentation of the atomic topology of the receptor surrogate (i.e., rep-
resentation of different induced-fit models of the receptor). Finally, in
the 6D-QSAR methods, a greater representation of the different solva-
tion scenarios is included [149]. This enables for an even more realistic
simulation of the binding process, which is ultimately reflected in the
development of better predictive models.

4. Prediction and optimization of the ADMET properties. Most of the
drug discovery initiatives include a computational optimization of the
compound’s PK properties. As previously mentioned, QSAR methods
have been extensively applied to predict the PK properties of compounds.
However, there are other in-silico approaches that play a substantial role
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in the ADMET prediction field. One of the tools that have significantly
contributed to the field is the Lipinski’s rule-of-five, which aims to predict
the odds of a compound to become a drug, the so-called drug-likeness
[150]. The Lipinski’s rule-of-five is a rule of thumb created by Christo-
pher A. Lipinski based on the observation of chemical properties of drugs
with favorable PK profile. It uses five arbitrary rules based of such num-
ber of chemical features to determine whether a compounds is likely to
become a drug. If the compound fulfill, at least, four rules then it is con-
sidered as a drug-like candidate. However, assessment of compounds
drug-likeness in absolute terms does not reflect adequately the whole
range of compound qualities. To address this issue, a computational
method that quantitatively measures the drug-likeness of a compound
has been recently published [151]. Optimization in the ADMET prop-
erties of a compound is generally performed during the hit-to-lead and
lead-optimization stages, concurrently with the optimization of the com-
pound’s bio-activity. This multi-objective optimization process is accom-
plished in the computational model developed by Besnard and colleagues
[152].

1.3. Drug discovery in Tuberculosis

About one-third of the world’s population is infected with Mycobacterium tu-
berculosis (MTB), the causative agent of tuberculosis (TB) [153]. Approxi-
mately 90% of infected individuals have latent MTB infections, which remain
dormant until activated by specific environmental and host response events.
Remarkably, people with compromised immune systems, such as people with
HIV, malnutrition or diabetes, or people who use tobacco, have a much higher
risk of falling ill. Once the disease has been activated, when left untreated,
kills more than half of the infected patients [154]. Despite of TB is consid-
ered as a treatable and curable disease, it remains as a top infectious disease
killer worldwide. TB is usually treated with a standard 6 month course of
combination of 4 antimicrobial drugs. Globally, the treatment success rate for
people newly diagnosed with TB was 86% in 2013 [153]. Unfortunately, there
is a increasing clinical occurrence of Multidrug-resistant tuberculosis (MDR-
TB), which is a form of TB caused by bacteria that do not respond to first-line
anti-TB drugs. Some infected patients develop extensively drug-resistant TB
(XDR-TB), which is a form of MDR-TB tuberculosis that do no respond to
any standard treatment, including the most effective second-line anti-TB drugs
[155]. About 480,000 people developed MDR-TB in the world in 2014, while
it is estimated that about 9.7% of MDR-TB cases had XDR-TB [153].
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Infectious diseases in general, and TB in particular, are suffering from the lack
of innovative therapies [156]. The discovery and development of new antibi-
otics is widely recognized as one of the major global health emergencies. Most
of the currently used antibiotics were discovered in the period from the 1930s
to the 1960s [157]. Recently, a new class of antibiotics has been discovered
[158]. However, estimations say that it could take more than five years un-
til it is available in the market. The lack of innovation in the antibiotics field
has caused the re-emergence of diseases such as TB, dengue and African try-
panosomiasis. These diseases predominantly affect poor populations in less de-
veloped countries [156]. Concretely, the highest TB incidence rates are found
predominantly in low-income countries including most countries in central and
southern Africa, southern Asia and some countries from central America (Fig-
ure 1.10). The high incident rates of TB in developing countries reflects the
urgent need for new and affordable medicines for the treatment of TB, among
other infectious diseases. This need has not been directly reflected in tradi-
tional R&D programs of the pharmaceutical industry, mainly because they do
not offer sufficient financial returns for the pharmaceutical industry to engage
in research and development. This fact has led to the development of alternative
mechanism to fight against TB and others infectious diseases:

1. Fostering research and development by philanthropic donations.
Charitable organizations, often private and corporate philanthropic foun-
dations, donate money to drug research and development projects. In
some cases, this money is assigned to public institutes to deeply investi-
gate in the mechanism of bacterial infection and resistance. Such is the
case of the $20 million project given to the Broad Institute in the fight
against tuberculosis [159]. Other projects such as those funded by the
Bill & Melinda Gates Foundation (www.gatesfoundation.org)
seek for the development of less expensive and more effective diagnostic
tools. These tools could reach higher TB target population and can be
used at the point of care rather than requiring processing by a distant lab.
Philanthropy is one of the major responsible of the important decrease
in the TB mortality: the TB death rate dropped 47% between 1990 and
2015 [153].

2. Nonprofit initiatives by big pharmaceutical companies. Some phar-
maceutical companies provide medicines and funds for medicines for de-
veloping countries or to R&D for diseases that affect those countries. In
some cases, the companies create specific institutes dedicated to the re-
search and development of new medications against infectious diseases.
Examples of this type of institutes include the Novartis Institute for Trop-
ical Diseases (NITD) in Singapore, which focuses on dengue fever and

28

www.gatesfoundation.org


TB, or the Tres Cantos Open Lab Foundation in Madrid, which is an in-
dependent, not-for-profit foundation established by GlaxoSmithKine in
2010 focused on TB, Malaria and kinetoplastid infections. Unlike other
type of projects, open-pharma initiatives have usually a very collabora-
tive willingness, which many times results a with very fruitful partner-
ships between academia and the pharmaceutical institutes. An example
of this type of collaborations is presented in Subsection 3.2.

3. Public-private Partnerships (PPP). The PPP Knowledge Lab
(https://pppknowledgelab.org/) defines a PPP as a long-term
contract between a private party and a government entity, for providing
a public asset or service, in which the private party bears significant
risk and management responsibility, and remuneration is linked to per-
formance. Therefore, in a PPP, a private entity, which develops a public
service, ultimately assumes a substantial financial, technical and opera-
tional risk in the project. The advantages of these type of approaches
resides in their ability to bring the private sector expertise into the de-
livery of certain services traditionally developed by the public sector.
Moreover, a PPP is structured in such way that the public entity does
not incur any borrowing. Rather, the PPP borrowing is incurred by the
private sector implementing the project. Interestingly, PPPs have been
applied to cope with TB epidemic worldwide [160, 161]. Overall, in-
deep analysis of the outcome produced by PPPs in TB suggests that PPP
may generally improve outcomes of a TB service. Specifically, the im-
provement is reflected throughout a earlier detection, better treatment
administration, and broader service accessibility, especially in resource-
limited areas [162]. The main beneficiary from this approach seems to
be the final patient, who pays less for care while maintaining, or in some
cases improving, the quality of treatment.

These strategies are essentially created to bridge the financing gap in Tubercu-
losis R&D. Next section focuses on specific methodologies and tools applied to
perform research in this disease. Particular attention will be given to computer
aided strategies applied to the TB research and discovery field.

1.3.1. Research strategies against MTB.

Beyond the funding problems of research against MTB, there are numerous
technical challenges in identifying new antitubercular compounds [163]. One
the main difficulties is the extremely slow growth rate of Mycobacterium tu-
berculosis as this is ultimately reflected in the rate of progress of discovery
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Figure 1.10: Estimated worldwide TB incidence rates in 2014. Figure extracted from
[153].

research. Another aspect is associated with the nature of the bacteria; MTB
is a respiratory pathogen, and therefore has to be handled under strict safety
conditions (Bio-safety Level 3) requiring expensive specialist facilities. More-
over, MTB have a very unusual cell wall that impedes many compounds from
penetrating into the cell [164]. Additionally, this bacteria has efflux pumps that
transport compounds out of the cell and that have been implicated in resistance
to antibiotics [165]. To make things worse, anti-tubercular drugs need to be safe
for periods over 6 months, or even longer periods when dealing with MDR-TB
or XDR-TB, without significant side effects or drug-drug interactions.

The search for new anti-tubercular compounds is therefore a extremely chal-
lenging task. Researchers are employing many different approaches in parallel
including HTS and computational methods. HTS aims to find new molecular
entities that may lead to the development of new antibacterial treatments. One
of these HTS approaches is the cell based phenotypic screening, which repre-
sents an efficient approach to identify anti-bacterial compounds and elucidate
novel targets [166]. Some phenotypic screenings are also combined with toxi-
city assays to find those compounds with high anti-tubercular activity and pos-
itive PK profile [167]. Other HTS approaches aim at identifying highly potent
molecules against an essential MTB target [168, 169]. Computational methods
are essential in the analysis of the vast amount of data generated by HTS pro-
viding a tool to identity those candidate molecules amenable to be optimized in
future stages.
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1.3.2. In-silico approaches in TB

Similarly to many other diseases, CADD methods play a substantial role in the
Tuberculosis R&D field. Uncountable in-silico methods have been published
over the last decade, each of them applying different strategies to solve a spe-
cific biomedical question. However, all of them pursue the very same goal:
fueling drug discovery against TB. Table 1.2 contains some remarkable in-
silico resources for the fight against TB. The purpose of these resources is very
diverse. One popular resource is targetTB, which consist on an open-source
pipeline to identify targets in MTB [170]. Similarly, Subsection 3.2 presents
how the combination of three orthogonal approaches can help to identify the
molecular targets of novel anti-tubercular compounds. Other resources, such
as TDRtargets [171] (http://tdrtargets.org/) and CCD-TB [172],
blend a target detection tool with a publicly accessible database of known
existing targets and anti-microbial compounds. Some methods, on the other
hand, are focused on providing insights into a specific problem in TB treat-
ment. Such is the case of the computational detection of Comtan as a potential
agent in the treatment of MDR-TB and XDR-TB [173], or the examples from
[174] and [175]. Most of these resources take advantage of Tuberculist [176],
a database of experimentally measured gene essentiality in MTB; and TuberQ
[177], which contains information about MTB protein druggability. Is such
the importance of computational resources in TB research that recently a Mo-
bile app, called TB-Mobile [178, 179], was published. TB-Mobile provides
an agile way to interact with TB data and it includes some chemoinformatics
tools for clustering and finding new molecular targets to known anti-tubercular
compounds. This app is therefore pushing the boundaries of science on mobile
devices in several important ways, and could set up a milestone in bringing
mobile apps into the computational biology research field.

Overall, in-silico methods play an important role in the research against tropical
infectious diseases. Particularly, TB benefited enormously from the contribu-
tion of such methods and therefore they are partly responsible of the improve-
ment in the prognosis of the disease.

Type of
method

Name Resource description Reference(s)

Target iden-
tification
pipeline

TargetTB Target prioritization in TB
thorough a computational
pipeline

[132]
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Database TDRtargets Database and method for
identification of potential
MTB targets

[171]

Application
of bioin-
formatics
tools

- Drug repositioning ap-
plied to MDR-TB and
XDR-TB

[173]

Database CDD-TB Database of anti-
tubercular compounds
reported from HTS
alongside computational
models to analyze the
data

[172]

Application
of bioinfor-
matics and
chemoin-
formatics
tools

- Identification of the MTB
targets of bio-active anti-
tubercular compounds us-
ing three orthogonal in-
silico approaches

[136, 180]

Application
of bioin-
formatics
tools

- Homology modelling and
virtual doking applied to
ligand-protein interaction
prediction

[174]

Application
of chemoin-
fomatics
tools

TB Mobile Mobile app that provides
a platform to interact with
data collected from CDD-
TB

[178, 179]

Application
of bioinfor-
matics and
chemoin-
formatics
tools

- Identification of Enoyl
acyl carrier protein re-
ductase binders using a
3D-QSAR approach

[175]

Application
of bioin-
formatics
tools

- Interactome computa-
tional analysis to identify
potential mechanisms of
drug resistance to TB
therapies

[132]
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Database Tuberculist Database of experimen-
tally measured gene es-
sentiality

[176]

Database TuberQ MTB protein druggability
database

[177]

Table 1.2: Table containing multiple computational resources used in the discovery
and research against TB

1.4. Drug discovery in cancer

Over the previous sections, we discussed how tuberculosis, among other infec-
tious diseases, has significantly benefited from the application of in-silico meth-
ods. The importance of computational methods is also observed in other dis-
eases research and discovery programs. Interestingly, bioinformatics-assisted
diseases include cancer. Cancer research has significantly improved due to de-
velopment of large-scale genomics techniques alongside computational meth-
ods to deal with the massive amount of generated data. The next section dis-
cusses about advances in cancer treatment, focusing on targeted cancer therapy,
a particular type of cancer treatment. The emergence of targeted cancer ther-
apies significantly changed the landscape of cancer treatment. Unlike classic
chemotherapy agents, targeted therapies perform their activity by specifically
attacking proteins involved in the growth, progression, and spread of cancer.
However, clinical benefits associated to targeted therapies are often temporal
due to the emergence of drug resistance. Next sections will also discuss about
this problem, explaining the molecular mechanisms leading to the emergence of
drug resistance. Finally, Subsection 3.3 presents a computational model aiming
to assist in the choice of non-resistant targeted cancer therapies.

1.5. Targeted cancer therapy

Cancer is one the leading causes of morbidity and mortality worldwide. In
2012 there were more than 14 million new cases and 8.2 million cancer related
deaths. Moreover, the cancer global burden is expected to rise by about 70%
over the next 20 years [181]. Intravenous cytotoxic chemotherapy has tradition-
ally prevailed as the main therapeutic choice in cancer treatment. Chemother-
apy drugs target rapidly dividing cells, including cancer cells and certain nor-
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mal tissues. Hence, the lack of specificity of the chemotherapy treatment leads
to strong side side effects such as hair loss, gastrointestinal symptoms, fa-
tigue or myelosuppression, among others. In the past decade, however, the
arrival of targeted cancer therapies have dramatically transformed cancer treat-
ment. Targeted cancer therapies are drugs designed to specifically interfere
with molecules necessary for tumorigenesis. The higher specificity associated
to these drugs makes them a more efficient and less harming alternative for
cancer treatment. Although chemotherapy remains the treatment of choice for
many malignancies, targeted therapies are now a essential component of treat-
ment for many types of cancer, including breast, colorectal, non-small cell lung
cancer (NSCLC), as well as lymphoma, several classes of leukemia, and mul-
tiple myeloma. There are two main types of targeted cancer therapies, mono-
clonal antibodies and small molecule inhibitors.

1.5.1. Monoclonal antibodies

Monoclonal antibody-based therapy for cancer has become established over the
past 15 years. Monoclonal antibodies are target specific, which means that they
exclusively target only one protein. Moreover, their protein target has to be
extra cellular, as the antibodies cannot enter the cell through the plasma mem-
brane. Monoclonal antibodies can kill tumour cells throughout multiple mech-
anism of action [182]. One of the classic mechanism consist on direct action
of the antibody on the target protein. An example of this class is the mon-
oclonal antibody cetuximab, an epidermal growth factor receptor (EGFR) in-
hibitor used in EGFR-positive colorectal cancer [183] and squamous cell carci-
noma of the head and neck (SCCHN) [184]. Another mechanism consist on the
activation of the immune system response to kill cancer cells. Immunotherapies
are becoming increasingly popular and its currently one of the most promising
fields of cancer research. Examples of this class include the immune check-
point inhibitors pembrolizumab (PD-1), atezolizumab (PDL-1) and ipilimumab
(CTLA-4) [185]; or the CD52 antibody alemtuzumab [186]. Tumor vascular-
ization and stroma have also been targeted by antibody-based therapies. For
example, bevacizumab is a monoclonal antibody that blocks angiogenesis by
targeting the vascular endothelial growth factor receptor (VEGFR) [187]. It
is currently used as a single agent or in combination with chemotherapy to
treat certain types of advanced cancer, including colorectal, NSCLC, glioblas-
toma or kidney cancer [188]. Finally, several conjugated antibodies have been
approved to treat cancer. An example of this class is ibritumomab tiuxetan,
a yttrium-90-conjugated monoclonal antibody to CD20, for patients with re-
lapsed B-cell non-Hodgkin’s lymphomas. This drug combines the monoclonal
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antibody ibritumomab in conjunction with the chelator tiuxetan, to which ra-
dioactive isotope is added [189]. Undoubtedly, antibody-based cancer therapies
have significantly contributed to the improvement of cancer survival. However,
these therapies have still important limitations which prevents them for broader
application. One of the major limitations is the temporally efficacy of some
treatments. Patients with malignant tumors may not achieve a long-term ther-
apeutic effect consequence of the multiple tumour escape mechanisms [182].
Deeper understanding of the tumor biology may provide insight into selection
of patients who are suited to a specific antibody treatment. In summary, mono-
clonal antibodies have shown a great potential in the treatment of cancer. How-
ever, there are important limitations that need to be addressed to increase the
clinical impact of this type of treatment.

1.5.2. Small molecule kinase inhibitors

Small molecule inhibitors is the second main class of targeted cancer ther-
apy. Unlike monoclonal antibodies, they can penetrate into the cell through
the plasma membrane. Small molecule targeted cancer therapies mainly fo-
cus on inhibiting protein kinases. In fact, kinases have been established as
promising drug targets for the treatment of various types of human disease be-
cause of their essential roles in signal transductions and regulation of a range of
cellular activities. However, the vast majority of these targets are being investi-
gated for the treatment of cancer [190]. Over the last years, many kinases have
been found to be deeply involved in the processes leading to tumorigenesis.
Depending of their role in cancer progression we can classify small molecule
kinase targets into different groups. First, there are kinases that have become
insensitive to normal regulatory mechanisms. The altered activity of such ki-
nases can be the consequence of genetic alterations (e.g., mutations or translo-
cations) or epigenetic changes (e.g., gene amplification, increased expression)
and are considered to be oncogenic. The constitutive activity of this class of
kinase target makes them essential for survival and/or proliferation of the can-
cer cell. This phenomenon is known as oncogene addiction [191], and makes
the cancer cell exceptionally susceptible to the oncogene kinase inhibitor. One
of best examples of this phenomenon is the activating V600E BRAF mutation.
About 50% of melanomas harbour this oncogenic mutation [192]. Currently,
there are two small molecules FDA approved inhibitors that specifically tar-
get the BRAF V600E-mutated metastatic melanoma, vemurafenib [193] and
dabrafenib [194]. Inhibiting mutationally activated kinases (i.e., oncogenic ki-
nases) has resulted in the most dramatic clinical responses [190]. A second
class of target kinases is composed by those non-oncogenic kinases whose
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presence is preferentially required for the survival and/or proliferation of tu-
mor cells. These kinases are usually located in key signalling pathways down-
stream of cancer oncogenes. Examples of this type of targets include MEK1
and MEK2 (also known as MAP2K1 and MAP2K2), which are targeted by sev-
eral small molecule inhibitors such as trametinib or cobimetinib. Combinations
of these inhibitors with oncogene inhibitors led into a significant improvement
in patient survival compared with single treatment regime in melanoma [195,
196]. Another class of kinase targets are those highly expressed in the tumor
stroma and that are required for different stages of tumor formation and de-
velopment in the human host. Examples of this class include the inhibition of
VEGFR by pazopanib or by other small molecule inhibitors [197].

Protein kinases are defined by their ability to catalyse the transfer of the ter-
minal phosphate of ATP to a substrate that usually contains a serine, threonine
or tyrosine. They share a highly conserved arrangement of secondary struc-
ture elements that fold into a bi-lobed catalytic core structure (N-terminal lobe
and C-terminal lobe), with ATP binding site located in a deep cleft located
between the two lobes [198] (Figure 1.11). The ATP adenine ring forms hy-
drogen bonds with the kinase hinge region (i.e., the segment that connects the
amino and carboxy terminal kinase domains), while the ribose and triphosphate
groups of ATP bind in a hydrophilic channel adjacent to the ATP binding site
that contains conserved residues essential to catalysis. Additionally, kinases
have a conserved activation loop, which regulates the kinase activity and that
contains a extremely conserved DFG motif (i.e., aspartic acid, phenylalanine
and glycine) at the start of the loop. The structural disposition of the activa-
tion loop switches between the active and inactive conformations of the protein
kinase [198]. Since the catalytic mechanism requires the exact positioning of
highly conserved active site residues, the kinase active state is rigid and highly
conserved. In contrast, kinase inactive states are structurally highly diverse and
dynamic [199]. Furthermore, the kinase ATP binding site contains a highly
flexible phosphate-binding loop (P-loop). In many kinases the P-loop contains
an aromatic residue that points upward in the active kinase state, enabling the
binding of ATP. Finally, kinases contain a key residue in the ATP-binding site
known as gatekeeper. This residue is located close to the hinge region and
controls the access of small molecule inhibitors to a hydrophobic pocket in the
active site that is not contacted by ATP [200] (Figure 1.11).

Most of the current small molecule kinase inhibitors are ATP-competitive that
mimic the ATP binding mode. However, depending of their specific binding
mode small molecule protein kinase inhibitors can be classified into multiple
classes:
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Figure 1.11: 3D structure of ABL1 kinase in complex with imatinib displaying the
different structural regions of protein kinases. The structure represents the typical
kinase inactive DGF-out conformation. The protein is represented as ribbons and the
ligand as sticks. The activation loop is coloured in cyan, the DGF motif in blue, the
P-loop is coloured in red, the hinge region in purple and the αC helix in green. PDB
accession code 2HYY.
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1. Type I inhibitors. This type of ATP-competitive inhibitor binds the ac-
tive conformation of the protein kinase. As mentioned above, the kinase
active state is well defined and it is more rigid than inactive kinase states.
Moreover, is very conserved among kinases making the development of
selective type I inhibitors a very challenging task. The specificity is there-
fore given by unusual active site features such as rare amino acids in
conserved positions, inserts/deletions, and, in some cases, residues that
can be targeted by irreversible inhibitors. Additionally, small gatekeeper
residues, such as threonine, can provide access to a hydrophobic back
pocket not contacted by ATP [201]. Type I inhibitors typically consist of
a heterocyclic core scaffold that occupies the adenine binding site along-
side side chains that occupy the adjacent hydrophobic regions (Figure
1.12). Examples of this class include the EGFR inhibitors gefitinib and
erlotinib, the BRAF V600E-mutant inhibitor vemurafenib, the anaplas-
tic lymphoma kinase (ALK) inhibitor crizotinib or the Bcr-Abl tyrosine
kinase inhibitor dasatinib. The complete list of type I inhibitors is shown
in Table 1.3.

2. Type II inhibitors. Type 2 kinase inhibitors recognize the inactive con-
formation of the kinase. The most frequent conformation recognized by
type 2 inhibitors is the so-called DFG-out. This conformation is created
by a rearrangement of the activation loop that creates an extended and
flexible binding pocket adjacent to the ATP binding site (Figure 1.12).
The high degree of flexibility generated by this conformation suggests
that inhibitors targeting such states should have a better chance of being
selective. However, recent comprehensive analysis of type II selectiv-
ity revealed that many kinases can assume this inactive state and that
type II inhibitors may not be intrinsically more selective than type I in-
hibitors [202]. The original discovery that inhibitors such as imatinib and
sorafenib bind in the type 2 conformation was serendipitous, but sub-
sequent analysis of multiple type 2 kinase inhibitor revealed that most
of them share a similar binding pattern [202]. Other examples of type
II kinase inhibitors include the BCR-ABL kinase inhibitors nilotinib or
ponatinib. The complete list of FDA approved type II inhibitors is shown
in Table 1.3.

3. Targeting P-loop conformations. In kinase-inhibitor complexes, the P-
loop may fold into the ATP-binding site, forming aromatic stacking in-
teractions with the inhibitor [203]. An additional characteristic of folded
P-loop conformations is the induction of a large binding cavity between
the P-loop and the αC helix (Figure 1.12). This binding cavity is present
in many structures with folded P-loops and has been explored, for the
first time, by the selective ERK1/2 inhibitor SCH772984 [204]. Multiple
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kinases can adopt a folded P-loop conformation, which unique geometric
features of this binding mode may lead into the development of selective
inhibitors for these kinases. Nevertheless, none of FDA approved drugs
adopt this conformation, and therefore a broader general demonstration
of this inhibitor binding mode is still necessary.

Figure 1.12: Structural features of the canonical classes of small molecule kinase in-
hibitors. The center panel shows the main interaction sites of different inhibitors types.
The side panels show the specific structural features of each of the binding modes.
Figure extracted from [199].

4. Type III allosteric inhibitors. Type III kinase inhibitors are non ATP-
competitive inhibitors binding the kinase in a allosteric site (i.e., a site
distinct from the enzyme active site that can bind a ligand) and modu-
lating kinase activity in an allosteric manner. Allosteric inhibitors tend
to exhibit the highest degree of selectivity since they exploit binding
sites and regulatory mechanisms that are unique to each particular kinase
(Figure 1.12). Most allosteric kinase inhibitors have been discovered
serendipitously, and currently there is no general strategy for identifying
such compounds. The best examples of this class are the MEK1/MEK2
allosteric inhibitors trametinib and cobimetinib, which occupy a pocket
adjacent to the ATP binding site.

5. Covalent inhibitors. The last class of kinase inhibitors are those capable
of forming an irreversible, covalent bond to the kinase active site, most
frequently thorough the reaction with a nucleophilic cysteine residue
[205]. Most of the covalent kinase inhibitors have been developed by
structure-guided incorporation of an electrophilic group into an inhibitor
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that already had sub-micromolar binding affinity [206]. Although a large
number of kinases have cysteine residues in and around the ATP-binding
site, there are not conserved cysteines residues across the human kinome
[207]. This lack of conservation has been used to develop selective ir-
reversible inhibitors of kinases habouring cysteine residues in the ATP-
binding site. However, cross-reactivity of cysteine-reactive groups can
lead to non-selective reactions with off-target proteins, which eventually
gives rise to increased toxicity and lack of target specificity [208, 209].
Examples of FDA approved irreversible inhibitors include the Bruton’s
tyrosine kinase inhibitor (BTK) Ibrutinib or the EGFR inhibitor afatinib.

Compound name Pharmacological Target Binding mode First FDA approval

Imatinib ABL1 Type II 2001

Gefitinib EGFR Type I 2003

Erlotinib EGFR Type I 2005

Sorafenib VEGFR, PDGFR, BRAF, etc. Type II 2005

Dasatinib ABL1 Type I 2006

Sunitinib VEGFR Type I 2006

Nilotinib ABL1 Type II 2007

Lapatinib EGFR, HER2 Type I and II 2007

Pazopanib VEGFR, PDGFR, c-KIT, etc. Type I and II 2009

Crizotinib ALK, ROS1 Type I 2011

Vemurafenib BRAF Type I 2011

Ruxolitinib JAK1/2 Type I 2011

Vandetanib VEGFR Type I 2011

Bosutinib BCR-ABL1 Type I 2012

Tofacitinib JAK3 Type I 2012

Axitinib VEGFR, PDGFR, c-KIT Type I 2012

Cabozantinib c-MET Type II 2012

Regorafenib VEGFR, PDGFR, etc. Type II 2012

Ponatinib ABL1 Type II 2012

Dabrafenib BRAF Type I 2013

Trametinib MEK1/2 Type III 2013

Afatinib EGFR Type I, Irreversible 2013

Ibrutinib BTK Type I, Irreversible 2013

Idelalisib PI3K-delta Type I 2014

Nintedanib VEGFR, PDGFR, etc. Type II 2014

Ceritinib ALK, MET Type II 2014

Lenvatinib VEGFR, PDGFR, c-KIT, FGFR, etc. Type V † 2015

Palbociclib CDK4/6 Type I 2015
† In a recent publication, lenvatinib was proposed as a special class of kinase inhibitors (the so-called type V in-

hibitors). Compounds of this class are those binding both the ATP-binding site and the neighboring allosteric
region in kinases with DFG-in conformation [210].

Table 1.3: FDA approved kinase inhibitors alonsgide their pharmacological target, binding mode and year of FDA
approval.
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The approval of imatinib in 2001 radically transformed the treatment
of Philadelphia chromosome-positive (Ph+) chronic myelogenous leukemia
(CML). Since then, more than 27 different small molecule kinase inhibitors
have been approved by the FDA (Table 1.3), and many others are currently in
clinical trials for the treatment of cancer. Despite of their great success in can-
cer treatment, small molecule kinase inhibitors suffer from major limitations
that need to be addressed to improve their clinical impact. Next, I outline some
of their most important challenges and limitations:

1. Of the total 538 estimated human kinases [198], only a few, and most
of them belonging to the tyrosine kinase group, have been pharmaco-
logically targeted by small molecule inhibitors. It is thus necessary to
increase the spectrum of clinically targeted kinases. Moreover, the in-
crement of the number of targeted kinases would create new therapeutic
opportunities for disorders where kinases play an important, but yet clin-
ically unexplored role.

2. Other important limitation is the lack of specificity of many small
molecule kinase inhibitors. This is mainly consequence of the high struc-
tural conservation of the ATP-binding site in kinases, which causes that
a large number of inhibitors interact with more than one target [211].
The multitarget nature of many kinase inhibitors gives rise to severe side
effects that dramatically restricts its applicability in the clinics. Foster-
ing the development of type III allosteric inhibitors would lead into more
selective inhibitors preventing the appearance of unexpected toxicities.

3. Related to the previous point, the mechanistic basis of unexpected toxici-
ties observed during the preclinical and clinical stages need to be studied
more rigorously. Improved documentation of kinase inhibitor specificity
and observed toxicities would provide a valuable database for under-
standing whether there are particular kinases of which inhibition should
be particularly avoided [212].

4. The most important limitation of small-molecule kinase inhibitors, in
particular, and targeted cancer therapies, in general, is the rapid acqui-
sition of drug resistance. The duration of clinical benefits is frequently
short, which dramatically restricts the utility of many targeted cancer
therapies. The next section will focus on the mechanistic basis of resis-
tance to targeted cancer therapies, with particular emphasis on mutations
of kinase targets altering the efficacy of the treatment.
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1.5.3. Resistance to targeted cancer therapies

Drug resistance is one of the major problems in cancer treatment. Resistance
to both chemotherapy agents and targeted cancer therapies is hampering the
success of many anticancer treatments. The advent of new high throughput
genomic technologies and its combination with bioinformatics and systems bi-
ology approaches, have enhanced the understanding of the molecular events
underlying treatment failure. However, we are still far from overcoming the
emergence of drug resistance in cancer targeted therapies. One of the reasons
leading to the complex drug resistance problem is the considerable amount of
molecular mechanisms leading to drug resistance [213]. Some mechanisms of
resistance for specific molecular targets share many features with the classic
cytotoxic chemotherapy, while others, are genuine to the targeted cancer thera-
pies. One of the classic mechanisms of resistance is caused by the pharmacoki-
netics properties (ADME) of the drugs, which added to the limited amount of
drug that can be systemically administered confine the amount of drug reaching
the tumor. That means that the concentration of drug that eventually reaches the
cancer cells is lower than the one required to perform the desired antiprolifer-
ative activity [214]. At the level of the tumor, various resistance mechanisms
can operate, including activation of survival signalling pathways and the inac-
tivation of downstream death signalling pathways [215], oncogenic bypass and
pathway redundancy [216], factors associated to the tumor microenviroment
[217] or epigenetic alterations [218].

Importantly, alterations in the drug target is one of the most frequent mech-
anism of resistance in targeted cancer therapies. Increased expression of the
molecular target reduces the effectiveness of inhibitors of these targets because
more target molecules must be inhibited to have a effective therapeutic effect.
For instance, the androgen receptor (AR) is genomically amplified in aproxi-
mately 30% of prostate cancers with acquired resistance to standard androgen
deprivation therapy. In such cases, treatment using testosterone lowering drugs
such as leuprolide and AR antagonists such as bicalutamide, is not effective
and alternative treatments are thus necessary [219].

Most of the small molecule targeted cancer therapies target oncogenic kinases
that are responsible of the tumor proliferation and/or development (Subsec-
tion 1.5.2). Mutations of these oncogenic kinases can alter the binding of the
small molecule kinase inhibitor giving rise to a reestablishment of the tumor
proliferation activity. Moreover, evidence continues to emerge that cancers are
characterized by extensive intratumor genetic heterogeneity (ITH), and that pa-
tients being considered for treatment with a targeted agent might, therefore,
already possess resistance to the drug in a small population of cells [220]. This
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mechanism of resistance has been extensively reported over the last years [221,
222]. The first mutation identified in patients with CML who relapsed on treat-
ment with imatinib was in the gatekeeper residue of BCR-ABL1, T315. This
missense mutation hinders imatinib binding while preserving the catalytic ac-
tivity that is needed for the oncogenic function of BCR-ABL1 [223]. Since
then, more than one hundred BCR-ABL1 different mutations have been re-
ported [224]. Second-generation BCR-ABL1 inhibitors (e.g., nilotinib, dasa-
tinib and bosutinib) were developed for the treatment of patients with acquired
resistance to imatinib. However, the BCR-ABL1 T315I gatekeeper mutation
confers resistance to all currently approved ABL1 TKIs other than the newest
of these molecules, ponatinib [224]. Similarly to the BCR-ABL1 case, ac-
quired resistance to EGFR inhibitors such as gefitinib or erlotinib is common
(Subsection 1.5.2). Studies showed that more than 50% of the EGFR-gefitinib
resistant cases harbored a secondary EGFR-T790M mutation [225]. Such is
the impact of this mutation for the treatment of NSCLCs, that a third new gen-
eration of EGFR-T790M selective inhibitors has been designed to overcome
resistance to EGFR-T790M positive patients [226, 227]. However, recent stud-
ies showed that third generation irreversible EGFR inhibitors also experience
the emergence of resistance mutations [228]. Crizotinib is a small molecule ki-
nase inhibitor approved for the treatment of some types of NSCLC. It performs
its pharmacological activity by targeting the ALK and ROS-1 kinases (Subsec-
tion 1.5.2). Some studies in small cohorts of patients have already shown that
mutations in the ALK kinase domain such as G1269A, L1198F, L1196M can
drive acquired resistance to crizotinib [229, 230]. The mutations described to
date span the entire ALK kinase domain and may also confer variable degrees
of resistance to second-generation ALK inhibitors [231].

The ABL1-imatinib, EGFR-gefitinib and ALK-crizotinib cases are probably
the best studied examples of resistance to small molecule targeted cancer thera-
pies. However, individual studies have shown that many other kinase mutations
are responsible of drug resistance. Moreover, future improvement in the sensi-
tivity of genomic high throughput technologies will, most likely, increase the
number of these mutants [220]. To make things worse, treatments should be
able to deal with ITH, which affects variation in drug response predominantly
at the cellular level [232]. Hence, there is a need to rationally design cancer
treatments able to overcome resistance due to mutations in drug targets. Fos-
tering early detection of pre-existing or emerging drug resistance could enable
more personalized use of targeted cancer therapy, as patients could be stratified
to receive the treatments that are most likely to be effective. Another solu-
tion to the challenge of polygenic cancer drug resistance is rational combina-
torial treatments, such as combinatorial targeted therapy [195], combination of
chemotherapy with targeted therapy [233] or the promising combination of im-
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munotherapy with targeted therapies [234, 235]. Therefore, achieving the full
potential of targeted cancer therapy is dependent on the identification of the best
possible drug combinations. The resulting combinatorial explosion will require
use of new technologies, including large-scale genomics and network biology
with associated computational approaches [236]. In fact, computational meth-
ods are being applied to explain and predict therapeutic resistance [237, 238],
tumor clonal evolution [239, 240] and potential drug combinations [241, 242].
Chapter 3.3 presents a computational approach that predicts mutations with
potential to confer resistance to small molecule targeted cancer therapy. The
computational framework exemplifies how computational methods can help to
rationally design alternative non-resistant cancer targeted therapies.

1.6. Motivation

As we have shown over the Introduction, interaction between small molecule
and proteins governs many of the cellular functions (Subsection 1.1.6). Such
is the importance, that modulation of the protein function by a small molecules
has been used by to treat multiple conditions (Subsection 1.2). In fact, the
discovery and pharmacological development of antibiotics for the treatment of
infectious diseases such as TB, has dramatically improved our lifespan (Sub-
section 1.3.1). More recently, the emergence of targeted cancer therapies also
transformed the landscape of cancer treatment, moving from the traditionally
cytotoxic chemotherapy to more precise targeted therapies (Subsection 1.5).
Research progresses are partly thanks to the development of methods to ex-
perimentally determine the 3D structure of proteins (Subsection 1.1.2). Fur-
thermore, in-silico methods have contributed to characterize protein and lig-
and interactions, with the added value of providing new predicted interac-
tions (Subsection 1.1.8). Indeed, the ability of computational methods to pre-
dict small molecule-protein interactions has significantly improved over the
last decade. One of the main reasons for this improvement is the emergence
of databases gathering large amount of structural and therapeutic information
[95, 92, 243], which enables computational models to increase their predictive
power by learning from known relationships and restrains. However, computa-
tional methods for ligand-target prediction should be able to tailor the require-
ments of drug discovery industry where 1) the 3D structure of the interaction
is completely essential and 2) the screening process usually involves a very
large set of candidate compounds. These two requirements are fulfilled by the
method presented in Subsection 3.1, which exemplifies its applicability on a
large set of antitubercular compounds in Subsection 3.2.
We also discussed about how targeted cancer therapy has transformed cancer
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treatments (Subsection 1.5). Concretely, since the approval of imatinib in 2001,
more than 25 small molecule kinase inhibitors have been approved by the FDA
(Table 1.3), while many others are currently in clinical trials for the treatment of
this devastating disease (Subsection 1.5.2). However, small molecule targeted
cancer therapies suffer from a major limitation, the clinical benefit of patients
receiving this therapies is often temporal (Subsection 1.5.3). Multiple tumor-
intrinsic mechanisms confer resistance to drug targeted cancer therapies [213].
Among these mechanisms, mutations in drug targets is one of most frequently
observed in the clinics. Numerous studies have been conducted to understand
and overcome resistance due to mutations in drug targets. However, these stud-
ies are often limited to a small and clinically reported number of mutations.
Therefore, there is a need for 1) a comprehensive characterization of the tumor
mutational landscape with the potential to confer resistance and 2) providing
alternative treatments in those cases where the drug-resistant mutants are al-
ready present in the tumor burden. These two objectives are accomplished in
the study introduced in Subsection 3.3.
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2 Objectives

This thesis aims to fulfil the following specific objectives:

I To develop a publicly accessible network-based ligand target prediction
method that provides large scale and structurally detailed predictions.

II To validate the method predicting the human targets of all small molecule
FDA-approved drugs.

III To apply the method antitubercular compounds in order to identify their
protein targets on the MTB structural proteome. The results should be
combined with the predicted targets from other approaches exploring dif-
ferent methodological spaces.

IV To develop a model that predicts the cancer associated mutations with
the highest chances to be responsible of resistance to a particular targeted
cancer therapy.

V For those mutations classified as treatment-threatening, to identify alter-
native therapies overcoming resistance.

Objectives i) and ii) are presented in Subsection 3.1 . Concretely, this chapter
presents nAnnolyze, a comparative docking approach that predicts structurally
detailed ligand target interactions at proteome scale. nAnnolyze is a network-
based version of the prior Annolyze [110]. The chapter also presents a virtual
screening performed by nAnnolyze to predict the human targets of all FDA-
approved drugs. Finally, the nAnnolyze network, method and predictions are
publicly available at http://nannolyze.cnag.cat/.

Point iii) is discussed in chapter 3.2. More specifically, this section presents
the computational predictions of three orthogonal approaches to identify new
protein targets that are likely to interact with a set of compounds with bioac-
tivity against MTB. The resulting combination of the predictions, includ-
ing the structural complexes by nAnnolyze, are publicly available online at
http://nannolyze.cnag.cat/.

Finally, points iv) and v) are presented in Subsection 1.5.3. Particularly, this
chapter introduces a framework that 1) estimates the cancer associated likeli-
hood of a mutation on a protein target 2) predicts the resistance potential of
each of the target mutations using structural information of the interaction 3)

46

http://nannolyze.cnag.cat/
http://nannolyze.cnag.cat/


suggests alternative compounds for those mutations predicted to confer resis-
tance to a given targeted cancer therapy.
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3 Results

3.1. Ligand-Target Prediction by Structural Network Biology us-
ing nAnnolyze

This section presents nAnnolyze, a method for predicting large-scale and struc-
turally detailed compound-protein interactions. nAnnolyze was applied to iden-
tify the human targets of all FDA-approved drugs. The method alongside all
the predictions are available online in http://nannolyze.cnag.cat/.

Manuscript presented in this section:

Martı́nez-Jiménez, F., & Marti-Renom, M. a. (2015). Ligand-
Target Prediction by Structural Network Biology Using nAnnoLyze.
PloS Computational Biology, 11(3), e1004157. doi:10.1371/ jour-
nal.pcbi.1004
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Abstract
Target identification is essential for drug design, drug-drug interaction prediction, dosage

adjustment and side effect anticipation. Specifically, the knowledge of structural details is

essential for understanding the mode of action of a compound on a target protein. Here, we

present nAnnoLyze, a method for target identification that relies on the hypothesis that

structurally similar binding sites bind similar ligands. nAnnoLyze integrates structural infor-

mation into a bipartite network of interactions and similarities to predict structurally detailed

compound-protein interactions at proteome scale. The method was benchmarked on a

dataset of 6,282 pairs of known interacting ligand-target pairs reaching a 0.96 of area under

the Receiver Operating Characteristic curve (AUC) when using the drug names as an input

feature for the classifier, and a 0.70 of AUC for “anonymous” compounds or compounds not

present in the training set. nAnnoLyze resulted in higher accuracies than its predecessor,

AnnoLyze. We applied the method to predict interactions for all the compounds in the Drug-

Bank database with each human protein structure and provide examples of target identifica-

tion for known drugs against human diseases. The accuracy and applicability of our method

to any compound indicate that a comparative docking approach such as nAnnoLyze en-

ables large-scale annotation and analysis of compound–protein interactions and thus may

benefit drug development.

Author Summary

Description of the “mode-of-action” of a small chemical compound against a protein tar-
get is essential for the drug discovery process. Such description relies on three main steps:
i) the identification of the target protein within the thousands of proteins in an organism,
ii) the localization of the binding interaction site in the identified target protein, and iii)
the molecular characterization of the compound’s binding mode in the binding site of the
target protein. Here, we introduce a new computational method, called nAnnoLyze, which
uses graph theory principles to relate compounds and target proteins based on compara-
tive principles. nAnnoLyze aims at addressing two of the three previous steps, that is, tar-
get identification and binding site localization. Our results suggest that the nAnnoLyze
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accuracy and proteome-wide applicability enables the large-scale annotation and analysis
of compound–protein interaction and thus may benefit drug development.

Introduction
The number of newly approved drugs has been significantly decreasing over the last two de-
cades [1]. To make things worse, the therapeutic dogma that has prevailed over the years
aimed at single target-specific ‘magic bullets’ against each disease. However, proteins act in
complex interconnected networks, and thus, this ‘one gene, one drug, one disease’ paradigm is
now clearly challenged [2,3]. The polypharmacology concept, which relies on the fact that a
drug can modulate its activity by interacting with multiple targets rather than just one, was pro-
posed to address these limitations [2]. Polypharmacology is especially valid in complex diseases
like cancer or central nervous system disorders where the modulation of the activity of one sin-
gle protein is not sufficient to obtain a therapeutic effect [4–6]. Therefore, identification of all
possible targets of a chemical compound is critical in the drug discovery process.

Many in silicomethods have been published for drug target identification using network ap-
proaches [7,8]. Broadly, we can distinguish two different classes of methods, structure-free
methods and structure-based methods. Within the first group, there are methods based on li-
gand features [9] that have been successfully used to identify numerous experimentally validat-
ed interactions. However, they have difficulties in identifying interactions for drugs with novel
scaffolds [10] or for targets with no bioactivity information. Others, named network-based ap-
proaches, exploit network properties to provide the drug target interactions and drug reposi-
tioning opportunities [11–18]. Although the accuracy of predictions by these methods has
significantly increased, the majority cannot explain the mode of action of the drug over the pre-
dicted target due to the lack of three-dimensional (3D) information about the ligand and/or
the target. The use of 3D structural data helps addressing such limitation. The most popular
structured-based methods rely on molecular docking approaches performing a virtual screen-
ing of a compound against a limited number of protein targets or of several compounds against
one protein target [19–21]. As a result, they provide structurally detailed information about the
likely interaction between the compound and its target/s. However, the computational require-
ments of such approaches make them not generally applicable at proteomic scales. An excep-
tion to this limitation is the recent massive human screening of 600,000 drugs against 7,000
human protein pockets by Cardozo and colleagues whose results are available online [22]. To
overcome the computational limitations, new structure-based methods use the so-called “com-
parative docking” approaches that solely rely on structural comparisons, both of compounds
and protein targets, to infer new interactions [23,24]. Other methods use local structural com-
parisons of small molecule binding sites to infer the localization and specificity of binding
pockets [25,26] as well as to infer new ligand interactions in known binding pockets [27]. Final-
ly, several other methods that rely on 3D structure comparisons that aim at functionally anno-
tating structures [23,24,28].

Here we introduce nAnnoLyze, a network-based version of the comparative docking meth-
od AnnoLyze [23]. Our new method predicts interactions for any query compound against an
entire 3D proteome by relying on a bi-partite network of interactions and similarities. Unlike
Annolyze, nAnnolyze can predict interactions for any compound regardless if they have been
previously co-crystallized with a protein. We have benchmarked nAnnoLyze against a dataset
composed by all the interactions for approved drugs present in the Protein Data Bank (PDB)
[29]. The method outperforms AnnoLyze precision by 27 folds. Both Annolyze and nAnnolyze
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have been already successfully applied. Annolyze was used in an open source drug discovery
initiative against neglected tropical diseases [30] while nAnnoLyze has been applied to a set of
anti-tubercular drugs against theMycobacterium tuberculosis proteome [31]. Here, we describe
the method alongside the predictions for all the small molecule drugs present in DrugBank
[32] against the human 3D proteome. To our knowledge, this is the first screening of almost
6,000 drugs against the entire human structure proteome predicted by comparative ap-
proaches. The nAnnoLyze network, method and predictions are available online at http://
www.marciuslab.org/services/nAnnoLyze.

Results

Benchmark dataset creation
The correct selection of a benchmark dataset is one of the most important steps in assessing
the accuracy of a newly developed method. Unfortunately, there were no available and ade-
quate datasets for benchmarking structure-based network methods for ligand-target predic-
tion. The “Yamanishi-2008” dataset [11], which has widely been used previously, could not be
used here due to the limited structural coverage of its targets, which added to the increasing
concern on biases of the current drug-target interaction datasets [33]. To address these issues,
we have generated a benchmark set consisting of a “positive” and a “negative” set. The “posi-
tive” set contains all drug-protein annotated pairs between any structure in the PDB and any
compound approved by the FDA. The “positive” benchmark set resulted in a total of 6,282 in-
teractions and is considered the “true” set of interactions. The “negative” set was generated by
randomly selecting pairs of compounds and targets that have never been annotated in the
DrugBank or PDB databases. To assess how many of these drug-protein negative pairs could
result as a potentially miss-annotated negative interactions we looked for similar compounds
interacting with the “negative” target of each compound. The search resulted in 118 (*2%)
out of the 5,981 pairs that could result in a miss-annotated negative interaction. However, the
removal of these pairs of putative miss-annotated “negative pairs” from the set had no effect on
the assessment of the nAnnoLyze accuracy. Our final benchmark dataset included thus a total
of 6,282 drug-target in the “positive” interactions and 5,981 negative pairs.

nAnnoLyze benchmarking
The nAnnoLyze precision varies at different Z-score thresholds (Fig. 1A) with an optimal
threshold at −2.5 local Z-score resulting in a precision of 0.63 and coverage of 0.19 correspond-
ing to 1,148 true positive predictions (Fig. 1B). It is important to note that both the precision
and coverage of our method depend dramatically on the definition of false positives for our
predictions. Given that our benchmark set relies only on deposited data in the PDB, many of
the predictions by nAnnoLyze are likely to be correct despite not being present in our bench-
mark. For example, the drug Enalapril (DB00584 DrugBank identifier) has been co-solved in
only two PDB entries (i.e., 2X90 and 1UZE). However, nAnnoLyze predicts interactions be-
tween Enalapril and three other targets in the PDB (i.e., 2X91, 1J36 and 2X8Z). Those struc-
tures actually correspond to the same target sequence (Q10714 UniProt id) being solved with
no ligands.

To further increase the accuracy of our predictions, we implemented a Random Forest Clas-
sifier (RFC) that classifies pairs of compound-protein as binders or not by combining several
of the nAnnoLyze scores (that is, the raw score, the Local Z-score, and the Global Z-score). The
RFC correctly recalled 66% of the pairs with a precision of 0.73 and an AUC of 0.71 using a
10-fold cross validation (Table 1). The tested RFC did not include the DrugBank ID as input
feature to simulate a situation where a completely new compound not deposited in the
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databases was tested. However, by using the DrugBank ID as an input feature, the accuracy of
nAnnoLyze dramatically improves to a 0.93 precision, 0.93 recall and a 0.97 of AUC (Fig. 1A
and Table 1). These results suggest that predictions for known drugs already in our dataset are

Fig 1. nAnnoLyze benchmarking. A) ROC plots for predictions in the benchmark dataset using 10-fold cross-validation. Blue line for predictions based on
our RFC trained using the compound ID, red line for predictions based on our RFC trained with anonymous compounds. Light red lines correspond to the
predictions based on individual nAnnoLyze scores. B) Precision/Recall curves for nAnnoLyze local Z-score. C) Enrichment plots for nAnnoLyze local Z-score
(dashed black line) nAnnoLyze global Z-Score (solid black line) predictions.

doi:10.1371/journal.pcbi.1004157.g001
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much more precise than those for unknown or anonymous compounds. The RFC outper-
formed the use of any of the single scores from nAnnoLyze (Table 1).

Comparatively, nAnnoLyze reached a 0.61 increase in precision at the optimal cut-off (from
0.02 to 0.63) at the expenses of a decrease in recall by 0.38 with respect to AnnoLyze (Table 2).
Finally, It is important to note that the benchmark set used for this test resulted more difficult
for AnnoLyze than the original test-set used to benchmark it [23] (Table 2).

nAnnoLyze prediction examples
The human Cyclooxygenase-1 is targeted by NSAID drugs. Cyclooxygenase (COX) is the en-
zyme responsible for the formation of prostanoids, which are classified in 3 different groups:
prostaglandins, prostacyclins, and thromboxanes, each of them is involved in the inflammatory
response, among other processes. There are two COX isoenzymes. COX-1 promotes the pro-
duction of the natural mucus that protects the inner stomach lining while COX-2, is primarily
present at sites of inflammation [34]. Traditional non-steroidal anti-inflammatory drugs
(NSAIDs) such as Aspirin, Ibuprofen or Flurbiprofen are considered non-selective because
they inhibit both COX-1 and COX-2. The inhibition of COX-2 by NSAIDs results in the anti-
inflammatory effect, while the inhibition of COX-1 can lead the undesired side effects such as
damage to the gastrointestinal tract [35]. nAnnoLyze predicted interactions for several NSAIDs
with the 3D model of the human COX-1. Specifically, nAnnoLyze predicted 21 (out of the 44
approved drugs against COX-1) as binders of the COX-1 target (Table 3). In particular, nAn-
noLyze predicted the binding of Flurbiprofen (DB00712) and Ibuprofen (DB01050) to COX-1,
which are known inhibitory drugs of the human COX-1 (Fig. 2A). The nAnnoLyze path be-
tween Flubiprofen and COX-1 starts from a ligand node composed by tripotassium (1R)-4-bi-
phenyl-4-yl-1-phosphonatobutane-1-sulfonate (B70) and two stereoisomers of Flubiprofen
(FLR and FLP). Thorough the binding site of FLP to ovine COX-1 (1QEH), nAnnoLyze pre-
dicts its binding site of the COX-1 human 3D model. Conversely, the path between Ibuprofen
and COX-1 starts in the ligand node composed by 1-(4-ethylphenyl)propan-1-one (I3E) and
two stereoisomers of Ibuprofen (IBP and IZP). Those ligands are predicted to bind the same
predicted binding site of the human COX-1 thanks to its similarity to the crystal structure of

Table 1. RFC benchmark.

Type of classification Precision Recall AUC

RFC (DrugID, SCORE, Global Z-score, Local Z-Score) 0.93±0.01 0.93±0.01 0.97±0.01

RFC (SCORE, Global Z-score, Local Z-Score) 0.73±0.01 0.66±0.01 0.71±0.01

Score 0.70±0.02 0.64±0.02 0.68±0.02

Global Z-score 0.70±0.02 0.64±0.02 0.68±0.02

Local Z-score 0.73±0.02 0.64±0.02 0.67±0.01

Mean values and standard deviation after 10-fold cross-validation.

doi:10.1371/journal.pcbi.1004157.t001

Table 2. nAnnoLyze benchmark.

optimal cut-off (max value)

nAnnoLyze Precision 0.63 (1.00)

Recall 0.19 (0.59)

AnnoLyze Precision 0.02 (0.06)

Recall 0.57 (0.67)

doi:10.1371/journal.pcbi.1004157.t002
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the ovine COX-1 (1EQG). Remarkably, the human COX-1 predicted binding site includes the
tyrosine 385, which is known to be responsible of the catalytic reaction with the NSAID drugs
(Fig. 2A). However, not all the NSAIDs performed with the same accuracy. Aspirin
(DB00945), also a known inhibitor of the human COX-1 and COX-2, results in false positive
predictions (Table 4 and Fig. 2B). The nAnnoLyze search with Aspirin as input molecule re-
sults in many proteases predicted targets. This false-positive pathway starts from the ligand
node composed by two Benzoic Acids, the 4-Guanidinobenzoic Acid (GBS) and the Acetylsali-
cylic acid (AIN). GBS has been crystallized with different trypsin proteins so the pathway goes
thorough the GSB binding site of the guanidinobenzoyl-trypsin acyl-enzyme (2AH4) reaching
eventually the predicted binding site for the human Trypsin-2 (P07478). The same pathway is
used to find other proteases like the Airway trypsin-like protease 4 (Q6ZWK6) or the Trypsin-
3 (P35030) resulting in several false positive predictions. Conversely, the Aspirin-COX1 net-
work pathway starts from the ligand node composed by 3,6-dichloro-2-methoxy-benzoic acid
(D3M) and Salicylic acid (SAL) (Fig. 2B). The RFC classifier identified a network link between
Aspirin and the SAL compound with a similarity score of 0.86. This SAL mediated pathway
guides the nAnnoLyze search towards its binding site in the ovine COX-1 (3N8Y), which is ho-
mologous to the human COX-1 binding site. This pathway is also the responsible of the link
between Aspirin and the human COX-2 with a score of 0.77. However, the lower similarity be-
tween the predicted human COX-2 binding site and the ovine COX-1 (3N8Y) introduces a
penalty that significantly decreases the score of the link.

Sorafenib pathway targeting through binding of several proteins. Sorafenib, which is mar-
keted as Nexavar, is an approved drug for the treatment of advanced renal cell carcinoma. It is
also in Phase III trials for Hepatocellular carcinoma, Non-small-cell lung carcinoma (NSCLC)
and melanoma and in Phase II trials for Myelodysplastic syndrome, Acute Myeloid Leukemia

Table 3. COX-1 interactions.

Drug ID Drug name nAnnoLyze score

DB00712 Flurbiprofen 0.97

DB00328 Indomethacin 0.97

DB01600 Tiaprofenicacid 0.96

DB00870 Suprofen 0.96

DB00821 Carprofen 0.96

DB00788 Naproxen 0.96

DB00500 Tolmetin 0.94

DB00465 Ketorolac 0.94

DB00963 Bromfenac 0.92

DB00586 Diclofenac 0.91

DB06802 Nepafenac 0.90

DB01283 Lumiracoxib 0.90

DB00784 Mefenamicacid 0.89

DB00861 Diflunisal 0.88

DB04552 NiflumicAcid 0.88

DB00991 Oxaprozin 0.88

DB01050 Ibuprofen 0.87

DB00939 Meclofenamicacid 0.86

DB01399 Salsalate 0.86

DB01009 Ketoprofen 0.86

DB00605 Sulindac 0.85

doi:10.1371/journal.pcbi.1004157.t003
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(AML), head and neck, breast, colon, ovarian and pancreatic cancers. Arising as one of the
most promising anticancer drugs, Nexavar is known to perform its activity by targeting the
Raf/Mek/Erk pathways [36,37]. Specifically it is known to inhibit Raf kinases, Receptor-type ty-
rosine-protein kinase (FLT3), platelet-derived growth factor (PDGF), Vascular endothelial
growth factor receptor 2 & 3 (VEGF2/3) and the Mast/stem cell growth factor receptor Kit.
Within our predictions, we found 4 of these links alongside other interesting links for targets
involved in the same pathways (Table 5 and Fig. 3A). Interestingly, most of the links have been
previously annotated either in DrugBank, PubChem or in the PDB as a crystal structure. How-
ever, there are two links not annotated within the predictions, the serine/threonine-protein ki-
nase A-Raf (ARAF) and the Cyclin-dependent kinase 10 (CDK10). ARAF is involved in several
pathways, including AML and FoxO signaling and together with FLT3, BRAF, MAPK14 could
be a good opportunity to exploit the polyphamarcological profile of Sorafenib against AML. In
fact, Phase II trials are showing very promising results in AML combining Sorafenib with other
marketed drugs [38,39]. Of the ten predicted targets, only 3 have been co-crystallized with Sor-
afenib (BRAF, MAPK14 and CDK8), while in the other seven nAnnoLyze proposes the binding
site localization of the drug providing insights into the mode of action of the compound. nAn-
noLyze predicted the correct binding site for the three targets (Fig. 3B). The predicted binding
sites were 75%, 62%, and 86% correct (i.e., % of predicted residues defined as binding site in
LigBase) for CDK8, BRAF, and MAPK14, respectively.

Since structurally similar binding sites are more likely to bind the same small molecule. We
wanted to assess if the 7 predicted binding sites (i.e., FLT3, CDK10, ARAF, MAPK15, FLT1,
RAF1, and CDK19) have similarity with the 3 Sorafenib known binding sites (i.e., BRAF,
MAPK14, and CDK8). All of the 7 predicted binding sites are similar to at least one of the al-
ready known (Fig. 3C). Within the annotated interactions with non-crystallized structure,
FLT3 is the one with lowest similarity to a known structure (ProBiS Z-score of 1.04 with the
CDK8 binding site). Unlike FLT3, FLT1 binding site has MAPK14 as the most similar binding

Fig 2. nAnnoLyze network pathways. A) Network pathways for the predicted interactions between Flurbiprofen and Ibuprofen with the generated three-
dimensional model of the Human Cox-1 (PDB Template: 2AYL with 94% sequence identity). B) Aspirin network pathway for miss predicted Aspirin-Trypsin2
(PDB Template: 3P95 with 98% Sequence Identity) and correctly predicted Aspirin-COX1 hit found by the method. Link between Aspirin and SAL was made
by the RFC classifier with a score of 0.86 (Tanimoto value of 0.76). In both panels, the arrows represent edges with their weights representing the distance
(i.e: the inverse of the similarity). The higher the distance value the lower the similarity between the compounds or binding sites. Ligand network nodes are
encircled with the ligand responsible of the predicted pathway represented in larger size. For clarity, only one binding site per node has been plotted.

doi:10.1371/journal.pcbi.1004157.g002

Table 4. Aspirin top 10 predicted targets as well as COX-1 and COX-2 scores.

UniProt ID nAnnoLyze Score Protein Name

P07478 0.94 Trypsin-2

Q6ZWK6 0.93 Airway trypsin-like protease 4

E7ESG9 0.93 Transmembrane protease serine 4

A6NL71 0.92 Transmembrane protease serine 11E

Q8IXD7 0.92 Kallikrein-11

Q0WXX5 0.92 Kallikrein 11 isoform 1

A8CED1 0.92 Trypsin-3

O60235 0.92 Transmembrane protease serine 11D protease

A8CED3 0.92 Protease serine 3 (mesotrypsin) isoform CRA_c

A9Z1Y4 0.92 Protease serine 3

Q5T7T7 0.81 COX-1

A8K802 0.77 COX-2

doi:10.1371/journal.pcbi.1004157.t004
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site with a higher score (2.25 ProBiS Z-score). Regarding the Cyclin dependent kinases CDK10
and CDK19 proposed binding sites, CDK10 binding site has a high similarity (ProBiS Z-score
of 2.09) with the MAPK14´s one while the CDK19 binding site is almost identical to that of
CDK8 (ProBiS 2.9). As expected, RAF predicted protein binding sites ARAF and RAF1 have
BRAF binding site as the most similar (3.5 and 3.94 ProBiS Z-scores, respectively). Following
the same trend, the MAPK14 binding site is the most similar to MAPK15 (2.51 ProBiS Z-
score). Although small changes in the catalytic site could have a dramatic impact on the bind-
ing-affinity of a small molecule, the overall high similarity among the Sorafenib predicted bind-
ing sites shows a clear trend towards binding site conservation within this set of proteins. This
example shows not only the capability of the method to find drug targets but also the possibility
to explore pathways rather than individual proteins as targets.

Discussion
The increase of compound phenotypic screenings over the last years has dramatically increased
the number of small molecules with non-annotated protein targets [40–42]. Because target an-
notation is a crucial step when developing a drug, and specifically the elucidation of the amino
acids involved in the interactions is key to understand the mode of action of the compound,
many methods have been developed to annotate drug protein targets. However, most of them

Table 5. Sorafenib targets.

Target Prediction Score Annotated Target Structure KEGG OV Pathways

MAPK 14 (Q13083) 0.99 PDB Yes MAPK signaling pathway

PubChem FoxO signaling pathway

VEGF signaling pathway

Rap1 signaling pathway

RIG-I-like receptor signaling pathway

Acute myeloid leukemia

CDK19 (Q9BWU1) 0.97 PubChem - -

FLT1 (P17948) 0.90 PubChem Yes Ras signaling pathway

Rap1 signaling pathway

RAF1 (P04049) 0.89 DrugBank Yes MAPK signaling pathway

PubChem Ras signaling pathway

Rap1 signaling pathway

VEGF signaling pathway

FoxO signaling pathway

Acute myeloid leukemia

ARAF (Q5H9B3) 0.88 - Yes (partially) FoxO signaling pathway

Acute myeloid leukemia

CDK10 (Q15131) 0.88 - - -

BRAF (Q9Y6T3) 0.88 DrugBank Yes MAPK signaling pathway

PDB Rap1 signaling pathway

PubChem FoxO signaling pathway

Acute myeloid leukemia

CDK8 (P49336) 0.87 Pubchem Yes -

PDB

FLT3 (Q5VTU6) 0.86 PubChem Yes Acute myeloid leukemia

DrugBank

MAPK 15 (Q8TD08) 0.86 Pubchem - -

doi:10.1371/journal.pcbi.1004157.t005
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do not provide any structural information about the link, and for those providing it, the appli-
cation at proteome scale for any query compound is unfeasible. Here we introduced nAnno-
Lyze a method for drug target interaction prediction that provides structural details at

Fig 3. nAnnoLyze multiple-target example. A) Extraction of the Sorafenib sub network. B) Drug and the predicted binding site in CDK8 (PDB 3RGF, blue),
BRAF (PDB 1UWH, grey) and MAPK14 (PDB 3GCS, red). C) ProBiS comparison of the binding site of predicted targets for DrugBank molecule Sorafenib
(DB00398).

doi:10.1371/journal.pcbi.1004157.g003
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proteome scale. nAnnoLyze relies on a pre-built network of structural similarities to perform
its prediction for any query molecule providing not only the connection between the molecule
and its predicted target but also the binding site of the ligand in the protein. It is important to
note that nAnnoLyze has been specifically tested for drug-target interaction prediction. The ac-
curacy of our method on less studied compounds, such as non-drug like molecules, could lead
to a reduction of the precision and the coverage.

The lack of crystal structure for several proteins in other datasets prompted us to build a
new dataset of approved drugs. The reduction of the precision by our previous method [23]
with this dataset is indicative of the complexity of the new benchmark. The new dataset in-
cludes real set of interactions that better simulates a scenario where the different molecules
have different affinities to one or many targets. This addressed a current concern about the
possible bias of artificial datasets [33]. Unfortunately, the lack of a real “negative” set of drug-
protein pairs (i.e., pairs of molecules known not to interact) hampered the creation of the com-
plete dataset. To overcome this issue, we generated a set of drug-protein pairs that, so far, are
not annotated as interactions. The nAnnoLyze benchmark using these newly created datasets
resulted in satisfactory accuracies, especially in light of the fact that the dataset is bound to pro-
duce an overestimation of the false-positive rate (i.e., a drug and a protein are not interacting if
they have not been crystallized together) [43]. The limitation of the maximum distance in the
search for the shortest pathway can explain some of the missed drug-protein pairs and, conse-
quently, limits the recall reached by the method. Analysis of the precision and recall of specific
compounds in the benchmark dataset indicate that nAnnoLyze results in higher accuracy for
moderate promiscuous compounds compared to highly promiscuous compounds. Indeed, pro-
miscuous compounds have high-degrees of connectivity in our network, which makes it very
difficult to identify specific targets. A similar analysis to identify trends in the accuracy of nAn-
noLyze for targets for different protein Pfam families did not result in any clear trend. The
usage of binding site to represent a family of targets instead of whole protein domain structures
may explain the homogeneity in the performance for different protein families.

Several scores for each prediction permits to explore the effect of the selection of different
thresholds values depending of the user needs. For instance, when extracting only the most
confident targets for a drug, very low values of Global Z-score will be suitable; while when re-
trieving the most specific targets for a compound filtering by low values of Local Z-score will
be the best option. This, of course, makes it difficult to provide a specific score threshold for
the predictions. Despite this, we studied the variation of the performance at different thresh-
olds measured by a ROC curve. The AUC was excellent when using drug names and scores as
input feature for the predictions. When only the scores of the predictions were used (that is,
treating the compound as anonymous), there was a clear decrease in the AUC suggesting that
the method performs better for already known chemical entities rather than for new unseen
compounds. This fact makes sense since the method is based upon comparative approaches re-
lating compounds by their structural similarities.

The comparison of the nAnnoLyze method against the original AnnoLyze indicates that
our network-based approach predicts drug-protein complexes with higher precision. Impor-
tantly, nAnnolyze is a clear progress over Annolyze by improving not only the performance
(27-fold higher precision) but also the applicability, since it can be applied to any compound
regardless whether it has been previously deposited in the PDB. Moreover, the network-based
paradigm implemented in nAnnoLyze allows for the integration of other types of additional in-
formation such as the diseases linked to the protein targets, which may eventually allow for
drug indication predictions. A successful example of a method for predicting drug-like targets
using the modelable human proteome with medical data integration is the Computational
Analysis of Novel Drug Opportunities (CANDO) platform [43]. While the aim of our work is
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accurately predicting drug-protein interactions, future developments of nAnnoLyze could in-
clude medical indications of drugs.

To demonstrate the applicability of the method, we screened all the drugs in the DrugBank
database against the entire human 3D proteome that could be modeled by comparative protein
structure prediction. We not only provided the drug-protein predictions but also the structural
binding localization of the interaction. We carefully described two examples of this screening.
The first example illustrates the nAnnoLyze ability to correctly (or incorrectly) predict the
binding of a NSAIDs set of drugs to the COX-1 human protein. Within the correctly predicted
interactions (i.e., true positives), we included Flurbiprofen and Ibuprofen detailed information
about the network routes. In the case of the incorrectly predicted interaction between Aspirin
and proteases proteins, the analysis indicates that the clustering in a ligand node of two similar
Benzenoids compounds lead to the undesired drug-target association. It is thus likely that add-
ing extra information beyond the chemical similarity during the clustering of the core-network
may result in more functionally homogeneous clusters of compounds. Even though, nAnno-
Lyze was able to reach the two main targets of aspirin (i.e., COX-1 and COX-2) through alter-
natives network pathways. However, the lower similarity of the human predicted COX-2
binding site with the ovine COX-1 included in the core network penalized the score of the hit.
This example also illustrates the nAnnoLyze capacity of predicting interactions when no crystal
structure is available for the target.

The second example studied the polypharmacological profile of the anticancer drug Sorafe-
nib. The method correctly retrieved most of the known targets and proposed some others with
structural similarities in the binding site and that are involved in the same metabolic pathways
as the known ones. This example shows the possibility of studying pathways rather than indi-
vidual proteins as drug targets, which could be even more interesting in complex diseases such
as cancer or Alzheimer where multiple factors play a role in the progress of the disease.

The major limitation of the method is the restricted applicability because is based on struc-
tural data, which is still scarce compared to sequence data. In spite of it, we were able to cover
42% of the human proteome with either a crystal structure or a reliable model. Moreover, the
amount of crystal structures in the PDB has significantly increased over the past years [44] and
the percentage of a proteome that can be modeled by homology has increased thanks to initia-
tives like the Protein Structure Initiative [45,46]. The more structural information we have, the
more information can be extracted and therefore applied in nAnnoLyze. Indeed, the underly-
ing network in nAnnoLyze can continue growing with the integration of new molecules or sets
of biomolecules (both compounds and protein targets). To this end, we have developed a Web
server that allows everyone to submit their own sets of compounds and check the predictions
against pre-built networks for the human andMycobacterium proteomes. So far, we have ap-
plied the method in an open source drug discovery initiative againstMycobacterium tuberculo-
sis [31] and are currently working in other projects and initiatives. Our goal is to encourage
open source drug discovery by releasing the method with all the predictions expecting that
other researchers can benefit from our work. Finally, the scientific community could experi-
mentally validate the predictions providing us a feedback to improve the quality of this tool
and of future ones.

Materials and Methods
Next, we describe the different steps (Fig. 4A) performed to build a bi-partite network of struc-
tural similarities and interactions (Fig. 4B). We continue by describing the methods used to as-
sess the accuracy of nAnnoLyze.
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Fig 4. nAnnoLyze network building. A) nAnnoLyze flow chart for building the network of structural similarities between ligands and targets. B) nAnnoLyze
underlying sub-networks of drugs (purple circles), compounds in PDB (blue circles), targets in PDB (red triangles), and human target 3D models (green
triangles). For easy visualization, the panel shows only part of the final nAnnoLyze network.

doi:10.1371/journal.pcbi.1004157.g004
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Ligand sub-network
To build the ligand sub-network, only compounds with a pharmaceutical or a biological func-
tion on their co-crystallized proteins were retrieved from the PDB. To perform the filtering, we
calculated, for each compound in the PDB, the weighted quantitative estimate of drug-likeness
(wQED). Briefly, the wQED is calculated by combining a set of the chemical features of the
compound (i.e., molecular weight, octanol-water partition coefficient as LogP, polar surface
area, number hydrogen bond donors, number of hydrogen bond acceptors, number of rotat-
able bonds, number of aromatic rings, and number of possible toxic scaffolds) to quantify its
drug-likeness given the pre-calculated value for that chemical features in a gold standard set of
drugs [47]. Compounds with good drug-like properties (i.e., wQED�0.35) were selected re-
sulting in 7,609 PDB compounds. Each selected compound was then represented as a vertex in
the ligand network. Links between vertices of the network (i.e., edges) were obtained by struc-
turally comparing all compounds. The weights of the edges were obtained using a Random
Forest Classifier (RFC) developed to identify compound similarities [31]. Briefly, the RFC clas-
sifier predicts whether two small molecules are likely to bind the same target-binding site by
comparing their structural and chemical properties. The usage of a classifier allows for an auto-
matically determination of optimal thresholds after the RFC has been trained with the train-
ing-set. Therefore, the all-against-all comparison performed by the RFC resulted in 134,493
pairs of similar compounds. To reduce redundancy in the network we created groups of con-
nected compounds by identifying k-cores in the network. A k-core in a network N, is a maxi-
mal connected sub-graph of N in which all vertices have degree at least k. Thus, every k-core in
the non-redundant network represents a vertex and edges between vertices indicate the exis-
tence of at least one similar compound between the two k-cores. In the ligand network, a k-
core would be a set of ligands such every two ligands within the set are similar to each other
(i.e., they have an edge in the network). An edge between two k-cores vertices was given the
maximum weight of all possible edges between their constitutive compounds. The resulting
non-redundant ligand sub-network had 4,101 vertices connected by 24,856 edges.

Protein binding sites sub-network
We first downloaded from the LigBase database (February 19th, 2013) [48], a database contain-
ing all ligand-binding sites of known protein structures, all unique protein binding sites com-
posed of at least seven residues within a radius of 5 Å, binding any of the selected 7,609 highly
drug-like compounds in the ligand sub-network. We defined “highly drug-like” compounds as
those compounds with very good absorption, distribution, metabolism, and excretion proper-
ties (i.e., with an wQED�0.35). This initial protein binding site sub-network resulted in 28,299
binding sites from 22,959 different proteins in the PDB. Next, we populated the network with
links (edges) between two proteins by structurally comparing their binding sites. The structural
comparison of the binding sites was performed using ProBiS [49], a tool for local structural
alignment of binding sites based on geometry as well as physicochemical properties. We de-
fined two binding sites as similar if their similarity Z-score is higher than 2.0. An all-against-all
structural comparison of the selected binding sites was performed resulting in 579,155 pairs of
similar binding sites. Next, we removed redundancy from the sub-network by applying a simi-
lar filtering that is used for the ligand sub-network. The final non-redundant sub-network for
binding sites contained 19,487 vertices and 29,811 edges.

Final bi-partite network
Finally, we joined the two sub-networks by creating edges between protein binding sites and li-
gands. A binding site was linked to a ligand if both have been experimentally observed to
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interact (i.e., a solved structure with the target and the ligand exists in the PDB). The two sub-
networks were linked by 22,832 edges and the final nAnnoLyze bi-partite network contained
23,588 vertices and 54,667 edges.

Integration of the human structural proteome
To populate the nAnnoLyze network with structures for human targets, we downloaded all
human 3D models deposited in ModBase (November 11th, 2013) [50–52] with at least a 1.1
ModPipe Protein quality score [53]. ModBase is a database of comparative protein structure
models calculated by the automatic modeling pipeline ModPipe [53]. The likely accuracy of
the ModPipe models is predicted by the ModPipe Protein Quality score defined as a composite
score that includes sequence identity to the template, coverage, and the three individual scores:
the alignment e-value, z-dope [54], and GA341 [55]. This resulted in a total of 31,734 reliable
3D models from 16,694 unique human target sequences. Next, we structurally compared this
set of selected models to any non-redundant (90% sequence identity) set of 29,772 structures
from the PDB solved with at least one ligand compound. Structural comparisons between two
proteins were performed using the MAMMOTH algorithm, which is based on a fast and accu-
rate heuristic method to find, in a sequence-independent mode, the maximal structural subset
between two proteins structures [56]. Four different scores were stored for each structural su-
perposition: percentage of sequence and structure identity for the entire protein and percentage
of sequence and structure identity for the residues involved in the binding site of the known
structure as defined by LigBase. The structure identity between two structures was defined as
the percentage of residues with their Cα atoms within 4 Å after optimal superposition. A bind-
ing site in a model was considered then similar to a binding site in a known PDB structure if at
least the binding site sequence and structure identity were higher than 40%. This identity cut-
off was previously validated in a large-scale comparison of known ligand-protein pairs [23]. A
total of 576,675 binding sites were predicted for the human proteins (that is,*18 binding sites
per model). Due to the high redundancy in the predicted binding sites, we excluded binding
sites fulfilling the following requisites: redundant binding sites (i.e., more than 80% sequence
identity to any other binding site) or small binding sites (i.e., with less than 6 residues). A total
of 64,275 binding sites (*2 binding sites per model) remained after the redundancy and size
filtering. Next, we compared all human predicted binding sites against all binding sites in our
network using ProBiS resulting in 459,356 similarity links (Z-score> 1.0) between any of the
human 64,275 binding sites and the 28,299 binding sites in the network. Every significant pair
became an edge with a weight equal to the normalized Z-score of the comparison. The final
human network included the 7,609 compounds, the 28,299 known binding sites and the 64,275
human predicted binding sites.

Integration of the DrugBank compounds
A total of 6,540 small compounds were downloaded from the DrugBank database (May 15th,
2013). We then looked for similarity with the compounds present in the PDB ligand sub-net-
work by using our trained RFC classifier as described above. Next, all the drugs were integrated
in our network by making an edge between every DrugBank compound and their similar PDB
compounds retaining the link with higher RFC when more than one link between a DrugBank
compound and one network vertex (i.e., a k-core of PDB compounds) was found. A total of
5,824 drugs were integrated into the network through 149,538 edges.
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Network-based prediction of DrugBank ligand and human target pairs
Once the network was completed, to predict all possible interactions between DrugBank com-
pounds and any of the modeled targets of the human proteome, we simply calculated the short-
est path in the network from every queried DrugBank compound to any human binding sites.
We implemented a version of the Dijkstra algorithm that limits the maximum reachable dis-
tance in order to speed up the computational time of the search [57]. Each hit was then scored
by using the inverse of the sum of all edge weights of the path between the compound and the
human target. Such score was then normalized and Z-scored. Specifically, two different Z-
scores were calculated for each prediction.

Gz ¼ s� mG

sG

The “Global Z-score” (Gz) is obtained by running the predictions of all drugs present in
DrugBank against all targets, obtaining a global mean (μG) and a global standard deviation (σG)
to Z-score a specific predicted pair. The “Global Z-score” represents how good is a prediction
given its score in the constructed network.

Lz ¼ s� mL

sL

The “Local Z-score” (Lz), is similarly calculated by running the predictions of all drugs pres-
ent in DrugBank retrieving the mean (μL) and the standard deviation (σL) of the score for a spe-
cific target. The “Local Z-score” represents how good is a prediction for a specific binding site
or target. For example, highly promiscuous binding sites tend to have higher local Z-scores.

Finally, we combined the three scores (that is, the inverse of the sum of all edge weights, the
global Z-score and the local Z-score through a Random Forest Classifier that aims at predicting
the interaction of a compound and a target. Two RFCs were trained with and without the
DrugBank ID as an input feature of the compound. The RFC classifier, thus, results in a single
Boolean score indicating interaction or non-interaction between the compound and the target.
To train the RFC, we used the Weka software for data mining tasks [58].

nAnnoLyze benchmark
To benchmark nAnnoLyze, we retrieved all the compound-protein complexes for DrugBank
approved drugs from the PDB. A total of 213 approved drugs were uniquely mapped into com-
pounds bound to a protein deposited in the PDB. Next, we retrieved all the proteins binding to
those compounds resulting in a protein-compound set of 6,282 entries. To test the method, we
first created the benchmark network: the 213 compounds were integrated in the clustered net-
work by using the RFC classifier. To avoid overestimation in the benchmark, we did not create
any edge between a ligand in the benchmark and any identical (i.e., RFC score of 1.0) ligand in
the network. Next, we extracted from LigBase the 7,074 protein binding sites of the 213 afore-
mentioned compounds and integrated them in the network following the procedure used for
the human binding sites. Similarly, we did not create links between identical binding sites in
the benchmark and any protein in the network. We then selected all interactions between the
213 compounds and any of the 7,074 binding sites. To assess the accuracy of our method in
finding real interactions, we then calculated two different statistics. First, the precision defined
as the ratio between the true positives (TP; true drug-protein interactions found by nAnno-
Lyze) and the sum of TP and false positives (FP, a link between a drug and a protein not in the
PDB). Second, the sensitivity (or recall) defined as the ratio of TP and the TP+ false negatives
(FN, a link between a compound and protein not found by nAnnoLyze).
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nAnnoLyzeWeb site implementation
We have implemented a Web server where an end user can retrieve all pre-calculated predic-
tions for the DrugBank and human protein as well as submit its own set of compounds. The
server takes as input a compound ID and its SMILE in case of a new compound or only the
DrugBank ID in case of a DrugBank drug. Then the user needs to select which organism prote-
ome should be searched against. Currently nAnnoLyze has pre-calculated networks for the
human and threeMycobacterium proteomes. The server search results in a list of all the pre-
dicted compound-protein pairs presented as a sortable table for easy filtering depending on the
Global Z-score cut-off. A graphical enrichment of the Gene Ontology Terms [59] and KEGG
pathways [60] of the predicted targets is also shown above the result table. Each prediction is
further detailed by providing a GLMol based visualization (http://webglmol.sourceforge.jp) of
the compound and the protein structure alongside the predicted binding site. All the structural
data and all the predictions can be downloaded from the nAnnoLyze Web server at http://
www.marciuslab.org/services/nAnnoLyze.
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3.2. Target Prediction for two Open Acess Sets of Compounds Ac-
tive against Mycobacterium tuberculosis

This section presents the application of nAnnolyze to predict the MTB tar-
gets of a set of compounds with antitubercular activity. The target predictions
from nAnnolyze are combined with those resulting from the application of two
other methods exploring different methodological spaces (i.e., the structural
space, the chemical space and the historical space). The compounds and the
predictions are publicly available at http://www.tropicaldisease.
org/TCAMSTB.

Manuscripts presented in this section:

Martı́nez-Jiménez, F., Papadatos, G., Yang, L., Wallace, I. M., Kumar,
V., Pieper, U., . . . Marti-Renom, M. a. (2013). Target Prediction
for an Open Access Set of Compounds Active against Mycobac-
terium tuberculosis. PLoS Computational Biology, 9(10), e1003253.
doi:10.1371/journal.pcbi.1003253

Rebollo-Lopez, M. J., Lelièvre, J., Alvarez-Gomez, D., Castro-Pichel,
J., Martı́nez-Jiménez, F., Papadatos, G., . . . Barros-Aguire, D. (2015).
Release of 50 new, drug-like compounds and their computational
target predictions for open source anti-tubercular drug discovery.
PloS One, 10(12), e0142293. doi:10.1371/ journal.pone.0142293
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Introduction

One third of the world’s population is infected with Mycobac-

terium tuberculosis (MTB), the causative agent of tuberculosis [1].

Approximately 95% of infected individuals are thought to have

persistent, latent MTB infections that remain dormant until

activated by specific environmental and host response events.

Approximately 10% of latent infections eventually progress to

active disease, which, if left untreated, kills more than half of the

infected patients [2]. Moreover, there is an increasing clinical

occurrence of MTB strains with extensive multi-drug-resistance

(eg, MTB MDR and MTB XDR), where mortality rates can

approach 100% [3]. In some countries, the MTB MDR and XDR

strains may account for up to 22% of infections [1]. In addition,

current TB therapeutic regimes involve a combination of

antibiotics, administered at regular intervals over a 6-month

period, which makes patient compliance an issue, especially in

developing countries [1,2].

The discovery and development of new antibiotics is widely

recognized as one of the major global health emergencies, yet it is

also a major pharmaceutical challenge. Most currently used

antibiotics were discovered during the golden era from the 1940s

to 1960s through large scale screening of compound collections for

anti-bacterial activity – the so-called whole cell or phenotypic

screens [4]. The emergence of bacterial molecular genomics

technologies and the availability of whole genome sequences in the

1990s led to dramatic changes in anti-bacterial drug discovery,

where the emphasis was placed on screening essential targets for

inhibitory compounds. However, despite intensive efforts, target-

based screening has been largely unsuccessful in producing clinical

candidate molecules [5]. As a result, a return to whole cell

screening has been widely advocated, in combination with novel

technologies and bioinformatics to rapid identify targets associated

with a compound’s mechanism of action (MOA) [4,6].

Recently, the pharmaceutical company GlaxoSmithKline

(GSK) completed an anti-mycobacterial phenotypic screening

campaign against M. bovis BCG, a non-virulent, vaccine Mycobac-

terium strain, with a subsequent secondary screening in M.

tuberculosis H37Rv (MTB H37Rv) for hit confirmation [7]. A total

of 776 potent compound hits (including 177 MTB H37RV hits

with limited human cell line toxicity) were made openly available

to the wider scientific community through the ChEMBL database

(http://dx.doi.org/10.6019/CHEMBL2095176). The aim of this

release was to stimulate mechanism of action analyses using
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chemical genetics/proteomics approaches, as well as to provide

many potential new starting points for synthetic lead generation

activities. To attain these goals, it is essential to identify the likely

protein targets of these active compounds. Here, we introduce an

integrative computational analysis towards the genome-wide

characterization of targets for selected compounds against

tuberculosis. Our approach is in contrast to the classical target-

based experiments, widely used in drug discovery, that suffer from

very high attrition rates in anti-infective molecules [8]. This study

should also serve the wider anti-tuberculosis research community

by providing a list of genes and pathways that are more likely to be

validated as TB targets for drug discovery and development.

We applied computational approaches using three domains of

knowledge, namely the ‘‘assay space’’, ‘‘chemogenomics space’’

and ‘‘structural space’’, to identify new targets that are likely to

interact with the active compounds from the GSK collection. We

characterized the structural and chemical spaces of the recently

released set of 776 compounds active against tuberculosis [7] and

grouped the compounds into a total of 551 structural families.

Subsequently, we predicted their likely targets using three

orthogonal and complementary computational approaches. Joint-

ly, we identified several amino-acid biosynthesis proteins as

possible targets of several compounds in the dataset. A total of

207 unique pairs of compounds and potential MTB targets have

been predicted. These compounds constitute a basis for further

hypothesis-led exploration of their mode of action. We briefly

outline the possible impact and contribution of our findings to

Open Drug Discovery Initiatives [9,10,11], in particular against

tuberculosis.

Results/Discussion

The TCAMS-TB compound dataset
GSK recently released the data from a phenotypic screen

against tuberculosis (available at ChEMBL http://dx.doi.org/10.

6019/CHEMBL2095176) [7]. This open access dataset contains a

total of 776 compounds active against M. bovis BCG, a non-

virulent Mycobacterium species widely used in experimental studies

as a vaccine component, and a subset of 177 confirmed

compounds active against MTB strain H37Rv. The compound

collection had been pre-filtered to remove known anti-bacterial

compounds to maximize the discovery of novel compounds with

anti-Mycobacterium activities. About 90% of the compounds have

a quantitative estimate of drug-likeness (QED) value above 0.35

[12], herein called optimal drug-like compounds (Figure 1). The

remaining 10% of compounds, which are highlighted by red bars

in Figure 1, have higher molecular weights (.400 KD) and slightly

higher hydrophobicity, expressed as the calculated logarithm of

the 1-octanol/water partition coefficient (ALogP) [13]. For the

subset of 177 compounds active against H37Rv, the average

molecular weight is statistically smaller than for the entire dataset

(Figure 1), consistent with known trends of lipophilicity and

cytotoxicity/polypharmacology. The molecular PSA (polar surface

area), ALogP (octanol–water partition coefficient) and wQED

(weighted QED) scores result in statistically indistinguishable

average values and distributions for both datasets. To assess the

diversity of the dataset, we applied our Random Forest Score

(RFS) to identify pairs of similar compounds (Methods). An all-

against-all comparison was performed by nAnnolyze [14] and any

pair of compounds with an RFS higher than 0.9 were considered

similar. The resulting network of compound similarities was

layered using Cytoscape [15] (Figure 1E). The entire dataset of

776 compounds was clustered into a total of 551 compound

families, primarily composed of two large compound families and

481 singleton families. The two large families of compounds

(GSKFAM_1 and GSKFAM_2) included 38 compounds each

connected by 156 and 80 links, respectively (Figure 1F). In

summary, the active compound set released by GSK is composed

of drug-like molecules with non-redundant and diverse scaffolds.

Integrative computational analysis
The 776 compounds released by GSK were used as input to our

integrative computational analysis approach that combines the

results from a chemogenomics space search (CHEM), a structural

space search (STR) and a historical assay space search (HIST).

First, the exploration of the chemical space allowed us to identify

likely targets for the input compounds based on their structural

similarity to compounds with experimentally validated targets

deposited in the ChEMBL database [16]. The approach employed

a multi-category Naı̈ve Bayesian classifier, which has been

successfully used in ligand-based target prediction efforts

[17,18,19]. Second, the exploration of the structural space allowed

for the identification of likely targets based on the structural

similarity of compounds and protein targets with known three-

dimensional structures. The method was based on an improved

version of the AnnoLyze program [14]. Finally, the exploration of

the historical data on screening assays resulted in testable

hypotheses for the anti-Mycobacterium mode of action of the

selected compounds, based on the historical data from internal

GSK screening experiments. This integrative approach allowed us

to predict targets for the set of released compounds in the absence

of known structural data (CHEM and HIST) or the absence of

knowledge of the binding site (STR). When the three-dimensional

structure of the target and the localization of the binding site are

known or predicted, it is often helpful to follow up with molecular

docking (see [20] and examples below). However, such an

approach would be prohibitive for large numbers of compounds

against a large number of targets, because molecular docking

results still need to be interpreted manually for best impact. The

three methods used in our integrative approach are further

detailed in the Methods section of this manuscript.

Chemogenomics space (CHEM)
We applied a multi-category Naı̈ve Bayesian classifier

(MCNBC) that was built and trained using structural and

bioactivity information from the ChEMBL database [16]. Given

a new compound, the model calculates a likelihood score based on

the molecule’s individual sub-structural/fingerprint features and

Author Summary

Mycobacterium tuberculosis is a major worldwide pathogen
infecting millions individuals every year. Additionally, the
number of antibiotic resistant strains has dramatically
increased over the last decades. Trying to address this
challenge, the pharmaceutical company GlaxoSmithKline
has recently published the results of a large-scale high-
throughput screen (HTS) that resulted in the release of 776
chemical compound structures active against tuberculosis.
We have used this dataset of compounds as input to our
computational approach that integrates historical bioassay
data, chemical properties and structural comparisons. We
propose 139 targets alongside their respective hit com-
pounds and made them open to the wider scientific
community. Our hope is that the availability of the
experimental data from GSK and our computational
analysis will encourage further research providing validat-
ed therapeutically targets against this devastating disease.
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produces a ranked list of likely targets. In total, the 776 compounds

in the M. bovis BCG dataset resulted in 2,179 statistically

significant target associations (at a Z-score .2.0) to proteins in

the ChEMBL database from 62 different organisms (63% of hits

are to human proteins). A simple orthology search against the

MTB proteins from this set resulted in 1,401 compound-target

relationships for 84 MTB proteins, with detectable orthology to 34

organisms. The specific predictions from the chemical space

search are available at http://www.tropicaldisease.org/

TCAMSTB (CHEM type).

Structural space (STR)
We applied a Random Forest Score that identified structural

similarities between any compound in the dataset and ligands from

Figure 1. GSK dataset of 776 compounds. Panels A to D describe the drug-like properties of the compounds, including the subset of 177
compounds active against MTB (green color). Red colored subsets correspond to compounds with weighted QED score smaller than 0.35 [12]. The
distribution’s mean values are shown in the top-right corner of each plot. A) Molecular weight distribution. B) PSA distribution. C) ALogP distribution.
D) Weighted QED distribution. Panels E and F show the structural clusters of the compounds. Links between compounds indicate 0.9 or higher RFS
similarity. E) Entire network of 776 compounds resulting in 551 structural families (486 singletons). F) Highlight of family number 1 with 38
compounds (inner images for the three most connected compounds in the family).
doi:10.1371/journal.pcbi.1003253.g001
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the Protein Data Bank (PDB) [14]. Each compound in the M. bovis

BCG dataset is compared to ,2,500 ligands for which there are

known complex structures in the PDB, identifying structural

similarities to be included in a pre-built network of structural

relationships between ligands and targets. In total, the 776

compounds resulted in 207 significant target associations (RFS

score .0.4) to proteins in a set of modeled three-dimensional

structures from the MTB proteome. The specific predictions from

the structural space search are available at http://www.

tropicaldisease.org/TCAMSTB (STR type).

Historical assay space (HIST)
We used the historical GSK bioassay data to develop

hypotheses for the anti-Mycobacterium mode of action for the

active compounds. Using conservative activity thresholds, we

found among the compounds active against MTB H37Rv

unambiguous annotations for 49 compounds and their previ-

ously measured activity in 120 biochemical assays against 63

human targets (i.e., sub-micromolar IC50 or EC50). Overall, the

M. bovis BCG screens resulted in a considerably larger number

of active compounds and thus have a correspondingly greater

amount of historical assay information. A total of 240

compounds were found to have activity recorded in 642 assays

involving 209 human targets, with the largest human target

classes being GPCRs and protein kinases, as expected. We then

searched for orthologous sequences of the human assayed

proteins in the MTB H37Rv and M. bovis BCG genomes using

conservative criteria for assigning human-Mycobacterium homol-

ogy (BLAST E-value #1.0e210). Although there are significant

evolutionary differences between bacterial and mammalian

genomes, we still found 19 M. bovis BCG homologous genes

(Table S1) in different target classes (Figure S1), including

kinases (8 genes), cytochrome P450s (2 genes) and nine other

enzymes such as a putative D-amino acid oxidase, an amidase, a

putative flavin-containing monoamine oxidase, a NAD-depen-

dent deacetylase, a putative catechol-O-methyltransferase, a

protease, a putative epoxide hydrolase, a 3-ketoacyl-(acyl-

carrier-protein) reductase, and a dihydroorotate dehydrogenase

2. While these M. bovis BCG genes had orthologous sequences in

MTB H37Rv, fewer compounds were associated with putative

targets in the latter species. For example, two Mycobacterium

kinases and five enzymes were exclusively associated with M.

bovis BCG positive compounds. Two kinases (pknA and pknB)

and one enzyme (fabG) were experimentally characterized as

essential for the survival of MTB [21,22]. A total of 20 and 94

compounds were indirectly mapped by human protein target

homology to 12 MTB H37Rv and 19 M. bovis BCG genes,

respectively. The specific predictions from the historical assay

space search are detailed in Supporting Information and are

available at http://www.tropicaldisease.org/TCAMSTB (HIST

type).

Subset of compounds with predicted targets
Of the 776 compounds in the GSK dataset, only one

compound (GSK445886A) was predicted to hit diverse targets

from different pathways by the three independent methods

(Figure 2A). A total of 25 and 9 compounds were jointly

predicted to hit a target by CHEM/STR and CHEM/HIST

searches, respectively. The majority of predictions were

obtained by the CHEM approach (404 compounds with

predicted targets), followed by the STR approach (38 com-

pounds with a predicted target) and the HIST approach (20

compounds with predicted targets). Such results were expected

because the available information on biological activity shrinks

as we move from the general ‘‘chemical’’ to the more specific

‘‘structural’’ and ‘‘historical’’ spaces. Interestingly, as an

indication of the orthogonality of the three approaches, most

of the redundancy of compounds with a predicted target was

specific to each approach. In other words, each of the three

approaches covered different parts of the space of compound-

target predictions. For example, the CHEM approach predicted

a target for 300 compound families (compared to a total of 404

unique compounds), of which it still shared 34 with either the

STR or the HIST approaches (Figure 1B). A similar trend was

observed for the other two approaches, indicating that the

common compounds mostly occurred in small compound

families or even singletons. Indeed, the GSK445886A com-

pound, which was predicted to have a target by all three

approaches, corresponded to a singleton compound family

(GSKFAM_293).

To identify whether the three different approaches predicted

targets for specific families in the dataset, we calculated the log

odds probability (LogOdd) of a given compound family to appear

in the list of selected compounds, given their different distributions

in the original dataset (Figure 2C). This analysis aimed at

identifying possible biases or artifacts specific to each of the three

independent methods used in our integrative approach. Eleven

compound families were under-represented in the selected dataset

and 18 families were over-represented (with LogOdd values

smaller than 20.5 and greater than 0.5, respectively). Interesting-

ly, GSKFAM_551, which is a singleton with the SKF-67461

compound, was over-represented in the subset of selected

compounds. Such predictions were based mostly on the STR

and CHEM searches and may correspond to the chemical

properties of the compound, resulting in a high false-positive rate

for those two approaches. Conversely, the GSKFAM_4, which

contains 15 compounds, is under-represented in the final subset of

selected compounds, with only 1 hit identified by the CHEM

approach.

Predicted targets
There are a total of 1,044 unique MTB targets associated with a

total of 112 pathways annotated in the KEGG database [23] (the

mtu identifiers below refer to the relevant KEGG pathway id). Of

those, the three orthogonal approaches identified targets for the

selected set of compounds in a total of 84 pathways (Figure 3A).

The STR search resulted in hits to 71 unique pathways, while the

CHEM and the HIST searches resulted in hits to 35 and 16

pathways, respectively. These results were expected, because the

target information is reduced from the STR space to the HIST

space. A total of 11 unique pathways were predicted by the three

approaches (Figure 3A and Table 1); these include many pathways

associated with amino acid and nucleotide metabolism, such as

arginine and proline metabolism (mtu00330), tryptophan metab-

olism (mtu00380), phenylalanine metabolism (mtu00360), tyrosine

metabolism (mtu00350), histidine metabolism (mtu00340), gly-

cine/serine/threonine metabolism (mtu00260) and pyrimidine

metabolism (mtu00240). The results indicate that the GSK

compounds potentially target proteins associated with primary

metabolism. Interestingly, another seven pathways, not identified

by the HIST approach, were found over-represented in the final

set of predicted targets (Figure 3B). Those include some further

primary and secondary metabolism systems, including streptomy-

cin biosynthesis (mtu00521), folate biosynthesis (mtu00790),

nitrogen metabolism (mtu00910), aminoacyl-tRNA biosynthesis

(mtu00970), purine metabolism (mtu00230), penicillin and ceph-

alosporin biosynthesis (mtu00311), D-arginine and D-ornithine

MoA Prediction against TB

PLOS Computational Biology | www.ploscompbiol.org 4 October 2013 | Volume 9 | Issue 10 | e1003253

72



metabolism (mtu00472), and one carbon pool by folate

(mtu00670).

Predicted pairs of compound-target
To assess the significance of our predictions using the three

different approaches, we calculated a t-statistics p-value of any

compound family - KEGG pathway pair (Methods). The search

identified 8 different compound families with significant links (p-

value ,161025) to 14 different KEGG pathways (Table 2). The

GSK compound family 1, through its compounds GSK975784A,

GSK975810A, GSK975839A, GSK975840A and GSK975842A,

was predicted to target the glycerolipid (mtu00561) and glycer-

ophospholipid metabolisms (mtu00564), with significant over-

representation through 6 different targets including Rv2182c and

Rv2483c, both acyltransferases essential for the survival of the

bacteria [21]. The GSK compound family 3 was predicted to

target the ABC transporters (mtu02010) through its compounds

GSK547481A, GSK547490A, GSK547491A, GSK547499A,

GSK547500A, GSK547511A, GSK547512A, GSK547527A,

GSK547528A and GSK547543A. Similarly, it was also predicted

to target the aminoacyl-tRNA biosynthesis (mtu00970) pathways,

through 3 different targets including Rv1640c, a lysyl-tRNA

synthetase essential for the survival of the bacteria [21]. The GSK

compound family 7, was predicted to target several pathways

through 2 different targets Rv0053 (30S ribosomal protein S6) and

Rv0650 (a glucokinase), none considered essential for the survival

of the bacteria [21]. The GSK compound family 9 through its

compounds GSK1188379A and GSK1188380A, was predicted to

target the ABC transporters (mtu02010) pathway through the

Rv0194 target (ATP-binding cassette, subfamily C) considered

non-essential for the survival of the bacteria [21]. Identical results

were obtained with the GSK compound family 16 through its

compounds GSK1825940A and GSK1825944A. The GSK

compound family 35 through its compounds BRL-10143SA and

Figure 2. Subset of GSK compounds with predicted targets. A) Venn diagram with common compounds with predictions from the three
different approaches (that is, in green from the search of the chemogenomics space, in purple from the search of the structural space, and in red from
the historical data). B) Venn diagram with common compound families with predictions from the three different approaches. C) Most under and
over-represented chemical families in our predictions. Upper plot shows the probability of finding a given family in the original dataset (grey bars)
compared to the probability of finding it in the dataset with predicted targets (blue bars). Lower plot shows the log odds per selected family (i.e.,
absolute log odds larger than 0.5).
doi:10.1371/journal.pcbi.1003253.g002
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BRL-51093AA was predicted to target the one carbon pool by

folate (mtu00670) pathway through the Rv2763c and Rv2764c

targets (a dihydrofolate reductase and a thymidylate synthase,

respectively) considered non-essential for the survival of the

bacteria [21]. The GSK compound family 173 through its

compound GSK14022909A was predicted to target the

aminoacyl-tRNA biosynthesis (mtu00970) pathway through

three essential targets [21], Rv1640c, Rv3598c and Rv3834c

(a lysyl-tRNA synthetase, a lysyl-tRNA ligase, and a seryl-

tRNA ligase, respectively), which are essential for the survival

of the organism [21]. Interestingly, this family is also

predicted to target Rv3105c and Rv3135 genes (a peptide

chain release factor 2 and a PPE family protein), which are

also essential for the survival of the organism [21]. Finally, the

GSK compound family 334 through compound GSK270671A

was predicted to target the nitrogen metabolism (mtu00910)

pathway through the Rv1284 and Rv3588 targets (carbonic

anhydrases) considered essential for the survival of the

bacteria [21].

An example of a serine/threonine-protein kinase (pknB)
target

Even though target Rv0014c, a serine/threonine-protein

kinase, was not identified as belonging to an enriched pathway

(it is not annotated in the KEGG database), it was predicted by

the HIST approach to be a target for the GSK1365028A,

GSK1598164A, GSK275628A and GW664700A (all singleton

families in our compound clustering). Kinases are the most

prominent human target class having identifiable orthologs in

both M. tuberculosis H37Rv and M. bovis BCG genomes

(Figure 4A). The human genome encodes over 450 kinases,

while Mycobacterium contains between 4 and 24 serine/threonine

kinases, depending on the exact species (M. tuberculosis and M.

bovis have 11 conserved kinases each). At least two of these

kinases, pknA and pknB, have been determined to be essential

for in vitro viability of M. tuberculosis [21]. To further evaluate

potential MoA of kinase inhibitors, we computationally docked

several compounds into the adenine-binding portion of the ATP

binding pockets of the two available experimental structures for

the essential kinase pknB. The criteria for choosing the

compounds were whole cell screening activity of MIC90 less

than 10 mM and IC50 less than 8 mM. Two structures (PDB

IDs: 2PZI and 3F69) were selected because both were co-

crystallized with an inhibitor, clearly detailing their ATP

binding pockets.

An empirical docking score threshold of 28.5 kJ/mol was

chosen to identify putative positive bindings of the active

compounds across the two pknB PDB models (Table S2).

GSK1598164A, an inhibitor of several human serine/threonine

protein kinases, was positive in both H37RV and BCG whole

cell screens, based on favorable docking scores (29.19 and

28.96 kJ/mol against 2PZI and 3F69, respectively). Both

GSK1598164A and the enzymatic product ADP in the crystal

structure were found to interact with the Glu93 of pknB, where

the nitrogen atoms on the ‘head’ unit form the hydrogen bond

with Glu93 (Figure 4B). Glu93 is conserved across both human

and TB kinases (Figure 4A). Several residues in the putative

hydrophobic binding pocket (Leu17, Gly18, Phe19, Val25,

Ala38, Val72, Met92, Glu93 and Val95) were also found to be

within 4 Å of both GSK1598164A and ADP. In conclusion, our

analysis suggests that several bactericidal compounds in the

published phenotypic screen act by inhibiting essential M.

tuberculosis kinases.

Figure 3. Predicted KEGG pathways targeted by the GSK
compounds. A) Venn diagram with common pathways from the three
different approaches. B) Most under and over-represented pathways in
our predictions. Panels A) and B) with the same representation as in
Figure 2.
doi:10.1371/journal.pcbi.1003253.g003
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Table 1. List of seven common hit pathways identified by the three independent approaches.

Pathway Approach Targets Compound families

mtu00240 STR Rv1381 255

Pyrimidine metabolism Rv3048c 86

Rv3314c 255

CHEM Rv2139 Several

Rv2764c Several

Rv3247c 497

HIST Rv2139 2

mtu00260 STR Rv0489 551

Glycine, serine and threonine metabolism Rv1296 551

Rv3708c 551

CHEM Rv1905c 5,252,497

Rv3170 Several

HIST Rv3170 5

mtu00330 STR Rv1652 476,488

Arginine and proline metabolism CHEM Rv0458 60

Rv1905c 5,252,497

Rv3170 Several

HIST Rv1263 5,272

Rv3170 5

mtu00340 STR Rv0187 551

Histidine metabolism Rv0520 551

Rv1498c 300

Rv1603 551

Rv1605 551

CHEM Rv0458 60

Rv3170 Several

HIST Rv3170 5

mtu00350 STR Rv0187 551

Tyrosine metabolism Rv0520 551

Rv1498c 300

Rv1703c 551

CHEM Rv3170 Several

HIST Rv3170 5

mtu00360 STR Rv1908c 551

Phenylalanine metabolism Rv3469c 551

CHEM Rv3170 Several

HIST Rv1263 5,272

Rv3170 5

mtu00380 STR Rv0859 551

Tryptophan metabolism Rv1908c 551

CHEM Rv0458 60
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An example of a compound targeting the aminoacyl-
tRNA biosynthesis pathway

The CHEM and STR methods identified Rv3598c (lysS1

lysine-tRNA ligase 1) and Rv3834c (serS serine-tRNA ligase) as

possible targets for the GSK1402290A compound, respectively.

Both enzymes are part of the aminoacyl-tRNA biosynthesis

pathway (mtu00970) and are essential in in vitro experiments

[21]. Moreover, the mtu00970 pathway was selected in our

analysis as being significantly associated with GSKFAM_173

(GSK1402290A compound).

The CHEM approach predicted that the human lysyl-tRNA

synthetase (UniProt ID Q15046) was a likely target of

GSK1402290A, with a likelihood score of 11.3 and a Z-score of

2.4. Furthermore, the model indicated that the individual

fragments contributing to this prediction were derived by its fused

triazole ring (e.g., pyrazole and imidazole features), as well as by its

aniline group. In fact, the model for this target was trained using

47 active compounds from ChEMBL and almost all of them

contained the aforementioned fragments (Figure 5A). Moreover,

the predicted human target shared in OrthoMCL [24] the

ortholog group (OG5_126972) with MTB’s lysine-tRNA ligase 1

(UniProt ID P67607).

The STR method predicted a link between the compound and

the target through a 3D model of the Rv3834c protein built based

on the known structure of a seryl-tRNA synthetase from Aquifex

aeolicus. The Rv3834c target and the seryl-tRNA synthetase

template aligned with 43% sequence identity and resulted in

good quality models (MPQS.1.5) [25]. To further evaluate

potential MoA of the GSK1402290A compound, we computa-

tionally docked it into the nAnnoLyze predicted binding site for

Rv3834c (Figure 5). The AutoDock run resulted in a best pose

with 28,4 kJ/mol, indicating interactions between the

GSK1402290A compound and the Rv3834c target (Figure 5B).

In support of this model, the interactions occur with conserved

protein residues, given the curated multiple sequence alignment

for PFAM family PF00587 (tRNA synthetase class II core domain).

In summary, our CHEM and STR predictions suggest that

GSK1402290A could act as an inhibitor of the aminoacyl-tRNA

biosynthesis pathway and provide the basis for further chemical

optimization of this compound.

Open targets against tuberculosis
The recent publication of a large-scale screening effort for

identifying drug-like small molecule compounds active against

tuberculosis has been used as starting point for our research. Here,

we predicted the likely mode of action of a selected set of

compounds active against tuberculosis, based on a computational

approach that integrates data from historical assay results,

chemical features and their relationship to activity, and structural

comparisons. Our integrated approach resulted in prediction of

several compound-target pairs, which can be further tested using

genomics, genetics and biochemical assays. More broadly, our

approach can be applied to whole cell screens for any pathogen,

provided sufficient datasets are available.

We have predicted a wide range of MTB specific as well as

more evolutionary conserved targets. While compounds with

known activity against a human protein could be compromised by

toxicity, and therefore should be eliminated from further study,

empirical evidence suggests that existence of a human orthologous

sequences is not a strong filter for selecting pathogen targets. Many

clinically used antibiotics have targets with human orthologs, such

quinolones (DNA gyrase and topoisomerases), rifampicin (RNA

polymerase), mupirocin (isoleucyl-tRNA synthetase) and the latest

anti-TB drug now in Phase II testing, bedaquiline (F1F0 ATPase)

[4,6]. The associated side effects of antibiotics are mostly due to

high doses treatments affecting off-target proteins (including

human ortologs) and not specifically to on-target effects. The

billion plus years of evolutionary distance between prokaryotes

and mammals has lead to significant divergence between

orthologous proteins such that there is sufficient structure activity

relationship or SAR bandwidth to develop specific inhibitors of the

pathogen target, in our case MTB.

It is important to note that we also had a subset of compounds

with historical data indicating activity against human protein

targets with no known homologs in MTB, such as the GPCRs.

Thus, their mechanism of action against MTB must be due to

non-human target related interactions. These compounds must be

pursued with caution as drug candidates given their known in vitro

interaction with a human protein. Nevertheless, such compounds

could be valuable tools for understanding MTB viability. In

general, knowledge of potential human protein interactions adds

to the design of effective counter-screens to drive compound SAR

specificity and potency towards the pathogen.

The public availability of the data and compounds [7] as well as

our predictions (http://www.tropicaldisaes.org/TCAMSTB/ or

ftp://ftp.ebi.ac.uk/pub/databases/chembl/tb) will facilitate fur-

ther research on drug discovery against tuberculosis. A major goal

of our work is to encourage other researchers to experimentally

validate the described targets and make their findings publicly

available as soon as possible, thus optimizing the process of

developing a safe and well tolerated novel therapy for tuberculosis.

Methods

Compound dataset
All compound datasets used in this study (that is, BCG dataset of

776 GSK compounds including the H37Rv sub-dataset of 177

Table 1. Cont.

Pathway Approach Targets Compound families

Rv1323 Several

Rv3170 Several

HIST Rv1263 5,272

Rv3170 5

The additional four common pathways identified not shown correspond to general pathway descriptions (i.e., mtu01100 ‘‘Metabolic pathways’’, mtu01110 ‘‘Biosynthesis
of secondary metabolites’’, mtu01120 ‘‘Microbial metabolism in diverse environments’’, and mtu00000 ‘‘No Pathway’’). Target genes in italics are either in vivo or in vitro
essential in the TraSH Essentiality database [21].
doi:10.1371/journal.pcbi.1003253.t001
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Table 2. Significant links between GSK compound families and KEGG pathways.

GSK Family Compound Target Pathways

1 GSK975784A Rv2182c Glycerolipid metabolism (mtu00561)

Glycerophospholipid metabolism (mtu00564)

Rv2483c No Pathway

GSK975810A Rv2182c Glycerolipid metabolism (mtu00561)

Glycerophospholipid metabolism (mtu00564)

Rv2483c No Pathway

GSK975839A Rv2182c Glycerolipid metabolism (mtu00561)

Glycerophospholipid metabolism (mtu00564)

Rv2483c No Pathway

Rv2299c No Pathway

GSK975840A Rv2182c Glycerolipid metabolism (mtu00561)

Glycerophospholipid metabolism (mtu00564)

Rv2483c No Pathway

GSK975842A Rv2182c Glycerolipid metabolism (mtu00561)

Glycerophospholipid metabolism (mtu00564)

Rv2483c No Pathway

Rv2045c No Pathway

Rv2139 Pyrimidine metabolism (mtu00240)

Rv2299c No Pathway

Rv2483c No Pathway

3 GSK547481A Rv0194 ABC transporters (mtu02010)

GSK547490A Rv0194 ABC transporters (mtu02010)

GSK547491A Rv0194 ABC transporters (mtu02010)

GSK547499A Rv0194 ABC transporters (mtu02010)

GSK547500A Rv0194 ABC transporters (mtu02010)

GSK547511A Rv0194 ABC transporters (mtu02010)

GSK547512A Rv0194 ABC transporters (mtu02010)

GSK547527A Rv1640c Aminoacyl-tRNA biosynthesis (mtu00970)

Rv3598c Aminoacyl-tRNA biosynthesis (mtu00970)

Rv0194 ABC transporters (mtu02010)

GSK547528A Rv1640c Aminoacyl-tRNA biosynthesis (mtu00970)

Rv3598c Aminoacyl-tRNA biosynthesis (mtu00970)

Rv0194 ABC transporters (mtu02010)

GSK547543A Rv0194 ABC transporters (mtu02010)

7 GSK1829727A Rv0053 Ribosome (mtu03010)

Rv0379 No Pathway

Rv0650 Glycolysis/Gluconeogenesis (mtu00010)

Galactose metabolism (mtu00052)

Starch and sucrose metabolism (mtu00500)

Amino sugar & nucl. sugar metab. (mtu00520)

Streptomycin biosynthesis (mtu00521)
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Table 2. Cont.

GSK Family Compound Target Pathways

GSK1829729A Rv3855 No Pathway

Rv0053 Ribosome (mtu03010)

Rv0379 No Pathway

Rv0650 Glycolysis/Gluconeogenesis (mtu00010)

Galactose metabolism (mtu00052)

Starch and sucrose metabolism (mtu00500)

Amino sugar & nucl. sugar metab. (mtu00520)

Streptomycin biosynthesis (mtu00521)

GSK1829816A Rv0053 Ribosome (mtu03010)

Rv0379 No Pathway

Rv0650 Glycolysis/Gluconeogenesis (mtu00010)

Galactose metabolism (mtu00052)

Starch and sucrose metabolism (mtu00500)

Amino sugar & nucl. sugar metab. (mtu00520)

Streptomycin biosynthesis (mtu00521)

GSK479031A Rv0053 Ribosome (mtu03010)

Rv0379 NoPathway (mtu00000)

Rv0650 Glycolysis/Gluconeogenesis (mtu00010)

Galactose metabolism (mtu00052)

Starch and sucrose metabolism (mtu00500)

Amino sugar & nucl. sugar metab. (mtu00520)

Streptomycin biosynthesis (mtu00521)

GSK957094A Rv3170 Gly, Ser and Thr metabolism (mtu00260)

Arginine and proline metabolism (mtu00330)

Histidine metabolism (mtu00340)

Tyrosine metabolism (mtu00350)

Phenylalanine metabolism (mtu00360)

Tryptophan metabolism (mtu00380)

Rv0053 Ribosome (mtu03010)

Rv0379 No Pathway

Rv0650 Glycolysis/Gluconeogenesis (mtu00010)

Galactose metabolism (mtu00052)

Starch and sucrose metabolism (mtu00500)

Amino sugar & nucl. sugar metab. (mtu00520)

Streptomycin biosynthesis (mtu00521)

9 GSK1188379A Rv0194 ABC transporters (mtu02010)

GSK1188380A Rv0194 ABC transporters (mtu02010)

16 GSK1825940A Rv0194 ABC transporters (mtu02010)

GSK1825944A Rv0194 ABC transporters (mtu02010)

35 BRL-10143SA Rv1649 Aminoacyl-tRNA biosynthesis (mtu00970)

Rv2763c One carbon pool by folate (mtu00670)

Folate biosynthesis (mtu00790)

One carbon pool by folate (mtu00670)

Rv2764c Pyrimidine metabolism (mtu00240)

BRL-51093AM Rv2763c One carbon pool by folate (mtu00670)

Rv2764c Folate biosynthesis (mtu00790)

One carbon pool by folate (mtu00670)
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compounds) were obtained directly from the ChEMBL database

(as deposition set http://dx.doi.org/10.6019/CHEMBL2095176).

Chemical properties of the compounds (Figure 1) were calculated

as previously described [12].

Exploring the chemogenomics space
A multi-category Naı̈ve Bayesian classifier (MCNBC) was

built using structural and bioactivity information from the

ChEMBL database (version 14) [16]. In brief, the classifier

learns the various classes (in this case protein targets) by

considering the frequency of occurrence of certain sub-

structural features for the different chemical compounds. Given

a new, unseen compound, the model calculates a Bayesian

probability score based on the molecule’s individual features

and produces a ranked list of likely targets. The model was built

in Accelrys Pipeline Pilot (version 8.5). The structure and

bioactivity data were extracted from the ChEMBL database and

conformed the following filters: (i) the activity value was better

than 10 uM (pIC50.5), (ii) the target type was a protein, (iii)

the activity type was IC50, Ki or EC50, and (iv) the target

confidence score was above 7.0. The last filter ensured that

there was a reported direct interaction between the ligand and

the protein target. The script resulted in 489,056 distinct

compound-target pairs. To increase the robustness of the model,

only targets with 40 or more active compounds were considered

further, thus reducing the number of unique compound-target

pairs to 466,686, spanning 1,258 distinct targets and 271,918

distinct compounds.

Two multiple-category models were subsequently built.

Firstly, a model was created by choosing at random 85% of

the compound records as the training set, so that the remaining

15% could be used as a test set for model validation, ensuring no

overlapping structures in the 85-15 partition [17]. The MCNBC

trained on 85% of the 271,918 ChEMBL compounds and

associated targets was then used to predict the targets for the

remaining 15% of the ChEMBL subset, containing 40,788

distinct compounds, unseen by the model. Standard ECFP_6

fingerprints were employed as molecular descriptors for the

classifier [26]. These fingerprints encode a molecular structure

as a series of overlapping features/fragments of a diameter of up

to three bond lengths.

For each compound in the test set, the Pipeline Pilot model

generated a likelihood score Ptotal for all possible targets. This is

derived by the Laplacian-corrected Bayes rule of conditional

probability P(A|Fi) for each fingerprint feature i of the

compound.

Pi ADFið Þ~ AFiz1ð Þ= TFi A=Tð Þz1½ �

Ptotal~logP Pi ADFið Þð Þ~
X

log Pi ADFið Þ

where Fi is the ith fingerprint feature; A is the number of active

molecules for a target; T is the total number of molecules; AFi is

the number of active molecules containing feature i; and TFi is

the number of all molecules containing feature i.

For the purposes of this validation, only the top five target

predictions were considered (i.e., the ones with the highest positive

likelihood score). This reflects a real-life situation where only a

small number of target predictions can be practically and

economically tested experimentally. To test the accuracy of the

method, the five target predictions were then compared to the

actual target reported for that particular compound.

The model derived by the training set ranked the correct target

highest among all 1,258 possible targets for 82% of the compounds

in the test set (Figure 6A). The target is correctly predicted on the

second guess for 6% of the compounds and correctly predicted on

the third guess for 2% of the compounds. In total, 92% of the

compounds in the test set are correctly assigned to their known

targets within the top five predicted targets. The ChEMBL

database groups most of the individual protein targets into a

hierarchical classification of target family names. Given this

information, further analysis was done to examine the accuracy of

the target classification predictions. Individual targets were

replaced by their respective protein classification annotation using

a lookup dictionary. In total, 568 unique protein classification

labels were considered. The model’s predictive power improves,

returning the correct protein family as the top ranked prediction in

88% of the compounds and within the top five predictions in 94%

of the compounds (Figure 6A). After the successful validation of

the method, a second model was created utilizing 100% of the

data and keeping the rest of the parameters intact. The derived

model was then used for predicting the targets of all GSK

compounds.

Table 2. Cont.

GSK Family Compound Target Pathways

Pyrimidine metabolism (mtu00240)

173 GSK1402290A Rv1640c Aminoacyl-tRNA biosynthesis (mtu00970)

Rv3598c Aminoacyl-tRNA biosynthesis (mtu00970)

Rv3834c Aminoacyl-tRNA biosynthesis (mtu00970)

Rv3105c No Pathway

Rv3135 No Pathway

334 GSK270671A Rv1284 Nitrogen metabolism (mtu00910)

Rv3588c Nitrogen metabolism (mtu00910)

Rv3273 Nitrogen metabolism (mtu00910)

Rv1707 No Pathway

Target genes in italics are either in vivo or in vitro essential in the TraSH Essentiality database [21]. Pathways highlighted in bold are responsible of the significant link to
the GSK family.
doi:10.1371/journal.pcbi.1003253.t002
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Exploring the structural space
A network of structural similarities between compounds and

targets was built to identify the most likely target of a given

compounds in our GSK dataset. To explore the structural space

we used an improved version of our previously published

AnnoLyze algorithm [14], which was based on homology

detection through structural superimposition of targets and their

interaction networks to small compounds similarly to previously

published approaches [27,28]. Briefly, the new nAnnoLyze

algorithm relies in four pre-built layers of interconnected networks,

First, the ‘‘GSK Ligand’’ network where nodes are GSK

compounds and edges correspond to their similarity as measured

by a Random Forest classifier score (RFS) (see below). Second, the

‘‘PDB Ligand’’ network where nodes are ligands in the Protein

Data Bank (PDB) [29] and edges correspond to their similarity also

measured by the RFS. The ‘‘GSK Ligand’’ network is linked to

the ‘‘PDB ligand’’ network by edges corresponding to the

compound similarity measure by the RFS. Third, the ‘‘PDB

Protein’’ network where nodes are proteins in PDB and edges

corresponds to their structural similarity as measured with the

MAMMOTH structural superimposition [30]. Fourth, the ‘‘MTB

Models’’ network where nodes are structure models of MTB

targets and edges corresponds to their structural similarity after

superimposition by the MAMMOTH program. The two central

networks (that is, ‘‘PDB Ligand’’ and ‘‘PDB Protein’’ networks) are

connected by co-appearance in any solved structure in the PDB

and the ‘‘PDB Protein’’ and the ‘‘MTB Models’’ networks are also

linked by the structural comparison between any protein in the

PDB and all models from MTB. Finally, once all the networks are

constructed, we identified the closest path between any GSK

compounds and a MTB target and scored their relationship as the

sum of all similarities scores in the network. Such score was then

normalized between 0 (non-similar) and 1 (similar) and only pairs

of GSK compounds and their MTB targets with scores higher

than 0.4 were kept.

To identify whether two compounds could be considered

similar, we developed a new Random Forest classifier (RFS),

which was trained with a dataset of ‘‘similar’’ and ‘‘non-similar’’

ligands. Two ligands were similar if they bind the same binding

site as defined by the LigASite database, a gold-standard dataset of

biologically relevant binding sites in protein structures [31]. To

avoid overestimation in the validation of our approach, all ligands

in the database that were included in a testing set of 2,380 ligands

from the PDB were removed. Our training set of similar ligands

included 197 pairwise comparisons considered as ‘‘true similar’’

and a set of randomly paired ligands as ‘‘true non-similar’’

comparisons. The SMSD program [32] was then used to compare

all pair of selected ligands to obtain their Tanimoto score, bond

Figure 4. PknB kinase docking to GSK1598164A. A) Multiple sequence alignment of Mycobacterium PknB kinase with selected human kinases.
Human kinases were selected on the criteria of having available PDB structures and top Psi-BLAST scores to M. bovis transmembrane serine/
threonine-protein kinase B (pknB). First sequence in the alignment (gene name; PDB identifier) is M. tuberculosis transmembrane serine/threonine-
protein kinase B (PknB; 3F69), which is 99% identical to M. bovis PknB and was used in compound docking models. Other sequences are CAMK2D
(2EWL), MARK3 (2QNJ), MARK2 (3IEC), AKT2 (1GZK) and SGK1 (2R5T). Residues known to interact with ADP in pknB are highlighted in red. The amino
acids aligned with Glu93, which may be essential for the binding of the GSK1132084A, are highlighted in green. B) Binding models of the
GSK1598164A and ADP within pknB binding site (left and right panels, respectively).
doi:10.1371/journal.pcbi.1003253.g004
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breaking energy, Euclidian distance for equivalent atoms, stereo-

chemical match, substructure fragment size, and finally the

molecular weight difference. Such scores were then normalized

and constituted a vector defining the similarity between any two

compared ligands, which was then used as input for the Random

Forest classifier. The aim of the classifier was thus to identify

hidden relationships between the six scores to maximize its

capacity to identify true pairs of similar ligands and discern them

from non-similar ligands. The classifier was then tested with a 10-

fold cross validation procedure and resulted in an area under the

ROC curve of 0.97 and a very small false positive rate of 1.6%

(Figure 6B).

To populate the ‘‘MTB Model’’ network with structures of

MTB targets, we built all possible comparative structure models

for any protein in the M. tuberculosis H37Rv, M. bovis BCG, and M.

smegmatis genomes using the ModPipe program [25]. All sequences

were obtained from the Genomes Web site of the NCBI database.

Such modeling resulted in a total of 34,894 comparative models

for which 5,008 were predicted to be reliable models (that is, 1.1 or

higher ModPipe quality score and ga341 higher than 0.7). Next,

we structurally compared this set of selected models to any non-

redundant (90% sequence identity) structure in the PDB that

contained at least one known ligand. Structural comparisons

between two proteins were performed using the MAMMOTH

algorithm [30]. Four different scores were stored for each

structural superimposition: percentage of sequence and structure

identity for the entire protein and percentage of sequence and

structure identity for the residues involved in the binding site

defined as any residue in the PDB template structure within 6

Ångstroms of any atom in the ligand. A binding site in a model

was considered then similar to a binding site in a known PDB

structure if at least the binding site sequence and structure

Figure 5. Targeting the aminoacyl-tRNA biosynthesis pathway. A) CHEM results show that GSK1402290A shared several substructural
features with compounds reported as potent lysyl-tRNA synthetase inhibitors in the ChEMBL database (e.g., CHEMBL474582 and CHEMBL508242). B)
STR results predicted the serS as a target of GSK1402290A with its binding site including residues F205, H209, G225, T226, E228, R257, F276, K278, and
E280, which are conserved in the PFAM family PF00587 (tRNA synthetase class II core domain). Zoomed image shows the pose for GSK1402290A
predicted by AutoDock and the binding site residues (i.e., within 6 Å from the compound) coloured from low sequence conservation (blue) to high
sequence conservation (red).
doi:10.1371/journal.pcbi.1003253.g005
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similarity were higher than 40%. This similarity cut-off was

previously validated in a large-scale comparison of known ligand-

protein pairs [14].

The final entire network of comparisons included the 776

compounds from the GSK dataset, ,2.500 unique ligands from

the PDB, ,16,000 unique protein structures from the PDB and a

total of ,5,000 structure models from MTB. Such network

resulted in 207 pairs of GSK compound to MTB target short paths

(i.e., score .0.4).

Exploring historical assay data
GSK proprietary compound screening databases were queried

for any historical assay data associated with both Mycobacterium

species active compounds. The majority of these screens were

against human protein targets. The threshold above which

compound efficacy against specific human targets was considered

significant was defined as pIC50$5.0 for inhibition or antagonist

assays, and pEC50$5.0 for agonist, activation or modulator

assays. Activities at more than 600 target-result type combinations

(some targets are assayed in both an antagonist and agonist mode)

were analyzed amongst the BCG and H37Rv active compounds,

representing potential modes of action. The target activities for the

screened compounds were analyzed to identify targets over-

represented amongst the anti-malarial actives vs. inactives.

Using BLASTP [33] we queried the protein complement of

published MTB H37Rv and M. bovis BCG genomes with RefSeq

proteins [34] for all human targets accepting a homology cut-off of

an E-value #1.0e-10 and visual inspection of the alignments.

Putative homologous relationships were confirmed by reciprocal

BLASTP searches of identified Mycobacterium homologues against

the human RefSeq protein databases. Initial multiple sequence

alignments were performed using the program CLUSTALW v1.8

[35] with default settings and subsequently refined manually using

the program SEQLAB of the GCG Wisconsin Package v11.0

software package (Accelrys, San Diego, CA, USA).

Statistical assessment of predicted links between
compounds and targets

We measured two different statistics to assess the significance of

a particular link between a chemical compound and a target

pathway. Firstly, we calculated the LogOdds (that is, the odds of

an observation given its probability). A feature i (in our case, a

compound in Figure 2C or a pathway in Figure 3B) has a

probability (pi,c) in the entire dataset and a probability (pi,r) of being

at the subset of selected compounds/pathways. Their LogOdds

are defined as the logarithm of its Odds (Oi):

Oi~
pi,c

1{pi,cð Þ

�
pi,r

1{pi,rð Þ

Therefore, Odds higher than 1 (or positive LogOdds) indicate

over-occurrence of the compound/pathway in the selected

subset. Odds smaller than 1 (or negative LogOdds) indicate

under-representation of the compound/pathway in the selected

subset. Secondly, a p-value score was calculated for each

predicted link between a compound and a target pathway using

a Fisher’s exact test for 262 contingency tables comparing two

groups of annotations (i.e., the group of compounds in a given

pathway and the group of compounds in the entire dataset)

[36].

Computational docking of compound in the structure of
selected targets

Autodock 4.2 was used for docking studies [37]. The

ga_num_evals were set at 250,000 to balance docking perfor-

mance and CPU consumption. Thirty replicates were run for

each chemical-protein pair and the binding conformation with

the lowest docking score was chosen for visualization using

PyMOL.

Supporting Information

Figure S1 Target class space. A) For positive hits in M.

tuberculosis H37Rv screens, the distribution of human target classes

affected by compounds based on known human protein potency

and selectivity criteria as described in the text. The number of

human targets is indicated for each class as well as the potential

number of homologous genes (in parentheses). B) Distribution of

49 compounds screened against 1 or more targets having pIC50 or

pEC50 values .5.5 in 120 assays by human target classes. Some

compounds have historical assay information and potency against

multiple target classes. Also indicated is the number of assays

against targets with putative homologues in M. tuberculosis (in

parentheses). C) Similar analysis of human target classes and D)

240 compounds in 642 assays for M. bovis BCG screens.

(DOCX)

Figure 6. Predictive accuracy of the CHEM and STR methods. A)
Predictive power of the MCNBC model using individual targets (left) or
target classification information (right). B) Accuracy of the RFS
differentiating similar from non-similar pairs of ligands. ROC curve
indicates the optimal threshold for the RFS score of 0.58, which results
in an area under the curve of 0.97 and a false positive rate of only 1.6%.
doi:10.1371/journal.pcbi.1003253.g006
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Table S1 Predicted M. tuberculosis H37Rv and M.
bovis BCG gene targets based on homology to human
target assays.
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across two pknB structure models.
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Abstract
As a follow up to the antimycobacterial screening exercise and the release of GSK´s first

Tres Cantos Antimycobacterial Set (TCAMS-TB), this paper presents the results of a sec-

ond antitubercular screening effort of two hundred and fifty thousand compounds recently

added to the GSK collection. The compounds were further prioritized based on not only anti-

tubercular potency but also on physicochemical characteristics. The 50 most attractive

compounds were then progressed for evaluation in three different predictive computational

biology algorithms based on structural similarity or GSK historical biological assay data in

order to determine their possible mechanisms of action. This effort has resulted in the identi-

fication of novel compounds and their hypothesized targets that will hopefully fuel future TB

drug discovery and target validation programs alike.

Introduction
Although the Millennium Development Goal (MDG) target to halt and reverse the Tuberculo-
sis (TB) epidemic by 2015 has been achieved, the global burden of disease remains enormous.
The World Health Organization (WHO) estimates that about one third of the world’s popula-
tion could be latently infected with Tuberculosis. Although the vast majority will not go on to
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develop TB, in 2012 there were 8.6 million new cases of active disease, 1.3 million of which
resulted in death attributable to TB [1].

More worryingly, the increasing prevalence of Multi Drug Resistant (MDR) and Extensively
Drug Resistant (XDR) TB highlights the shortcomings of the present therapeutic options
against the disease [1]. According to WHO, in 2013, there were an estimated 480 000 new cases
of MDR-TB worldwide, 9% of which were found to be practically untreatable XDR-TB. In
2014, XDR-TB has already been reported by 100 countries. Therefore, there is still an urgent
need for new drugs with novel mechanisms of action, able to treat both MDR/XDR and drug
sensitive TB patients in a cost effective way. To not tackle this challenge head on now will be at
our own future peril.

To stimulate community-based research efforts towards the discovery of novel TB therapeu-
tics, and as a follow-up to our previous release of 177 compounds into the public domain [2] as
promising starting points for new TB medicines, we have recently screened the latest chemical
diversity available within GSK compound collections and identified 50 novel, non-cytotoxic,
high quality chemical starting points active against replicatingMycobacterium tuberculosis.
The presentation of this data has been complemented with a multipronged computational
analysis to predict the possible biological targets of each one of these molecules.

Materials and Methods

HTS ATP assay
While the resazurin-based method was a reliable way to test the phenotypic activity of antitu-
bercular compounds, it was unfortunately unsuitable for HTS campaigns given the low signal-
to-noise ratio and the frequent interference of fluorescent compounds. As an alternative to a
resazurin-based readout, we used a commercially available system based on ATP measurement
(BacTiter-Glo, Promega). This assay measured the effect of the compounds on bacterial growth
by determining the amount of ATP per well, which is proportional to the number of living bac-
teria. The reagent caused bacterial cell lysis and generated a luminescent signal proportional to
the amount of ATP present and thus to the number of viable cells in culture. The assay relied
on the activity of a thermostable luciferase and on the properties of a buffer formulation for
extracting ATP from bacteria.

Single Shot inhibition assay
Mycobacterium bovis BCG str. Pasteur 1173P2 (BCG). Bacterial inocula were grown for

4–5 days in Middlebrook 7H9 medium (Difco cat. # 271310) with glucose as carbon source.
The culture medium contained per liter: 4.7 g Middlebrook 7H9 powder, 5 g albumin, 1 g glu-
cose, 0.85 g NaCl, and 0.25 g Tween 80. The solution was sterilized by filtration through a
0.2 mm filter. The HTS assay was carried out in 1536-well sterile plates (Greiner, 782074). The
screening compounds were added to the plates as a 50 nL solution in neat DMSO (Sigma,
D8418) prior to addition of the assay components by using an Echo 555 instrument (Labcyte
Inc). The assay plates were subsequently filled with 5 μL of the bacterial solution (adjusted to
105 bacteria per mL) using a Multidrop Combi NL instrument (Thermo Fischer Scientific
Inc.). Inoculated plates were stacked in groups of 7–8 plates, with the top plate covered with a
sterile lid. Plates were carefully wrapped with aluminum foil to prevent evaporation and
allowed to incubate at 37°C at 80% relative humidity for seven days. After the incubation
period, plates were removed from the incubator and allowed to equilibrate at room tempera-
ture. Freshly reconstituted BacTiter-Glo (5 μL, Promega) was added to each well using the
Multidrop Combi. After standing at room temperature for 7–8 min, the luminescence signal
was quantified with an Acquest reader (Molecular Devices) in the focused luminescence mode.
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Every assay plate contained two columns of negative controls (control 1) with DMSO, which
correspond to 100% activity reactions (maximum luminescence), and two columns of positive
controls (control 2) in which 100% inhibition was reached by adding a known inhibitor (2 μM
rifampicin as standard; bacterial growth completely inhibited). These controls were used to
monitor assay quality through determination of Z´ as well as for normalizing the data on a per-
plate basis. The effect of a given compound is calculated as: % Inhib. = 100 x [(data—ctrl 1)/
(ctrl2—ctrl 1)].

Mycobacterium tuberculosisH37Rv (M. tuberculosis). ForM. tuberculosis, the HTS assay
was carried out in sterile 384-well white microtest plates TC surface (353988 BC Falcon). 250
nL of screening compound were added to the plates as a solution in neat DMSO. The inoculum
was standardized to 107 CFU/mL by measuring the OD at 600nm (an OD600 = 0.125 is equiva-
lent to 107 CFU/mL) and then diluted 1 in 100 (105 CFU/mL) in 4.7 g Middlebrook 7H9 pow-
der, 5 g albumin, 1 g glucose, 0.85 g NaCl, and 0.025% Tyloxapol (Sigma T8761). 25 μL of the
105 CFU/mL solution were dispensed in all 384w compound plates. Every assay plate contained
one column of negative control (control 1, 6th column) with neat DMSO and one column of
positive control (control 2, 18th column) in which 100% inhibition was reached by adding a
known inhibitor (0.1 mg/mL of rifampicin, Sigma R3501). The incubation was as described
previously [2]. This time, 10 μL of reconstituted BacTiter-Glo™Microbial Cell viability Assay
(Promega, G8231) reagent was added to each well and the plate was left 30 min at room tem-
perature. The luminescence was measured using the Spectramax M5 (Molecular Devices) with
integration time 250 mseconds (endpoint).

pIC50 ATP assay (M. bovis BCG Pasteur andM. tuberculosis H37Rv)
The assay was performed in 384 well plates forM. tuberculosisH37Rv and in 1536 well plates
forM. bovis BCG Pasteur. For each compound, 11 two-fold dilutions were done in DMSO
(final concentration 1%). The controls were as the ones used for theM. tuberculosis H37Rv Sin-
gle Shot ATP assay. The method used (inocula, incubation, measurement) is the same as in the
M. tuberculosisH37Rv Single Shot ATP assay, maintaining 8 min incubation, once the BacTi-
ter-Glo™ is added, in the case ofM. bovis BCG Pasteur and 30 min forM. tuberculosis H37Rv.

The effect of a given compound was calculated as % inhibition at single shot or pIC50 (Acti-
vityBase, ID Business Solutions Limited). Zprime lower limit had been established at 0.4. Plates
with Zprime values below this cutoff were rejected.

Statistical analysis for HTS
Statistical cutoffs were obtained as the mean plus 3 standard deviations calculated with a robust
algorithm [3] from the population of growth inhibitions; compounds above the statistical cut-
offs were deemed to have significant inhibition compared to the majority of the compounds
that had inhibitions within the noise. A cutoff was calculated for each batch of plates tested in
one day. Previously the plates were corrected for the presence of patterns when necessary by
using an in-house developed plate pattern recognition and fixing algorithm [4].

Pattern Correction
The plates that display gradient patterns were fixed with the Pattern Recognition & Fixing
Algorithm. The algorithm corrects the responses by calculating a robust 2D running median
across the wells and performs a weighted subtraction from the original responses such as it
leaves unmodified the “outlier” responses. Plates with VEP (variance explained by pattern)>
0.35 were deemed in need of pattern fixing.
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Activity against Non-replicatingMycobacterium tuberculosis
Non-Replicating (NR) conditions were induced in Sauton’s-based minimal containing 0.05%
KH2PO4, 0.05% MgSO4, 0.005% ferric ammonium citrate, 0.00001% ZnSO4 and 0.01% NH4Cl
supplemented with 0.05% butyrate, 0.5% BSA, 0.085% NaCl and 0.02% tyloxapol. pH was set
to 5.0 with 2N NaOH and NaNO2 was added from freshly prepared 1M stock (in distilled
H2O) to a final concentration of 0.5mM. NR conditions also included 1% O2 and 5% CO2.

Assay conditions: 150 nL of each compound at 1mM concentration (in 100% DMSO) dis-
pensed in 384 well plates and stored at -20°C. Bacterial pellets obtained from log-phaseM.
tuberculosisH37Rv grown in roller bottles at 37°C and 20% O2 were washed twice with phos-
phate buffer saline (PBS; Difco), which had 0.02% tyloxapol (PBS-Tyloxapol). Bacterial suspen-
sion with an OD of 0.1 at 580 nm was then prepared in NR medium and NaNO2 added fresh
for a final concentration of 0.5 mM. 15 μL of this suspension was dispensed in to each well of
the compound plate. Plates were incubated for 3 days at 37°C in oxygen-controlled incubators
at 1% O2 and 5% CO2. 60 μL of complete 7H9 medium was added to each well after NR expo-
sure and the plates incubated at 37°C with 21% O2 and 5% CO2 to allow outgrowth of bacteria.
OD was read after 7 days using a microplate reader.

M. tuberculosis inhibition assay (MABA)–H37Rv and resistant strains
The measurement of the minimum inhibitory concentration (MIC) for each tested compound
was performed in 96-well flat-bottom polystyrene microtiter plates. Ten twofold drug dilutions
in neat DMSO starting at 5 mM were performed. These drug solutions (5 μL) were added to
95 μL Middlebrook 7H9 medium (lines A-H, rows 1–10 of the plate layout). Isoniazid was used
as a positive control; eight twofold dilutions of isoniazid starting at 1.2 mM were prepared, and
this control curve (5 μL) was added to 95 μL Middlebrook 7H9 medium (row 11, lines A-H).
Neat DMSO (5 μL) was added to row 12 (growth and blank controls). The inoculums were
standardized to ~1x107 CFUmL-1 and diluted 1:100 in Middlebrook 7H9 broth (Middlebrook
ADC enrichment, a dehydrated culture medium which supports growth of mycobacterial spe-
cies, available from Becton–Dickinson, cat. # 211887), to produce the final inoculum of H37Rv
strain (ATCC25618) and resistant clinical isolates to isoniazid and rifampicin. This inoculum
(100 mL) was added to the entire plate except G-12 and H-12 wells (blank controls). All plates
were placed in a sealed box to prevent drying out of the peripheral wells and were incubated at
37°C without shaking for six days. A resazurin solution was prepared by dissolving one tablet
of resazurin (VWR International Ltd., Resazurin Tablets for Milk Testing, cat.# 330884Y’) in
30 mL sterile phosphate-buffered saline (PBS). Of this solution, 25 μL were added to each well.
Fluorescence was measured (Spectramax M5, Molecular Devices; lex 530 nm, lem 590 nm, cut-
off 570 nm) after 48 h to determine the MIC value.

Intracellular assay
M. tuberculosis H37Rv containing the Photinus pyralis luciferase gene (Hygromicin resistant
plasmid) was grown in 7H9 suplemented with 10% ADC and 0.05% Tyloxapol until the
OD600 is 0.5–0.8. We divided 160 ml of culture in 4 tubes of 50 ml each and pelleted at 2860g
for 10 min. 10 glass beads (4mm) were added in order to disperse the bacterial pellet of each
tube by shaking for 60 seconds. Then 6 ml of fresh RPMI media were added and leave on the
bench for 5 min. Carefully we collected 5 ml of the supernatant and discard the rest. The super-
natants of 4 tubes were collected into the same sterile tube and centrifuged at 402g for 5 min-
utes to avoid any remaining clumps. This dispersed bacterial suspension was diluted into
RPMI-0.05% Tyloxapol and we calculated the volume needed to have a multiplicity of infection
(MOI) of 1, using the following conversion: OD600 0.1 = 1x107 CFU/ml. THP1 cells (ATCC1

50 New Anti-Tubercular Hits with Target Prediction

PLOS ONE | DOI:10.1371/journal.pone.0142293 December 7, 2015 4 / 18

88



TIB-202 ™) were maintained in complete RPMI1640 (RPMI 1640 HEPES modification, 2 mM
L-glutamine, 1 mM sodium pyruvate, 10% fetal bovine serum) and incubated at 37°C with 5%
CO2. THP1 phagocytes (2x105 cell/mL) were infected for 4 h in a roller bottle with a MOI of 1
in RPMI-20nM PMA and extracellular bacteria were discarded by washing 5 times in complete
RPMI (5 x 402g, 5 min). We dipensed 50 μL/well (10,000 cells/well) of infected THP1 cells in
white 384-well plates with 250nl/ well of compound in DMSO.Plates were incubated for 5 days
at 37°C/ 5% CO2. Then, 25μl of reconstituted Bright-Glo™ Luciferase Assay System (Promega)
were added to each well and plates were incubated at RT for 30 minutes. Finally, the lumines-
cence was read in an Envision system (Perkin Elmer) using these settings: US LUM 384 (cps)
7000004/ Measurement height 0 mm/ Measurement time 0.1 s. Aperture: 384 Plate US Lumi-
nescence aperture.

HepG2 cytotoxicity assay
Actively growing HepG2 cells were removed from a T-175 TC flask using 5 mL Eagle’s MEM
(containing 10% FBS, 1% NEAA, 1% penicillin/streptomycin) and dispersed in the medium by
repeated pipetting. Seeding density was checked to ensure that new monolayers were not>50%
confluent at the time of harvesting. Cell suspension was added to 500 mL of the same medium at
a final density of 1.2x105 cells.mL-1. This cell suspension (25 μL, typically 3000 cells per well) was
dispensed into the wells of 384-well clear-bottom plates (Greiner, cat. # 781091) using a Multi-
drop instrument. Prior to addition of the cell suspension, the screening compounds (250 nL)
were dispensed into the plates with an Echo 555 instrument. Plates were allowed to incubate at
37°C at 80% relative humidity for 48 h under 5% CO2. After the incubation period, the plates
were allowed to equilibrate at room temperature for 30 min before proceeding to develop the
luminescent signal. The signal developer, CellTiter-Glo (Promega) was equilibrated at room tem-
perature for 30 min and added to the plates (25 μL per well) using a Multidrop. The plates were
left for 10 min at room temperature for stabilization and were subsequently read using a ViewLux
instrument (PerkinElmer).

The human biological samples were sourced ethically and their research use was in accord
with the terms of the informed consents.

Physicochemical properties
CLND solubility assay. GSK in-house kinetic solubility assay: 5 μL of 10mM DMSO stock

solution diluted to 100 uL with pH7.4 phosphate buffered saline, equilibrated for 1 hour at
room temperature, filtered through Millipore Multiscreen HTS-PCF filter plates (MSSL BPC).
The filtrate is quantified by suitably calibrated flow injection Chemi-Luminescent Nitrogen
Detection [5]. The standard error of the CLND solubility determination is ±30 μM, the upper
limit of the solubility is 500 μMwhen working from 10 mMDMSO stock solution.

ChromlogD assay. The Chromatographic Hydrophobicity Index (CHI) [6] values were mea-
sured using a reversed phase HPLC column (50 x 2 mm x 3 μMGemini NX C18, Phenomenex,
UK) with fast acetonitrile gradient at starting mobile phase of 100% pH = 7.4 buffer. CHI values
are derived directly from the gradient retention times by using a calibration line obtained for stan-
dard compounds. The CHI value approximates to the volume % organic concentration when the
compound elutes. CHI is linearly transformed into ChromlogD [7] by the formula: ChromlogD =
0.0857CHI-2.00. The average error of the assay is ±3 CHI unit or ±0.25 ChromlogD.

Exploring the 2D chemogenomics space
We applied a multi-category Naïve Bayesian classifier (MCNBC) that was built and trained
using 2D structural and experimental bioactivity information from the ChEMBL database
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version 16 [8]. In brief, the classifier learns the various categories (in this case protein targets)
by considering the enrichment of certain 2D sub-structural features of active compounds
across the protein targets. Given a new, unseen compound, the model calculates a Bayesian
probability score for each target based on the compound’s individual features and produces a
ranked list of likely targets. The model was built in Accelrys Pipeline Pilot (version 8.5) using
standard ECFP_6 fingerprints [9] to encode the chemical structures. Further information on
the model generation and validation can be found in our previous publication [10]. The statisti-
cal significance of the probability scores was assessed with Z-scores. These were computed by
calculating the background probability score distribution for each protein target using all the
compounds in ChEMBL. Lastly, given that the majority of bioactivities in the ChEMBL data-
base are against human, mouse and rat protein targets, the predicted targets were mapped to
their orthologousM. tuberculosis ones using the OrthoMCL [11] database [12].

Exploring the 3D structural space
A network of 3D structural similarities between compounds and targets was built to identify
the most likely targets of a given compound in the GSK dataset. To explore the structural
space, we used nAnnolyze, an improved version of our previously published AnnoLyze algo-
rithm [13], which was based on homology detection through structural superimposition of tar-
gets and their interaction networks to small compounds, similar to previously published
approaches [14, 15]. Briefly, the new algorithm relies in four pre-built layers of interconnected
networks. First, the “GSK Ligand” network where nodes are GSK compounds and edges corre-
spond to their similarity as measured by a previously developed Random Forest Classifier
(RFS) score [10]. The RFS classifier predicts whether two small molecules are likely to bind the
same target-binding site by comparing their structural and chemical properties. Second, the
“PDB Ligand” network where nodes are clusters of highly similar ligands of the Protein Data
Bank (PDB) [16] and edges correspond to their similarity measured by the RFS. The “GSK
Ligand” network is linked to the “PDB ligand” network by edges corresponding to the com-
pound similarity measure by the RFS. Third, the “PDB Protein” network with nodes corre-
sponding to clusters of highly similar small molecule binding-site of proteins in PDB and edges
correspond to their structural similarity as measured with the ProBiS structural superimposi-
tion method [17]. Fourth, the previously built “M. tuberculosisModels” network [10] with
nodes corresponding to predicted small molecules binding-sites in three-dimensional models
ofM. tuberculosis targets and edges correspond to their structural similarity after comparison
by the ProBiS program. The two central networks (that is, “PDB Ligand” and “PDB Protein
Binding-Sites” networks) are connected by co-appearance of the compound and the protein in
any solved structure in the PDB. The “PDB Protein” and the “M. tuberculosisModels” net-
works are linked by the structural comparison between any binding-site in the PDB network
and all binding-sites in models fromM. tuberculosis. Finally, once all the networks are con-
structed, we identified the closest path between any GSK compounds andM. tuberculosis tar-
gets. To score the hit, we used the inverse of the edges weight of the pathway. Next, the final
score is normalized to 1 (being 1 the best score and 0 the worst one) and Z-scored. Specifically,
two different Z-scores are calculated for each prediction. The first, called Global Z-score, is
obtained by running the predictions of all drugs present in DrugBank against all targets and
using the global mean and the global standard deviation to Z-score specific predicted pair.
The Global Z-score represents how good a prediction is given its score in the constructed net-
work. The second, called Local Z-score, is calculated by running the predictions of all drugs
present in DrugBank and retrieving the mean and the standard deviation of the score for a spe-
cific target binding-site. The Local Z-score represent how good a prediction is for a specific
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binding-site; highly promiscuous binding-sites tend to have bad local Z-scores. The nAnnolyze
approach was recently evaluated using all the FDA approved drugs present in PDB. In such
dataset, the nAnnolyze predictions result in an area under the Receiver Operating Characteris-
tic curve (AUC) of 0.70 [18].

The final entire network of comparisons included the 50 compounds from the GSK dataset,
7,609 unique ligands from the PDB, 28,299 unique compound binding-sites in protein struc-
tures from the PDB, and a total of 5,008 structure models fromM. tuberculosis.

Exploring historical assay data
GSK proprietary compound screening databases were queried for any historical assay data
associated withM. tuberculosisH37Rv (M. tuberculosisH37Rv) active compounds. The major-
ity of these screens were against human protein targets. The threshold above which compound
efficacy against specific human targets was considered significant was defined as pIC50 � 5.0
for inhibition or antagonist assays, pEC50� 5.0 for agonist, activation or modulator assays (i.e.
overall pXC50 � 5.0).

Using BLASTP [19] we queried the protein complement of publishedM. tuberculosis
H37Rv for all human targets accepting a homology cutoff of an E-value�1.0e-10 and visual
inspection of the alignments. Putative homologous relationships were confirmed by reciprocal
BLASTP searches of identifiedM. tuberculosisH37Rv homologues against the human RefSeq
protein databases (April 2014).

Statistical assessment of predicted links between compounds and
targets
Wemeasured two different statistics to assess the significance of a particular link between a
chemical compound and a target pathway. Firstly, we calculated the LogOdds (that is, the odds
of an observation given its probability). A feature i (in our case, a compound in or a pathway)
has a probability (pi,c) in the entire dataset and a probability (pi,r) of being at the subset of
selected compounds/pathways. Their LogOdds are defined as the logarithm of its Odds (Oi):

Oi ¼
pi;c

ð1�pi;c Þ
pi;r

ð1�pi;rÞ

Therefore, Odds higher than 1 (or positive LogOdds) indicate over-occurrence of the com-
pound/pathway in the selected subset. Odds smaller than 1 (or negative LogOdds) indicate
under-representation of the compound/pathway in the selected subset. Secondly, a p-value
score was calculated for each predicted link between a compound and a target pathway using a
Fisher's exact test for 2×2 contingency tables comparing two groups of annotations (i.e., the
group of compounds in a given pathway and the group of compounds in the entire dataset)
[20]

Results

Screening process and drug like properties of hits identified
GSK DDW has very recently added to its Corporate small molecule repository some structur-
ally new 254,000 compounds, known as the “Top-up” library, whose diverse profile reflects the
latest intelligence on how specific physicochemical property descriptors (sp3 character, lipophi-
licity/ water solubility, molecular size etc.) can affect attrition at the different stages of the drug
discovery phase. Given the differentiated structural profile of this compound library, we would
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expect novel hits that engage new targets beyond those identified during our previous studies
[2].

We have reported previously how non pathogenic and Biosafety Level 2 friendlyM. bovis
BCG can act as a modest surrogate to predict the antitubercular activity againstM. tuberculosis
H37Rv [2]. It is for this reason that, in this occasion, we decided to undertake parallel screening
activities against both strains. Active compounds meeting the pre-established (Fig 1) threshold
of activity in the primary ATP antimycobacterial assay, were progressed to evaluation in a resa-
zurin based H37Rv assay. This resulted in the identification of 4,231 compounds that exerted
an inhibition ofM. tuberculosisH37Rv growth superior to 35% and, in the case of BCG, 8,529
compounds with growth inhibition values above 40%. At this stage a set of automatic filters
directed towards the identification and elimination of a few remaining undesirable structural
features such as electrophiles, peroxides and Michael acceptors, was applied resulting in a first
reduction on the number hit structures; this set of filters is an updated version of a previously
published one.32 The fraction of undesirable compounds in the “Top up” library is very small
(estimated in 0.08%); however, most of them (ca. 200) showed up in the initial list of hits as
they are reactive compounds prone to cytotoxicity effects.

This first selection was further narrowed through the application of a specifically designed
in house algorithm that helped prioritize highly active structural clusters and remove analogs
showing lower percentages of inhibition. Finally, all known antitubercular classes were manu-
ally removed. The resulting 320 (BCG screening stream) and 216 (H37Rv screening stream)
hits were checked for structural duplication, resulting in 373 compounds that were progressed
to Minimum Inhibitory Concentration (MIC) determination against H37Rv in the MABA
resazurin assay. In order to progress only the most promising hits, we applied very strict

Fig 1. HTS progression cascade leading to 50 confirmed H37Rv-positive compounds.

doi:10.1371/journal.pone.0142293.g001
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selection criteria: we did not select any compound which either did not reach, at least, the 90%
inhibition cutoff or required more than 10μM to reach this threshold. Therefore, only 86 of
these 373 compounds were moved forward (MICs lower or equal to 10 μM). This relatively low
percentage of actives in the H37Rv MABA assay highlights a lack of correlation between the
two readouts employed in this screening effort. The corresponding 86 compounds were then
clustered in chemotypes resulting in a final hit list of 50 representative highly potent com-
pounds, including 37 singletons, five clusters of two representatives and one cluster of three
representatives (Figs 1 and 2 and Table B in S1 File). When tested for MIC determination in
the H37Rv MABA assay, these 50 compounds showed MIC values between 0.2 and 10 μM.
Amongst those 50 hits, 7 were Mtb specific and the rest were all identified as hits in both
screening campaigns (BCG and Mtb). Activity againstM. bovis BCG (pIC50s) is described in
Fig 2 and Table B in S1 File. In order to determine the therapeutic window of the hits, the
HepG2 cytotoxicity of each hit was evaluated. From the dose–response results, 24 compounds
displayed TOX50 between 10 and 100 μM and 26 had no detectable cytotoxic effects (TOX50�
100 μM). The library used in these screens is composed of lead-like compounds with very low
lipophilicity. In addition, the few remaining compounds with reactive substructures were auto-
matically removed (see above), as well as topoisomerase inhibitors that inhibit also eucariotic
cells (Fig 1). As a result, the final 50 compounds have a very high probability of targetting
Mycobacterium through specific mechanisms that would explain the low cytotoxicity observed
in HepG2 cells.

All the 50 hits were also tested for their activity against non-replicatingM. tuberculosis as
described previously [21]. Interestingly, 5 of them were active with pIC50 ranging from 4.5 to
5.2 (equivalent to IC50´s between 31 and 6 μM). Finally, the inhibition of the intracellular
growth of mycobacterium tuberculosis was determined. Out of the 26 representative com-
pounds tested, all but one (TCMDC-143682) were active, with pIC50s above 5. Interestingly, a
set of 10 compounds was also tested against clinical isolates resistant to isoniazid (inhR) or
rifampicin (rifR) and all the compounds were as active as against the reference strain H37Rv
(Fig 2 and Table C).

This new compound set again resides comfortably within the range of properties occupied
by marketed drugs and on average has a slightly lower lipophilicity than the first set (see Figs 2
and 3; Table B in S1 File and Figures C-E in S1 File). The compounds identified generally pre-
sented a combination of a reasonable level of solubility and anti-mycobacterial activity, indicat-
ing their attractiveness as starting points for lead optimisation. No statistically significant
difference in the distributions of physicochemical properties was observed between the 7
H37Rv-specific compounds and rest of the compounds, although they are structurally
dissimilar.

Target Prediction
The final 50 compounds were computationally analyzed with the goal of identifying their likely
target proteins. Our computational approach integrates 2D chemogenomics space (CHEM),
structural comparisons (STR) and historical bioassay data (HIST). The results from this analy-
sis were also compared to those from our previous analysis [10].

2D Chemogenomics space (CHEM). The exploration of the chemical space allowed us to
identify likely targets (Table 1) for the input compounds based on their structural similarity to
compounds with experimentally validated targets deposited in the ChEMBL database [8]. We
applied a multi-category naïve Bayesian classifier (MCNBC) that was built and trained using
structural and bioactivity information from the ChEMBL database [8]. Given a new
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Fig 2. Complete biological profile of selected hit compounds and corresponding physico chemical properties. a Mtb specific. *This compound has
been evaluated against a clinical isolate ofM.tuberculosis resistant to isoniazid and its MIC was in the range of H37Rv (1.6 uM). b Compounds being tested in
the intracellular assay, data will be available from Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.8r351.

doi:10.1371/journal.pone.0142293.g002
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compound, the model calculates a likelihood score based on the molecule's individual sub-
structural/fingerprint features and produces a ranked list of likely targets.

In total, the 50 compounds resulted in 262 statistically significant target associations (at a Z-
score> 2.0) to 221 different proteins in the ChEMBL database from 24 different organisms
(57% of hits are to human proteins). A simple orthology search the OrthoMCL database
against theM. tuberculosis proteins from this set resulted in 128 compound-target relationships
for 61M. tuberculosis proteins, with detectable orthology to 16 organisms (Table C in S1 File).

Historical assay space (HIST). We used the historical GSK bioassay data to develop
hypotheses for the anti-mycobacterial mode of action for the active compounds. Using conser-
vative activity thresholds (pXC50� 5.0) we found that among the 50 compounds active against
M. tuberculosisH37Rv, 25 displayed additional activity in 65 different historical biochemical
assays against human (50 unique genes), bacterial (1 gene) and viral (1 gene) putative targets
(Figure A.A in S1 File). Some compounds were present in multiple historical assays resulting in
a total of 93 assay experiments (Figure A.B in S1 File).

The largest human target classes were G protein coupled receptors (GPCRs) and protein
kinases, which might partly reflect the relative abundance of different ligand classes in GSK’s
pharmacological screening collection. We searched for orthologous sequences of the human
assayed proteins in theM. tuberculosisH37Rv genome using conservative criteria (BLASTP E-
value�1.0e-10) for assigning human-Mycobacterium protein homology. Although there are
significant evolutionary differences betweenMycobacterium and human genomes in terms of
both gene content and amino acid sequence divergence, we still found 17M. tuberculosis
H37Rv gene homologues (Table A in S1 File), which fell into different target class categories
(Figure A in S1 File), including kinases (8 genes), cytochromes (6 genes), other enzymes (2
genes) and ion channels (2 genes).

Fig 3. Plot of calculated chromatographic logD7.4 versus calculatedmolar refraction (CMR). All data
were generated using the latest version of the GSK calculator. Grey crosses represent marketed drugs with
>30% oral bioavailability, white crosses <30% oral bioavailability, and the two disclosed sets by black
squares (the current 50 compounds) or black stars (the CMC2013 set of 177). The line represents a
discriminator between likely good and bad permeability. The chromatographic logD scale gives values
approximately two units higher than the traditional distribution values assessed in octanol/water.

doi:10.1371/journal.pone.0142293.g003
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The specific predictions from the historical assay space search are detailed in S1 File.
3D Structural space (STR). Finally, we applied a Random Forest Score that identified

structural similarities between any compound in the dataset and ligands from the PDB [22].
Each compound in theM. tuberculosis H37Rv dataset is compared to ~7,600 ligands for which
there are known complex structures in the PDB, identifying structural similarities to be
included in a pre-built network of structural relationships between ligands and targets. In total,
the 50 compounds resulted in 1,890 significant target associations (global Z-score< -1) to pro-
teins in a set of modeled three-dimensional structures from theM. tuberculosis proteome (data
not shown).

Table 1. Significant links between compound families and targets.

Compound FamID Target Pathway Essentiality
Prediction

TCMDC-
143652

1 Rv3569c Degradation of aromatic compounds (mtu01220) Steroid degradation (mtu00984) Non

TCMDC-
143653

1 Rv3569c Degradation of aromatic compounds (mtu01220) Steroid degradation (mtu00984) Non

TCMDC-
143657

1 Rv3569c Degradation of aromatic compounds (mtu01220) Steroid degradation (mtu00984) Non

TCMDC-
143650

1 Rv3569c Degradation of aromatic compounds (mtu01220) Steroid degradation (mtu00984) Non

TCMDC-
143666

3 Rv2855 Glutathione metabolism (mtu00480) Yes

TCMDC-
143687

3 Rv0427c Base excision repair (mtu03410) Non

3 Rv1629 Base excision repair (mtu03410) Yes

3 Rv2855 Glutathione metabolism (mtu00480) Yes

TCMDC-
143688

5 Rv1284 Nitrogen metabolism (mtu00910) Yes

TCMDC-
143670

5 Rv3273 Nitrogen metabolism (mtu00910) Non

5 Rv3588c Nitrogen metabolism (mtu00910) Non

5 Rv1284 Nitrogen metabolism (mtu00910) Yes

5 Rv3273 Nitrogen metabolism (mtu00910) Non

5 Rv3588c Nitrogen metabolism (mtu00910) Non

TCMDC-
143649

9 Rv0194 ABC transporters (mtu02010) Non

TCMDC-
143690

13 Rv1284 Nitrogen metabolism (mtu00910) Yes

13 Rv3588c Nitrogen metabolism (mtu00910) Non

TCMDC-
143655

29 Rv1151c Amino sugar and nucleotide sugar metabolism (mtu00520) Non

TCMDC-
143686

36 Rv0233 Purine metabolism (mtu00230) Non

36 Rv0733 Purine metabolism (mtu00230) Non data

36 Rv1843c Purine metabolism (mtu00230) Non

36 Rv2584c Purine metabolism (mtu00230) Non

36 Rv3275c Purine metabolism (mtu00230) Yes

36 Rv3307 Purine metabolism (mtu00230) Non

36 Rv3411c Purine metabolism (mtu00230) Yes

TCMDC-
143685

38 Rv1905c D-Arginine and D-ornithine metabolism (mtu00472) Penicillin and cephalosporin
biosynthesis (mtu00311)

Non

doi:10.1371/journal.pone.0142293.t001
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Predicted targets. The similarities and differences of the predictions of the three indepen-
dent approches are detailed in S1 File.

There were a total of 1,044 uniqueM. tuberculosis targets associated with 112 pathways
annotated in the KEGG database [23]. The KEGG being a suite of databases and associated
software for understanding and simulating higher-order functional behaviours of the cell or
the organism from its genome information. The “mtu” identifiers below refer to the relevant
KEGG pathway ids. The three orthogonal approaches identified 66 different pathways (Fig 4A)
associated to the 50 hit compounds. The relative increment in the number of putatively affected
pathways per compound comparing to the previous TCAMS-TB dataset [10] can be explained
by the higher structural diversity of the novel top-up library. Within the commonly identified
pathways, there are many associated with amino acid and nucleotide metabolism, e.g. the
mtu00260 (Glycine, serine and threonine metabolism), mtu00380 (Tryptophan metabolism),
mtu00330 (Arginine and proline metabolism), mtu00270 (Cysteine and methionine metabo-
lism), mtu00240 (Pyrimidine metabolism), mtu00230 (Purine metabolism), mtu00360 (Phe-
nylalanine metabolism), mtu00290 (Valine, leucine and isoleucine biosynthesis). Some of them
also appear overrepresented in the predictions, e.g phenylalanine, tyrosine and tryptophan bio-
synthesis (Fig 3B). Interestingly, there are others overrepresented pathways not directly associ-
ated with amino acid metabolism such as mtu05152, mtu01220 (Degradation of aromatic
compounds), or mtu00363 (Bisphenol degradation).

To assess the significance of the compound-target predictions using the three different
approaches, we calculated a t-statistics p-value of any compound family-KEGG pathway link
(Methods). There are 8 compounds families significantly associated (p-value< 0.005) to 10
different KEGG pathways. The threshold used in this study is less restrictive than in the prior
study [10] due to the smaller number of compounds. This results in a higher number of associ-
ations found between compounds and KEGG pathways. Family 1 is significantly linked with
both mtu01220 (Degradation of aromatic compounds) and mtu00984 (Steroid degradation).
Specifically, the link found by compounds TCMDC-143652, TCMDC-143653, TCMDC-
143657, and TCMDC-143650 targeting Rv3569c (4,9-DHSA Hydrolase) involved both path-
ways. Family 3 is significantly associated with two different KEGG pathways, mtu00480 (Glu-
tathione metabolism) and mtu003410 (Base excision repair). Specifically, compounds
TCMDC-143687 and TCMDC-143666 are predicted to hit Rv2855 (NADPH-dependent
mycothiol reductase) involved in Glutathionine metabolism and essential for the survival of
the bacteria [24], while TCMDC-143687 is predicted to hit the base excision repair pathway
through Rv0427c (Exodeoxyribonuclease III protein XthA) and Rv1629 (DNA polymerase
I PolA) being the later essential for the growth of the bacteria [24, 25]. Family 5 has a strong
association (p-value 1.0e-08) with mtu00910 (Nitrogen metabolism pathway) an essential
pathway for the bacteria survival. Specifically, compounds TCMDC-143688 and TCMDC-
143670 are predicted to hit Rv1284 (beta-carbonic anhydrase), Rv3273 (carbonate dehydra-
tase) and Rv3588c (beta-carbonic anhydrase CanB) three proteins involved in the Nitrogen
metabolism, where Rv1284 play a key role in the essentiality of this pathway. Moreover, com-
pound TCMDC-143690 belonging to singleton family 13, is also predicted to interact with
Rv1284 and Rv3588c targeting the nitrogen metabolism pathway with a completely different
chemical scaffold. Another interesting significant link is the compound TCMDC-143648 tar-
geting the mtu02010 (ABC transporters pathway) through the Rv0194 target (transmembrane
multidrug efflux pump). Family 29 composed by compound TCMDC-143655 is predicted to
interact with Rv1151c (transcriptional regulatory protein), which is involved in transcriptional
mechanism and belongs to mtu00520 (amino sugar and nucleotide sugar metabolism). Family
36 with compound TCMDC-143686 is significantly associated with the mtu00230 (purine
metabolism) pathway. This compound is predicted to attack the pathway by targeting 7
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Fig 4. Predicted KEGG pathways targeted by the GSK compounds. A) Venn diagram with common
pathways from the three different approaches. B) Most under and over-represented pathways in our
predictions. Panels A) and B) with the same representation as in Figure E in S1 File.

doi:10.1371/journal.pone.0142293.g004

50 New Anti-Tubercular Hits with Target Prediction

PLOS ONE | DOI:10.1371/journal.pone.0142293 December 7, 2015 14 / 18

98



different proteins in this pathway (Rv0233, Rv0733, Rv1843c, Rv2584, Rv3275c, Rv3307, and
Rv3411c). Among the predicted targets, there are two essential for the bacterial survival [24,
25], the N5-carboxyaminoimidazole ribonucleotide mutase (Rv3275c) and the inosine-5'-
monophosphate dehydrogenase (Rv3411c). Finally, a significant link between Family 38
(TCMDC-143685) and pathways mtu00472 (D-arginine and D-ornithine metabolism) and
mtu00311 (Penicillin and cephalosporin biosynthesis) was also observed trough the target
Rv1905c (a Probable D-amino acid oxidase Aao).

Discussion
Screening for new antitubercular inhibitors in whole cell based assays still sustains a high pro-
portion of the drug discovery pipeline against TB. While this choice of screening strategy is not
devoid of its own specific issues [26] the completion of a number of screening efforts and, most
importantly, the public release of these datasets, is enabling the in depth validation of novel
Mode-of-Actions (MoA) against TB [27–32]. This target elucidation work, in time, is promis-
ing to open up new opportunities for TB drug discovery where the limitations associated
with the medicinal chemistry optimisation of hits identified by whole cell screening can be
addressed through the support provided by technologies typically associated with target based
discovery programs, e.g. particular target assays and crystallography. We expect that by access-
ing these technologies, a more rational understanding of the optimization process and the early
identification of potential target related toxicological liabilities could be attained.

It is with this goal in mind that we here present a novel set of antitubercular compounds
together with some developability parameters that should provide the TB R&D community
with novel chemical starting points for further discovery or, more importantly, future target
identification programs. The present release incorporates compounds which, on average,
would appear to be in more favourable physical space than those in the previous publication
[2, 10]. Given the predominantly intracellular lifestyle of Mtb and the suspected impact of
non-replicating bacteria in TB chemotherapy [33, 34], we decided to investigate whether the
compounds were capable of inhibiting Mtb growth in THP-1 cells and were active against non-
replicating bacteria. 96% of the compounds tested in the intracellular assay were found to be
active and 10% of the whole set retained activity in the non-replicating assay. On the basis of
the drug-like properties presented in Fig 2 and Table B in S1 File, ten molecules were selected
for further characterisation against isoniazid and rifampicin clinical resistant isolates. All com-
pounds were found to be active within the same range as the reference strain H37Rv.

Interestingly, 7 compounds of the set were Mtb specific (inactive against M. bovis BCG).
While a number of especulative explanations can be postulated, e.g. differences in permeability,
active transport, metabolic state, etc., this lack of correlation highlights the risks associated
with the use of non pathogenic surrogate strains in antitubercular research.

To further characterize the activity of the novel antitubercular compounds, we have inte-
grated a series of orthogonal computational approaches for predicting their putative targets.
Our analysis found nine chemical families targeting 21 different proteins from 13 biochemical
pathways inM. tuberculosis. Within the 21 proteins, there are 5 assessed as essential in previous
studies. The essentiality of these targets makes them top priority targets for further validation.
However, some non-essential targets can have a key role in TB infection in-vivo and therefore
we should consider them in the search of new strategies for defeating TB. Our target identifica-
tion work aims to facilitate further chemical and biochemical experiments to optimize the
properties of the compounds against TB. Optimally, additional computational approaches
could then interrogate the newly generated compounds to further characterize their mode-of-
action. This iterative process is very desirable to maximize the impact of the openly released
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new compounds against TB. In particular, we also release the 3D structural models for the sig-
nificant predictions of targets and compounds identified by the STR approach. Such models
and the predicting binding site could be used for computational docking or molecular dynam-
ics analysis to further validate our prediction

Supporting Information
S1 File. Supporting information, Figures and Tables. Figure A. Target class space. A) For
positive hits inM. tuberculosisH37Rv screens, the distribution of human target classes affected by
compounds based on known human protein potency and selectivity criteria as described in the
text. The number of human targets is indicated for each class as well as the potential number of
Mtb homologous genes (in parentheses). B) Distribution of 25 compounds screened against 1 or
more targets having pIC50 or pEC50 values> 5.5 in 65 assays by human target classes. Some
compounds have historical assay information and potency against multiple target classes.
Also indicated is the number of assays against targets with putative homologues inM. tuberculosis
(in parentheses). Figure B. Box plot of average PFI (calculated Chrom Log D7.4 + #Ar) distribu-
tion of the 177 compounds released previously [2], the current 50 hits and a representative set of
oral drugs. Figure C. Box plot of average calculated Chrom Log D7.4 distribution of the 177
compounds released previously [2], the current 50 hits and a representative set of oral drugs.
Figure D. Box plot of average calculated molar refraction (CMR) distribution of the 177 com-
pounds released previously [2], the current 50 hits and a representative set of oral drugs. Figure
E. Subset of GSK compounds with predicted targets. A) Venn diagram with common com-
pounds with predictions from the three different approaches (that is, in green from the search of
the chemogenomics space, in purple from the search of the structural space, and in red from the
historical data). B) Venn diagram with common compound families with predictions from the
three different approaches. C) Most under and over-represented chemical families in our predic-
tions. Upper plot shows the probability of finding a given family in the original dataset (grey bars)
compared to the probability of finding it in the dataset with predicted targets (blue bars). Lower
plot shows the log odds per selected family (i.e., absolute log odds larger than 0.5). Table A. Pre-
dictedMtbH37Rv gene targets based on homology to 65 historical human target assays for 25
compounds. Notes: a Human target classes are defined in the text. Some compounds were
reported active across more than one target class hence the greater number of total than tested
compounds. bM. tuberculosisH37Rv homologs determined by BLASTP searches using human
target proteins [19]. c Essentiality scoring based on Sassetti et al.[24]. NE = No Evidence from
these sources. Table B. Complete biological profile of selected hit compounds and corresponding
physico chemical properties. Table C. Target association based on the structural similarity of the
hits to compounds with experimentally validated targets deposited in the ChEMBL database.
(PDF)
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3.3. Rational design of non-resistant targeted cancer therapies

This chapter presents a computational model that predicts cancer associated
mutations with the highest chance to confer resistance to a targeted therapy.
Furthermore, for those mutations predicted as highly resistance-like it suggests
alternative non-resistant compounds. The model exemplified it applicability in
two targeted therapies: EGFR-gefitinib for the treatment of Lung adenocarci-
noma and Lung Squamous Cell Carcinoma; and the ERK2-VTX11e therapy
for the treatment of melanoma and colorectal cancer.

Manuscripts presented in this section:

Martı́nez-Jiménez, F., Overington J. P., Al-Lazikani B., & Marti-
Renom, M. a. (2016). Rational design of non-resistant targeted can-
cer therapies. Nucleic Acids Research. (Submitted).
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ABSTRACT 

Drug resistance is one of the major problems in targeted cancer therapy. High 

mutation rates and selective pressure can efficiently result in drug-resistance to 

therapy. Although there are many mechanisms for drug resistance, a classic 

mechanism is due to changes in the amino acids in the drug-target binding site. 

Despite of the numerous efforts made to individually understand and overcome these 

mutations, there is a lack of comprehensive analysis of the mutational landscape that 

can potentially cause resistance.  

Herein, we present a framework that computationally predicts the potential of a 

sequence mutation to confer resistance to targeted therapies in cancer. Our model 

first quantifies the likelihood of mutations in the drug target using the probabilities 

from the mutational signatures associated to the cancer class. Next, it uses structural 

information of the drug-protein interaction to predict the resistance-likeness of the 

aforementioned mutations. The combination of the predicted likelihood with the 

resistance-likeness allows the detection of mutations with the highest chance to be 

responsible of resistance to a particular targeted cancer therapy. Finally, for these 

treatment-threatening mutations, the classifier proposes alternative therapies 

overcoming the resistance. 

We exemplified the applicability of the model using the EGFR-gefitinib treatment for 

Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Cancer (LSCC) and the 

ERK2-VTX11e treatment for melanoma and colorectal cancer. Our model correctly 

identified the phenotype of some of the known resistance mutations, including the 

EGFR-T790M or the ERK2-P58L/S/T. Moreover, the model predicted new clinically 

unseen mutations as potentially responsible of resistance to EGFR-gefitinib and 

ERK2-VTX11e targeted cancer therapies. Finally, we provided a map of the 

predicted sensitivity of alternative ERK2 and EGFR inhibitors, with a particular focus 

in two molecules with a low predicted resistance-likeness.  

In summary, we introduced a new computational framework aiming at connecting the 

mutational landscape of tumors with the drug-resistance phenotype generated by 

spontaneous mutations in drug targets. 
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INTRODUCTION 

Non-selective cytotoxic agents have traditionally dominated cancer treatment. 

However, the strong side effects and the limited effectiveness associated with drug 

resistance have led to the search of alternative treatments [1]. In the last decade, 

rationally designed targeted therapies have been proposed as less damaging and 

more accurate alternative to treat cancer [2]. In fact, targeted therapies have 

produced substantial clinical responses in the treatment of chronic myeloid leukemia 

(CML) [3], non-small cell lung cancer (NSCLC) [4] or melanoma [5]. Unfortunately, 

after a short period of time, most tumors develop resistance to these treatments 

causing a cancer relapse with fatal consequences [6, 7]. 

There are several mechanisms conferring drug resistance to targeted therapies [8]. 

Mechanism such as activation of survival signaling pathways or the inactivation of 

downstream death signaling pathways [9, 10], increasing drug efflux or alterations in 

drug metabolism [11, 12]. Epigenetic changes and their influence of in the tumor 

microenvironment have also been proposed to play a key role in chemoresistance 

[12, 13]. Moreover, secondary mutations of drug targets are frequently reported as a 

mechanism of drug resistance. In NSCLCs, patients initially responding to first 

generation EGFR inhibitors such as gefitinib and erlotinib, acquire resistance within 1 

year. In 50% of such cases, a secondary T790M gatekeeper mutation has been 

identified [14, 15]. Recently, a third generation of T790M-EGFR selective inhibitors, 

such as rociletinib [16] or osirmetinib [17] have been designed to overcome 

resistance in EGFR-T790M positive patients [18]. 

Unfortunately, EGFR-T790M is a singular example, we still are far from completely 

overcome the clinical challenge of resistance due to mutations in oncogenic kinases. 

Many studies have been carried to both systematically analyze resistance to kinase 

inhibitors [19] and to propose alternatives to standard kinase inhibitor treatments 

[20]. Nevertheless, these studies do not cover the whole spectrum of mutations of the 

target, being usually limited to a small, and clinically reported, number of kinase 

mutations.  Moreover, the nature of tumors is complex and very heterogeneous [21]. 

Estimates of the number of coding mutations in the entire cell population of a tumor 

are of the order of thousands or even millions of mutations depending of the tumor 

type and size	 [22]. Standard NGS sequencing of solid biopsies only enables the 

detection of mutations present in > 5% of tumor cells [23]. The low sensitivity of 

standard NGS technologies alongside the heterogeneous nature of solid tumors, may 
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lead to a significant loss of low-frequency mutations present in small cell populations. 

Remarkably, low-frequency mutations can confer resistance to targeted therapies 

and therefore, become clonal drivers once the cancer treatment begins [7, 24, 25]. 

The invasive nature and the technical limitations associated with sequencing 

methods of solid biopsies highlight the importance of computational models in cancer 

evolution and drug resistance. The advent of the massive cancer genomic data has 

prompted the development of several mathematical and computational models [26]. 

Some of these models focus on characterizing tumor evolutionary processes [27-29] 

while others, study tumor response to single targeted treatment [30-33]	 or 

combinational therapy [34]. However, none of these models, which are usually 

applied to known drug-resistant mutations, specifically predict which are the 

causative mutations leading to drug resistance. 

Herein, we present a computational framework for de-novo predicting mutations with 

potential to confer resistance to small molecule targeted therapies. Additionally, the 

model provides a list of alternative compounds ranked by their predicted sensitivity to 

these resistance-like mutations. The framework connects the mutational landscape of 

tumors with the drug-resistance phenotype generated by spontaneous mutations in 

drug targets. We exemplified the applicability of the framework in two protein kinases, 

EGFR and ERK2 (also known as MAPK1). EGFR is well-studied model in resistance 

to targeted cancer therapy, and consequently, is a good system to validate the full 

scope of the framework. We computationally predicted the likelihood and the 

resistance-likeness of the EGFR residues involved in the binding of gefitinib in LUAD 

and LSCC. Additionally, using the mutational signatures previously defined [35], we 

also analyzed the possible aetiology (or aetiologies) associated to each of the most 

critical EGFR mutations.  Our model correctly predicted the phenotype of the EGFR-

T790M mutation, with the added value of the identification of new unseen mutations 

that might confer resistance to gefitinib treatment. ERK2, on the other hand, is as a 

promising target in the treatment of melanoma [36, 37] and colorectal cancer [38]. 

We predicted the VTX11e-resistance potential of 424 ERK2 mutations. These 

predictions include the correct identification of 8 mutations alongside new unseen 

ERK2 mutations predicted to confer resistance to VTX11 treatment in melanoma and 

colorectal cancer. Moreover, the structural nature of the predictions helped to 

elucidate the specific mechanism of resistance of each mutation.  Finally, for both 
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EGFR and ERK2 treatment-threatening mutations, the model proposed alternative 

inhibitors that might overcome resistance. 
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METHODS 

The likelihood model 

We developed a model to estimate cancer-associated likelihoods of spontaneous 

mutation in drug targets (Fig 1). First, using published mutational signatures [35, 39], 

we annotated the contribution of each of the 30 signatures to the 36 different classes 

of cancer present in the study. Second, for each signature, we extracted the 

probabilities of the 96 possible pyrimidine-based mutations (C>A, C>T, C>G, T>A, 

T>C, T>G) in their 5’ and 3’ contiguous bases context from the COSMIC database 

(from http://cancer.sanger.ac.uk/cosmic/signatures). Next, for each signature without 

described strand-bias we extended the probabilities to the purine-based mutations 

(G>A, G>C, G>T, A>C, A>T, A>G). Signatures with strong mutational strand-bias 

towards a specific type of base pair were manually updated depending of their 

specific type of bias. For instance, signature 7 has a strong transcriptional strand-

bias indicating that mutations occurs a pyrimidines base pairs, therefore the 

mutational probabilities of purines in signature 7 are set to 0. Signatures with strong 

mutational strand-bias are signatures 4, 7, 11, 22, 24 and 29. This approach resulted 

in a total of 192 mutational probabilities for each signature. 

We compute the likelihood (Lm,c) of a specific mutation (m) in a particular type of 

cancer (c) as the sum the probabilities of that mutation in all the signatures involved 

in that cancer type, weighted by the specific contribution of that signature to the 

cancer class. Since, several nucleotides mutations can lead to the same amino acid 

change, all these probabilities are eventually added to measure the amino acid 

mutation likelihood using the equation: 

𝐿!,! = 𝑊! ∗ 𝑃!,!

!

!!!

!

!!!

 

where M is all possible nucleotide changes associated to an amino acid mutation m, 

S are the signatures associated to the studied cancer class c, Wc is the contribution 

of signature c to the studied cancer and Pm,c is the probability of a given mutation m 

in the signature c. 
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EGFR and ERK2 mutants and structural model generation 

We applied the likelihood model to predict the probability of mutation of all the amino 

acids involved in the EGFR binding site to gefitinib (PDB code: 4WKQ), and VTX11e 

binding to ERK2 (PDB code: 4QTE). We defined a drug binding-site in a protein 

structure as all the amino acids with at least one atom within 9.5 Å of distance to the 

co-crystalized drug. 

Next, models of all the possible mutations of the drugs binding-sites were generated 

using the mutate_model function of the MODELLER software with default parameters 

[40, 41]. Models for truncating mutations (i.e., introducing a stop codon) were not 

generated. The final number of three-dimensional (3D) models was 367 and 424 for 

EGFR and ERK2, respectively. 

 

Enrichment analysis of the predicted nucleotide mutations likelihood 

To measure whether a nucleotide mutation A>B is enriched among the most likely 

target mutations in a particular cancer class, we calculated the odds ratio of the 

specific nucleotide mutation A>B for the top 50 likely mutants. More specifically, the 

odds ratio of a particular nucleotide mutation A>B at the ith position in the distribution 

is given by:  

 𝑜𝑑𝑑𝑠 =
(𝐴 > 𝐵)! (𝐴 > 𝐵)!!

¬(𝐴 > 𝐵)! ¬(𝐴 > 𝐵)!!
	

where (A>B)i denotes the number of A>B mutations between the 0 and ith  position. 

(A>B)i+ represents the number of A>B mutations between i+1 and the Nth position, 

being N the total number of amino acid mutations.  

 

Drug-response predictor  

We developed two Random Forest Classifiers (RFC). The first classifier, called aa-

RFC (amino acid based RFC) predicts the phenotypic effect of an amino acid 

mutation to the binding affinity between a drug and the target protein. The second 

classifier, called lig-RFC (ligand based RFC), aims to predict the sensitivity of a 

group of compounds to a particular mutation in their protein target. Both classifiers 

use structural and sequential information of the drug-protein interaction to perform 

the predictions (see below for detailed information about the specific features used 
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for each classifier). The lig-RFC emphasizes in the ligand-target interaction while 

omitting some information relative to the amino acid characteristics, which makes it 

computationally faster to build. Both classifiers were built using the WEKA package	
[42] with the following parameters: numTrees = 1,000; numFeatures = 20; maxDepth 

= FALSE. Evaluation of the classifiers performance was done by 10-fold cross 

validation (CV). Additionally, the relative importance of each variable in the classifiers 

was calculated by the randomForest package of R [43]. Next, we describe all 

necessary steps to generate and test the classifiers. 

 

Dataset generation 

The aa-RFC and lig-RFC were trained using the Platinum database [44]. Briefly, this 

database contains information about experimentally measured changes in drug 

binding affinity upon mutations. Moreover, most the entries in the database contain 

crystal structures of the drug-protein complexes. When no crystal structure was 

available for either the wild type or the mutated structure, a 3D model was generated 

using MODELLER with default parameters. The database originally included 1,008 

instances. Since the aa-RFC classifier has been developed to individually assess the 

resistance potential of a single mutation, we removed 208 instances containing 

double (155), triple (30) or more mutants. The final dataset contained 770 instances 

of 3D structures (409 models) and their binding compounds. Next, the database was 

split into four different classes corresponding to four different phenotypes: (i) “strong 

resistance” (SRES, 293 instances) with a fold change in binding affinity smaller or 

equal to -5.0, which disrupt the binding of the compound with the target protein; (ii) 

“resistance” (RES, 227 instances) with a fold change between -5.0 and -1.2, which 

decreased binding affinity between the compound and the target protein; (iii) “neutral” 

(NEU, 70 instances) with a fold change between -1.2 and 1.2, which indicates not 

significant alteration of the binding affinity of the compound; and (iv) “increased 

sensitivity” (ISEN, 180 instances) with a fold change higher than 1.2 for mutations 

increasing the affinity of the compound. Finally, the unbalanced nature of the dataset 

could have introduced bias in the classifier predictions towards SRES and RES 

classes because of the higher number of instances. Therefore, we randomly 

removed instances of the SRES and RES classes to 180.  The final dataset was 

therefore composed by 180 instances of the SRES, RES and ISEN classes and 70 of 

the NEU class. 
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Sequence and structure features calculated from the 3D models/structures 

For each instance in the dataset we calculated a set of features to describe the 

structural and sequential changes introduced by the mutation. The complete list of 

features alongside their description and information about their inclusion in the two 

classifiers are next detailed:  

1. Molecular surface area of the drug binding-site (aa-RFC, lig-RFC). Total 

molecular surface area of wild type (WT) and mutated (MT) drug binding-site. 

Additionally, the absolute numerical difference between the two values was 

included.   The get_area function of PyMol 1.8 Version [45] was used for their 

calculation.  

2. Solvent accessibility of the WT and MT amino acid (aa-RFC, lig-RFC). 

Additionally, the absolute numerical difference between the two values was 

included. The get_area function of PyMol 1.8 Version [45] was used for their 

calculation. 

3. Relative solvent accessibility (RSA) of the WT/MT residue (aa-RFC, lig-

RFC). Ratio between the solvent accessibility area and the general residue 

surface area calculated using DSSP with default parameters [46]. 

Additionally, the absolute numerical difference between the two values was 

included 

4. Half sphere exposure of the WT/MT amino acid (aa-RFC).[47]. The 

HSExposure class from the Biopython library [48] was used for its calculation. 

Additionally, the absolute numerical difference between the two values was 

included. 

5. Type of amino-acid change (aa-RFC, lig-RFC). A vector of 20 positions 

representing the 20 amino acids. In the vector, a -1 represents the wild type 

amino acid, a 1 represents the new residue introduced by the mutation, and 0 

represents no change. 

6. Hydrogen bonding (aa-RFC, lig-RFC). We calculated whether there is a 

hydrogen bond between the WT/MT residue and the drug bound molecule. 

Information about the hydrogen bond type and distance were also included. 

The upper bound to assess an hydrogen bond was 3.2 Å. 

7. Structural environment of the amino acid (aa-RFC, lig-RFC). We 

represented the structural environment with concentric spheres surrounding 
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the mutated amino acid. Each of the spheres has different radius ranging 

from 0 Å to 6 Å in steps of 1 Å. The spheres were represented using 6 vectors 

of 20 positions indicating the presence or absence of an amino acid. A 

number one in a vector implied that the amino acid representing that position 

was within that radius. 

8. Sequence environment (aa-RFC, lig-RFC). We defined the amino acid 

sequence environment as the composition of all 10 contiguous amino acids in 

sequence (5 amino acids preceding and 5 amino acids following the mutated 

amino acid). Each position was represented by a vector of 20 amino acids 

where 1 indicated presence and 0 absence of the given amino acid in the 

sequence environment. 

9. Secondary structure of the amino acid (aa-RFC, lig-RFC). We calculated 

the secondary structure of the WT/MT amino acid using DSSP with default 

parameters [46]. 

10. Protein stability change (aa-RFC, lig-RFC). We calculated the change in 

the stability of the protein caused by the mutation using I-Mutant 2.0 [49]. We 

included two variables, the first one describes the numerical change in 

stability measured in kcal/mol and the second was a categorical variable 

representing the sign of stability change: UNSTABLE for negative values, 

STABLE for positive values and UNKNWON for mutations where I-Mutant 2.0 

could not compute a score (that is, in 19% of cases).   

11. Residue conservation (aa-RFC, lig-RFC). To calculate the conservation 

score we first performed a BLAST search [50] using as query the target 

sequence. The resulting multiple alignment was used as input to the SubsMat 

function from Biopython library [48] to obtain a residue conservation score 

based on the BLOSUM62 matrix [51].	 
12. Structural alignment of the MT model to the WT structure (aa-RFC, lig-

RFC). Root Mean Squared Deviation (RMSD) of the structural alignment 

between the wild type and the mutated protein structures. Two different 

RMSD were calculated, the first resulted from the original structural alignment 

and the second from the refined one. The Super function from PyMol 1.8 

Version [45] was used to perform both structural alignments.  

13. Distance to the ligand (aa-RFC, lig-RFC). We measured the distances 

between the alpha carbon of the WT/MT amino acid to all the atoms of the 

ligand. Next, we calculate the minimum, maximum and average distances to 

113



	

the ligand. For all of these distances the absolute numerical difference 

between the WT and MT value was included. PyMol 1.8 Version [45] was 

used for their calculation.  

14. Charge of the WT and MT amino acids (aa-RFC, lig-RFC). A vector of 20 

positions was generated with -1 for negatively charged amino acids (ASP, 

GLU), a +1 for positively charged amino acids (LYS, ARG) and 0 for the 

remainders. 

15. Change in the hydrophobicity (aa-RFC, lig-RFC). We calculate the 

difference between WT and the MT amino acids using a pre-calculated 

hydrophobicity scale [52].  

16. Drug affinity of the ligand with the WT protein (aa-RFC, lig-RFC). We 

retrieved the binding affinity using BindingDB [53]. Depending of the 

availability on the BindingDB record, the binding affinity was measured by the 

inhibitory constant (Ki), the dissociation constant (Kd) or the half maximal 

inhibitory concentration (IC50) measures. 

17. Salt bridge between WT/MT amino acid with other residues (aa-RFC). 

Number of salt bridges between the GLU and ASP amino acids of the WT/MT 

protein surface were calculated. Additionally, the absolute numerical 

difference between the two values was included. An upper bound cu-off of 4.0 

Å distance between the anionic group of GLU/ASP and the cationic group of 

LYS/ARG was used.  

18. Salt bridge between WT/MT amino acid with the ligand (aa-RFC, lig-

RFC). We used the PLIP [54] software with default parameters (v1.2.0) to 

calculate salt bridges between ASP or GLU residues of the protein and the 

query drug.  Information about the distance measured in Å, type of acceptor 

and donor groups (Phosphate, Carboxylate, Guanidine, Tertamine or 

Quartamine) was also included in the lig-RFC.  

19. Disulphide bonds (aa-RFC). If the mutated residue is a cysteine, we 

identified putative intra-cysteine disulphide bonds. The expected SG–SG 

distance for disulfide bond is around 2 Å but more generous definition 

accounts for inaccuracies in experimental data. Therefore we used disulphide 

bond distances between 1.8 Å and 2.2 Å.  

20. Halogen bonds (lig-RFC). The presence of halogen bonds between the 

WT/MT amino acid and the ligand. It also included information about the type 

of donor and acceptor atoms. This feature was calculated using PLIP [54] 
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with default parameters (v1.2.0). Features 21 to 24 were also obtained using 

PILP.  

21. π-stacking interactions (lig-RFC). The presence of π-stacking interactions 

between the ligand and the WT/MT residue including information about the 

distance and group of interactions. 

22. π-cation interactions (lig-RFC). The presence of π-cation interactions 

between the ligand and the WT/MT residue including information about the 

distance and atoms group involved in the interactions. 

23. Water bridges (lig-RFC). The presence of water bridges between the 

WT/MT amino acid and crystallized waters molecules including the type of 

donor and acceptor atoms.  

24. Hydrophobic interactions (lig-RFC).  The presence of hydrophobic 

interactions between the ligand and the WT/MT amino acid including 

information about the distance of the interaction. 

In summary, a total of 58 features were used for the aa-RFC and a total of 89 were 

used for the lig-RFC. The complete list of features and values for the training set are 

available as supplementary file. 

 

Predictions and resistance score 

We applied the aa-RFC to individually predict the phenotype of each of the EGFR 

and ERK2 mutations defined by the likelihood model. For each compound-protein-

mutant, the aa-RFC assigns a confidence score for each the four possible 

phenotypes (SRES, RES, NEU and ISEN classes). The class-confidence scores 

addition is equal to 1. The highest class-confidence score corresponds to the 

predicted class. Next, we defined a global Resistance Score (RS) as the sum of the 

SRES and RES scores minus the ISEN and NEU weighted by the precision of each 

class in the aa-RFC training. The normalized RS measure aims at assessing the 

resistance-likeness of a mutation in a target for the studied drug. The RS score is 

defined as: 

𝑅𝑆 = 𝑆! ∗ 𝑃!
!!!"#,!"#!

− 𝑆! ∗ 𝑃!
!!!"#,!"#$

  

where R are the two classes of resistance (i.e., SRES and RES) and S are the two 

classes of non-resistance (i.e., NEU and ISEN), Sx is the aa-RFC confidence score 
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for the class x and Px is the global aa-RFC accuracy for the class x after a 10-fold 

cross validation. Finally, a normalized RS (<NRS>) was calculated by scaling all RS 

values within an experiment between 1.0 (that is, the highest RS) and 0.0 (that is, the 

lowest RS).  

 

Creating a dataset of insensitive molecules 

To identify compounds that may result insensitive to a particular mutation, and thus 

be alternative to a given treatment, we first manually extracted all compounds 

annotated in the Food and Drug administration (FDA, http://www.fda.gov) and the 

National Cancer institute (NCA; http://www.cancer.gov) web sites that are interacting 

with the studied protein target. Second, we collected all co-crystallized molecules 

with the protein target. Next, molecules with no experimentally measured binding 

affinity in BindingDB [53] were discarded. Due to the limited number of small 

molecules co-crystallized with ERK2, we extended the search to small-molecule 

ERK2 inhibitors with IC50 smaller or equal to 100 nM from the ChEMBL database 

[55]. Finally, we manually included compounds of interest into the final dataset, which 

resulted in a total of 19 and 75 possible non-resistant molecules to EGFR and ERK2 

respectively.  

 

Predicting molecules likely to be insensitive to a binding site mutation in the 

protein target 

Once the dataset was built, we used it to identify molecules whose affinity may not 

decrease by a mutation in the protein target. Depending of the source of the 

molecule, the methodology to assess the sensitivity was different: (i) for the two first 

subsets (i.e., those co-crystallized with the target) we defined the potential of the 

mutation to confer resistance using the crystal structure of the drug bound to the 

target; (ii) for those molecules extracted from ChEMBL and those manually included, 

we selected the top ranked pose by Autodock Vina	[56]  by performing virtual docking 

between the compounds and the target binding pocket. In both cases, each 

compound-target-mutation prediction was further scored by the normalized RS.  
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Predicting changes in affinity using AutoDock Vina 
Finally, to assess the base-line accuracy when no additional information is given, a 

new classifier was trained using only the calculated binding affinity change by 

AutoDock Vina. For each wild type and mutated complex in the aa-RFC training set, 

we first calculated the predicted affinity of the top ranked pose by AutoDock Vina. 

Next, the two affinities were passed to a RFC classifier that eventually predicted the 

phenotypic class of the instance. The classifier parameters and the subsequent 

validation were performed using the same parameters than in the aa-RFC training. 

For each instance in the training set the fold change in the predicted affinity was 

calculated as the ratio between the wild type and the mutated predicted affinities.  
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RESULTS 

Prediction of the drug binding affinity change upon single mutation 

We tested the performance of the aa-RFC classifier using the Platinum database	
[44]. The average AUC of the classifier (0.77) together with a Kappa statistic of 0.40 

[57] indicated an overall high accuracy of the classifier, especially for a four-class 

classifier (Fig 2a). The SRES class was the best predicted with a 0.81 AUC (0.63 

precision and 0.62 recall). The second best predicted class was the ISEN class with 

a 0.79 AUC (0.59 precision and 0.55 recall). Despite the fact that these two classes 

performed similarly, the lower recall of the IS class indicated that this class had a 

higher number of false negatives (FN; i.e., instances of the ISEN class miss-assigned 

to other class). This suggested that the classifier might have some difficulties in 

correctly finding the ISEN true positives (TP; i.e., instances of the ISEN class 

correctly predicted). More specifically, of the total 180 ISEN instances, 43 were miss-

classified as RES, 28 as SRES and 8 as NEU. Overall, the aa-RFC classified tended 

to over-assign instances to the RES class, which reflected to its performance metrics 

(0.74 AUC, 0.50 precision and 0.62 recall). Despite of this, it is remarkable that the 

aa-RFC resulted in a 0.50 precision for the RES class, which is twice the random 

value in a four classes classifier. Finally, the NEU class was the worst performing 

class (0.70 AUC, 0.48 precision, and 0.24 of recall). The low recall value (only one 

out of four NEU instances were assigned to the class) could be explained by the 

under-representation of the NEU instances in the training set (only 80 instances, 

versus 180 instances of the other classes). 

To our knowledge this is the first classifier that predicts the resistance-associated 

phenotype of a mutation for a compound binding to a protein. However, there are 

multiple methods that predict the binding affinity of a drug-protein complex. These 

methods can be also applied to predict how a mutation can change the binding 

affinity of a particular binding compound. One of the most extensively used virtual 

screening methods is AutoDock Vina (ADV) [56]. Overall, the performance of the 

ADT classifier was worse, with an average AUC of 0.64 (0.77 of the A-RFC) and a 

Kappa statistic of 0.19 (Fig 2a). More specifically, the four phenotypic classes had 

considerably lower AUC values for the ADV predictions. The SRES class resulted in 

the greatest AUC drop compared to aa-RFC (0.81 to 0.65), followed by the NEU 

class (0.69 to 0.57), the ISEN class (0.79 to 0.68) and by the RES class (0.71 to 

0.63). The individual values in change of affinity for each of the training cases 
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showed that only 13 (1.7%) instances had fold changes greater than 1.2, which 

suggests that virtual docking methods may have difficulties detecting large changes 

in affinity upon single mutation. 

To assess the contribution of each of the 58 input variables to the aa-RFC classified, 

we sorted them by their mean decrease Gini [58], which describes how much each 

variable contributes to the homogeneity of the nodes and leaves in the resulting 

random forest. The most informative features were those associated with the change 

in the molecular surface area and solvent accessibility of the mutated amino acid 

(ranking positions 1st, 3rd, 4th, 8th-10th, Fig 2b). Change in the protein stability 

measured by I-Mutant 2.0 [49] was ranked in the second position. Multiple measures 

of the distance from the amino acid to the ligand were ranked from the 5th to the 7th, 

positions, while other features such as the affinity of the wild type complex (20th) or 

the type of secondary structure of the amino acid (21st and 22nd) occupied the 

following positions.  Features based in biochemical properties of the mutated amino 

acid were clearly overrepresented within the top 25 set (18 out of 25). Only the 

distance to the ligand and the wild type experimentally measured affinity were 

included within the top 25 features. Overall, these results showed that the classifier 

weighted more features based on biochemical properties of the amino acid while 

gave less relevance to those extracted from specific interaction with the ligand. 

 

EGFR predicted mutational landscape in LUAD and LSCC cancer types 

We studied the mutational probability landscape of EGFR in two different non- 

NSCLC cancer types: LUAD and LSCC (Fig 3a and 3b). The analysis of the 

mutational landscape indicated that each cancer type had their own underlying 

mutational mechanisms. Only 20 mutations (that is, ~5% of all binding-site mutations) 

were ranked in the same position in both cancer types and none of them had the 

same predicted likelihood. The main discrepancy may be associated to the 

contribution of signatures 4 and 5 (Supplementary Material). On the one hand, 

signature 4 is mainly characterized by C>A transversions caused by tobacco 

smoking [59]. LUAD has a slightly higher contribution from signature 4, resulting in 

1.6 times greater average likelihood of C>A mutations in LUAD (0.0226 ± 0.0091 

average estimated probability of  mutation) than LSCC (0.0143 ± 0.0053). On the 

other hand, signature 5 has an unknown aetiology and it is associated with T>C 

substitutions at ApTpN context. Since signature 5 contribution to LSCC is higher than 
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to LUAD, it resulted in a 2.7 higher average likelihood of the ApTpN mutations in 

LSCC (0.0057 ± 0.0025) compared to LUAD (0.0037 ± 0.0021). 

Analysis of the type of nucleotide change of the top likely mutations revealed an 

enrichment of C>A mutations in both cancer classes. The highest odds ratio of C>A 

mutations corresponded to position 21st, with an odds ratio value of 16.2 and position 

29th with an odds ratio value of 10.0 in LUAD and LSCC, respectively. Additionally, 

seven (P741H, P794H, S720Y, P741T, L798I, L799M and L777M) and four (S720Y, 

P741T, P741H and P794H) mutations within the top 10 were C>A mutations in LUAD 

and LSCC, respectively (inner sets in Fig 3a and 3b). An exception to this trend was 

the top likely mutation, that is E762K, caused by T[G>A]A (T[C>T]A in pyrimidine 

base pair) mutation. This mutation was associated to signature 2, which had a very 

high frequency of T[C>T]A (41%), which has been attributed to activity of the 

AID/APOBEC family [60]. In fact, EGFR-E762K mutation has been observed in other 

cancer types associated with signature 2 [61]. The remaining of the top-10 mutations 

were associated to either C>T transitions (1 mutation in LUAD and 2 mutations in 

LSCC) or other nucleotide mutations (3 mutations in LSCC and 1 mutation in LUAD). 

Next, EGFR mutations frequently observed in LUAD and LSCC patients were further 

analyzed. The T790M mutation, known to confer resistance to first-line targeted 

therapies in LUAD and LSCC, was ranked in positions 49th and 50th with a predicted 

likelihood of 0.015 and 0.011 in LUAD and LSCC, respectively. T790M is caused by 

a A[C>T]G nucleotide change, strongly associated with signature 1, which in turn 

correlate with age of diagnosis	 [39]. G719S is another EGFR mutation frequently 

observed in LUAD and LSCC patients. This mutation, ranked 79th in LUAD with a 

predicted likelihood of 0.010 and 118th with 0.007 likelihood in LSCC, is the result of a 

G[G>A]G nucleotide mutation, which has the highest probabilities in signatures 1, 6 

and 16 (although the latest is not associated to LUAD).  Therefore, we hypothesize 

that the emergence of this mutation can be associated to ageing (signature 1) and 

defective DNA mismatch repair (signature 6). Lack of association with signature 4 

suggests that it is not particularly linked to tobacco smoking. Another interesting 

mutation is the recurrently reported R776H mutation, which activates EGFR in the 

absence of the activating EGF ligand R776H [62, 63].  This mutation was ranked 64th 

and 65th, with a predicted likelihood of 0.012 and 0.010 in LUAD and LSCC, 

respectively. R776H is caused by a C[G>A]C nucleotide mutation, strongly 

associated with signature 11. However, since this signature is not present in LUAD 

nor LSCC, the predicted probability value is the result of the sum of mild probabilities 
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of C[G>A]C in signatures 1, 2, 4 and 5. Consequently, this mutation is not particularly 

associated with any specific mechanism of mutation.  Other clinically reported 

mutations such as G719A or G857V appeared beyond the top 100 mutations and 

were not particularly associated with any signature significantly contributing to either 

LUAD or LSCC.  

 
Prediction of likely resistant EGFR mutations in gefitinib binding-site 
 

We applied the aa-RFC to predict the resistance score of the amino acid mutations 

for the binding of gefitinib (Fig. 3c). There was not observed correlation between the 

two predicted scores (Pearson correlation coefficient = -0.05). The red area gathered 

a total amount of 39 likely-and-resistant mutations (i.e., mutations that are very likely 

to arise and predicted to confer resistance). Examples of these mutations included 

M793L, G719S, H835Y, G796V, D855N, G796V or C775Y, among others. This 

representation allowed for the identification of those mutations with high likelihood 

and high resistance potential. The analysis the number of mutations and mean 

normalized resistance score (<<NRS>>) values associated to each phenotypic class 

revealed similar predictive trends than the observed in the original training set. A total 

amount of 171 mutations (46%) were predicted to belong to the RES class 

(<<NRS>> 0.52 ± 0.13). The SRES class was the second in number of predicted 

mutations. It had 124 mutations (35%) with an <<NRS>> of 0.57 ± 0.13. The ISEN 

class had 72 instances (19%), with an average resistance score of 0.28 ± 0.09. None 

of the mutations were predicted to belong to the NEU class. 

 
Mapping of likelihood and resistance-likeness into the 3D structure of EGFR 

Mapping of the amino acid accumulated resistance score and the resistance-likeness 

into the 3D structure of the EGFR kinase domain revealed the structural localization 

of the major players in gefitinib resistance (Fig 3d). Residues with warmer colours 

represented amino acids whose mutation is more prone to decrease the gefitinib 

binding affinity (i.e., higher resistance score), while the thickness of the ribbons 

represented the accumulated likelihood of that particular amino acid. The D855, 

localized in the DFG motif, was the amino acid with highest accumulated resistance 

score. More specifically, the D855A mutation was ranked as the top gefitinib-resistant 

mutation (1.0 <<NRS>>). D855 has been previously reported to play a major role in 
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gefitinib binding [64], and consequently, its mutation will likely decrease binding 

affinity to gefitinib. Interestingly, another D855 mutant (D855N) was ranked also 

within the likely-and-resistant mutations in LUAD (Fig 3c).  Other gefitinib-binding key 

residues such as L792 or M793 (both in the hinge region), were also among the top 

predicted mutations conferring resistance (e.g., M793, which has a stable hydrogen 

bonding to the gefitinib molecule) and its mutation can lead to a significant drop in 

gefitinib binding affinity [65]. Some M793 mutants were also included in the LUAD 

likely-and-resistant group, such as the cases of M793L or M793I (Fig 3c).  The 

L792P mutation in turn, will introduce the proline side chain into the hinge region of 

binding site. The distinctive cyclic structure of proline alongside its exceptional 

conformational rigidity can cause a steric clash between the proline side chain and 

gefitinib, with consequences for its binding. G719, localized in the phosphate-binding 

loop (P-loop), had several mutations among the top predicted mutants (G719V, 0.86 

<NRS> SRES class; G719S, 0.83 <NRS> RES class) as well as mutations with lower 

predicted resistance potential (G719R 0.68 <NRS>, G719C 0.65, G719D 0.64 and 

G719A 0.63 all of them RES class) (Fig 3c, inner panel). Specifically, to the G719S 

mutation, it has been previously shown that EGFR-G719S mutant, in fact, increases 

gefitinib binding affinity [66]. Therefore, it appears that the classification of the G719S 

as RES class corresponds to a false positive prediction. The factors leading to this 

miss-prediction could include a wrong structural modeling of the mutation, which may 

be unable to completely capture the important rearrangement of the P-loop, and the 

fact that experimentally measured cases of glycine mutations are enriched in loss of 

affinity (in our training set: 3 ISEN, 2 NEU, 9 SRES and 18 RES). Other mutants such 

as G719A/C/D/R have been also associated to increased sensitivity to TKis [67], 

although results are contradictory and further confirmation is needed [68]. No G719V 

data associated response to gefitinib treatment was found in the literature. Unlike 

mutations in G719, T790M was correctly predicted to increase the binding affinity of 

gefitinib (0.35 <NRS>, ISEN class). This result agrees with the discovery of the 

mechanism of resistance of the EGFR-T790M mutation. T790M causes an increment 

of both ATP and gefitinib binding affinity. Interestingly, the increment in affinity is not 

uniform for both ATP and gefitinib, which is ultimately reflected in a lower Kd/Km[ATP] 

ratio, an estimator of inhibitory potency [69]. Similarly, the R776H mutation was also 

predicted to belong to the ISEN class (0.24 <NRS>). Experimental evidence found in 

the literature suggests that this mutation increases the sensitivity for TKis EGFR 

inhibitors [70, 71]. A summary of the predictions and the experimental data 
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associated with each mutation can be found in Table 1. Altogether, these results 

show that the aa-RFC can predict the mutation-induced phenotype, although 

individual interpretation of each case is required to further validate the predictions. 

 

EGFR-binders insensitive to the resistance-like mutations 

To test whether our approach is able to systematically predict insensitive compounds 

to the EGFR’s likely-and-resistant mutations, we ran the lig-RFC predictor against all 

known EGFR reversible inhibitors with experimentally reported 3D structure (Fig 3e). 

The gefitinib lig-RFC predictions were consistent with the predictions from the aa-

RFC. The only exception found was the gefitinib-M793L, which had considerably 

lower value than for the aa-RFC (aa-RFC <NRS> 0.85, lig-RFC <NRS> 0.41), yet 

being labelled as SRES. The <NRS> decrease can by explained by the fact that the 

lig-RFC weighted more the conservation of the hydrogen bonding by the mutant 

leucine.  Erlotinib, another FDA approved EGFR TKi used in the treatment of NSCLC 

malignancies, resulted in a very similar mutational profile compared to gefitinib, which 

agrees  with pervious published data [72].  

T790M, M793L and R776H resulted in a low predicted resistant profile indicating that 

those mutations would confer increased sensitivity to many of the tested compounds. 

Conversely, other mutations, such as C775Y, resulted in a mixed profile conferring 

resistance to several of the tested compounds (e.g. CHEMBL2347963 or its 

structural analogue CHEMBL2347965) and increased sensitivity to others (e.g. 

CHEMBL2322330 and CHEMBL1229592).  Finally, there were a total of six 

mutations with a highly drug-resistant profile (G796V, L792P, G719C/V, H835Y and 

D855A). These mutations were generally predicted as non-targetable, although a few 

exceptions were found. For instance, the CHEMBL1090356 compound had a <NRS> 

of 0.12, 0.20 and 0.14 for G796V, G719C/V mutations, respectively. In fact, this 

compound had the lowest resistance profile among all the screened set. Structural 

details revealed that CHEMBL1090356 has an imidazothiazole scaffold, with an 

amide group that lays deeply in the hydrophobic pocket and a morpholine tail that 

extends to a solved exposed region of the pocket [73] (Fig 3f). This mode of binding 

is significantly different to other reversible ATP-competitive inhibitors of EGFR and 

explains its predicted distinctive profile. We propose that this compound might be an 

alternative EGFR inhibitor to patients resistant to gefitinib therapy. 

 

123



	

ERK2 predicted mutational landscape in melanoma and colorectal cancer 

The predicted ERK2 mutational landscape revealed significant differences across the 

likelihood of mutations between melanoma and colorectal cancers. Indeed, the 

probabilities of mutations of amino acids involved in the binding site of VTX11e [74], 

a compound with anti-proliferative activity, was different in melanoma [75, 76] and 

colorectal adenocarcinoma [74] (Fig 4a and 4b). Such discrepancy was the result of 

completely different signatures contributing to the mutational landscape. While 

melanomas mutations are mainly coming from C>T transitions associated to 

signature 7, colorectal cancer mutations are the result of multiple mechanisms 

associated to signatures 1,5, 6 and 10.  Melanomas predicted likelihood fitted into in 

a long tailed distribution, with enrichment in C>T mutations (Fig 4a).  More 

specifically, there were nine possible amino acid mutations originated from 

C/T[C>T]N changes; and all of them were ranked within the top-10 likely mutations 

(S153F, P58L, P58S, S29L, L112F, S41F, P152L, L150F, L107F) (Fig 4a. inner 

panel).  The remainding C>T mutations were also enriched among the top-50 most 

likely set (C>T odd ratio = 15.4). Conversely, colorectal cancer resulted in a more 

heterogeneous predicted mutational landscape (Figure 4b). The two most likely 

mutations (L112I and S41Y) were coming from T[C>A]T mutations associated with 

signature 10, which has been proposed to be caused by altered activity of the error-

prone polymerase POLE [77]. Furthermore, mutations resulting from C>T transitions 

were also enriched among the top-50 likely mutations (C>T odds ratio = 58.4). In 

fact, 7 out of the top-10 most likely mutations were the result C>T transitions (M38I, 

M108L, G85R, G169S, S29L, G34S and G37S) (Fig 4b, inner panel). Unlike 

melanoma, colorectal cancer C>T mutations were associated to multiple signatures, 

including signatures 1, 6 and 10. 

 

Prediction of likely resistant mutations in ERK2-VTX11e binding-site  
The resistance-likeness of all ERK2 amino acid mutations in the binding site of 

VTX11e was calculated using the aa-RFC classifier. The predictive pattern was 

consistent with the predictions in the training set and the EGFR case. There were 

171 (40%) mutations classified as RES (0.48 <NRS> ± 0.15), 159 (38%) classified as 

SRES (0.43 <NRS>  ± 0.14), 93 (21.9%) as ISEN (0.25 <NRS> ± 0.10) and 1 (0.1%) 

as NEU (0.17 <NRS>). Consistent with the observed for EGFR, the predicted 

likelihood and the <NRS> scores did no correlate (Fig 4c, Pearson Correlation Score 
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of 0.03 in melanoma and 0.01 in colorectal). Variations in the mutational landscape 

between the two cancer types were also demonstrated in the differences in the set of 

top likely-and-resistant mutations. Melanomas resulted in 79 mutations, including 

P58S/L/T, L150F, L107F, P152S/L, L157F, L112P, I84N, F168Y or G37S among 

others, as likely for the cancer type and predicted to confer resistance to VTX11e. 

There were 86 mutations, including G34S, G37S, H147Y, P152S, E33K, L155P, 

P58L/S/T or K114R among others, as likely to appear in colorectal cancer and 

predicted to confer resistance to VTX11e. Only 29 of the mutations were shared 

between the two likely-and-resistant groups.  

 

Mapping of likelihood and resistance-likeness into the 3D structure of ERK2 

The significant discrepancies observed between the two cancer types were also 

observed in the 3D mapping of the mutations into the target structure of ERK2 (Fig 

4d). Specifically, the significantly higher median likelihood observed in colorectal 

cancer (11.5 fold increase, colorectal median likelihood 2.6e-3; melanoma median 

likelihood 0.2e-3) was represented into the 3D space as thicker ribbons along the 

binding site of VTX11e. Similarly to the EGFR case, not a particular structural pattern 

was observed hosting the most likely mutations. Additionally, mapping of the amino 

acid accumulated resistance score into the ERK2 3D structure of the ERK2 kinase 

domain revealed the structural localization of those residues more prone to decrease 

VTX11e binding affinity (Fig 4d). Residues in the hinge region of the ATP binding-site 

showed the highest resistance scores. This region hosts the M108 residue, which is 

equivalent to the EGFR-M793, and is the major responsible of the hydrogen bonding 

between ERK2 and VTX11e. Examples of likely mutations of this amino acid included 

M108L (0.89 <NRS>, SRES class) and M108I (0.55 <NRS>, SRES class), being the 

later also included in the top likely-and-resistant group in colorectal cancer. ERK2-

L107 was also predicted as one of the major contributors to resistance. Mutations of 

these amino acids included the L107P (1.0 <NRS>, SRES class) or L107F (0.41 

<NRS>, RES class), being the later included in the likely-and-resistant set in 

melanoma. The importance of D167, localized at the DFG motif and structurally 

equivalent to the EGFR-D855, explains the high resistance score of the D167A 

mutation (<NRS> 0.97, SRES class).  These residues were localized in the ATP-

binding site of ERK2 and their potential to confer resistance might be explained by 

their ATP-binding site structural similarity with EGFR.  
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Proline 58 mutations were also classified as highly resistance-like. More specifically, 

P58L/S/T (0.60 <NRS>, 0.70 <NRS> and 0.67 <NRS>; SRES, SRES and RES class 

respectively) mutations were reported within the likely-and-resistant group in 

melanoma and colorectal cancer, suggesting these mutations are critical. These 

predictions agreed with the evidence of ERK2-P58L/S/T mutations found in VTX11e-

resistant A375 melanoma cell line	[78]. A complete summary of the VTX11e-resistant 

mutations previously described [78] alongside their predicted likelihood and 

resistance-likeliness is shown in Table2 and Fig 4c inner set.  All the experimentally 

found resistant mutations were predicted as either SRES or RES by our model. 

Moreover, 5 out of 8 (62%) of the mutations were correctly predicted to belong to 

melanoma likely-and-resistant group. Altogether, these results probed the ability of 

the method to detect resistance-like mutations to ERK2-VTX11e interaction.  

Interestingly, the 3D mapping of the mutations from [78] revealed their clustering into 

an adjacent pocket to the ERK2 ATP binding site, which highlights the presence of 

ATP had an essential role in the emergence of mutations conferring resistance in 

ATP-competitive inhibitors. Other mutations ranked in the top 10 resistance-like 

mutations and not present in [78] included H147Y, I86M, L150P, G34V, F168I and 

E33D (Fig 4c inner set). Unfortunately, no experimental data was available at the 

time to confirm the resistance potential of these mutants.  

 

ERK2-binders insensitive to the resistance-like mutations 

Next, the lig-RFC classifier was applied to existing ERK2 reversible inhibitors to 

identify insensitive compounds to the resistance-like mutations previously identified. 

In this case, the limited number of co-crystallized ERK2 inhibitors, prompted us to 

extend the search to any known ERK2 inhibitor (see methods Creating the dataset of 

candidate molecules). Similarly to the EGFR example, some mutations had a highly 

resistance-like profile with a very limited number of compounds with low predicted 

sensitivity (Fig 4e). Such were the cases of L107F/P, I86M or P58S/T/L; which had 

few compounds with NSR below the average (0.50 <NRS> ±0.16). DEL22379 was 

one of the few compounds with low predicted sensitivity to highly resistant mutations. 

Interestingly, this compound resulted a highly insensitive profile among the all the 

screened mutations. DEL223790 unique sensitivity profile is explained by its 

completely different mode of action: it binds the ERK2 interface preventing its 

dimerization [79]. Other mutations resulted in low resistance-likeness profile, 
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including Y36N/H or C65Y. The results of the C65Y mutation were consistent with 

the predictions from the aa-RFC, which scored this mutation with a low <NRS> 

(Table 2). However, the Y36N/H predictions generally resulted in lower <NRS>. For 

instance, the control compound VTX11e, resulted in a lig-RFC <NRS> of 0.41 (Y36N) 

and 0.35 (Y36H) while the aa-RFC scored them with 0.58 and 0.66. Despite of the 

decrease in the <NRS>, the predicted class was maintained in both classifiers as 

SRES. The differences between the two classifiers might be caused by the fact that 

the lig-RFC does not contain all the amino acid based features used in the aa-RFC. 

Finally, the G37S mutation, which had previously been identified as resistant [78], 

was predicted to be in the likely-and-resistant group in both melanoma and colorectal 

cancer. G37 is localized in the ERK2 P-loop, and we hypothesize it may play an 

important role in the orientation of Y36 towards to the chlorobenzene group of 

VTX11e, which ultimately leads to the π-stacking interaction [80]. Remarkably, the 

lig-RFC provided several compounds with low resistance-likeness to G37S/V/C 

mutations. The compound with the lowest resistance profile for these mutations was 

E75 (Fig 4f, named as E75 due to their PDB accession code). The mutational profile 

of E75 had a <NRS> of 0.11, 0.08 and 0.06 for G37S/V/C, respectively. Unlike 

VTX11e, E75 is located distantly to the G37 residue, not interacting with the Y36 and 

mostly occupying the ERK2 hinge region (Fig 4f).  Hence, the E75 binding mode 

might be compatible with G37 mutations, proposing an interesting candidate for 

overcoming resistance in tumors harboring ERK2-G37S/V/C mutations.  
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DISCUSSION 

We have introduced a computational model that predicts the cancer-associated 

likelihood and the resistance-likeness of mutations in targets of small molecule 

targeted cancer therapies. Our approach first defines the mutational likelihood of 

amino acids involved in the binding of a small molecule drug. Our estimations rely on 

the tri-nucleotide mutational probabilities observed in the cancer-associated 

signatures previously described [35, 39]. We have shown that the EGFR mutational 

profile was not significantly different between LUAD and LSCC cancer types. 

Conversely, the ERK2 analysis revealed major discrepancies between melanoma 

and colorectal mutational landscape. Melanoma mutations are mainly originated from 

C>T transitions associated to ultraviolet light exposure. However, colorectal 

associated mutations are the result of more complex and heterogeneous processes. 

Interestingly, the discrepancies are also reflected to the global distribution of the 

probabilities. While melanoma seems to prioritize fewer ERK2-mutations with a very 

high likelihood, colorectal, presents higher median values with considerably lower 

peak values.  The differences between the colorectal cancer and melanoma 

mutations are also reflected in the low overlapping between the likely-and-resistant 

groups of mutations. This result suggests that these two cancer types should have 

different pharmacological approaches to overcome resistance due to the 

spontaneous generation of cancer-associated mutations in the drug targets. 

Interestingly, the nature of our approach enables the tracking of the association 

between each mutation and their underlying signatures, which ultimately can be 

translated into an individual mutation-mechanisms association.  That is the case of 

the EGFR-T790M mutation, which we proposed to be mainly associated with ageing 

and not particularly linked to tobacco smoking. It is important to mention that our 

model only considers the probability of emergence of mutations in a cancer genomic 

context. Nevertheless, a significant number of mutations in a cancer cell can be also 

the result of germ-line variations or pre-malignant somatic mutations.  For instance, it 

has been shown that the EGFR-T790M mutation can have both somatic and germ-

line origin [81-83]. Another limitation of the likelihood model is that its predictions are 

based on the average probabilities from hundreds of samples for each cancer type. 

Therefore, the predicted likelihood shows global cancer trends but it is currently 

unable to capture specific trends in each individual cancer case. Future work might 
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thus focus on finding the mechanisms underlying each individual cancer case, which 

eventually would translate into the personalization of the likelihood predictions. 

The structural mapping of the predicted likelihood did not reveal any association 

between the likelihood of an amino acid mutation and its structural localization. 

Perhaps, constraining the mutational likelihood with evolutionary restrains would lead 

towards an increase in less evolutionary conserved regions of the structure. Hence, 

the unfavorable phenotype linked to evolutionary restraints can partially explain the 

fact that some of the predicted mutations have not been observed in the clinic. This 

problem is chiefly evident in cancer, where tumor cell population has a fitness 

advantage over the healthy tissue. Another explanation is linked to the technical 

limitations of standard NGS sequencing of solid biopsies, which only allows for the 

detection of mutations present > 5% of tumor cells [7]. In fact, despite of tumors can 

harbour millions of mutations [22], only a small percentage of them are systematically 

reported. These low-frequency mutations may not have a critical effect during tumor 

progression, but the evolutionary pressure induced by a drug treatment regimen can 

transform them into drug resistance drivers. Thus, it is essential to detect not only the 

frequent cancer drivers but also the low-frequent mutations that can lead towards 

drug resistance. Recent studies using circulating tumor DNA (ctDNA) have shown 

very promising results for this purpose [84, 85]. However, there are many 

technological challenges to address prior to broader application of this technology. In 

the meantime, in-silico models can play a major role to comprehensively characterize 

the mutational burden of cancer samples.  

We connected the mutational landscape of tumors with the drug-resistance 

phenotype due to spontaneously generated mutations in drug targets. To do so, the 

aa-RFC classifier predicts the effect of a single mutation to the drug binding affinity in 

a particular cancer target. The classifier was trained with the Platinum database [44], 

whose instances were split into four phenotypic classes depending of their drug 

binding affinity fold change. In our opinion, reducing the number of possible classes 

from four to two (e.g. into loss-of-affinity and gain-of-affinity) would increase the 

classifier performance, but it would also over simplify the spectrum of possible 

phenotypes. Evaluation of the performance of the aa-RFC showed that classes 

representing severe changes (i.e., ISEN and SRES classes) outperformed those 

representing mild changes (i.e., RES and NEU classes). More specifically, the lower 

performance of these classes is the result of over prediction towards the RES class 
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as well as under prediction of the NEU class. This limitation may be explained by the 

fact that many RES cases are very close to the NEU frontier (i.e., cases with very 

small drop in affinity) and vice versa. In such cases, the classifier assigns the 

instances to the most populated class (i.e., the RES class) since that is the one with 

higher probability.  To address this limitation, we calculated the <NRS>, which 

provides a smoother way to assess the resistance-likeness by combining the 

confidence score of the four classes and correcting for the over-assignment of the 

most populated classes. To our knowledge this is the first method specifically 

developed to classify changes in drug binding affinity upon mutation. Comparison 

with a gold-standard methods for measuring drug-binding affinity revealed the 

difficulties of such methods in detecting large changes in affinity upon mutation. 

Rather, they are oriented to quantitatively estimate the drug binding affinity when the 

binding is known to occur.  

Application of the aa-RFC to the EGFR and ERK2 cases showed its ability to identify 

the phenotype of previously reported mutations.  Remarkably, the method correctly 

predicted the class of EGFR-T790M, conferring resistance by decreasing the 

Kd/Km[ATP] ratio; EGFR-R776H, ERK2-P58L/S/T or ERK2-G37S among others. 

However, it failed predicting the EGFR-G719S phenotype, which featured the 

problem that glycine mutations increasing the sensitivity of the drug are likely to be 

miss-classified. Additionally, our model proposed, in both cases, multiple new unseen 

mutations as candidates for conferring resistance to the studied treatments. 

Nevertheless, mutations negatively interfering with ATP might be non-functional. 

Mutations disrupting the ATP binding would lead to a non-functional protein kinase 

(i.e., loss of function mutations), which is incompatible with their role in cancer 

progression. This hypothesis is also supported by previous findings indicating a 

cluster of ERK resistant mutations in an allosteric region next to the ATP binding site 

[78]. Moreover, our findings might explain why mutants of amino acids with an 

essential role in ATP binding, such as EGFR-L792 (ERK2-L107) or EGFR-M793 

(ERK2-M108), have not yet been reported in the clinics. 

The last step of the model application consisted on the search for non-resistant 

molecules to the mutations detected by the aa-RFC. To do so, we used a lighter and 

more ligand centric version of the aa-RFC called lig-RFC. The performance of both 

classifiers is also illustrated by the consistency of the EGFR-gefitinib and ERK2-

VTX11e predictions. However, small discrepancies in the <NRS> score were 
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observed for the ERK2Y36H/N and EGFR-M793L mutations. In both cases the 

differences respond to the fact that the lig-RFC weights more the ligand-based 

features (e.g., hydrogen bonding conservation) that changes in the amino acid 

biochemical properties. It is essential to mention that our models (the aa-RFC or lig-

RFC) do not consider information relative to covalent bonding between the 

compound and the protein target. That explains why EGFR irreversible inhibitors 

such as afatinib, olmutinib, rociletinib or WZ-3146 were not included in the study. 

In both, ERK2 and EGFR cases, we generally observed three groups of mutations. 

The first group is composed by those mutations with very limited or no compounds 

with low resistance score. That is, these mutations are generally predicted as non-

targetable. However, some exceptions were found, including the dimerization 

inhibitor del22379 predicted to be insensitive to the majority of the ERK2-mutations. 

Similarly, CHEMBL1090356 was predicted as insensitive to several of the highly 

resistance-like EGFR-mutations. These two cases are the result of very distinctive 

mode of actions, which ultimately was reflected in their resistance profile. Other 

group of mutations was composed by those predicted to increase the affinity of most 

of the screened compounds. Interestingly, despite of EGFR-T790M being known to 

confer resistance to most of EGFR reversible inhibitors, it was classified into this 

group of mutations. This is because this mutation confers resistance by decreasing 

the Kd/Km[ATP] ratio. Therefore, non-resistant reversible inhibitors need to maintain 

such ratio to conserve their inhibitory potency. The last group of mutations are those 

with heterogeneous profile. This group is probably the most interesting from a 

resistance perspective, since they have molecules with highly diverse predicted 

phenotypes. The diversity alongside the structural nature of our predictions facilitated 

the study of their mechanism of resistance. For instance, thorough the ERK2-G37S 

example, we showed the ability of the method in forecasting non-resistant 

alternatives cancer targeted therapies. Future applications of the model would benefit 

from the inclusion of both new candidate molecules and information about resistant 

mutants. Moreover, further application in other systems would ultimately lead towards 

a comprehensive characterization of the resistant mutational landscape of targeted 

cancer therapies. To achieve this goal, it is also important that some of our 

predictions get validated. We encourage the scientific community to experimentally 

validate our predictions to get closer to one of the final goals in cancer treatment: the 

personalized design of non-resistant cancer therapies. 
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CONCLUSIONS 

This manuscript presents a computational framework that aims to connect the 

mutational landscape of tumors with the drug-resistance phenotype generated by 

cancer-associated mutations in drug targets. We first introduced a computational 

model that predicts the probability of generation of mutations in anticancer drug 

targets. Application of the likelihood model demonstrated that the mutational profile of 

drug targets is cancer specific. We then introduced a RFC that uses structural 

information to predict the drug binding affinity change upon mutation. To our 

knowledge, this is the first classifier used to systematically detect the resistance-

associated phenotype caused by mutations in drug targets. Application of the model 

to the EGFR-gefitinib and ERK2-VTX11e targeted cancer therapies identified some 

of the known resistant mutants alongside other new unseen mutations predicted to 

confer resistance to these therapies. Interestingly, the structural localization of most 

of the known resistance mutations suggests that ATP plays an essential role in the 

emergence resistant mutants. Consequently, some of the predicted unseen 

resistance mutations can be indeed non functional.  Finally, the search for alternative 

non-resistant treatments provided a sensitivity map that connects the 

pharmacological space with the mutational landscape of EGFR and ERK2. Thorough 

several concrete examples we exemplified how this model can be used to rational 

design personalized non-resistant cancer therapies. Further application in other 

systems will ultimately lead towards a comprehensive characterization of the 

resistant mutational landscape of targeted cancer therapies.  
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TABLES 
Table 1. Summary of the EGFR mutations discussed in the manuscript alongside 
their aa-RFC predicted phenotype and, when available, the experimentally reported 
effect to gefitinib treatment found in literature.   
 

Mutation NMR Predicted class Gefitinib phenotype 

L792P 0.88 SRES Proposed resistant 

(Unconfirmed) 

 

M793L 0.85 SRES 

D855N 1.0 SRES 

G719S 0.83 RES 
Increase Sensitivity to gefitinib 

and erlotinib 

G719A 0.63 RES 

Contradictory  

G719R 0.68 RES 

G719C 0.65 RES 

G719D 0.64 RES 

G719V 0.86 SRES 

T790M 0.34 ISEN 
Increase Sensitivity gefitinib and 

erlotinib 

R776H 0.24 ISEN 
Increase Sensitivity gefitinib and 

erlotinib 

C775Y 0.66 SRES 
Unknown 

 
H835Y 0.84 SRES 

G796V 0.85 SRES 
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Table 2. Predicted aa-RFC phenotype of the ERK2-VTX11e resistant mutants 
reported in [78]. The top likely-and-resistant columns indicate their presence among 
the mutations included in the red area from Figure 5b and 5c.  
 

Mutation NMR Predicted 

class 

Top Likely-and-

resistant 

Melanoma? 

Top likely-and-

resistant 

Colorectal? 

P58L 0.60 SRES YES YES 

P58S 0.70 SRES YES YES 

P58T 0.67 RES YES YES 

G37S 0.74 RES YES YES 

Y64N 0.23 RES NO NO 

Y36H 0.66 SRES YES NO 

Y36N  0.58 SRES NO NO 

C65Y 0.38 RES NO NO 
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FIGURES 

 

Fig. 1. Schematic representation of the developed framework. a For a particular 

targeted cancer therapy, the most likely mutations of the protein target are defined 

using the mutational signatures associated with that cancer class [35]. b 3D models 

of the mutations in the target structure are generated using the MODELLER package. 

c Structural and sequential information of the 3D-mutant models is used by a 

Random Forest Classifier (RFC) to predict the resistance potential of these 

mutations. d For the mutations classified as resistance-like, the model proposes 

alternative non-resistant compounds/drugs that may skip resistance.  
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Fig. 2. RFC accuracy. a Receiver operating characteristic (ROC) curves of the four 

phenotypic classes (that is, strong resistance “SRES”, resistance “RES”, neutral 

“NEU” and increased sensitivity “ISEN”) after 10-fold cross validation. Solid lines 

correspond to the results of our RFC classifier; dashed lines correspond to the 

results of a non-trained approach based on the AutoDock Vina results. b Relative 

importance of the top 25 most informative variables used by the aa-RFC. Features 

are ranked by the mean decreased Gini score based on the Gini impurity index [58]. 

The rest of aa-RFC features are not shown for clarity.   
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Fig. 3. a Predicted cancer associated-likelihood of mutations in the EGFR binding 

site for gefitinib for LUAD. Bar high indicates the likelihood of an amino acid mutation 

and its color the type of nucleotide change that leads to the amino acid mutation. 

When several nucleotide mutations lead to the same amino acid change, the 

probabilities were stacked. Inner sets show the top 10 likely mutations. b Predicted 

cancer associated-likelihood of mutations in the EGFR binding site for gefitinib for 

LSCC. Representation as in panel a. c Predicted likelihood and normalized 

resistance score (<NRS>) for EGFR mutations in the binding site of gefitinib for the 

LUAD cancer type. Each mutation is represented by a dot, which color indicates the 

predicted class by the aa-RFC (SRES in dark red, RES in orange, NEU in blue and 

ISEN in green). The red area encompasses mutations with predicted likelihood 

higher than the median value of all mutations and <NRS> higher than 0.5. The green 

area encompasses mutations predicted likelihood lower than the median value of all 

mutations and <NRS> lower than 0.5. The top ten resistance mutations, along with 

other mutations mentioned in the text are listed ordered by their <NRS>. d LUAD 
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mutation likelihood and normalized resistance score (<NRS>) in the 3D structure of 

EGFR-gefitinib complex (PDB: 4WKQ). The thickness of the ribbons indicates the 

accumulated mutational likelihood for that particular amino acid. The color represents 

the accumulated <NRS> score. Ligands are displayed as sticks. Mutations of amino 

acids beyond the binding site of the compounds were not considered. e Predicted 

sensitivity map for EGFR mutations in the binding site of gefitinib. Columns 

represents mutations, rows represent the screened compounds. The colour of the 

cells represents the predicted <NRS> by the lig-RFC. Name of the compounds are 

either the generic names for FDA approved drugs or drugs in clinical trials, the 

ChEMBL accession codes or the PDB accession code for those compounds lacking 

of an entry in ChEMBL. Compounds mentioned in the text are highlighted with a 

yellow background. f Structural mapping of the predicted resistance mutations in the 

wild type EGFR interaction with gefitinib (cyan) and CHEMBL1090356 (brown). PDB 

entries: 4WKQ and 3LZB for gefitinib and CHEMBL1090356 respectively. Side 

chains of the most important contributors to the binding are shown as sticks.  The P-

Loop is coloured in red, the hinge region in purple and A-Loop in blue. 

  

145



	

 

 

Fig. 4. a Predicted cancer associated-likelihood of mutations in the ERK2 binding site 

for VTX11e for melanoma. Represented as in Fig 3a. b Predicted cancer associated-

likelihood of mutations in the ERK2 binding site for VTX11e for colorectal cancer. 

Representation as in panel a. c Predicted likelihood and normalized resistance score 

(<NRS>) for ERK2 mutations in the binding site of VTX11e for the melanoma (left) 

and colorectal (rigth) cancer types. Represented as in Fig 3c. d Melanoma (top) and 

colorectal (bottom) mutation likelihoods and normalized resistance scores (<NRS>) in 

the 3D structure of ERK2-VTX11e complex (PDB: 4QTE). Represented as in Fig 3d. 

e Predicted sensitivity map for ERK2mutations in the binding site of VTX11e. 

Represented as in Fig 3e. f Structural mapping of the predicted resistance mutations 

in the wild type ERK2interaction with VTX11e (cyan) and E75 (magenta). PDB 

entries: 4QTE and 4FUX for VTX11e and E75, respectively. Represented as in Fig 

3f. 
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4 Discussion

This thesis presented a computational study of the structural interaction be-
tween small molecules and their protein targets with the main focus on ex-
tracting their therapeutic potential. Particularly, Chapter 3.1 presented a com-
parative docking method (Subsection 1.1.9) that predicts structurally detailed
protein-ligand interactions at proteome scale. It exemplified its applicability
by predicting the human targets of all small molecule FDA-approved drugs.
A second application of nAnnolyze in MTB is presented in section 3.2. This
chapter showed the computational identification of the MTB targets for two
sets of compounds with known antitubercular activity. It used the combination
of three methods exploring different methodological spaces (i.e., the structural
space, the chemical space and the historical space) to give more robustness to
the predictions. The open access profile of both nAnnolyze and the applica-
tion in MTB, led to the development of a website that enables the interplay
with the method and the results. Finally, chapter 1.5 introduced a computa-
tional model that predicts cancer associated mutations with the highest chance
to confer resistance to a targeted therapy. Furthermore, it provided alternative
treatments for those mutations identified as highly resistance-like. Each of the
specific points presented in the studies are thoroughly analyzed in the pertinent
discussion of the manuscripts. Hence, this discussion is focused on analyz-
ing the impact to the scientific community, reviewing the main limitations and
discussing future perspectives of the presented studies.

4.1. nAnnolyze: predicting large scale and structurally detailed
ligand-target interaction using a network-based representa-
tion

4.1.1. Main findings

nAnnolyze is a network-based version of the Annolyze method [110]. It re-
lies on a comparative docking approach that 1) predicts the protein targets of
small molecules and 2) identifies the binding location on the 3D structure of
the protein. The evaluation of the performance showed that nAnnolyze enables
large-scale annotation and analysis of compound-protein pairs. The application
of the method to predict the human targets of all small molecule FDA-approved
showed its ability to identify therapeutically relevant compound-target pairs.
Moreover, nAnnolyze also predicted new unseen interactions between FDA-
approved drugs and human proteins. Finally, the method alongside all the pre-
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dictions are publicly available at http://nannolyze.cnag.cat/.

4.1.2. Impact of the presented research

To our knowledge, nAnnolyze is one the few methods that enables structurally
detailed large-scale screening of compounds against an entire proteome. Unlike
free-structure methods, which do not provide structural information about the
binding, and virtual docking methods, which require considerable amount of
resources for large-scale screenings, nAnnolyze fulfills two important needs in
the modern drug discovery paradigm 1) applicability to large-scale screenings
and 2) the inclusion of structural information in the predictions.

The application to the human proteome provided an immense collection of
compounds-target pairs amenable to be analyzed in future studies. Specifically,
such information can be used to identify compound off-targets responsible of
clinically reported side effects. The manuscript illustrated this possibility with
the example of new predicted targets for the multikinase inhibitor sorafenib.
Moreover, exploring the collection of compound-target pairs may give rise to
the identification of new therapeutically relevant interactions with the potential
to be further explored by drug repurposing approaches.

Finally, since the method is fully available online, the scientific community can
benefit from the usage by anonymously screening their own compounds against
the human and MTB structural proteomes.

4.1.3. Limitations

One of the major limitations of the method is implicit in its own definition.
nAnnolyze is a structure based approach and consequently its application is
restricted to those proteins with either a experimentally determined 3D structure
or a sequence amenable to be accurately modeled by comparative modeling
approaches. Currently, approximately 40% of the human proteome fulfills these
requirements.

The application of a comparative docking approach may also lead to the inclu-
sion of bias towards structurally conserved protein pockets. Therefore, non-
conserved allosteric pockets, which are often remarkably valuable to develop
selective inhibitors (Subsection 1.5.2), may be neglected by the method. Sim-
ilarly, novel non-frequent compound scaffolds are also penalized in the search
because of their limited availability in the explored structural space.
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As mentioned above, comparative docking methods are usually faster than
virtual docking approaches. However, they are generally slower than free-
structure methods, which makes them a viable option only once the number
of candidate compounds have been narrowed down. Ideally, drug discovery
early stages would choose the ligand-target prediction method that better fits
to the characteristics of the screening (i.e., compound collection size, number
of targets, stage of development, etc). Alternatively, the combination of dif-
ferent computational methods can increase both the predictive power and the
confidence of the resulting predictions (Subsection 3.2).

nAnnlyze does not include information about the type of interaction between
the compound and the predicted targets (i.e., antagonist, agonist, inhibitor, etc.).
Moreover, the graph does not include either information about the binding
affinity of the compounds with their co-crystallized protein targets. Such in-
formation may play an important role in the decision of whether a predicted
compound-target pair is suitable for further exploration.

Finally, one limitation of the website is related to the fact that it does not in-
clude the possibility to perform an screening against your own protein target.
This application is frequently observed in academia, when the inhibition of the
candidate target may validate the testing hypothesis.

4.1.4. Future perspectives

Future versions of nAnnolyze will benefit from the raise of publicly available
structural data. Thanks to the initiatives such as the PSI [11] or the Structural
Genomics Consortium [12] the number of experimentally determined 3D struc-
tures will significantly increase over the next years. Therefore, the number of
modellable proteins will raise simultaneously, which eventually will lead to a
significant increase of the number of proteins to which structure-based methods
can be applied. Additionally, the raise in the number of deposited structures in
the PDB will likely increase the chemical spectrum of the co-crystallized com-
pounds, decreasing thus the aforementioned compound’s scaffold bias.

The flexibility of a network-based approach facilitates the integration of mul-
tiple sources of information. As discussed above, information as the type of
interaction or compound binding affinity would improve both the level of de-
tail and the quality of the predictions. Moreover, integration of protein-protein
interaction (PPI) information, target-disease and target-side effect associations
would enable more realistic selection of the molecular target to intervene.
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Another feature amenable to be improved is the graph search algorithm. nAn-
nolyze uses the Dijkstra’s algorithm [244] to find the shortest pathways between
compounds and protein targets. Other popular network search algorithms in-
clude random walk [245] or network propagation [246].

One of the near future plan consist on applying nAnnolyze to alternative set
of candidate molecules and protein targets. While Chapter 3.2 presents the
application in two different set of antitubercular compounds, future applications
in other organisms and collection of compounds would significantly increase
the value of the method. Moreover, the method would benefit from the feedback
received after its application.

Finally, one of the most important goals and challenges of computational drug
discovery is the translation into the experimental field. Experimental validation
of the predictions would not only add more confidence to the method, but would
also be useful to identify those cases where the approach is more suitable for.

4.2. Target prediction for two set of compounds active against
MTB

4.2.1. Main findings

This chapter presented the application of three ligand-target prediction meth-
ods to identify the MTB targets of two sets of compounds with known antitu-
bercular activity. The methods explored three different methodological spaces,
including the structural space by nAnnolyze, the chemical space and the his-
torical space. The final compound-target set was the result of combining the
individual predictions by the three approaches. The first application on a set of
776 compounds resulted in the identification of 139 MTB targets involved in
71 unique pathways. The second application in a set of 50 antitubercular com-
pounds identified 21 MTB targets involved in 13 different metabolic pathways.
Subsequent analysis of the target essentially revealed a significant number of
predicted targets previously annotated as essential for the survival of MTB.
Moreover, study of the metabolic pathways associated with the predicted MTB
targets revealed an significant enrichment in amino acid metabolism pathways,
which are known to be essential for the survival of the bacterial. Finally, all
the compounds alongside the predicted MTB were publicly delivered in both
studies.
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4.2.2. Impact of the presented research

To our knowledge this is the first virtual screening performed by three orthog-
onal approaches to systematically identify protein targets for small molecules.
The resulting metapredictor is more robust than the individual methods, adding
not only target and compound coverage, but also increasing confidence to the
predictions. This application also exemplified how computational methods can
play a significant role in the drug discovery process. Particularly, compounds
were originally screened at the Tres Cantos Open Lab Foundation of GSK and
were subsequently used as input of the ligand-target prediction methods devel-
oped by two academic research institutes. Finally, the open access profile of the
conducted study gave raise to the delivery of the compounds and predictions.
To the best of our knowledge, this is the first open access large-scale screening
of antitubercular compounds, paving the way for future nonprofit R&D against
TB. From a logistic perspective, this project also illustrated how Academia-
Industry collaborations can improve the efficiency of R&D programs.
Finally, future experimental validation and putative clinical development would
significantly increase the value of the presented studies.

4.2.3. Limitations

Most of the methodological limitations are inherent to the applied ligand-target
prediction methods. Concretely, nAnnolyze’s limitations, which are discussed
above, are also applicable to this study.

Some limitations and problems may emerge due to the combination of different
methodologies. Although combination of multiple methods reduce individual
biases limiting the amount of noise on the final predictions, it might also give
rise to the loss of unique, and perhaps real, compound-target pairs predicted by
a single method.

Interestingly, compounds with activity against human targets could be compro-
mised by toxicity. However, the study did not specifically check for human
off-targets because of two main reasons. First, the antitubercular compounds
have been filtered by a human in-vitro toxicity assay. Second, empirical ev-
idence suggests that antibiotics side effects are mostly due to high treatment
doses associated with damage to the liver [247].

The study assumed that all the compounds perform their anti-infective activity
through the modulation of a protein target. However, there are antibiotics that
perform their activity through different mechanisms of action [158]. In such
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cases, the method will not identify the actual mechanism of action.

The study did not include any information about drug resistance. One of the
major problems of bacterial infections is the emergence of resistant strains not
responding to standard treatments. Such information was not considered in the
model and may have a dramatic impact in the development of new non-resistant
antibiotics.

Finally, none of the predictions have been experimentally validated in this
study. Therefore, all the provided predictions need to be carefully considered.

4.2.4. Future perspectives

One of the near future goals consist on applying the same methodology to new
sets of antitubercular compounds. Moreover, we are planning to apply similar
combination of methods to other diseases and organisms.

Future applications would benefit from the improvement of each of the methods
used in the study. Furthermore, including new features such as compound’s
predicted side effects or ADMET profile, would increase the level of detail
of the predictions enabling the prioritization of those compounds with higher
chances to become an approved drug.

Similarly to targeted cancer therapy, antibiotics suffer from a major limita-
tion. The effect of the treatment is often temporary due to the emergence of
drug-resistant strains. TB is not an exception. The emergence of MDR-TB
and XDR-TB jeopardizes the prognosis of many TB patients. Combinatorial
regimes are a promising alternative to overcome resistance to cancer (Sub-
section 1.5) and bacterial infections (Subsection 1.3.1) treatments. Therefore,
computational identification of antibiotics combination can lead to the develop-
ment of less resistant therapies. In our specific case, after the initial annotation
of compound’s targets, we would include a second layer identifying compounds
combinations with positive resistance profiles.

Finally, as discussed above in Subsection 4.1.4, experimental validation of the
compound-target pairs would significantly increase the value of the presented
work, taking a step forward in the fight against MTB infection.
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4.3. Rational design of non-resistant targeted cancer therapies

4.3.1. Main findings

This chapter presented a computational framework aiming to connect the mu-
tational landscape of tumors with the drug-resistance phenotype generated by
cancer-associated mutations in drug targets. Firstly, it introduced a computa-
tional model that predicts the probability of generation of spontaneous muta-
tions in drug targets. The application of such model showed that the mutational
profile of drug targets is cancer specific. Next, it introduced a Random For-
est Classifier (RFC) that uses structural and sequential information of the drug
target complex to predict the drug binding affinity change upon mutation. Ap-
plication of the model to the EGFR-gefitinib and ERK2-VTX11e targeted can-
cer therapies identified some of the known resistant mutants alongside other
new unseen mutations predicted to confer resistance to these therapies. Inter-
estingly, the structural localization of the resistance mutations suggested that
ATP plays an essential role in the spontaneous emergence of resistant mutants.
To conserve the kinase activity, drug-resistant mutants need to conserve, or
increase, the binding affinity of the ATP-analog substrate. Consequently, pre-
dicted drug-resistance mutations negatively interfering with ATP binding might
be, in reality, non-functional.

Finally, for those mutations labeled as resistance-like, the model also predicted
alternative non-resistant target inhibitors. Large-scale prediction of alternative
small molecules sensitivity enabled the connection between the pharmacologi-
cal space and the mutational landscape of EGFR and ERK2 in a cancer specific
context.

4.3.2. Impact of the presented research

To our knowledge, this is the first machine learning model specifically applied
to de-novo detect the resistance-associated phenotype caused by mutations in
drug targets. The model does not require information about drug sensitivity
across cell lines, patient-derived tumor xenografts or patient’s genetic profile.
Rather, the predictions are only based on sequential and structural features of
the drug target interaction. Thus, it can be easily applied to any drug-target-
mutation structural complex.

The study showed that the mutational landscape of drug targets varies across
different cancer classes. Hence, the emergence of drug resistance to a given tar-
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geted therapy is associated to the treating cancer class, at least, in those cases
where the generation of spontaneous target mutations is the responsible mech-
anism of resistance. This result supports the conception of treating each cancer
uniquely, pointing out the importance of studying the patient’s genetic profile
prior to apply any cancer treatment.

The framework can be applied to attain two main objectives: i) to anticipate
which are the target mutations that may induce drug resistance to a given tar-
geted cancer therapy and ii) to detect alternative non-resistant molecules for
mutations conferring resistance to a targeted cancer therapy. On the one hand,
the first objective helps to identify those mutations with adverse pharmacolog-
ical profile given a particular targeted cancer therapy. The second objective,
on the other hand, may guide the search for alternative molecules once the pa-
tient has already developed drug resistance as well as when the patient’s genetic
profile looks unfavorable for a particular targeted therapy.

In practical terms, we analyzed the pharmacological profile of more than 400
EGFR-mutations for gefitinib treatment and more than 400-ERK2 mutations
for VTX11e therapy. In both cases, we also provided a compound-mutation
sensitivity map of alternative small molecule inhibitors. All the analyzed data
alongside the predictions will be freely available online once the manuscript is
published.

Overall, this study illustrated how cancer therapies may benefit from the devel-
opment of in-silico models assisting to the selection of the optimal treatment.

4.3.3. Limitations

This model focuses on identifying mutations decreasing the binding affinity of
drugs acting on a protein target. This is one of the most frequently reported
mechanism of drug resistance in targeted cancer therapy. Nevertheless, there
are multiple alternative mechanisms of drug resistance not considered by the
model [213]. Moreover, the model only works for single amino acid mutations.
That is, it does not consider double, triple or multiple simultaneous mutants.

The likelihood model only considers the probability of generation of mutations
associated with cancer. Therefore, it does not consider pre-malignant somatic
mutations or germline variations. Such variations may also have an important
impact in the emergence of drug resistance. Another limitation of the likelihood
model is that its predictions are based on average probabilities from hundreds
of patients samples. Therefore, the predicted likelihood shows global trends
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but it is currently unable to capture specific characteristics of individual can-
cer cases. Finally, the likelihood predictions are static (i.e., the model does not
explicit consider any information about tumor size, clonal evolution or time).
Including dynamic information about the tumor evolution would help to esti-
mate the probability of emergence of mutations in a tumor more accurately.

The resistance model also suffers from other limitations. One of the major lim-
itations is related to the structural nature of its predictions. It does require the
3D complex of the drug with the target to perform its predictions. In spite of
most of the FDA-approved drugs have been co-crystallized with their main pro-
tein targets, there are several lacking of experimentally determined structure.
A distinct questionable aspect is the relatively small size of the training set.
Moreover, the training set was originally unbalanced, which could induce a
bias towards the most populated classes. This problem was soften by balancing
the original training set.
Another aspect not explicitly considered by the model is the role of ATP in
the emergence of resistance mutations in kinases. We proposed that ATP plays
an important role by confining the number of mutations that both preserve the
catalytic activity of the kinase and decrease the affinity of the kinase inhibitor.
Therefore, those predicted resistance-like mutations adversely interfering with
ATP may be in reality non-functional.

Finally, it is important to keep in mind that some external errors, which neg-
atively affect the performance of the model (e.g., modeling errors or virtual
docking miscalculations), might have been introduced over the training and
prediction processes.

4.3.4. Future perspectives

One of the short-term goals is to extend the application of the model to other
targeted cancer therapies. The very likely increase in the number of experimen-
tally determined 3D structures will expand the spectrum of targeted therapies
amenable to be studied by the model. Furthermore, the growth would enlarge
the number of candidate alternative compounds included in the search for non-
resistant therapies. Finally, the model’s training set, would also benefit from the
inclusion of new instances, which would be eventually translated into a more
accurate models. Therefore, we believe that the future can only increase the
quality and the quantity of the predictions.

The likelihood model and the resistance predictor are also susceptible to be
improved. As mentioned before, the likelihood predictions are average-based.
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The average do not necessarily represent particular patient cases and there-
fore, the estimations may lose individual trends. However, including informa-
tion about the patient’s genetic profile, such as pre-existing somatic mutations,
germline variations or the individual mutational signatures; would give a more
personalized estimation of the mutational likelihood. The resistance predictor
may also incorporate new features. For instance, the development a classifier
allowing double or triple mutants. To do so, we would need a training set in-
cluding such types of mutants, which at this moment is too narrow. Another
interesting feature, which was discussed above, is the role of ATP (or ATP-
analogues) in the generation of functional mutants in protein kinases. In the
current model the role of each mutation for the binding of ATP is not explic-
itly considered. Including such feature would enable the prioritization of those
mutations more likely to be functional.

Populations of tumor cells are very heterogeneous and may contain a large
amount of somatic mutations. As a consequence, a target protein might harbor
multiple distinct mutations in different subpopulations of tumor cells. Hence,
in order to skip drug resistance, the anticancer drug needs to be simultaneously
active against all the co-existing mutations. This an extremely difficult task,
specially in highly-mutated tumors such as colorectal cancer or melanoma. I
propose an alternative consisting of a rationally designed optimal combination
of molecules able to overcome resistance to mutations present in a population
of cells. Combining the predictions from the resistance model and information
about tumor evolution, might lead to the development of non-resistant com-
binatorial targeted cancer therapies. Future work ought to focus on this idea
too.

As discussed above in the other projects , experimental validation of the predic-
tions would significantly enhance the value of the model. It would also enable
the identification of both those cases were the model is more suitable and those
cases where its performance decreases significantly.

Finally, the resistance model has been applied here to predict mutations likely
to confer resistance to targeted cancer therapies. However, it might be applied
to other systems and organisms. An example might be an application to detect
mutations likely to confer resistance to antibiotics targeting bacterial proteins
(such as those mentioned in Subsection 3.2).
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5 Conclusions

We developed nAnnolyze, a network-based comparative docking method
that enables large scale and structurally detailed prediction of ligand tar-
get interactions.

nAnnolyze was applied to predict the human targets for all FDA-
approved small molecule drugs. The application identified some of the
known molecular targets and also provided new potential drug-target in-
teractions.

The method alongside the predictions are available online in http://
nannolyze.cnag.cat.

nAnnolyze was also applied to predict the bacterial targets of two sets of
antitubercular compounds. The predictions were combined with the pre-
dicted targets of two orthogonal approaches exploring different method-
ological spaces.

Most of the predicted molecular targets were involved in amino acid
metabolism pathways essential for the survival of Mycobacterium tuber-
culosis.

We developed a model predicting the cancer-associated mutations likely
to be responsible of resistance to a particular targeted cancer therapy.

The model first estimates the likelihood of a mutation using the muta-
tional signatures associated to the treating cancer class. Next, we used a
RFC that leverages structural and sequential features of the ligand-target
interaction to predict resistance-likeness of each target mutation.

For those mutations classified as treatment-threatening, the model iden-
tified alternative non-resistant molecules predicted to overcome drug re-
sistance.
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