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Genomic interactions reveal the spatial organization of genomes and genomic

domains, which is known to play key roles in cell function. Physical proximity

can be represented as two-dimensional heat maps or matrices. From these,

three-dimensional (3D) conformations of chromatin can be computed revealing

coherent structures that highlight the importance of nonsequential relationships

across genomic features. Mainstream genomic browsers have been classically

developed to display compact, stacked tracks based on a linear, sequential, per-

chromosome coordinate system. Genome-wide comparative analysis demands

new approaches to data access and new layouts for analysis. The legibility can

be compromised when displaying track-aligned second dimension matrices,

which require greater screen space. Moreover, 3D representations of genomes

defy vertical alignment in track-based genome browsers. Furthermore, investi-

gation at previously unattainable levels of detail is revealing multiscale, multi-

state, time-dependent complexity. This article outlines how these challenges are

currently handled in mainstream browsers as well as how novel techniques in

visualization are being explored to address them. A set of requirements for

coherent visualization of novel spatial genomic data is defined and the resulting

potential for whole genome visualization is described.
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The microscope is the emblematic tool for visualizing

biological material. From Hooke’s Micrographia to

super-resolution imaging, observation resolves biol-

ogy at progressively higher levels of detail. And at

the far atomic scale, physical models of molecules,

from DNA to proteins, have pieced together the

invisible toolkit of life. Between these two resolution

ends (i.e., from 10 to 200 nm), the genome cannot

be easily observed [1]. However, this is now being

bridged by a number of techniques revealing a hier-

archical, spatial, and dynamic architecture of the

genome [2]. Closing this ‘resolution gap’ would bring

a convergence of knowledge with the opportunity

for integrating multiple data types to produce whole
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genome models, that is, providing a virtual genomic

‘microscope’.

The genome is encoded in DNA as a first dimension

(1D) of instructions, which correspond to genes and

their regulatory elements. A second dimension (2D) of

elements, generally referred to as epigenetics, influence

how genes are regulated. Finally, the spatial organiza-

tion of chromosomes has been seen as a third dimen-

sion (3D) of the genome. For the last decade, and

thanks to technological developments in imaging and

molecular biology, we now know that these three

dimensions of genomes form a complex hierarchy of

functional and dynamic relationships that change

between cell types and throughout the cell cycle [3].

This has cemented the importance of integrating all

dimensions to a complete understanding of the

regulation of the genome.

Research into this 3D has emerged from break-

throughs in microscopy, molecular genetics, and high-

performance computing. Super-resolution microscopy

is now surpassing light-diffraction limitations below

200 nm to reveal fine grain structures for in vivo

nucleus topology [4], the development of chromatin

networks [5], chromatin folding for different epigenetic

states [6], and tracking of genomic elements [7]. Com-

putational techniques [8] are now used to construct a

spatial understanding of genome function, inferring

gene regulation from chromosome conformation cap-

ture (3C)-based experiments [9], exposing functional

organization through polymer physics [10], and chro-

matin dynamics by atomistic nucleosome models [11],

among others. Data recording these 3D aspects of the

genome, principally from sequence-derived quantitative

methods, has started to be aggregated into existing

genome browsers but the process presents a number of

challenges [12]. For example, the data are large and

diverse, with multiple, interrelated attributes [13] and

requiring clear, coordinated strategies to data steward-

ship [14] to enable analysis.

Three-dimensional visualization of complex and

large-scale genomic data has been key to discoveries

over the last 50 years [15]. Human perception has

evolved to quickly and intuitively find and make pat-

terns to build comprehension and, when correctly con-

structed, to reflect ‘truthfulness’ of data [16]. Graphic

representations make data accessible, tractable, and

digestible, for fast and precise communication. Today’s

genome browsers were developed in direct response to

the task of handling and analyzing a plethora of 1D

and 2D data [17] typically displaying linear sequences

as horizontal tracks, aligned and stacked below the

reference nucleotide sequence. However, beyond the

logistics of data management, there are challenges in

visualizing 3D data. In general, 3D representation can

cause distortion and occlusion of the data due to per-

spective, lighting, and the complexities of human

visual processing [18]. Specifically, the novel, dense,

and complex nature of genomic 3D data present chal-

lenges in representing, interrogating, and interacting

with visualizations to facilitate the discovery of novel

insights [19].

Previous publications have reviewed the wealth of

tools to browse genomic data [20,21] and recently, visu-

alization tools for genomic 3D data [22]. Yet this is a

fast maturing field with new discoveries, techniques, and

tools that requires ongoing analysis to ensure valid and

innovative investigation. Moreover, the nature of the

data and the novel demands they place on visualization

oblige reconsideration of conventions of existing tools.

We describe first the challenges inherent in 3D data:

massive, multiple data types and scales, uncertainty and

states, dynamic time dependence, accessibility, and inte-

gration of the data. Then, we discuss the visualization

challenges specific to 3D data: task definition, grammar,

abstraction, rendering, inspection, navigation, work-

flow, responsiveness, and publication. For each, we pre-

sent existing examples to help describe the challenges

and the current state of the art in addressing them.

Finally, we discuss the overall situation and indicate fur-

ther lines of investigation into the visualization of 3D

genomic data.

Multifaceted genomics data

Three-dimensional genomic data encompass a number

of very distinct data types. Microscopy technologies

scan subcellular structures and can detect specific

genomic features via ‘painted’ loci producing layered

images that can be used to generate 3D models as well

as accurate spatial measurements for calculation and

validation of genome architecture [23]. 3C-like experi-

ments can also identify the proximity of chromatin

fragments by indicating interactions between regions

of resolutions up to 1 kb [24]. In particular, Hi-C

experiments, which result in an all-to-all genome-wide

interactions map, can be used to infer chromatin com-

partments, domains (or also called topologically asso-

ciating domains, TADs), and loops [25].

Computational processing of these matrices can derive

into 3D models of the most probable overall spatial

conformation. Such coarse grain models can also be

constructed from molecular dynamics (MD) simula-

tions of chromatin properties in stochastic environ-

ments [10]. At the smallest resolution, small

biomolecule and nucleosome models can be con-

structed from strings of discrete, atomic crystals with
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MD also being used to describe their behavior [26].

Therefore, a large range of types and file sizes are

needed for a complete description of the 3D genome,

which generates a consequent burden on browsers.

This variety of data (Fig. 1) is further complicated by

the nature and extents of the data attributes of multi-

scale, multistate, time dependence, and uncertainty

[13].

Multiscale

We can now record 3D aspects of entire genomes

across a large range of physical sizes, from the few

microns of the nucleus to the few nanometers of

nucleosomes [27]. These can be pictured as the levels

of magnification of a virtual microscope, each of

which may contain several distinct data types, with

distinct experimental resolutions, as a consequence of

the advantages/limitations of the used experimental

methods to study them. Situating each piece of data

within this hierarchy helps delineating the scope and

resolution of each scale from which the coverage and

relationships of the datasets can be determined. In

conjunction, these levels not only form a multiscale

model of the data but also conceptualize the multi-

scale nature of the nucleus. The data at each scale

can also depict the genome in distinct forms, with

stratification by physical delimitation (e.g., chromo-

some territories), assembled colocation (e.g., compart-

ments or TADs) or derived functionality (e.g., TADs

or loops).

Multistate

This multiscale model is not static as the data also likely

represent distinct states of the genome. Uppermost, dis-

tinct epigenetic states describe diverse genomic functions

that may alter the expression of resident genes. It is now

known that variable states depend on biochemical

mechanisms altering the physical nature of chromatin,

and thus altering its physical properties and spatial

organization. Chromatin may be folded into the so-

called open or closed states [23], and may be compacted

at different densities [28] making genomic regions acces-

sible or inaccessible to processing biomolecules. These

two coarse states of the genome, which relate to the

original hetero- and eu-chromatin, have been further

classified into several other states [24], which can have

an impact on how genomes are structured.

Time dependence

Experimentally, data generation may be affected by

time in the process, protocols, execution, interruptions,

Fig. 1. Multifaceted genomic 3D data. The 3D data in genomics are multiscale, multistate, time-dependent, and contain uncertainties that

make their representation challenging. For example, there has been multiple types and forms to visualize genomic data in 3D from the cell

to the nucleotide, each of them with specific particularities and specific representations.
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time required for biochemical reactions etc. These

time-dependent aspects of experimentally interrogating

the genome architecture, are embedded within a source

of variability that is more fundamental. Indeed, experi-

ments interrogating 3D genomes also capture the order

of events describing how the genome structure changes

over time due to biologically relevant processes. For

example, 3C-based experiments can capture nuclear

transformation during cell cycle [29,30], which show

that changes in chromatin interactions over time play

a role in controlling expression fundamental to cell

function. Finally, polymer physics and MD are being

used to reflect time as a fourth dimension for biochem-

ical mechanisms of the nucleus. As such, 3D data

extend the dimensionality of the genome into what is

nowadays described as the dynamic genome or the 4D

genome.

Uncertainty

In addition to reflecting biology, experiments imbue

data with uncertainty due to limited coverage, unspeci-

fic samples, unusable output, or restricted focus. Fur-

thermore, raw experimental data, which needs to be

processed considering the particularities of each experi-

mental protocol, may increase its noise/uncertainty

once parsed and analyzed. Each data type therefore

contains biases that need to be accounted and robust

analytical tools are needed to assess the confidence on

the final 3D data to visualize [31].

Data accessibility

As mentioned above, experimental analysis of gen-

ome organization requires various data types, which

may be produced by others elsewhere. Publically

accessible 1D reference genomes have not only

ensured efficient use of resources but also provided a

coherent baseline against which related data can be

assessed and validated. For example, retrieval under

the Browser Genome Release Agreement (BGRA,

http://www.ensembl.org/info/about/legal/browser_a

greement.html) requires consistent sequence and

assembly identifiers. These providers manage data

streaming to reduce network load and end-user wait

times by creating endpoints and application pro-

gramming interface (APIs) like Track Hubs for easy

access. Unfortunately, most 3D data remain accessi-

ble only by direct download from the labs, through

nonspecialized databases or as supplementary publi-

cation data. While some 3D datasets have been sub-

mitted to UCSC and Ensembl as part of the BGRA

or other special collections, there are no generally

accepted and established specific repositories for 3D

genomic data.

The data from super-resolution microscopy consists

of the raw images with metadata and processed binary

spot list, which contain coordinate data and image

attributes such as frame, intensity, peak shape, etc.

These files are unwieldy with raw file sizes of around

10 GB (60 MB when processed). However, these are

now being catered for the new image data resource

(IDR) initiative for coordinating imaging with genomic

data built on the open microscopy environment’s

(OME) OMERO image data management platform

[32]. OMERO uses the BioFormats tool that also pro-

motes harmonization of formats via the open OME-

TIFF, which enable rich metadata while capturing

multiple states or time frames within a single file [33].

At smaller scales, EMPAIR archives electron micro-

scopy raw 2D data and the electron microscopy data

bank (EMDB) stores 3DEM models.

Interaction data (i.e., 3C-based experimental data)

lack dedicated repositories but can be made to fit with

conventional repositories and track browsers as it

records genomic loci pairs and associated scores (inter-

action counts). For example, such data can be visual-

ized by the WashU Epigenome Browser by reading in

tab-separated text [34] similar to Bedtools BEDPE for-

mat [35]. The Juicer software can also read and ana-

lyze 3C-based interaction data by converting

experimental reads into a tool-specific Hi-C format,

which can then be visualized using the Juicebox brow-

ser [36]. Finally, the TADBIT software [8] can output

complete experimental dataset in standard JSON for-

mat, which can then be imported and visualized using

the TADkit 3D browser. Importantly, data accessibil-

ity and portability in 3D genomics still require some

time to develop a widely accepted format for storing

and disseminating interaction data and models. The

most recently developed longTabix format from UCSC

Genome Browser [37] could be used for such task but

still lacks ways of representing multiple states or time

frame datasets.

Coarse grain restraint-based models derived from

interaction data result in 3D objects represented by

sets of Cartesian coordinates [38]. A large number of

formats can capture such positional data with states

and dynamics (e.g., mmCIF with TNG trajectory for-

mat [39] or the VMD trajectory format [40]). However,

and unfortunately, such datasets are usually provided

as flat text files or hacked into extended PDB files [41].

While the latest facilitates distribution and portability

to computational tools, this obliges the results to be

adapted on an ad hoc basis, reducing potential for

standardized, reproducible data integration, which
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may induce undocumented errors. Moreover, the clas-

sical PDB format must contain ‘< 62 chains and/or

99999 ATOM records’ and so it is unsuited to larger

genome structures. The updated format, mmCIF,

addresses these limitations but remains atom-based,

which still requires hacking to store large objects such

as entire genomes. Finally, this approach is compli-

cated to import into existing molecular tools that

expect atomic coordinates as well as pushes the limits

of the GL-based visualizations. Given the size and

complexity of the new macromolecular structures,

RSCB-PDB recently launched the innovative macro-

molecular transmission format (mmTF), which has

greater compression for faster transfer while retaining

efficient parsing. While the technique is instructive, the

format is targeted at macromolecules and does not

address the issues of file access in genomic structures.

High-speed Internet connections and chunked data

requests may ease data transfer. However, the ideal

strategy for both coarse grain and atomistic 3D mod-

els of genomes would be use of spatial data structures

(e.g., OctTree, BallTree k-d, etc.) although currently

none of the newer formats discussed here take advantage

of this.

Data integration

The data detailed above are varied and the forms of

access have been uncoordinated. However, these data-

sets are better studied in coordination by integrative

approaches. Bringing together multiple types of data

from a variety of sources, many of which are not

easily centralized is a challenge. It is essential for confi-

dence and utility of the data that ease of access and

explicit identification is assigned to any dataset. This

labeling would ideally be done on output from produc-

tion (i.e., by the software or machine) but including

backlog or historic data (i.e., verification and assigna-

tion). To implement this, a number of common attri-

butes must be identified and included in all data, for

example, experimental technique, domain, organism,

chromosome, source, etc. These attributes can be

added as file annotation in various ways (i.e., meta-

data, tags, headers, xml, or in an independent data-

base). And filenames can, as in our own 4DGenome

experimental procedures [42], represent experimentally

pertinent details: User, Experiment ID, Biological

replicate ID, Technical replicate ID, HTS application.

This would lead toward the goal of producing whole

genome models, storing 3D data, or DOI links to

them, within a single file.

There have been a number of attempts at establish-

ing standard formats describing multiscale genomic

data. The earliest GENOME3D generates OctTree spatial

data structures with four levels: ‘nuclear’ coarse grain

model; ‘fiber’ of random-walk chromatin; ‘nucleosome’

decorated strands; ‘atomic’ sequence-derived helices

[43]. Gmol developed a GSS format which stores mod-

els in a six-level hierarchy of genome organization:

‘genome’, ‘chromosome’, ‘loci’, ‘fiber’, ‘nucleosome’,

and ‘nucleotide’ [44]. More recently, following recom-

mendations by the wwPDB integrative methods task

force [13], the Sali Lab has developed the Integrative

Hybrid Model format IHM-mmCIF to store integra-

tive models based on 3D data including restraints. For

standard genome browsers, the mmCIF format import

is not currently available and, apart from the interac-

tion data, would need the development of new display

modules.

As such, these 3D data are novel, massive, and com-

plex. They present challenges in coordinating and

implementing an integrated view of the genome

beyond a simple cartographic zoom for transitions

across data types, resolutions, forms, and ontologies.

Associations need to be created between disparate data

on different levels so as to assemble a multiscale/state

model. Moreover, it is important to portray variance

and time in the models. However, this is not typically

displayed in browsers, and the way it can be included

is currently neither easy nor standardized. These issues

of data stewardship have been widely discussed in the

field of molecular biology from which has emerged the

FAIR set of principles for scientific data management:

Findability, Accessibility, Interoperability and Reuse

[14]. Against this framework, the flaws inherent to 3D

genomic data are: lack of common, consistent, descrip-

tive metadata, storage, and formats. And even if geno-

mic 3D data would match the FAIR principles, its

visualization in current genome browsers would repre-

sent a frozen moment/scale in the genome.

Data visualization

Visualization is a task-driven process that assists the

user on iterative steps toward the goals of identifying

the patterns, finding the connections, and determining

the mechanisms behind the data [45]. The complex

nature of biological processes reflected in the inter-

leaved scales, states, and phases of 3D data, and the

multidisciplinary research that this requires, makes it

impossible to clearly define all required tasks. Special-

ized 3D data browsers, such as 3D-GNOME [46] and

Genome3D.eu [47], are task focused, leading the user

through data selection, filtering, and mining to pro-

duce 3D visualizations aligned to tracks. Of particular

note is NCBI’s ‘Twelve Elements’ white paper [48],
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which explicitly defines tasks for their new ICN3D brow-

ser [49]. Their recommendations are in line with other

task analyses for 3D protein [19] and biological path-

way [50] visualization tools and serve as a comprehen-

sive basis for other classes of 3D data. From this, we

define a taxonomy of 3D tasks outlining essential fea-

tures of 3D genome visualization. These tasks indicate

the core challenges in giving the data context and in

highlighting key facets of the data [51]. Together with

the FAIR treatment of the data detailed above, these

form the initial steps in visualization [52]: acquire large,

multifaceted, diverse datasets; parse the data to man-

age, structure, and annotate them; filter to correct for

experimental artifacts, biases, and select the relevant

data; and mine for statistical relevance [22]. The subse-

quent visualization steps present further challenges: to

represent new objects, abstractions, and variations of

the data; to refine by adding definition, clarity, and dis-

coverability to find patterns in the data; to interact by

selection, navigation, curating to test hypotheses, form

conclusions, and to share the insights.

Data representation

Grammar

A fundamental rule of visualization is that the choice

of representation should most correctly portray the

data and dataset types [53]. 3D genomic data record

spatial structures, in particular, the compaction of

DNA as chromatin conformations that form compart-

ments and TADs, which emerged from interpretation

of the 3D data. Therefore, although the data can be

analyzed as is (interaction maps), interpretation and

representation of the underlying physical form remains

a core task [54]. By taking advantage of human shape

perception, 3D representation can also assist the

exploratory analysis of complex objects. However,

there are caveats that need to be addressed: visualiza-

tion is affected by the limitations of spatial perception

and memory, namely comparison of nonplanar ele-

ments, judgment of depth, and comparison of ani-

mated objects [55]. In particular, 3D representations in

visualization are a challenge as they can reduce effec-

tive visualization due to object occlusion, perspective

distortion, and loss of legibility of tilted graphic ele-

ments [56]. Given the nascent state and the diverse sci-

entific approaches of 3D genomics research, there is

yet to emerge a standard form of representation of the

spatial nature of genomes. In contrast to proteins,

where the field has accepted a ‘cartoon’ representation

of their structures [57], genomes have been visualized

with in a variety of representations (Fig. 2). However,

a limited number of 3D genome structures have been

characterized so far, with definitions generally

approaching: the nucleus membrane containing a neb-

ulous globule of chromosome territories with a skele-

ton network and an inner core of conserved structures,

condensing at interphase; the chromatin tubules of

varying width and densities of compaction [28]; amor-

phous bundles of these chromatin differentiate into

loose, active ‘A’ compartments and compact, repressed

‘B’ compartments; smaller fractal bundles of subdivi-

sions from TADs to loops; and at the lowest scale,

uncompacted chromatin as helical fibers of DNA; all

suspended within a maelstrom of biomolecules. So far,

most 3D representations have focused on chromatin

strands rather than other higher order structures. Visu-

alization tools such as genome browsers can provide

‘dictionaries’ of visual grammar. Unfortunately, no

automated 3D generation of such grammar exist for

chromatin data, save for the simple example of Chi-

mera’s multiscale models extension which outputs low-

resolution models of molecular structures [58]. That

said, the library of macromolecules and the rendering

software is increasing in capacity and may eventually

encompass these larger scale genomic structures for

inclusion in whole cell models [59].

Abstraction

Another approach to overcoming the challenges of

representing 3D data is to abstract or reduce data

dimensions (Fig. 3), a habit innate to humans. The

mapped surface can then also become a visualization

2D space, aiding cohesion, and orientation of data, for

example, as used in Multeesum [60], Space Syntax [61],

and Route-Zooming [62], among others. The sequence

coordinates themselves can be abstracted to adapt to

other data, (e.g., by stacking regions [63] or focusing

only on transcript scopes [64]). ABySS-Explorer adds

granularity to permit visual accentuation of the

sequence [65]. The sequence can also be arranged non-

linearly represented as a Hilbert graph, a fractal

arrangement of the coordinates within a square pro-

ducing compact, navigable maps of whichever data

values are assigned to each coordinate [66]. An inter-

esting variation on this is the H-curve which assigns

nucleotides to quadrants and draws the genome along

the Z-axis to reveal features such as translocations,

motifs [67]. Finally, a more radical approach is to take

advantages of other information channels, such as the

auditory, to augment the visual field with fine grain

information [68].

Interaction data are also, by definition, an abstrac-

tion of structure captured within the cell nucleus. A
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whole genome view of interactions is gained by creating

a matrix or heatmap, which can be the basis for a

browser layout. This has been demonstrated by

Juicebox that aligns tracks to matrix edges [36]. Alter-

natively, being symmetrical along the diagonal, half-

matrices have been aligned along this diagonal to data

in genome browsers, although this causes excessive

track height. The more typical method is to create a

visual link between the interacting regions, first shown

in the WashU Epigenome Browser [34]. The UCSC

browser has only just introduced the ability to display

interactions albeit styled like architectural dimension

lines [37]. More importantly, the far genomic distances

they span, which is unaddressed by most track brow-

sers, can be addressed by sectioning tracks to display

side-by-side only the ranges around two nodes being

connected, as in WASHU and VISPIG [69]. Another

approach is that of annular graphs, such as the archety-

pal Circos browser, which tackle this with circular track

showing transgenomic connections across the central

area [70]. In contravening formal reading direction,

they reduce legibility but this is counterbalanced by the

greater overview of data and exposure of patterns com-

pared to linear tracks as shown in the Rondo genome

browser [71]. When 3D structures are inferred from the

interaction data, their forms need not be simulacrums

of the chromatin. This is comparable to ribosome hair-

pins which lend themselves to a flattening of their con-

formations [72]. While genomic structures are

topologically more complex, such layouts may also be

applied to the genome as seen in the SYNTENY Explorer

[73], by judicious summary of secondary structures as

in LIGPLOT+ [74], by characterization of molecular inter-

action forces [75], or by accepting a degree of overlap

LKJI

HF GE

DCBA

Fig. 2. Data representation. Examples of genomic data representation. (A) WashU Browser (1D/2D), expansive matrices and arcs; (B) UCSF

Browser (1D/2D), bracketed interactions: (C) HiCExplorer (1D/2D), track annotations; (D) VisPIG (1D/2D), segmented browsing with detail

zoom; (E) Jucier (2D), matrix focused browsing; (F) Globe3DV (2D/3D), everything on view; (G) Genome3D (3D), multiscale browser; (H)

3DGB (3D), spatial paradigm; (I) HiC-3DViewer (3D), multichromosome view; (J) Chrom3D-VR (3D), interactive manipulation of data; (K)

TADkit (1D/2D/3D), TAD visualization; (L) Gmol (3D), multiscale browsing.
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achieved by ChromoVis for chromatin fibers (D. Filip-

pova, G. Duggal, R. Patro & C. Kingsford, unpub-

lished data). Surface molecular models can also be

abstracted by spherical projection of accessible external

surfaces to create a cartographic map [76].

Variation

Visualizing the variability within genomic data is essen-

tial for giving a true representation of the attributes,

states, uncertainty, and dynamics described by the data,

and for setting the biological context. Animation con-

veys multiple changes in data form, situation, and attri-

butes over time while allowing the viewer to maintain

context and easily tracking changes [77]. However, sta-

tic images and orthographic projections have been

shown to enable more precise judgments of measure-

ment [78]. Conventional browsers have limited ability

to toggle or transition between superimpositions or seg-

ments of states or phases. Furthermore, 3D data cap-

ture collections of change events, and although it can

be animated, unlike a cinematic animation, is not struc-

tured for narrative clarity. However, techniques such as

flowlines [79] or streamlines [80] can annotate models

and extend tracking to enhance comparison [60].

Data refining

Classification

Finding patterns within data is a core task of visual-

ization. Ontologies such as those managed by the

EBO assist identification of data objects through the

Zooma tool [81]. While a number of 3D structures

have been described as detailed above, classification

of genomic 3D data is still in its infancy. Although

the representation of 3D genomic form is not yet

fully developed, the structure of genomes can be

classified by known features, processes, and mecha-

nisms. For example, a region of chromatin could be

classified by its density, activity, or accessibility [28].

Indeed, the application of validation in browsers for

1D and 2D data already assists, but is far behind

for, the classification of 3D data. Aquaria is a suc-

cessful example of the use of precalculated classifica-

tions in the study and analysis of protein structures.

Aquaria not only integrates 3D models with

sequence data but also assists analysis with careful

visual design choices guiding and accentuating rele-

vant correlations across data dimensions [82]. More

dramatically, the potential brought by machine

P QONML

KJIHGF

D ECBA

Fig. 3. Data abstraction. (A) Flat surface map of green colored docking sites; (B) Transcript focused VariantView; (C) Added granularity in

ABySS-Explorer; (D) Conserved genomic regions in a Hilbert curve; (E) Genomes as 3D H-curves; (F) Synteny Explorer; (G) Abstraction in

Shavit genome browser; (H) Flowlines indicating submolecular motion; (I) Horizon graphs for stacked data; (J) Small multiples as curvemaps;

(K) Multistate expression data as rose-ring; (L) 3D annotation in AutoDesk Molecular viewer; (M) 3D selection from track in Aquaria; (N)

Cross-dimensional section in TADkit; (O) Layout design in Sushi; (P) Chromos VR visualization of chromatin active loops; (Q) Synchronized

object and track selection in Unity.

8 FEBS Letters (2017) ª 2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

Challenges for visualizing 3D data in genomic browsers M. Goodstadt and M. A. Marti-Renom



learning with high-performance computing (HPC) is

already being applied to the rapid exploration of

structure and function. However, here the challenge

is in finding synchronization between the processing

time required and the user interaction within a

browser.

Comparison

Pattern discovery/classification is not only useful for

creative expression but also facilitates comparison [83].

Side-by-side comparison is a common didactic

resource in infant education and is suited to 3D data

slices like bioimages or 2D abstractions as graphs and

matrices [84]. However, such a comparison places

demand on user’s internal memory which becomes

untenable with large or dispersed datasets. Track-

based browsers rely on vertical visual assessment,

which imposes significant distance between the data to

compare once more than two tracks are displayed.

One solution could be avoiding vertical stacking by

clustering or stacking in the z-axis similar to horizon

graphs [85]. 3D data, such as interaction matrices and

3D viewports, only serve to increase the problem of

layout spread. Moreover, 3D datasets contain large

point-sets that are spatially and temporally distributed,

which make comparison especially challenging. Anima-

tion permits comparison while maintaining context

and easily tracking changes, especially when forward-

reverse controls are to hand, or the animation swings

forward-reversed looping of a short-animated path.

But when there are a large number of changes,

change-blindness outside the focus of attention renders

comparison almost impossible [86]. Removal of

unchanged data can mitigate this effect by Boolean

operations on the representation, as seen in Vari-

antView, or by taking advantage of visual acuity in

view switching (e.g., creating jump-cuts for ‘blink’

comparison) [87]. Another method that has proved

particularly useful for comparison is fragmentation of

large sets or sequences into smaller frames or multi-

ples, which when placed side-by-side highlight salient

features [88] such as pathlines or condensed normal-

ized icons in Multeesum [60] or rose-like rings [89].

Annotation

Quality visualizations provide fluid experiences, which

sometimes are haltered by the process of documenting

or annotating. Track browsers already provide tools

for doing this although few do so ‘on the fly’ and ‘over

the track’. Ideally this should be implemented such

that it remains not only within the user session but

also as metadata to the project archive and even the

data file itself. There are clearly issues in treating 3D

annotating concerning object obfuscation and text legi-

bility. However, text lists and genome tracks can serve

as guides to annotation in 3D, with map features such

as icon clustering providing means to add not only

readability but also summarization.

Data interaction

Navigation

An overview of the data is essential for an initial ori-

entation and subsequent navigation. These starting

points could be adapted from Ben Fry’s Strippy,

which, while not a physical representation, extols the

state of the art in both genomics and computational

graphics of 2002 [90]. More recently, other abstrac-

tions present a textured overview from which naviga-

tion can be intuited in, for example, whole matrices

[84] or 3D models [91]. In current genome browsers,

often a karyogram gives overall location and a scale-

bar of the chromosome tracks and coordinates of the

main base-pair track view. This overall view can show

different marks or glyphs, which at higher zoom levels

aggregate or transform to the next scale depiction.

Below the chromosome, genome browsers lack further

scales and, unfortunately, lose situational awareness.

Studies show limits to mental registration in visualiza-

tion navigation in 2D and 3D [92]. Addressing this

challenge would require both new data and spatial

overviews at different scales. The ontology of genomics

ranges from environment and population through

organisms, with 3D data covering the cellular, orga-

nelle, molecular, and atomic scales (Fig. 1). These bio-

logical scales equate to the levels of details used in

interactive visualizations and, in particular, in efficient

3D computer graphics. The levels therefore form the

basis from which coherent and effective visualization

can be constructed. Each data type can be assigned at

each level for clear orientation while navigating. This

has been attempted through file formats explicitly as in

GSS (genome, chromosome, loci, fiber, nucleosome)

and assigned per data type in the case of IHM-

mmCIF. However, these do not enable VRML-style

level of detail (LOD) navigation as in the Genome3D

viewer [43]. The key to address this challenge is data

inclusivity (i.e., all available data across all scales).

Unfortunately, in 3D genomics not all data are readily

available for all scales. Moreover, data may also be

dimensionless, unorientated, or simply reflect unstruc-

tured conformations. Where no data are available, the

level must be indicated as deficient, again giving clarity
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of extent and limitations of what is being represented

and also leaving room for future clarifications. While

navigating, the visualization must supply details on

demand. Advances in molecular graphics technologies

have made accurate rendering of highly detailed and

intricate models possible [26]. In particular, the

WebGL standards enable interactive rendering from

online data. Of course, there are limits given the size

and complexity of the whole genome model, but this

can still be provided with chunking, on-demand load-

ing, spatial data structures, integrative formats, and

ontology-based hierarchy of scales. Combined with

high-resolution screens, there is a good opportunity to

provide such large-scale high-detail visualizations

within a genome browser. The challenge is to find a

balance trade-off between adequate resolution and

responsive user experience.

Selection

The benefits from refining data by classification facili-

tate selection. Again, 3D data selection is a challenge

because of 3D obfuscation and the complexity of 3D

models [48]. The classification described above can

help address these challenges and advanced selection is

now being designed into genome browsers such as

ICN3D [49] and ChimeraX [93]. Conventional tracks

can also assist in selection of 3D elements as demon-

strated in the Aquaria protein browser [82] or 3D ani-

mation software such as Blender or Unity. As such,

the track as mere slices of the whole 3D model, remain

essential to navigation.

Curation and hosting

Visualization of data is not only an experimental step

but can serve as an experimental record or lab book.

The path of the data from source through processing

to representation and investigation can be recorded as

user projects, which will record the goals, the decisions

and actions taken, the arrangement and comparisons,

and the conclusions drawn. A pair of genomic coordi-

nates is a concise reference, defining simultaneously

the data range and the scale of investigation, from

homogenized data sources and correspondences visible

by vertical alignment. In contrast, 3D data visualiza-

tion is complex to document. Under the Integrative

Hybrid Models, there is a collection of scales and

states and times. In addition, given the 3D space rep-

resented, the point of view and level of observation is

as important as the visualization state. Collating this

can be assisted by automated saving of user actions

with default naming conventions. This becomes more

essential in collaborative working environments such

as MAGI [94]. As mentioned above, 3D data do not

contain a single linear narrative, and so the visualiza-

tion tools should be able to combine different types of

data into a single interactive workspace on screen—a

dashboard or storyboard. The visualization process

may appear to be exploratory, but by being task-based

it is a process of constructive story-telling, relying on a

flexibility of layout, and arrangeable components from

a library familiar to users of the specific research

domain. Such a shared vocabulary has been developed

over the years for genome tracks with similar glyphs

but there is no standard for the semantics of coding

tracks. Reduction of an experiment and the visualiza-

tion process into a 2D representation, for example,

SushiR [95], and in 3D by guided rendering suites like

PresentaBALL [96] and Molecular Flipbook [97]. But

interactivity is fundamental to the process of investiga-

tion through visualizations, and although publication

files can be easily shared through common hosting ser-

vices like Zenodo and Figshare, these are mainly

shown as static figures and animations. Embedding of

3D models as U3D files in the proprietary PDF for-

mat is possible but cumbersome to generate and has

not been widely adopted. In contrast, there has been

significant recent adoption of web components which

give the possibility of shared visualizations, through

common syntax such as the D3js-based Vega-lite [98]

or suites of graphs such as those found in the

BIOJS archive [99], although these currently lack

components specific to 3D data.

Conclusions and future perspective

The genome is three dimensional and its investigation

is no longer limited to a flat Petri dish or a linear

sequence, making it essential to record and depict its

spatial nature. The data that can be obtained today

present a number of challenges as they document the

genome in unprecedented extent and detail and with

new forms and relationships. There are distinct types

of data coincident at the different levels of biological

function, with complex interconnected attributes

incompatible with conventional storage and access.

Furthermore, the genome is shown to be dynamic,

changing in state over time both as cellular machinery

and as an evolutionary continuum across cell types

and species. A wealth of understanding can emerge

from coordination of the data, for example, by estab-

lishing ‘golden sets’ of reference structures. To this

end, standard formats for integrated, multifaceted data

are being created, and computational infrastructure

and storage criteria are being established for
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processing and serving up genomic 3D data. Achieving

this can be aided by the application of FAIR princi-

ples of data management but the challenges in visual-

ization exceed the capabilities of current genome tools.

The genome browser is an archetypal tool due to its

historic role providing unified access 1D and 2D data

but is evolving to integrate the new spatial data. By

combining techniques from across the sciences, these

data are closing the resolution gap around 20 nm,

however each discipline has a distinct perspective

reflected in the way they represent the data. Cellular

biology focuses downward from physiology on

sequence tracks, whereas the biochemistry gazes

upward from nucleotides at macromolecular models.

Neither perceives the whole and there remain struc-

tures in the data, between chromosome and chromatin,

that are unsatisfactorily represented by either browser

or 3D viewer. Bridging this visualization gap to pro-

vide a homogenized view of these genomic data pre-

sents specific challenges: defining a novel visual

grammar; augmenting analysis at scale; arranging sen-

sible viewpoints; and capturing the interactive reason-

ing. We have described above a number of approaches

and tools for conveying of 3D data that inform the

design and construction of such a tool. These sections

also define a data visualization process that is: Repre-

sentative of the data and the intent of the user; Inter-

active for thorough investigation; Curated to map the

scientific exploration; and Hosted, extolling FAIR

Reuse to enable validation and reproducibility. For a

complete and coherent view of the genome the data

must be FAIR and the visualization must be RICH.

Visualization relies on having the human ‘in the

loop’ to lift it above mere data processing and as

such, it must integrate with the need and methods of

the user. Today’s web-based technologies permit devel-

opment of tools that can be created as individual pre-

sentations and yet work fluidly in ensembles allowing

the novel tool can adapt to the different tasks of each

researcher. New forms of interfacing with the data

may produce unforeseen insights, as appears to be

occurring with the penetration of virtual/augmented

reality technologies, which are driving new standards

and explorations within genomics and its visualization

(e.g., spatial augmented reality haptics [100]). But

while these are seductive and well suited for expressive

communication through projects such as Chromos

[101], it is more important to maximize the use of the

3D data being produced by representing its detail

rather than increasing immersion. The domain of

structural genomics is still developing and new tasks

and further challenges will arise in the near future.

For now, current directions in visualization of 3D

data development are marking the first moves toward

the creation of an integral multifaceted view of

genomics.

Terminology and abbreviations

3D: The abbreviation ‘3D’ can prove confusing. Popu-

lar usage signifies objects of Euclidian geometry, typi-

cally described by Cartesian x, y and z coordinates.

However, it is commonly used in this field to refer to

datasets which describe the 3D structure of the gen-

ome, even if the data is ‘2D’, that is, tabular or a

matrix. We therefore use the terms ‘3D data’ and ‘3D

model’ to differentiate them.

Structure: ‘that which defines and maintains physical

relationships within an object or groups of compo-

nents’, can be used in genomics both for 1D sequence,

that is, ‘large-scale structural genomic variations are

insertions, deletions,’ and, as used in this review, for

3D spatial form, that is, ‘something which defines and

maintains spatial form’.
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