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In addition to mediating sister chromatid cohesion, cohesin con-
tributes to the spatial organization of the genome in chromatin 
loops and topologically associating domains (TADs)1–5. In verte-

brate somatic cells, cohesin complexes carry one of two versions of 
the SA subunit, namely SA1 or SA2, which are encoded by Stag1 and 
Stag2, respectively6. Studies in human and mouse cells indicate that 
cohesin-SA1 and cohesin-SA2 are specifically required for telomere 
and centromere cohesion, respectively7,8. Nevertheless, the cohesion 
provided by either variant complex is sufficient to allow cell prolif-
eration9. Whether the two variants have specific roles in genome 
organization and gene regulation is unclear, although mouse Stag1-
null embryos die before birth and show altered cohesin distribu-
tion and gene expression10. Notably, loss-of-function mutations 
in the STAG2 gene have been identified in several human can-
cers, including bladder cancer, Ewing sarcoma and acute myeloid 
leukemia11. Although cohesin-SA1 is sufficient to perform the  
essential functions of cohesin in STAG2-deficient cancer cells9, it 
may not be able to compensate for other non-essential cohesin-SA2 
functions. Consistent with this idea, current evidence suggests that 
the contribution of cohesin dysfunction to tumorigenesis is not 
related to cohesion defects or genome instability12–14, but rather to 
altered gene regulation15,16.

How cohesin affects gene expression remains poorly under-
stood. Analysis of cohesin distribution in mammalian cells shows 
a large overlap with the sites occupied by the architectural pro-
tein CTCF17–19. Cohesin and CTCF are present at the boundaries 
of TADs, sub-megabase regions identified in whole-genome chro-
matin-conformation capture (Hi-C) experiments that encompass 
DNA sequences interacting more frequently with sequences inside 

than outside the domain5,20. TADs are thought to regulate transcrip-
tion by facilitating interactions between enhancers and promoters 
present in the same TAD while preventing interactions between 
elements from different TADs. Deletion of CTCF sites at TAD 
boundaries changes local topology and affects gene expression21,22. 
A model for TAD generation proposes that, after loading, cohesin 
extrudes DNA to generate progressively longer chromatid loops 
until it dissociates from chromatin by the action of cohesin release 
factor WAPL or until it reaches an obstacle, such as CTCF bound 
to chromatin, where it gets stalled23–26. Cohesin and CTCF are also 
found inside TADs and contribute to cell-type-specific sub-TAD 
organization3. Moreover, cohesin non-CTCF sites have also been 
identified in which the complex occupies regions bound by tissue-
specific transcription factors or transcriptional regulators such as 
Mediator27–29. In most of these studies, the potential differences 
between the two variant cohesin complexes were not addressed. 
We therefore set out to analyze the distribution of cohesin-SA1 and 
cohesin-SA2 in nontumor human cells, as well as the consequences 
of their specific downregulation in gene expression and chromatin 
architecture. Our results reveal important differences between the 
behavior of the two complexes in the sites they occupy, the dynam-
ics of their chromatin association, their interaction partners and, as 
a consequence, their contribution to 3D genome organization.

Results
Cohesin non-CTCF sites carry SA2 and are present at enhanc-
ers. To characterize the specific roles of cohesin-SA1 and cohesin-
SA2 in chromatin architecture, we selected a primary cell line with 
comparable levels of the two variant complexes, human mammary 
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epithelial cells (HMECs; Supplementary Fig. 1). We first analyzed 
the genomic distribution of SMC1, SA1 and SA2 by chromatin 
immunoprecipitation followed by deep sequencing (ChIP–seq) 
using custom-made, validated antibodies and high-depth sequenc-
ing (about 100 million reads) to ensure whole-genome coverage 
(Supplementary Dataset 2). Reads were aligned to the reference 
genome, and peaks were called using MACS2 (false discovery 
rate (FDR) <  0.01). Overlaps between the peaks obtained in the 
SA1-specific and SA2-specific immunoprecipitates defined three 
categories: common, SA2-only and SA1-only positions. Common 
cohesin positions (42,475) were occupied by either variant com-
plex and colocalized with CTCF (Fig. 1a). They were featured by 
high cohesin occupancy and similar read density for SA1 and SA2  
(Fig. 1b). In contrast, most of the SA2-only cohesin positions 
(39,061) had no or very little CTCF and a lower read density. The 
fraction of SA1-only positions was small (3,198) and contained 
some SA2 and CTCF (Fig. 1a (lower right),b). Analysis of the distri-
bution of these cohesin-binding sites in chromatin states defined by 
ChromHMM in HMECs30 revealed that most of the SA2-only cohe-
sin positions (77%) were in enhancers, particularly in active ones 
(Fig. 1c). The distribution of the common positions was very differ-
ent, with only 35% present in enhancers, whereas another 41% were 
in insulators defined by the sole presence of CTCF. Some SA1-only 

positions were in insulators (23%) and enhancers (10%), but most 
were present in a chromatin state that was designated as ‘hetero-
chromatin, low signal’30. Motif discovery analysis showed that both 
common and SA1-only positions were significantly enriched for the 
CTCF-binding motif, whereas SA2-only positions were populated 
by recognition motifs of several transcription factors other than 
CTCF (Supplementary Fig. 2a).

We validated the findings above in MCF10A cells, a nontumori-
genic epithelial breast cell line that, unlike HMECs, can be easily 
grown and transfected for functional analyses. Common positions 
had similar average read densities for SA1 and SA2 and overlapped 
with CTCF (Fig. 1d,e). Among the SA2-only positions assigned by 
peak calling, read distribution heat maps distinguished two clus-
ters (Fig. 1d). Although the cohesin positions in both clusters were 
enriched in SA2, those in cluster 1 contained some SA1 and CTCF 
(Fig. 1d), and its distribution among chromatin states was not very 
different from that of the common and SA1-only positions (Fig. 1f). 
The larger cluster 2, in contrast, grouped true SA2-only positions—
as in HMECs, these positions lacked CTCF and were enriched in 
enhancers and depleted in insulators as compared with the com-
mon and SA1-only positions (Fig. 1e,f). Cohesin-SA2 may have 
partners other than CTCF at enhancers and promoters, most likely 
transcription factors. Consistent with this possibility, proteomic  
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Fig. 1 | A large fraction of cohesin-SA2 localizes to enhancers independently of CtCF. a, Analysis of ChIP–seq read distribution for SA1, SA2, SMC1 and 
CTCF around common, cohesin-SA1-only and cohesin-SA2-only positions within a 5-kb window in HMECs. Color bars below heat maps indicate ChIP–
seq read number. b, Average read density plots for SA1 (red) and SA2 (blue) distribution in common, SA1-only and SA2-only positions, as well as for 
CTCF. c, Pie charts showing the distribution of cohesin positions in chromatin states, as defined in HMECs. d–f, ChIP–seq read distribution analyses (d), 
average read density plots (e) and distribution of cohesin positions in chromatin states (f) as in a–c, respectively, but in MCF10A cells. g–i, ChIP–seq read 
distribution analyses (g), average read density plots (h) and distribution of cohesin positions in chromatin states (i) as in a–c, respectively, but in HCAECs. 
The CTCF datasets are from ENCODE (Supplementary Dataset 2).
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analyses of immunoprecipitates obtained from MCF10A cell 
extracts with anti-SA1 and anti-SA2 identified several transcrip-
tional regulators that interacted with SA2 and not SA1, including 
ZMYM2 and YAP1 (Supplementary Dataset 3). ZMYM2 acts as a 
co-repressor in association with the LSD1–CoREST–HDAC1/2 
complex, whereas YAP1 is a co-activator. ChIP–seq analyses for 
ZMYM2 (this study) and activated YAP131 confirmed the presence 
of SA2, and not SA1 or CTCF, at their binding sites in MCF10A cells 
(Supplementary Fig. 2b). We conclude that cohesin can be found at 
CTCF sites and non-CTCF sites, and that in the latter case, cohe-
sin-SA2 is the predominant variant. These cohesin-SA2 non-CTCF 
positions are enriched in cis-regulatory elements co-occupied by 
transcriptional regulators.

Cohesin-SA2 is linked to tissue-specific transcription. We deter-
mined the distribution of cohesin-SA1 and cohesin-SA2 in a third 
cell line that was of different embryonic origin, human cardiac 
endothelial cells (HCAECs). Here the number of SA1-only and 
SA2-only positions was similar (Fig. 1g). Read density profile plots 
for SA1 and SA2 in common positions suggested that ChIP with 
anti-SA2 had been less efficient in these cells (Fig. 1h). We suspect 
that this has two consequences: (i) SA2-only positions with low 
cohesin occupancy go undetected, and (ii) a fraction of the posi-
tions assigned as SA1 only by peak calling are in fact common posi-
tions. In any case, as in the other two cell lines, common and most 
SA1-only positions overlapped with CTCF, whereas SA2-only posi-
tions lacked CTCF. The distribution of SA1-only positions among 
chromatin states was close to that of the common positions, with a 
prevalence in insulators, whereas SA2-only positions were enriched 
in enhancers, as previously described for epithelial cells (Fig. 1i).

We observed that a large fraction of common positions was 
conserved between the epithelial and endothelial cells, whereas 
SA1-only and SA2-only positions were not (Fig. 2a). Moreover, 
cohesin-SA2-only sites in HMECs were particularly enriched in 
super-enhancers defined in the same cell line, which control genes 
associated with cell identity32 (Fig. 2b,c). SA2 signals were enriched 
relative to SA1 signals in active super-enhancers (Fig. 2d), and 

loss of SA2 at these super-enhancers in HCAECs correlated with 
decreased expression of their associated genes (Fig. 2e).

To further understand the effect of each cohesin variant on gene 
regulation, we transfected MCF10A cells with siRNAs that tar-
geted the transcripts of the genes encoding SA1 (siSA1) and SA2 
(siSA2) and, for comparison, CTCF (siCTCF) and SMC1 (siSMC1). 
Comparable depletion of SA1 or SA2 left similar amounts of cohe-
sin (SMC1) in the cells (Fig. 3a). By using a stringent criterion for 
RNA sequencing (RNA-seq) data analysis, we identified 157 and 
716 differentially expressed genes (DEGs) in cells that were treated 
with siSA1 and siSA2, respectively (Fig. 3b and Supplementary 
Datasets 4–6). Of the 630 genes that were deregulated only after 
SA2 depletion, 445 were not affected by knockdown of CTCF 
expression, which confirms a CTCF-independent role for SA2 in 
the control of gene expression. Among the genes that were deregu-
lated in siSA2-treated cells, there were several encoding members of 
the S100 family of calcium-binding proteins, which are located in a 
300-kb-long gene cluster on chromosome 1 (Fig. 3c (orange dots) 
and Supplementary Dataset 5). This region contains strong com-
mon cohesin peaks, as well as less-prominent cohesin-SA2-only 
binding sites at the promoters of the deregulated genes (Fig. 3c). 
We used this locus to validate the ChIP–seq data by ChIP–qPCR 
(Fig. 3d) and the RNA-seq data by qRT–PCR (Fig. 3e). Other genes 
whose expression was affected by SA2 downregulation were brain-
derived neurotrophic factor (BDNF), a known target of CoREST in 
non-neuronal cells33, and those encoding two of the top ten core 
transcription factors proposed to control cell identity in mammary 
gland cells34, IRX3 and TFAP2C (Fig. 3f). Gene set enrichment 
analyses also revealed aberrant upregulation of pathways specific to 
the hematopoietic system and the nervous system in MCF10A cells 
after siSA2 treatment (Supplementary Fig. 3). Taken together with 
the preferential enrichment of cohesin-SA2 at super-enhancers, 
these pieces of evidence support a contribution of cohesin-SA2 to 
tissue-specific gene expression.

Different dynamic behavior of cohesin-SA1 and cohesin-SA2. 
ChIP–seq read-density plots of SMC1 distribution around common  

a

b c d e

Common SA2-only SA1-only

HCAEC
(28,828)

HMEC
(42,475)

HCAEC
(7,717)

HMEC
(39,061)

HCAEC
(9,566)

HMEC
(3,198)

8,798

768

2,430
4,637

12
4,108

H
M

E
C SA1

50

5

50

5

50

5

50

5

50

5

50

5

SA2

SA1

SA2

SMC1

SMC1

H
C

A
E

C

HMEC HCAEC

Random
genes

n = 1,000

SE
genes

n = 991

10

lo
g 2

 (
H

M
E

C
/H

U
V

E
C

ex
pr

es
si

on
) 

(R
P

K
M

)

–10

0

Scale

R
ea

d 
de

ns
ity

 m
ea

n

50 kb

SA1

P < 2.2 × 10–16

SA2

32,100,100Chr. 8
SE

CTCF 6

4

2

0

1,871

54

Com
m

on

SA1 
on

ly

SA2 
on

ly

C
oh

es
in

 e
nr

ic
hm

en
t

in
 H

M
E

C
 S

E
s 

(%
)

10

8

6

4

2

0

18,284 5,038

2,679

36,38224,191

Fig. 2 | Cohesin-SA2-only positions are enriched in cell-type-specific super-enhancers. a, Venn diagrams showing overlap of cohesin-binding sites 
between HMECs and HCAECs. Common positions are more conserved. b, Cohesin enrichment in super-enhancers (SEs) defined in HMECs. c, Example of 
cohesin distribution in HMEC and HCAEC cells within a HMEC-specific super-enhancer. d, Plot showing SA1 and SA2 enrichment in HMEC and HCAEC 
cells along all HMEC super-enhancers. e, Box plot comparing changes in expression between random genes and genes associated with HMEC-specific 
super-enhancers32. Boxes represent interquartile range (IQR); the midline represents the median; whiskers are 1.5 ×  IQR; and individual points are outliers. 
Statistical significance was calculated with a Wilcoxon signed-rank test.
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and cohesin-SA1-only positions produced sharp and narrow pro-
files in all of the three cell lines analyzed, whereas for SA2-only 
positions the profiles were broader (Fig. 4a). These data suggest 
that the cohesin-SA2 present at these positions is more dynamic. 
Consistent with this possibility, quantitative ChIP–qPCR analyses 
showed that cohesin-SA2 at common positions were less likely to 
associate with WAPL, a factor that dissociates cohesin from chro-
matin35, as compared to those present at the SA2-only positions  
(Fig. 4b). Moreover, WAPL removal in HAP1 cells23 increased 
SMC1 occupancy more in cohesin non-CTCF sites, which were 
most likely bound by cohesin-SA2, than in cohesin CTCF sites 
(Supplementary Fig. 4). There was also more WAPL in anti-SA2 
immunoprecipitates than in anti-SA1 immunoprecipitates (high-
lighted in Supplementary Dataset 3).

To further test our hypothesis that cohesin-SA2 is more dynamic 
than cohesin-SA1, we performed a salt-extraction experiment. 
The chromatin fraction of MCF10A cells was treated with 0.25 M 
or 0.5 M NaCl for 10 or 20 min, and the amount of each variant 
that remained on the chromatin was assessed by immunoblotting. 
We found that SA2 was more sensitive to salt than SA1, as seen at 
all time points in the treatment with the lower salt concentration  
(Fig. 4c, top and bottom). After treatment with the higher salt con-
centration, the enhanced sensitivity of SA2 could be seen at the 
earlier time point (Fig. 4c, middle and bottom). We conclude that 
the association of cohesin-SA2 with chromatin is less tight, or more 
dynamic, than the association of cohesin-SA1.

Both cohesin-SA1 and cohesin-SA2 can be found at common 
cohesin-binding sites. This may be because cells in a population can 
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have either variant complex or because both complexes can coexist 
at a given position within a cell. Re-ChIP (also known as sequential 
ChIP) experiments with anti-SA1 and anti-SA2 revealed that at least 
two independent cohesin rings can coexist in the same genomic 
position in the same cell (Fig. 4d,e). We speculate that stacking at 
CTCF-bound sites may contribute to stabilize cohesin binding by 
preventing access of WAPL to cohesin. Alternatively, CTCF itself 
may stop cohesin progression36 and at the same time prevent its dis-
sociation by an as yet unclear mechanism.

Cohesin-SA1 cannot occupy SA2-only sites. Next, we asked 
how cohesin distribution changed after depletion of SA1 or SA2. 
Calibrated ChIP–seq analyses with anti-SA1 and anti-SA2 were per-
formed in cells that were mock-depleted or depleted of SA1 or SA2. 
In SA1-depleted cells, there was little cohesin-SA1 left at any posi-
tion, whereas the presence of cohesin-SA2 increased both at com-
mon and SA2-only sites as compared to that in mock-transfected 
cells, and even at SA1-only sites (Fig. 5). It is likely that these SA1-
only sites, defined based on peak calling (Fig. 1), are in fact common  
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positions in which SA2 is immunoprecipitated less efficiently. Of 
note, cohesin-SA1 could not occupy cohesin-SA2-only sites in SA2-
depleted cells, and instead it accumulated further at common posi-
tions. We conclude that both cohesin-SA1 and cohesin-SA2 can 
reach common binding sites independently of each other. Thus, in 
the absence of one variant, the other could, in principle, compensate 
for its loss at these CTCF-bound sites. In contrast, cohesin-SA1 can-
not occupy cohesin-SA2-only positions when SA2 is missing.

Cohesin-SA1 and cohesin-SA2 make different contributions to 
genome architecture. To address the consequences of SA1 or SA2 
depletion on genome architecture, we performed Hi-C experi-
ments in MCF10A cells that were depleted for SA1 or SA2 (Fig. 6a, 
Supplementary Fig. 5a,b and Supplementary Dataset 7). The iden-
tity of active (A) and repressive (B) compartments37 was mostly pre-
served (Fig. 6b and Supplementary Fig. 5c). TAD number increased 
in 204 TADs after SA1 depletion but decreased in 439 TADs after SA2 
depletion (Fig. 6c). TAD border strength was decreased, particularly  

in SA1-depleted cells (Fig. 6d), whereas TAD border conserva-
tion was diminished by 25% after SA2 depletion (Fig. 6e and 
Supplementary Fig. 5d). We therefore suggest that some TADs 
might arise in a CTCF-independent manner and instead depend on 
the interaction of cohesin-SA2 with different transcriptional regula-
tors. Although we could not test this idea with the current resolution 
of our Hi-C analyses, it agrees with recent data showing that ~20% 
of TAD borders are maintained after acute elimination of CTCF in 
mouse embryonic stem (ES) cells38, as well as with high-resolution 
Hi-C maps from the same cells revealing a set of TAD boundaries 
featured by the presence of cohesin and active marks but no CTCF39.

Analysis of genomic interactions as a function of genomic 
distance further provided evidence for specific contributions of 
the two cohesin variants to chromatin architecture (Fig. 6f and 
Supplementary Fig. 5e). Loss of SA2 increased mid-range contacts 
(0.1–1.3 Mb), whereas loss of cohesin-SA1 increased long-range 
contacts (> 1.4 Mb). These distinct effects were also evident in matri-
ces that represented separately gained and lost interactions for each 
condition relative to control cells (Fig. 6g and Supplementary Fig. 
6). SA1 depletion increased very long-range interactions, most of 
which were located within the B compartment, whereas mid-range 
interactions within the A compartment were lost (Fig. 6g,h (top)). 
One possible interpretation of these data is that SA1 depletion 
results in a more ‘relaxed’ A compartment, which is compensated 
by increased compaction of the B compartment. In contrast, SA2 
depletion increased inter-TAD mid-range contacts, mostly within 
the A compartment (Fig. 6g,h (bottom)), at least in part owing to 
loss of TAD borders. SA2 depletion also decreased short-range 
intra-TAD contacts, which could correspond to enhancer-enhancer 
or enhancer-promoter interactions, given the prevalence of SA2-
only positions in these elements. Finally, the specific enrichment of 
cohesin-SA1-only positions in A–B borders (Fig. 6i) prompted us 
to speculate that cohesin-SA1 might have a unique role in modulat-
ing A–B compartment identity. However, visual examination of the 
Hi-C matrices and the resulting eigenvalues used in compartment 
analyses did not reveal compartment switches in any of the condi-
tions (Fig. 6b, lower part).

To interpret our results, we propose that cohesin-SA1 has a 
more structural role in genome organization, by supporting TAD or 
sub-TAD formation together with CTCF, whereas cohesin-SA2 is 
more critical for functional intra-TAD contacts together with tran-
scriptional regulators. In the absence of cohesin-SA1, cohesin-SA2 
can still cooperate with CTCF in genome organization, although 
border strength is decreased and the A compartment is loosened.  
In the absence of cohesin-SA2, short-range intra-TAD contacts 
decrease, whereas new contacts are formed between neighboring 
TADs, and these changes have more noticeable consequences for 
gene expression.

Discussion
Recent studies in different cellular systems in which cohesin or 
CTCF depletion was performed have led to the conclusion that 
TADs and compartments arise independently38,40–42. TADs would 
depend on cohesin and CTCF, whereas genomic compartmental-
ization would rely mostly on epigenetic features regardless of chro-
matin contacts. Although TAD boundaries are largely invariant 
across cell types5, the specific interactions within TADs may not 
be43. Moreover, results from single-cell Hi-C experiments imply 
a certain degree of stochasticity in the TAD boundary definition 
among cells in the population44,45. To our knowledge, our results 
show for the first time that the two variant cohesin complexes have 
nonredundant functions in genome organization. After downregu-
lation of one or the other, the changes that we observed were, not 
unexpectedly, different from those observed after removal of all 
cohesin40–42. The amount of total cohesin present on chromatin in 
siSA1-treated and siSA2-treated cells was very similar, whereas the 
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relative abundance of each variant changed dramatically, bringing 
about the changes in cohesin distribution, chromatin contacts and 
gene expression reported above.

Previous analyses have shown that cohesin colocalizes with tran-
scription factors independently of CTCF and thereby contributes to 
tissue-specific transcription29. Here we show that cohesin-SA2 is the 
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prevalent variant at cohesin non-CTCF sites and confirm that these 
SA2-only sites tend to be tissue specific and are enriched at enhanc-
ers and super-enhancers. Notably, cohesin-SA1 cannot replace 
cohesin-SA2 at non-CTCF sites. The mechanisms that position 
SA1- and SA2-containing complexes remain to be identified. The 
two SA subunits are highly similar, with over 70% sequence identity 
along the central part of the protein. The homology decreases in 
the N- and C-terminal regions, and, for instance, SA1 but not SA2 
interacts with the telomeric protein TRF1 through its N terminus46. 
In the same way, SA2 may interact with certain transcriptional reg-
ulators through its unique regions. Alternatively, chromatin loops 
between enhancers and promoters and between CTCF sites may 
arise by distinct mechanisms, the latter being possibly loop extru-
sion, and the two SA subunits may be preferentially used for one 
or the other. In this regard, it is worth mentioning recent in vitro 
data that show that establishment of DNA-DNA interactions by a 
cohesin ring already embracing double-stranded DNA requires the 
second DNA molecule to be single-stranded DNA47 and that puri-
fied SA2 binds single-stranded DNA better than SA148. One could 
envision cohesin-SA2 interacting with enhancer RNA (eRNA) to 
stabilize an enhancer-promoter loop49.

Somatic mutations in STAG2 have been reported in multiple 
human cancers, most prominently bladder, Ewing sarcoma and 
myeloid malignancies11. The presence of cohesin-SA1 allows 
STAG2-deficient cancer cells to survive by ensuring sufficient cohe-
sion between the sister chromatids9. However, cohesin-SA1 cannot 
occupy SA2-only sites involved in enhancer-promoter interac-
tions, and, as a consequence, expression of some key genes may be 
altered. Recent studies have shown that elimination of all chroma-
tin loops mediated by cohesin has little effect on steady-state tran-
scription40,42; yet, cohesin may be most relevant for transcriptional 
responses induced after differentiation or lineage commitment50, 
and when deregulated, it may contribute to tumorigenesis, as shown 
for hematopoietic stem and progenitor cells51.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41594-018-0070-4.
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Methods
Cell lines. Human primary cell lines were purchased from Lonza and cultured 
according to the manufacturer’s recommendations. Normal human astrocytes 
(NHAs; CC-2565) were grown in ABM basal medium (CC-3187) supplemented 
with AGM Bulletkit (CC-4123). Skeletal muscle cells (SKMCs; CC-2561) were 
cultured in SkBM basal medium (CC-3161) supplemented with SkGM Bulletkit 
(CC-4139). Normal human bronchial epithelial cells (NHBEs; CC-2540) were 
cultured in BEBM basal medium (CC-3171) supplemented with BEGM Bulletkit 
(CC-4175). Coronary artery endothelial cells (HCAECs; CC-2585) were grown in 
EBM2 basal medium (CC-3156) supplemented with EGM2-MV Bulletkit (CC-
4147). Normal human epidermal keratinocytes (NHEKs; cat. no. 00192627) were 
grown in KBM-Gold basal medium (cat. no. 00192151) supplemented with KGM-
Gold Bulletkit (cat. no. 00192060). Normal mammary epithelial cells (HMECs; 
CC-2551) were cultured in MEBM basal medium (CC-3171) supplemented with 
MEGM Bulletkit (CC-3150). Normal human osteoblasts (NHOsts; CC-2538) 
were grown in OBM basal medium (CC-3208) supplemented with OGM Bulletkit 
(CC-3207). Prostate epithelial cells (PrECs; CC-2555) were cultured with PrEBM 
basal medium (CC-3165) supplemented with PrEGM Bulletkit (CC-3166). Human 
umbilical vein endothelial cells (HUVECs; CC-2517) were grown in EBM basal 
medium (CC-3121) supplemented with EGM Bulletkit (CC-3124). MCF10A cells 
(a gift from M. Quintela, CNIO) were grown in DMEM-F12 (cat. no. 31330038, 
Thermo Fisher) supplemented with 20 ng/ml epidermal growth factor (EGF), 
0.5 mg/ml hydrocortisone, 100 ng/ml cholera toxin, 10 mg/ml insulin and  
5% horse serum.

Antibodies. A rabbit polyclonal antibody recognizing human WAPL was generated 
by using a recombinant C-terminal fragment of the protein (352 amino acids long), 
cloned by PCR amplification from full-length WAPL cDNA (a gift from T. Hirano 
(RIKEN, Japan)). A rat monoclonal antibody was raised against the N-terminal 
region of mouse SA1 and used for western blotting. Additional custom-made 
antibodies have been previously described for SA1, SA2 and SMC18, for RAD2152 
and for ZMYM253 (a gift from H. Yu (UT Southwestern)). Commercial antibodies 
used included anti-CTCF (clone 07-729; Millipore), anti-tubulin (clone DM1A; 
Sigma) and anti-histone-H3 (clone ab1791; Abcam).

Quantitative immunoblotting in whole-cell extracts and chromatin fractions. 
Cells were collected after trypsin treatment, counted, resuspended in SDS–PAGE 
loading buffer at 107 cells/ml, sonicated and boiled. Equal volumes were separated 
by SDS–PAGE and analyzed by immunoblotting. Chromatin fractionation was 
performed as described54, and fractions were run on SDS gels alongside increasing 
amounts of recombinant proteins corresponding to C-terminal fragments of 
human SA1 and SA2, to estimate the amount of each variant subunit10. To assess 
the strength of chromatin association of the cohesin variants, chromatin fractions 
were treated with modified buffer A (10 mM HEPES, 1.5 mM MgCl2, 0.34 M 
sucrose, 10% glycerol, 1 mM DTT and protease inhibitors) containing 0.25 M or 
0.5 M NaCl for 10, 20 or 30 min on ice. Solubilized proteins were separated from 
insoluble chromatin by low-speed centrifugation (4 min at 1,700g), and the latter 
was analyzed by immunoblotting.

Treatment with siRNAs. MCF10A cells were transfected with 50 nM 
onTARGETplus SMARTpool siRNAs (Dharmacon L-010638, L-021351, L-006833 
and L-020165 to target STAG1, STAG2, SMC1 and CTCF, respectively) using 
DharmaFECT reagent 1. Transfection efficiency was first estimated by qRT–PCR 
24 h after transfection, and it typically reached more than 90% downregulation 
(data not shown). Cells were harvested at 72 h, and protein levels were assessed by 
immunoblotting.

Chromatin immunoprecipitation followed by sequencing and analysis. ChIP 
was performed as previously described34, with some modifications. Confluent cells 
were cross-linked with 1% formaldehyde, which was added to the medium for 
15 min at room temperature. After a quenching step with 0.125 M glycine, fixed 
cells were washed twice with PBS containing 1 μ M PMSF and protease inhibitors, 
pelleted and lysed in lysis buffer (1% SDS, 10 mM EDTA and 50 mM Tris-HCl, 
pH 8.1) at 2 ×  107 cells/ml. 107 cells (equivalent to 40–50 μ g of chromatin) were 
used per immunoprecipitation reaction with 25 μ g of antibody. Sonication was 
performed with a Covaris system (shearing time 30 min, 20% duty cycle, intensity 
6, 200 cycles per burst, and 30 s per cycle) in a minimum volume of 2 ml. For 
calibrated ChIP–seq in siC-, siSA1- and siSA2-treated MCF10A cells, 20% of 
chromatin from mouse embryonic stem (ES) cells was added to the human 
chromatin. We doubled the amount of antibody used for the immunoprecipitation 
reactions to reduce differences on antibody saturation among conditions. ChIP–seq 
profiles for each antibody were multiplied by the occupancy ratio (OR) =  (WmIPh)/
(WhIPm), where Wh and IPh are the number of reads mapped to the human genome 
from input (W) and immunoprecipitated (IP) fractions, and Wm and IPm are reads 
mapped to the mouse genome from the input and IP fractions55.

Immunoprecipitated chromatin (6–10 ng, as quantified by fluorometry) was 
electrophoresed on an agarose gel, and independent sample-specific fractions of 
100–200 bp were taken. An adaptor-ligated library was completed by limited‐cycle 
PCR with Illumina PE primers (11–13 cycles). DNA libraries were applied to an 

Illumina flow cell for cluster generation and sequenced on the Illumina Genome 
Analyzer IIx (GAIIx). Image analysis was performed with Illumina Real Time 
Analysis software (RTA1.8).

Alignment of 50-bp-long (76-bp-long for calibrated ChIP samples) sequences 
to the reference genome (GRCh37/hg19, February 2009) was performed using 
‘BWA and Bowtie2’56 under default settings. Duplicates were removed using 
Picardtools (version 1.60), and peak calling was carried out using MACS2 (version 
2.1.1.20160309) after setting the q value (FDR) to 0.05 or 0.01 (SMC1, STAG1 and 
STAG2 in HMECs) and using the ‘--extsize’ argument with the values obtained in 
the ‘macs2 predictd’ step57. All comparisons used the input tracks as ‘control’ and 
each one of the datasets as ‘treatment’.

Common, SA1-only and SA2-only positions were defined using BEDtools 
v2.26, with a minimum of 1-nt overlap. Common positions were defined in two 
steps. (i) Overlap between SMC1 and SA1 bed files was performed by using the 
‘-wa -wb’ argument, and the positions obtained were concatenated and sorted 
by using the ‘cat’ and ‘sort -k1,1 -k2,2n’ commands. The output was merged by 
using the ‘bedtools merge’ function and was considered as one dataset. (ii) This 
was overlapped with the SA2 dataset as described above. SA1-only and SA2-only 
positions were those in which SA1 or SA2 did not overlap with each other.

Mean read-density profiles and read-density heat maps for different chromatin-
binding proteins were generated with deepTools 2.0 (ref. 58) BAM files of processed 
reads and plotting them around peak summits of SA1-only, SA2-only or common 
positions.

For motif discovery analysis, whole sequences of cohesin positions were 
extracted and used for motif enrichment analysis using MEME-ChIP from 
MEME59. Default parameters were used except for the following ones:  
-ccut 0, -meme-mod anr, -meme-minw: 6, -meme-maxw: 50, -nmeme: 600, 
-meme-nmotifs: 10, -meme-maxsize: 200,000.

Enrichment of cohesin positions (SA1-only, SA2-only and common) at HMEC 
and HCAEC chromatin states30 was defined by using the ‘intersect’ function 
from BEDtools utilities (v2.26), with a minimum of 1-nt overlap. The analysis 
was performed making sure that one position did not belong to two different 
chromatin states.

To analyze cohesin distribution along super-enhancers, ChIP–seq reads 
from SA1 and SA2 in HMECs and HCAECs were plotted along HMEC super-
enhancers32 using the ‘scale-regions’ parameter from deepTools to adjust all of the 
super-enhancers to a predefined size and applying a local regression (LOESS) to 
smooth the read signals.

Chromatin immunoprecipitation–qPCR and Re-ChIP. ChIP–qPCR on 
immunoprecipitated chromatin was performed using the SYBR Green PCR 
Master Mix and an ABI Prism 7900HT instrument (Applied Biosystems). Primers 
were designed using OligoPerfect Designer (Invitrogen), and reactions were 
performed in triplicate. Chromosome coordinates of the validated peaks and the 
corresponding primers are listed in Supplementary Table 1. The relative amount of 
each amplified fragment was normalized with respect to the amplification obtained 
from input DNA using the Δ Δ Ct method and is represented as indicated in the 
corresponding figure legends.

The Re-ChIP experiment was performed with the Re-ChIP-IT kit (cat. no. 
53016, Active Motif) according to the manufacturer’s protocol. Briefly, MCF10A 
cells were fixed, lysed and sonicated as described in the ChIP protocol. 50 μ g of 
chromatin was incubated with 20 μ g of the first antibody (anti-SA1, anti-SA2 or 
IgG) in the presence of magnetic beads. The beads were washed, and the material 
was eluted and further incubated with 5 μ g of the second antibody (anti-SA1, 
anti-SA2, anti-SMC1 or IgG). Eluted chromatin was analyzed by qPCR. 1 ng of the 
immunoprecipitated chromatin from two conditions—SA2-specific ChIP followed 
by IgG Re-ChIP and SA2-specific ChIP followed by anti-SA1 Re-ChIP—was used 
to prepare libraries for Re-ChIP sequencing. Libraries were prepared with 18 PCR 
cycles. Peaks were called in the SA2-SA1 Re-ChIP experiment after normalization 
with SA2-IgG Re-ChIP signals.

qRT–PCR and RNA sequencing. cDNAs were prepared with the Superscript II 
reverse transcriptase (Invitrogen) from total RNA (RNeasy Mini Kit, Qiagen), and 
qRT–PCR analyses were performed using the SYBR Green PCR Master Mix and 
an ABI Prism 7900HT instrument (Applied Biosystems). Primers (Supplementary 
Table 1) were designed using OligoPerfect Designer (Invitrogen). Reactions were 
performed in triplicate. Expression was normalized to that of the endogenous 
housekeeping gene GAPDH, using the Δ Δ Ct method.

For RNA-seq libraries (three replicates for the condition), poly(A)+ RNA was 
purified with the Dynabeads mRNA purification kit (Invitrogen) from DNase 
I–treated total RNA, randomly fragmented, converted to cDNA and processed 
through subsequent enzymatic treatments of end repair, dA-tailing, and ligation 
to adaptors as per Illumina’s protocol (TruSeq RNA Sample Preparation Guide; 
Part 15008136 Rev. A). The adaptor-ligated library was completed by limited-cycle 
PCR with Illumina PE primers (8 cycles). The resulting purified cDNA library was 
applied to an Illumina flow cell for cluster generation (TruSeq cluster generation 
kit v5), and it was sequenced on the Genome Analyzer IIx with SBS TruSeq v5 
reagents by following the manufacturer’s protocols. Fastq files with 50-nt single-
end sequenced reads were quality-checked with FastQC (S. Andrews,  
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http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and aligned to 
the human genome (GRCh37/hg19) with Nextpresso (http://bioinfo.cnio.es/
nextpresso/) executing TopHat-2.0.0 using Bowtie 0.12.7 and Samtools 0.1.16 
allowing two mismatches and five multi-hits. Transcript assembly, estimation 
of their abundances and differential expression were calculated with Cufflinks 
1.3.0 using the human genome annotation dataset GRCh37/hg19 from Ensembl. 
To account for multiple-hypothesis testing, the estimated significance level (P 
value) was adjusted using Benjamini–Hochberg FDR correction. For differential 
expression, FDR <  0.05, log2 (fold change) <  –0.5 or log2 (fold change) >  0.5, and 
FPKM >  3, in at least one of the two conditions compared, was required.

GSEAPreranked was used to perform a gene set enrichment analysis60. We 
used the RNA-seq gene list ranked by statistic, setting ‘gene set’ as the permutation 
method, and we ran it with 1,000 permutations.

Hi-C analysis. MCF10A cells were arrested in the G1 stage of the cell cycle by 
means of high-confluency culture (150,000 cells/cm2). Hi-C was performed as 
described42 using the MboI enzyme. Two library replicates per condition were 
sequenced (> 200 million reads each; Supplementary Dataset 7). Data were 
processed using TADbit61 for read quality control, read mapping, interaction 
detection, interaction filtering and matrix normalization. First, the reads were 
checked by using an implemented FastQC protocol in TADbit. This allowed 
discarding problematic samples and detection of systematic artifacts. Then, we 
used a fragment-based strategy in TADbit to map the remaining reads to the 
reference human genome (GRCh38). The mapping strategy resulted in ~80% of 
reads being mapped uniquely to the genome. Next, we filtered non-informative 
contacts between two reads—including self-circles, dangling-ends, errors, random 
breaks or duplicates. The final interaction matrices resulted in 272–303 million 
valid interactions per experimental condition (Supplementary Dataset 7). These 
valid interactions were then used to generate genome-wide interaction maps at 
100 kb and 40 kb to segment the genome into the so-called A–B compartments and 
TADs, and to produce differential interaction maps.

A–B compartments were calculated by using vanilla-normalized and 
decay-corrected matrices as implemented in TADbit. Briefly, compartments 
were detected by calculating the first component of a principal-component 
analysis (PCA) of chromosome-wide matrices and assigning A compartments 
to the genomic bin with positive PCA1 values and high gene density (Fig. 6b). 
Conversely, B compartments were assigned to the genomic bin with negative 
PCA1 values and low gene density. TADs were identified by using 40-kb resolution 
vanilla-normalized and decay-corrected matrices as input to the TAD detection 
algorithm implemented in TADbit. TAD border localization, as well as strength, 
was calculated and used to identify conserved borders and their strength (Fig. 
6c–e). A border was considered to be conserved between siControl and siSA1 
or siSA2 experiments if it was localized within ± 2 bins in both experiments. Box 
plots were generated with the Python plotting library Matplotlib. Raw matrices 
normalized by coverage (i.e., all three experiments were scaled to have the same 
number of final valid interactions) at 100-kb resolution were also used for studying 
Hi-C interactions as a function of genomic distance. This genomic decay was 
obtained for each chromosome to a maximum genomic distance of 50 Mb, and 
the average was then calculated to obtain a genome-wide curve in siSA1 and 
siSA2 experiments (Fig. 6f). The same 100-kb matrices were used to determine 
differential Hi-C interactions between siControl and siSA1 or siSA2 experiments 
(Fig. 6g). These differential interactions were then clasified according to their 
compartment localization and intra-TAD or inter-TAD distribution (Fig. 6h). 
Finally, the enrichment or depletion of genes (represented by their transcription 
start site), RNA (based on RNA-seq data), and CTCF- and cohesin-binding 
sites (SA1-only, SA2-only and common) was analyzed by a log odds analysis of 
observing such features in genomic bins belonging to A and B compartments, 
A–B borders or TAD borders (Fig. 6i). The log odds distributions were assessed 
for their distribution being statistically different than zero, as for a Fisher’s exact 
test (P <  0.005). The TADbit software used for Hi-C analyses is freely available as a 
Github repository at https://github.com/3DGenomes/tadbit.

Immunoprecipitation and LC–MS/MS analysis. Whole-cell extracts from 
MCF10A cells were prepared by lysis on ice for 30 min in TBS supplemented with 
0.5% NP-40, 0.5 mM DTT, 0.1 mM PMSF and 1×  complete protease inhibitor 
cocktail (Roche) followed by sonication. NaCl was added to 0.3 M, and the extract 
was rotated for 30 min at 4 °C. After centrifugation, the soluble fraction was 
recovered and diluted to bring the extract back to 0.1 M NaCl, and 10% glycerol 

was added. Antibodies were cross-linked to protein A Pureproteome magnetic 
beads (Millipore) at 1 mg/ml (anti-SA1, anti-SA2 and IgG (as control)) and 
incubated with extracts overnight at 4 °C. The beads were washed six times with 
20 volumes of lysis buffer, and proteins were eluted in two consecutive steps in 
two volumes of elution buffer (8 M urea, 100 mM Tris-HCl, pH 8) by shaking 
for 10 min. Samples were digested by standard filter-aided sample preparation 
(FASP)62. Proteins were reduced with 10 mM DTT, alkylated with 50 mM 
iodoacetic acid for 20 min in the dark and digested with 1:50 Lys-C (Wako) for 
4 h. Samples were diluted in 50 mM ammonium bicarbonate and digested with 
1:100 trypsin (Promega) overnight at 37 °C. The resulting peptides were desalted 
by using a Sep-Pak C18 cartridge for SPE (Waters Corp.), vacuum-dried and 
resuspended in 0.5% formic acid. Immunoprecipitates were analyzed with a 
nanoLC Ultra system (Eksigent) coupled with a LTQ-Orbitrap Velos instrument 
(Thermo) via nanoESI (ProxeonBiosystem). Two technical replicates were 
performed. Raw data were analyzed using MaxQuant1.5.3.3063 with Andromeda64 
as the search engine against the UniProtKB and Swiss-Prot databases (20,584 
sequences). Peptides were filtered at 1% FDR. For protein assessment (FDR <  1%), 
at least one unique peptide was required for both identification and quantification. 
Other parameters were set as default. The resulting ‘proteingroup.txt’ file was 
loaded in Perseus65 (v1.5.1.6). Missing values were imputed from a normal 
distribution. A two-sample Student’s t test (one sided) was used, corrected for 
multiple testing by using a permutation-based approach.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability. ChIP–seq, RNA-seq and Hi-C data from this study have been 
submitted to the GEO database (GSE101921). Additional source data are available 
upon reasonable request.
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    Experimental design
1.   Sample size

Describe how sample size was determined. n/a

2.   Data exclusions

Describe any data exclusions. n/a

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

For ChIP-sequencing we have confirmed the distribution of cohesin SA1 and 
cohesin SA2 by ChIP with an antibody against SMC1. In addition, we have 
confirmed our results in three different human cell lines (MCF10A, HCAEC and 
HMEC). For ChIP-seq from control, SA1 and SA2 depleted MCF10A cells, two 
replicates were performed and sequenced for each antibody. 
 
Several positions (common and SA2-only) were validated by means of ChIP-qPCR  
(3 technical replicates each). 
 
To assess Wapl/SA2 ratio in different positions by ChIPqPCR we performed at least 
three experimental replicates (each with three technical replicates). 
 
For re-ChIP experiment we ensured the reliability of the colocalization by 
reciprocal ChIP of cohesin SA1 and SA2 subunits. Additionally, we included IgG and 
SMC1 controls. 
 
For Hi-C we performed two replicates (two independent libraries) per condition. 
Even if in the main figure the analyses were performed combining reads from both 
replicates, replicates were also analyzed independently and gave similar results 
(Supplementary Fig.5 and 6). 
 
For  proteomic analysis, a single immunoprecipitation experiment per antibody 
was performed with two technical replicates. Non-immune IgG was used as 
control.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

n/a

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

n/a

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

All the software used to analyze the data is specified in the online Methods section 
and in the ChIP-seq report and is publicly available.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

Custom-made antibodies are available in reasonable amounts upon request 

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

Antibodies used for ChIP are described in the ChIP-seq report. 
A rat monoclonal antibody against SA1 was generated using a 233-aa long N- 
terminal fragment as antigen and validated for immunoblotting in extracts from 
WT and SA1 KO MEFs.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. Primary human cell lines were purchased from Lonza . 

MCF10A cell line was obtained from Dr. Quintela (CNIO, Madrid)

b.  Describe the method of cell line authentication used. For authentication of MCF10A cell line a karyotype analysis was performed by the 
Cytogenetics Unit at CNIO

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

Commercial cell lines were provided mycoplasm-free. 
MCF10A cells were periodically tested for mycoplasm (last test was performed 
right before expansion) with the GEN-PROBE MTC-NI rapid detection system.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

Not applicable
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

For laboratory animals, report species, strain, sex and age OR for animals observed 
in or captured from the field, report species, sex and age where possible OR state 
that no animals were used.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

Provide all relevant information on human research participants, such as age, 
gender, genotypic information, past and current diagnosis and treatment 
categories, etc. OR state that the study did not involve human research 
participants.
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ChIP-seq Reporting Summary
 Form fields will expand as needed. Please do not leave fields blank.

    Data deposition
1.  For all ChIP-seq data:

a.  Confirm that both raw and final processed data have been deposited in a public database such as GEO.

b.  Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

2.   Provide all necessary reviewer access links. 
The entry may remain private before publication.

Link to the GEO submission page: https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE101921 
access token for reviewers: ybatoyqivfmzzsf 

3.  Provide a list of all files available in the database 
submission.

SA1_HMEC_ChIP-seq 
SA2_HMEC_ChIP-seq 
SMC1_HMEC_ChIP-seq 
Input_HMEC_ChIP-seq 
SA1_MCF10A_ChIP-seq 
SA2_MCF10A_ChIP-seq 
SMC1_MCF10A_ChIP-seq 
ZMYM2_MCF10A_ChIP-seq 
Input_MCF10A_ChIP-seq 
SA1_HCAEC_ChIP-seq 
SA2_HCAEC_ChIP-seq 
SMC1_HCAEC_ChIP-seq 
Input_HCAEC_ChIP-seq 
SA1_MCF10A_ChIP-seq_Control_Rep_1 
SA1_MCF10A_ChIP-seq_Control_Rep_2 
SA2_MCF10A_ChIP-seq_Control_Rep_1 
SA2_MCF10A_ChIP-seq_Control_Rep_2 
SA1_MCF10A_ChIP-seq_siSA1_Rep_1 
SA1_MCF10A_ChIP-seq_siSA1_Rep_2 
SA2_MCF10A_ChIP-seq_siSA1_Rep_1 
SA2_MCF10A_ChIP-seq_siSA1_Rep_2 
SA1_MCF10A_ChIP-seq_siSA2_Rep_1 
SA1_MCF10A_ChIP-seq_siSA2_Rep_2 
SA2_MCF10A_ChIP-seq_siSA2_Rep_1 
SA2_MCF10A_ChIP-seq_siSA2_Rep_2 
INPUT_MCF10A_ChIP-seq_Control 
INPUT_MCF10A_ChIP-seq_siSA1 
INPUT_MCF10A_ChIP-seq_siSA2 

4.   If available, provide a link to an anonymized 
genome browser session (e.g. UCSC).

http://genome-euro.ucsc.edu/cgi-bin/hgTracks?
hgS_doOtherUser=submit&hgS_otherUserName=Dinamica%
20cromosomica&hgS_otherUserSessionName=Reviewers%20Session

    Methodological details
5.   Describe the experimental replicates. We have performed single replicas of each ChIP-seq with >40 million reads 

depth sequencing for most conditions except for SMC1 ChIP in MCF10A (2 
replicates) and for SA1 and SA2 ChIP in control, siSA1 and siSA2 treated 
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MCF10A cells (2 replicates per condition). ChIP have been performed in 
three different cell lines (HMEC, MCF10A and HCAEC) with three different 
cohesin antibodies (SMC1, SA1 and SA2).

6.   Describe the sequencing depth for each 
experiment.

Library preparation and PCR conditions: Fragmented DNA samples, 
quantified by fluorometry were processed through subsequent enzymatic 
treatments of end-repair, dA-tailing, and ligation to adapters with 
"NEBNext Ultra II DNA Library Prep Kit for Illumina" from New England 
BioLabs (catalog # E7645). Adapter-ligated libraries were completed by 
limited-cycle PCR and extracted with a [single] double-sided SPRI size 
selection. Median fragment size is 300 bp from which 120 bp correspond 
to adaptor sequences. Libraries were applied to an Illumina flow cell for 
cluster generation and sequenced on an Illumina instrument (see below) 
by following manufacturer's protocols. 
 
HMEC and HCAEC (SA1, SA2, SMC1 and Input): 8 ng per sample. 13 cycles. 
MCF10A (SA1, SA2, SMC1 and Input):  ~5.5ng per sample. 13 cycles. 
MCF10A, Zmym2: 6,4 ng. 15 cycles 
For ChIP-seq performed in siC, siSA1 and siSA2 MCF10A cells (marked with 
asterisk below) 10 ng were used per sample, except for the following 
samples where 5 ng were used:  
SA2_MCF10A_ChIP-seq_Control_Rep_1 
SA2_MCF10A_ChIP-seq_siSA1_Rep_1 
SA2_MCF10A_ChIP-seq_siSA1_Rep_2 
11 cycles of PCR were performed in all samples, except for the sample 
'SA2_MCF10A_ChIP-seq_siSA2_Rep_2' –in which 13 cycles were 
performed. 
For Re-ChIP, 1ng of DNA was used and 18 cycles of PCR were performed 
 
Experiment                  No of reads \ uniquely mapped  
SA1_HMEC_ChIP-seq 97,741,618 78,687,032   
SA2_HMEC_ChIP-seq 98,226,569 82,156,467   
SMC1_HMEC_ChIP-seq 95,778,603 79,606,174   
Input_HMEC_ChIP-seq 32,277,764 22,041,565   
SA1_MCF10A_ChIP-seq 61,973,461 39,702,285   
SA2_MCF10A_ChIP-seq 73,440,077 42,638,750   
SMC1_MCF10A_ChIP-seq 92,003,268 50,267,535   
ZMYM2_MCF10A_ChIP-seq 45,156,594 20,857,810   
Input_MCF10A_ChIP-seq 24,028,387 22,436,324   
SA1_HCAEC_ChIP-seq 73,350,000 64,838,899   
SA2_HCAEC_ChIP-seq 67,000,000 61,110,324   
SMC1_HCAEC_ChIP-seq 67,813,000 59,521,632   
Input_HCAEC_ChIP-seq 66,200,000 61,267,006   
SA1_MCF10A_ChIP-seq_Control_Rep_1 34,918,353 22,086,186 *  
SA1_MCF10A_ChIP-seq_Control_Rep_2 39,279,433 24,942,790 *  
SA2_MCF10A_ChIP-seq_Control_Rep_1 34,995,732 21,790,656 *  
SA2_MCF10A_ChIP-seq_Control_Rep_2 35,646,335 22,717,313 *  
SA1_MCF10A_ChIP-seq_siSA1_Rep_1 35,498,232 23,027,702 *  
SA1_MCF10A_ChIP-seq_siSA1_Rep_2 33,085,555 20,729,535 *  
SA2_MCF10A_ChIP-seq_siSA1_Rep_1 37,670,724 23,870,685 *  
SA2_MCF10A_ChIP-seq_siSA1_Rep_2 32,109,651 20,374,192 *  
SA1_MCF10A_ChIP-seq_siSA2_Rep_1 33,615,601 21,306,063 *  
SA1_MCF10A_ChIP-seq_siSA2_Rep_2 35,651,442 22,825,770 *  
SA2_MCF10A_ChIP-seq_siSA2_Rep_1 33,757,359 20,848,771 *  
SA2_MCF10A_ChIP-seq_siSA2_Rep_2 65,758,370 28,872,448 *  
INPUT_MCF10A_ChIP-seq_siSA2 46,072,845 30,803,519 *  
INPUT_MCF10A_ChIP-seq_siSA1 47,124,889 32,254,566 *  
INPUT_MCF10A_ChIP-seq_Control 47,185,555 31,020,560 * 
Re_ChiP_SA2-IgG-MCF10A 4,607,572 1,028,764 
Re_ChiP_SA2-SA1-MCF10A 5,943,225 923,656 
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*In the case of calibrated ChIP-seq, number of reads in the right column 
corresponds to reads obtained after separating reads coming from human 
chromatin from reads coming from mouse chromatin in the mapping step 
and after processing.  
Length of the (single end) reads was 75bp for calibrated ChIPseq and 50 bp 
for all the rest.  

7.   Describe the antibodies used for the ChIP-seq 
experiments.

Home made Cohesin complex antibodies against SMC1, SA1, SA2 and Wapl 
have been validated using the following strategy: 
 
1. Western blotting in cohesin knocked down cells 
To assess the specificity of these antibodies we performed western blot in 
different cell types depleted from each individual subunit as follows: 
• SMC1 specificity was tested in MCF10A cells depleted from SMC1 with 
siRNA on target SMART pool L-006833 (Dharmacon). 
• SA1 specificity was tested in MCF10A cells depleted from SA1 with siRNA 
on target SMART pool L-010638 (Dharmacon) as well as in SA1KO MEFs  
• SA2 specificity was tested in MCF10A cells depleted from SA2 with siRNA 
on target SMART pool L-010638 (Dharmacon) and MEFs depleted of SA2 
with siGENOME SMARTpool M-057033. 
• Wapl specificity was tested in mES cells depleted from Wapl with siRNA 
siGENOME SMART pool M-047528 (Dharmacon) 
2. Immunoprecipitation 
We successfully performed immunoprecipitation experiments in human 
and mouse cell lines to assess the ability of the above-mentioned 
antibodies to recognize and bind its target protein in the context of the 
cohesin complex.  
3. ChIP 
• We performed SA1 ChIP-seq in SA1 KO MEFs as described (2). Our data 
shows a very reduced number of cohesin SA1 peaks (about 600) when 
compared with those recovered in the wt MEFs (about 26,000). 
• To validate the reliability of the positions recovered with cohesin 
antibodies, we overlap the signals obtained for different subunits. The high 
degree (typically, higher than 80%) of similarity between SA1 or SA2 and 
the common subunit SMC1 is an indicator of the efficiency and specificity 
of the antibodies under discussion. 
 
Zmym2 [a generous gift from H. Yu (UT Southwestern, US)] antibody 
specificity has been validated by means of immunoprecipitation 
experiments performed with different members of the Co-REST complex 
(3). We performed the following additional validations: 
 
1. Western blotting in knockdown cells: To assess the specificity of the 
Zmym2 antibody, we performed western blotting in mES cells depleted 
from Zmym2 protein by means of the siRNA on target SMART pool 
L-064538 (Dharmacon). 
2. ChIP-seq: We confirmed by ChiP-qPCR the ability of Zmym2 antibody to 
recognize some of the already described Zmym2 binding sites in U2OS 
cells using a FLAG-tagged version of Zmym2 protein (4).  
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8.   Describe the peak calling parameters. ChIP-seq and control reads were aligned to the hg19 genome assembly 
using bwa (version 0.6.1-r104) under default parameters. In the case of 
experiments in calibrated ChIP-seq performed in siC, siSA1 and siSA2 
MCF10A cells (marked with asterisk) reads were aligned using bowtie2 
(version 2.3.3.1). Peak calling was performed using macs2 (version 
2.1.1.20160309) setting following parameters: '-q 0.05' (0.01 in the case of 
HMEC experiments) and  '-extsize (value obtained from macs2 predicted 
step)' and using input as the control. 

9.   Describe the methods used to ensure data quality. Raw read files were assessed using fastqc prior to processing. Unmapped 
reads were removed using samtools (version 1.3.1) running 'samtools view 
-F 4'. Reads were sorted and replicates removed using picardtools (version 
1.60)

10. Describe the software used to collect and analyze 
the ChIP-seq data.

ChIP-seq reads were aligned to the hg19 genome assembly using bwa 
(version 0.6.1-r104) under default parameters for most experiments 
except for calibrated ChIP-seq in depleted cells and Re-ChIP, for which 
bowtie2 (version 2.3.3.1). Unmapped reads were removed using samtools 
(version 1.3.1) running 'samtools view -F 4'. Reads were sorted and 
replicates removed using picardtools (version 1.60). Peak calling was 
performed using macs2 (version 2.1.1.20160309) setting following 
parameters: '-q 0.05' and  '-extsize (value obtained from macs2 predictd 
step)' and using input as the control.
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