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Abstract

Genome discoveries at the core of biology are made by visual description and exploration of the cell, from
microscopic sketches and biochemical mapping to computational analysis and spatial modeling. We outline
the experimental and visualization techniques that have been developed recently which capture the three-
dimensional interactions regulating how genes are expressed. We detail the challenges faced in integration of
the data to portray the components and organization and their dynamic landscape. The goal is more than a
single data-driven representation as interactive visualization for de novo research is paramount to decipher
insights on genome organization in space.

© 2018 Elsevier Ltd. All rights reserved.
Introduction

Visions of the genome have brought deeper
knowledge of the biology it encodes. The genome
sits at the core of life, not the preformed homunculus
but rather a collection of molecular possibilities held
in genes (Fig. 1a). Organisms thrive by passing on
gene combinations and survive by adapting to
environment through random changes in the ge-
nome. They form strands of DNA which is read in
linear sequence. In Bacteria and Archean, this
happens fast and continuously, jostled by a crowded
cell cytoplasm. Eukaryotes have evolved to wrap
these increasingly lengthy polymers within mem-
branes forming the nucleus. This appeared as a dark
center of to the cell which revealed more detail with
improved lenses and contrast through staining. In
1882, Walther Flemming drew the colored filaments
of “chromatin” (later termed chromosomes) he saw
condensing within (Fig. 1b), an intermingled square-
dance generated reproductive cells (meiosis) or a
synced jig for cell division (mitosis), which then
r Ltd. All rights reserved.
aligned and parted, distributing the genome equally
into each new cell. Arrayed as a karyogram, banded
chromosome pairs highlighted commonalities be-
tween cells and marked relationships between
species, which was a visual confirmation of the
biochemistry underlying the mechanisms of inherit-
ability. In 1928, Emil Heitz sketched ghettos of
heterochromatin and expanses of euchromatin,
which he correlated to gene location and regulation
(Fig. 1c) [2]. And in 1952, Rosalind Franklin's
skillfully x-rayed molecular shadows provided the
visual key to sculpting the spatial arrangement DNA
double helix underpinning biochemistry. This code
imbues function into proteins automata through
complex structure, laid bare through the ribbon
diagrams of Jane Richardson in 1981. By 2001,
the first complete genome was sequenced, and the
simultaneous release of the UCSC browser was an
essential utility for browsing across, peering into and
aligning to compare this new data. ENCODE's
complementary functional mapping was heralded
on the September 2012 cover of Nature with the
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Fig. 1. Historic visions of the genome: (a) Homunculus, Hartsoeker, 1695. (b) Nuclear “Chromatin” observed by
Flemming, 1882. (c) Heterochromatin and euchromatin sketched by Heitz, 1928. (d) ChromEMT imaging of chromatin from
the O'Shea lab [1].
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novel CIRCOS graph that facilitated non-linear
exploration of the interactions noted. That many of
these were over large genomic distances set a new
frontier to understand the form of the genome in
three-dimensions (3D). At each step, investigation of
the constituents of the genome has been born of
visualization, defined by the width of a lens, pen or
pixel. Since then, researchers have expanded the
knowledge of these regulatory elements to expose a
complex hierarchy of structures and relationships
describing the genome as spatial and dynamic.
These discoveries have depended on the combina-
tion of the different experimental techniques, interdis-
ciplinary collaboration and the power of visualization.
Modeling the Genome

The genome traverses many dimensions and has
many facets. It is formed out of an atomic fog into
long 2-m polymer packed into a micron-sized cell
nucleus visible under a microscope. The biochem-
istry it encodes rapidly reacts to cell signals and can
be used to measure its macromolecular transforma-
tions. The immense code it stores is essential for life
but is inherently dynamic and error-prone. Its base
bonds bend to subatomic forces and its structure to
classic Newtonian mechanics, which, though non-
trivial and resource intense, can model its behavior.
However, until recently, there was a significant gap
between the knowledge probed by microscopy and
the molecular models built through biochemistry [3].
In the last decade, at least three quantitative
techniques have been developed that help deter-
mining the structure needed to form a 3D model of
the genome.
First, bioimaging encompasses the collection of

microcopy techniques for direct and indirect observa-
tion of the nucleus [4]. Light microscopy is still used to
view cellular features today up to the light diffraction of
200 nm. At the other extreme, electron microscopy
(EM) detects the densities of matter to map atomic
detail of biomolecules. Filling the mesoscopic void
between them, the new field of super-resolution
microscopy can use differing of methods to scan the
nucleic volume and to site genomic features in 3D
using biochemical “oligopaint” tags. Computational
microscopy automates what is a classic visualization
pipeline for enhancement, identification, classifica-
tion, filtering and tracking of features [5]. These digital
microscopes produce large layered images not only
guide theory or validate experiments, but are progres-
sing to resolve the localization of objects to the tens of
nm resolution, for example, by the imaging of hetero-/
euchromatin by the O'Shea lab, which literally create
new 3D models for genome function (Fig. 1d) [1].
Second, quantitative techniques based on bio-

chemistry can isolate and measure the constituents
of the genome [6]. Traditional measurement by
visual assessment of electrophoresis gels is now
complemented with high-throughput sequencing.
For example, Chromatin Conformation Capture
(3C) “freezes” a population of cells and binds
together closely positioned fragments of chromatin
that can then be sequenced [7]. The 3C-like Hi-C
method captures “reads” at all genomic coordinates,
which can be plotted as a matrix of contacts, with
higher read count indicating areas of increased
interactions. As a population of cell states, careful
normalization is required before analysis; however,
cell synchronization and new single-cell techniques
can give a more reliable picture [8]. In such matrices,
a careful color selection highlights features and
avoids perceptual bias. Pattern detection by visual
inspection can identify interactions: clustering close
to the diagonal depict looping at short genomic
range; longer range points of contact are indicative
of compartmentalization. The largest clusters corre-
spond to chromosomes (Fig. 3a), which occupy
specific territories, but additional distinct domains
are also observed often with overlapping inner sub-
domains. Eigen decomposition of the matrix indi-
cates high-order compartmentation that broadly
corresponds to the previously observed hetero-/
euchromatin domains (Fig. 3b). The hierarchy of
self-interacting or topologically associating domains
(Fig. 3c: TADs; CIDs in bacteria) delimited in the
matrix has been shown to be functionally determi-
nant [9] and to be conserved between cell types and
species [10]. Further computational analysis of the
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Fig. 2. An Integrated genome model: flowchart for
integrating data to models the genome. Adapted from
Ref. [17].
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data can reconstruct ensembles of possible spatial
conformations of the chromatin [11]. The resulting
XYZ coordinate data requires approximated scaling
and can be visualized using 3D molecular viewers.
Third, molecular modeling using polymer physics

and molecular dynamics can simulate intracellular
environmentsandchromatin structures from theoretical
principals and experimentally determined properties
[12]. Three physical scales can bemodeled [13]. At the
subatomic scale, quantum mechanics can model
dozens to 100 s of atoms over a few picoseconds.
Atomic molecular structures of 103–106 atoms can be
modeled with molecular mechanics calculations in
Cartesian space iterating through stochastic events
acting upon polymers from 100 s over ns to a few μs.
These can describe surface features and properties
such as binding sties. However, such precise compu-
tation is resource intense and so, where chromatin acts
as whole fibers at higher scales, coarse-grain particles
can represent themillions of atoms fromdozensofμs to
ms, while retaining relevant and informative insight.
Starting from initial formalized or randomconfigurations
that over time reaching a steady state, models adopt
globule conformationsstoredaseither atomic structural
arrangements or XYZ coordinates.
As separate approaches, these can be used to

validate one another using visualization. For example,
the task of interactively fitting possible conformations of
chromatin to match observed EM density maps, as
used in reconstruction of the nuclear pore [14].
Quantitative detection of spatial repression for regula-
tion of the second X chromosome in mammalian
females has be confirmed by super-resolution micros-
copy [15]. The model fractal globule is organized as
accessible structure reflecting actual contact probability
of the genome during interphase [16]. However, these
approaches can also complement each other to build a
more integrated holistic informedmodel (Fig. 2) termed
the 4D Nucleome [18]. Indeed, two new initiatives,
launched in United States [17] and Europe [19], aim at
integrating these different approaches to overcome
technical limitations providing new insights, circum-
venting limitations of technology and bridging the
resolution gap [20]. Other initiatives work to provide
solutions for specific issues, for example, the Allen Cell
Institute for predictive cell modeling (http://www.
alleninstitute.org) [21], the Human Cell Atlas for
comprehensive profiling (https://www.humancellatlas.
org) [22], theMultiscale Genomics VRE for quantitative
collaboration (http://multiscalegenomics.eu) and the
West-life VRE for structural modeling (http://west-life.
eu). This integrated approach is already proving fruitful
with theoretical models that advance new functional
models of the genome [23].

Integrating data

However, there remain a number of challenges in
the integration of the data from these approaches, as
discussed in detail in previous reviews [24,25]. While
there is increasing overlap of techniques, their resulting
data may be very distinct. Their multiscale, resolution
and range are difficult to reconcile: heterochromatin is
captured distinctly by nucleosome density and as A/B
compartmentation; EM density maps of chromatin lack
the detail of molecular dynamics simulations; assays
may capture non-interacting but proximal strands,
among other limitations. They display a variety of
coexistent physical and biochemical changes, from the
cell cycle to local DNA methylation, interrogating
genomes that exists in multiple states. These compo-
nents and stages are also time dependent, and their
structure and properties vary in time frame and
duration: the nuclear membrane decomposes and
reconstitutes, and chromatin looping unpacks and
condenses. On top of these, the data are imbued with
uncertainty, which may make integration, alignment,
replication or reproducibility more complicated: cell
degradation during imaging, reconciling population and
single cell data [26], randomization of model seeding
and intrinsic structural variability [27].
Once gathered, ease of data accessibility and

connectivity cannot be assumed [28]. DNA sequences
and epigenomic data can be fetched as needed from
BGRA-compliant servers [29]. Standards have ad-
vanced for the common microscopy formats and
molecular models within shared international archives:
OME images on the IDR [30], 3DEM maps in the
EMDB [31] and protein-like mmCIF structures in the
PDB Archive [32]. Interaction data can be opened in
browsers like WashU [33] and coarse-grain models in

http://www.alleninstitute.org
http://www.alleninstitute.org
https://www.humancellatlas.org
https://www.humancellatlas.org
http://multiscalegenomics.eu
http://west-life.eu
http://west-life.eu
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Chimera, and while the data size could be handled by
existing infrastructure, the added dimensionality and
layering of 3Ddata is not currently servedand there are
no dedicated formats or repositories for this 3D data.
Moreover, current mainstream genome browsers
display compact, stacked tracks based on a linear,
sequential, per-chromosome coordinate system and
are currently unable to display such multi-dimensional
non-linear data. Novel formats such as the com-
pressed mm-TF format [34] and, in particular, the
multiscale mmCIF-IHM dictionary [35] are addressing
these issues and can be viewed with the upcoming
ChimeraX [36]. Moreover these formats lack spatial
data structures and the viewers generally lack level-of-
detail (LOD) interaction key to coherent navigation of
multi-resolution scenes.
However, the greatest impediment to integration is

the lack of common metadata by which data can be
matched and meshed to be FAIR [37]. The data types
that result from the threeapproachesare very distinct—
images of loci, arrays of interactions and coordinates—
but they do share some common relating to the
subjects, properties or experimental assumptions, for
example, organism, cell-cycle phase, area of interest,
and so on. Unfortunately, there is in general a lack of
consistent metadata, which can identify the experi-
mental source and processing [38]. The ontology
appropriate for the data must rely on standards for,
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While these challenges are being addressed, a
consensus is emerging through the integrative projects
describing the structure, organization and dynamics of
the genome. The genome is found with higher-order
organization components that document the range and
complexity to be visualized. The experiments detailed
above give a perspective on these core higher-order
components that form the genome at the chromatin
scale, progressively filling this gap in knowledge
between cell and DNA (Fig. 3). A number of reviews
of current genomic models propose starting points to
4D Nucleome research [18,39]. Recent observations
made from theO'Shea lab using innovative labeled EM
tomography (ChromEMT) have helped clarify key
features and have led to a better understanding at
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interactive landscape.
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The genome is enveloped by the nuclear mem-
brane, a protective lipid that has evolved to maintain
and moderate the frenetic activity within. It controls
access from the cell cytoplasm through nuclear pores
and its inner surface contributes to the regulatory and
spatial order of the nucleus. The nucleoplasm is
densely packed with soluble macromolecules of a
range of sizes from small protein machinery, through
small bodies like speckles, to ribosome production
complexes, which are assembled in the large globular
nucleolus. Lengthy fibrous polymers of chromatin of
few tens of nanometers account for a substantial part
of nuclear volume.
In 3D/in vivo cell conditions, the genome organiza-

tion exhibits high-order organization by its constituent
chromosomes. Compartmentation exists in both the
classic condensed forms and as chromosome terri-
tories when uncondensed during interphase with
smaller chromosomes housing evolutionary con-
served genes more central to the nucleus. Biomole-
cules permeate from the pores through lower density
inter-chromosomal channels between chromosome
territories, which may facilitate interchromsomal reg-
ulation, or coalesce by phase separation to form the
larger bodies [40]. Compact heterochromatin lines the
inner membrane as laminar-associated domains
(LADs) around more accessible euchromatin and is
structured by nuclear bodies like the nucleolus and
speckles [41]. Within these, architectural proteins like
CTCF help cohesin to pull the chromatin into loops
that bundle into the TADs and sub-TADs described
above.
The spatial organization of the genome is, above

all, dynamic in nature. The membrane breaks down
and reforms during mitosis, cell stress or differenti-
ation, and increases porosity during interphase to
enable transport. Through crowding, the nucleo-
plasm regulates diffusion and interaction rates and
thereby metabolism. Rates of loop formation are key
to the speed of chromatin condensation, compart-
ment formation and thereby epigenetic expression.
And of course, at the smallest scale there is the
frenetic transcribing of molecules, which may also be
governed by quantum dynamic changes.
Visualizing the Genome

Visualization is a mature field that has evolved from
elaborate artwork into a precise, evidence-based
science of visual communication. The writings of
Tufte [42] lead the drive for clear, concise graphic
presentation of the data, a ratio of data to ink or pixel.
Research by Ware [43] and many others have
detailed human perception as a fast and intuitive tool
for image comprehension and have provided guid-
ance on avoiding perceptual biases that can affect our
reading of the data conveyed. Specific concerns
related to 3D images are as follows: 3D can hinder
analysis as there is a loss of planar reference and
object occlusion; depth and perspective distort the
image; and for large varied data sets, the amount and
spread of data taxes the users visual memory [44].
Overall, as demonstrated in the stimulating presenta-
tions of Rosling et al. [45], visual delight encourages a
critical reading, highlighting the readers own preju-
dices to ensure communication is “factful.” These
goals of legibility, clarity and engagement are extolled
in the field of molecular graphics which, haltered to
developments in computer graphics, has depended
on efficient imaging to enable effective research and
accessible education of discoveries with important
social implications. In response to the above visual-
ization caveats and the unlimited expressivity of the
computer graphics medium, principles have been
described that together with the broader goals can
address the specific challenges for genomic visuali-
zation [46,47].
The base visualization of the genome is the linear

track of DNA sequence that demarcate local arrange-
ments genes and, when stacked against tracks of
other species or assays, reveals patterns of inheri-
tance and regulatory mechanisms. Two-dimensional
track browsers share a visual notation of colors and
glyphs, and common interaction tasks to filter and
analyze, which have been key to genome research. A
number of designs use innovative notation by depict-
ing the data in 3D to augment the user experience:
zoomable karyograms [48], haptic Circos diagrams
[49] or as 3D big-data landscapes [50]. However,
integration into 2D browsers of 3D data such as long-
range interactions loses clarity and fails to convey the
message as matrices, commonly used as 2D repre-
sentations of 3D genomes, are expansive and break
legibility. These can now also visualized as the arcs or
even as links across the center of Circos plots [51] but
have also been explored in abstractions, for example,
as neighborhoods of a Hilbert curve [52]. While 2D
images aid communication especially in print, they
rely on idiosyncratic, specialized workspaces and still
reside in the “Flatland” of the 2D genomic visualization
[53].
The many dimensions from integrating imaging,

assays and simulations may impede facile analysis,
but these experiments characterize a novel, complex
and dynamic architecture from which emerges biolog-
ical functionand form. Toaid examination beyondmere
file management, a number of authors have variously
formulated an underlying process for construction of
coherent visualizations [44], the initial step being to
perform data and user abstraction to determine
effective encoding [54] and efficient interaction [55]. A
taxonomy of genomic tasks can be derived by
correlating visualization expertise [56], cell microscopy
[57], biological pathways [58], structural modeling
[59,60], the 4D Nucleome initiatives [17,19] and
genomics in clinical domains [61] (Table 1). In the
next sections, we assess existing biovisualization and



Table 1. Genomic visualization task taxonomy: examples
of tasks are derived from citations (adapted from Ref. [58]
Table 2)

Category Example task

Grammar
(G1) Characterize Stratify surface features and structural

motifs.
(G2) Accentuate Overlay known disease-related genes.

Structure
(S1) Assemblies Generate stochastic solubles around

modeled chromatin.
(S2) States Map interactions through scales to chart

repression.
Variation

(V1) Score Highlight regions and outliers up-regulation
networks.

(V2) Animate Simulate chromatin reconfiguration by cell
type.

Manipulation
(M1) Orient Situate exocentric viewpoint to observe

LAD interactions.
(M2) Supplement Dial through cell states to find repressive

signatures.

Analysis
(A1) Compare Align chromatin conformation to EM density

maps.
(A2) Classify Perturb and filter model to trace disease

pathways.
Curation

(C1) Augment Explore collaboratively as immersive haptic
model.

(C2) Document Track and explain treatment decision in
patient records.

(*1) Research method. (*2) Visualization approach.
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specific molecular graphic techniques [83,84] required
for these tasks and indicate bottlenecks between
data input and the user experience requiring novel
solutions. For exploratory visualization, the data
need encoding with the following: representative
grammar for heterogeneous and novel components,
coherent structure to convey the massive and
complex organization and descriptive variation
capturing the dynamics and uncertainty in the
model (Fig. 4). In this form, it can enable explanatory
analysis through the following: interactive manipu-
lation of views coordinated across scale and state,
adaptive analysis to facilitate interrogation of the
diversity and collaborative curation for rapid inter-
disciplinary sharing of results (Fig. 5).

Representative grammar

As described above the genome is heteroge-
neous, polyvalent and largely dynamic. However, a
photoreal graphical language is often employed to
represent the genome as an “organism in miniature,”
a still-life of colorful, shiny objects in a fluid, with a
well-lit setting. Lying deep within the cytoplasm, the
atomic forms and actions of molecules can be more
precisely studied in abstract and without cinematic
license as described in a number of specific
guidelines for molecular visualization [46]. Lipid
membranes, small proteins and DNA components
can be rendered as particle clouds, ball-and-stick
diagrams or functionally descriptive “cartoons” [95].
Adopting the visual grammar of proteins is logical for
close inspection, but the crowded cytoplasm obli-
gates greater clarity, for example, by the use of
distinct colored molecular glyphs (Fig. 4a) [85].
Water and other “solubles” are molecular at this
scale and should be modeled without macroscopic
aqueous phenomena (caustics, refraction, distortion,
crepuscular rays) and assigned transparency to
reveal larger bodies [62]. The immense nuceloplas-
mic arena is dominated by larger complexes and
polymers that could be conveyed as molecular
surfaces and volumes, a process that may able to
be derived through an imaging pipeline [96]. To
distinguish between levels of interrogation of such
multiscale high-order components, these can be
treated as more than mere tubules to express
relevant granularity as explored DNA by shifting
LOD [86] (Fig. 4b) and dynamic color mapping [97] or
resolving areas of inspection [98]. Further figurative
styling of components can also provide a spatial
framework that can be overlaid with data attributes,
for example, gene locations, component density,
and so on. The model becomes a canvas onto which
other data can be displayed, thus gaining a new
perspective on it, for example, using chromatin
strands to graph colocation of linearly distant
genes (Fig. 4c). Overall, while there is a lack of
“primitives” to describe genome components, it may
prove useful to make automated preselection of
grammar (e.g., the centroid from an ensemble) to aid
initial assessment by the researcher.

Coherent structure

Neither a fibrous hairball nor the conceit of a
hierarchy by “Powers of Ten” [99] adequately de-
scribes the overlapping functional landscapes and
transitions of state of the genome. Complex networks
can be difficult to tame and comprehend, but recent
concepts of visualization help stratify connections for
comparison, for example, as Hive plots [100]. The
genome can be arranged into coincident layered
models (Fig. 4d). For example, the wwPDB initiative's
Integrative Hybrid model format (mmCIF-IHM) is
viewable in the prototypeChimeraX, but the functional
scales can only be toggled manually [101]. Repre-
sentation of large collections of molecules has been
demonstrated by animations of small volumes of
cytoplasm using generative software like MegaMol
[102] or CellView [103], but time for assembly is
prohibitive for rapid, interactive exploration. Recently,
faster techniques have been demonstrated to auto-
mate fast assembly of crowded models such as the
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interior of a bacteria using CellPack (Fig. 4e) [87]. The
scene is organized into membrane bounded compart-
ments; each volume is voxelized and populated with a
pre-calculated mix of soluble molecules; then fibrous
structures are generated though the nucleoplasm by
random walk. Further accuracy could be introduced
by incorporating density and segmentation data of
sub-nuclear bodies (e.g., from Ref. [1]) to inform the
compartmentation of the scene (Fig. 4f). More
significantly, chromatin structure is not random and
the overall path should be based on the model
algorithms and/or experimental data. The varied
compartmentation of chromatin, often shown simply
as diagrammatic 2D boundaries, will also require
more detailed assemblies, from the density patchwork
and wooly borders of chromatin, hetero-/euchromatin
or TADs. Other genomic bodies appear formed from
phase-separated components and are still little
understood, which gives the opportunity for novel
computational visualizations to provide biological
insights.
Descriptive variation

Variation in the data is an important factor to
represent for assessment of quality, aptness, or
relevance of the modeling (e.g., data confidence,
possible conformations, etc.). For example, Cell
Atlas provides a reliability score for every annotated
location and protein on a four-tiered scale: “validated,”
“supported,” “approved” and “uncertain” [104]. Depict-
ing such variation is important for characterizing and
conveying the dynamic nature of the genome and
presenting the physical ensembles modeled from
quantitative data reminds the user of properties and
limitations of the data shown (Fig. 4g) [105]. Move-
ment can be shown in a number of ways: simple stop
motion correctly shows time-lapsed video as captured
by microscopy over hours [106], or sparse positional
data sets of quantitative experiments (Fig. 4h); full
animation may be more appropriate if trajectory data
are captured; volumetric flow lines can convey
electrostatics, density and eddies (Fig. 4i) [88].
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(a) moderated navigation by dimensionality reduction in cyteGuide [89], (b) situational awareness orienting using spatial
axial radar [90] and (c) coordinated views with three-way data connectivity between sequence tracks, Hi-C matrices and
3D models in TADkit [80]. Adaptive analysis: (d) abstract genome notation in ABySS-Explorer [91], (e) filtering computer-
assisted clustering of 3D models with Dream Lens [92] and (f) computer filtering equivalence of Hi-C data in HiPiler [108]
and HiGlass [74]. Collaborative curation: (g) engaging interactive figures by Gaël McGill for “E.O. Wilson's Life on Earth”
[93], (h) immersive educational game “Guardians of the Genome” by AXS Studio (htttps://guardiansofthegenome.com)
and (i) documentation of visualization process for improved FAIR metadata and reproducibility [94].
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These observed processes occur at a vast range of
speeds and time frames: picoseconds of transcription,
mechanically limited or enzymatically accelerated
over nanoseconds, and causing interactions through
pathways, which range from microseconds to hours.
Investigation of appropriate indication of the rates
within the genome is essential as a full formed
genomemodel will require controls of scene playback
and more importantly indication of the chronometric
gaps still presentwhendifferent genomic data sets are
combined (Fig. 6).

Interactive manipulation

Interaction with correctly encoded genomic model
presents further challenges of coherent navigation
within a multifaceted space and the limits on scope of
the data in view [107]. In 2D, this can be addressed by
zoomed call-outs/scalable insets [108], layouts of
multiple figures (e.g., [1,17]) and dimensionality
reduction, for example, cyteGuide (Fig. 5a) [89], in
addition to visual clues, such as overviews, scale bars
and object limits, that help orient the user. Both 3D
non-domain apps [109] and genomic software (see
Existing Tools) bring fast and fluid interaction of
spatially structured scenes [110], optimized and
rendered on-the-fly in GPU born of the CAD and
games industries [110,111]. As in 2Dmaps, grids and
markers [112] create common frames of reference
and automatically decluttered at higher scales by
aggregation [113]. A number of 3D-specific constructs
can reduce the loss of reference when navigating
these complex scenes: task-appropriate viewpoint
and controls can be pre-selected by calculating the
information of each voxel [114], and axial radars
(Fig. 5b) [90] and “birds-eye”/”flower garden” give a
360° situational awareness and orient using avatar
landmarks [112]. Other techniques reserve user
interaction and interface selection for objective-
focused intuitive spatial inspection and interaction:
navigation can be steered [115] or condensed as
gimbals (e.g., ViewCube [116]) or cell state dials [82],

http://guardiansofthegenome.com


Light Microscopy

Super-Resolution

Electron Microscopy

3C-like Experiments

Molecular Dynamics
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Fig. 6. Gaps in time frames of genomic data. Overview of
time frames captured by different experimental techniques,
indicating chronological gaps in current knowledge, on a
logarithmic scale from femtoseconds (fs), throughmillisecond
(ms) to seconds (s) and days (d).
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and layers can be dynamically loaded, instead of
picked, by moving through a scenes or LODs [117].
Even with these aids, as mentioned previously, 3D
can distort the data and so hinder visual tasks when
compared to a well-considered 2D layout. Multiple
views of 3D data can help by providing distinct slices
to confirm and coordinate navigation of synchronized
data sets, for example, metabolic pathways [118],
structural motifs [119] or genetic features [80] (Fig.
5c). They can also provide intuitive filtering by direct
selection of data features or removing unchanged or
irrelevant data [92]. The potential augmentation of the
user's interactions is also being explored via AR, VR
and CAVEs with haptic controllers [120], for example,
with cutting planes for inspection of VR models.

Adaptive analysis

The identification of patterns within genomic data
relies in part on visual inspection, yet the multidisci-
plinary data sets vary in their descriptions, resolutions
or experimental approaches. They also cover a vast
range of species, cell types, component scales and
time series, taxing perceptual acuity and precision in
comparison and classification. Two-dimensional ge-
nomics have been assisted by honing the data for
comparison using abstract notation (Fig. 5d) [91] and
by computer-assisted clustering (Fig. 5e) [121,122].
Pattern finding within 3D models by side-by-side or
overlaid comparison is a common idiom of standard
molecular viewers, but the expansive spatial data sets
of the genome can overwhelm visual memory and
their dispersed arrangement can induce change
blindness [123]. Other idioms can help, for example,
transparent stacking and view-switching (jump-cuts)
can aid and highlight salient features [124]. Automat-
ed extraction and clustering of data small multiples
can also help determine patterns of 3D data (Fig. 5f).
This could be applied to unlabeled genomic compo-
nents to assess their statistical distribution and
functional relevance, as demonstrated in the Allen
Cell Explorer, which uses segmentation to create
predictive 3Dmodels [82]. Knowledge can be fedback
into sharedmodels, which can provide focus for study,
both in an expert and non-expert context through
online repositories. The integration of such method-
ologies creates a systemenabling “clinical queries” on
an in silico model through a “computational” genome
microscope, which could predict and diagnose [125].
As complete integrated genome models are assem-
bled, automation of this 3D scouting and trail blazing
must be explored by incorporation of web develop-
ment technologies for automated UX testing to help
ensure streamlined and reproducible observations.

Collaborative curation

Stewardship of integrated models and publication of
findings are specialist, laborious tasks that output what
are still primarily static 2D arrays of images [96].
Collation and processing can be assisted by graphical
tools, such as BioRender.io and MAGI [126]. Exten-
sions to professional-grade rendering packages have
made production of molecular 3D stills and animation
significantly faster and accessible to non-domain and
non-expert users on both sides of science and
illustration [63], in particular: Molecular Maya [62],
Molecular Flipbook [63], ePMV [64] and BioBlender
[65]. Intriguingly, these tools have begun to straddle
between scientific and illustrativemodeling as they can
use code developed for research to correctly figure and
animate the scenes (Fig. 5g). For publications, various
means are being explored to embed 3D [93] and even
animated visuals [127] within documentation bringing it
from the supplementary section to the fore. Publishers
are also looking to embed interactive illustrations [128]
and 3D online (https://www.elsevier.com/authors/
author-services/data-visualization) through apps like
Juicebox.js [129] and NGL [130]. Furthermore, visual-
ization formats such as Vega-Lite [131] aim to capture
idiomatic intent, and formats, following the legacy of
VRML, are being developed for AR, which could do the
same for integrated 3D models. HCI and Visualization
advances such as haptic interfaces and augmented
environments are already being used to aid collabora-
tion [132] and outreach [133] in genomics (Fig. 5h).
Such exchanges will rely on maintaining FAIR meta-
data, and RICH visualization tools [25] can assist the
fractured realm of genomic data by providing not only
analytics but also increased fluidity in the process of
metadata management and annotation (Fig. 5i): for
example, 3D BioNotes, part of the West-Life initiative
[134]; Autodesk Life Sciences' Bio/Nano suite [135];
and the Satori ontology-guided data exploration tool
[136]. The process of visualization is itself also
important to document as, by becoming a virtual
microscope, the assembly of data, processing, consul-
tation and adjudication are scientific method and form
protocols, which permit reproducibility [137]. Saving
session states and data collections is found in most
tools, but a more detailed recording of the choices
made in encoding and interacting with the data is not.

https://www.elsevier.com/authors/author-services/data-visualization
https://www.elsevier.com/authors/author-services/data-visualization
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Capturing this visualization process and retelling the
intricate histories of discovery that result from it remain
a significant challenge, which is incompletely ad-
dressed in current genomic tools [94].
Existing Tools

A number of tools create integrated visualization of
genomic data [138,139]. Lower-order components at
the DNA and nucleosome atomic scales are
extensively catered for in conventional protein
modeling platforms. Apart from Chimera, there are
many quality viewers for PDB-like data, which
leverage web browser WebGL rendering most
notably the following: NGL leads with embeddable
viewing [130] iCN3D implements a task focused
approach [60,140]; Aquaria has innovative track to
model annotation [141]; Autodesk Molecular Viewer
is feature rich with easy sharing and VR [142]; and
Nucleus-scale models on the users browser may be
feasible if compressed data and focused LOD
rendering are used to avoid slow loading and lags
in interactivity. There are a number of molecular
modeling tools designed to handle large molecular
data sets, for example, MegaMol [102], CellView
[103], VMD [143] and the commercial Amira suite
[144]. At the other end of the scale, a number of tools
integrate imaging, network and “multiomics” data
sets (i.e., epigenetic, transcriptomic and proteomic
networks, disease pathways, phylogeny, compara-
tive genomics, etc.) to enable study across scales,
states and time frames: Virtual Metabolic Human
using Recon3D [145] and the Allen Cell Explorer
hosts a library of 3D cell imaging the complete range
of states throughout the cell-cycle [82]. However,
Table 2. Genome visualization tools

Data type Tool

3D rendering Molecular Maya clarafi.co
Molecular Flipbook molecula
ePMV epmv.sc
BioBlender bioblend

3D viewers Globe3DV none ava
Genome3D genome3
3DGB 3dgb.cs.
GenomeFlow github.co

Hi-C viewers Rondo rondo.ws
Juicebox aidenlab
3D Genome Browser promote
3Div kobic.kr/
HiGlass higlass.io

Hi-C ➔ 3D HiC-3DViewer bioinfo.a
3D-GNOME 3dgnome
3Disease 3dgb.cbi
Chrom3D VR github.co

Hi-C & 3D Delta delta.big
TADkit 3dgenom
CSynth csynth.o
ChimeraX rbvi.ucsf

Microscopy Allen Cell Explorer allencell.
while they are all powerful at processing data, none
as yet address the concerns of genomic data and the
demands of visualizing the genome.
Between the atomistic and cellular scales, there

are dedicated software for integrating sequence and
3D data (Tables 2 and 3). Globe3DV [66] is of
particular interest as it foreshadows the move toward
an integrative model by arranging 1D sequences, 2D
reads and 3D models, all within a single virtual
space. Genome3D [67], 3DGB [68] and Gmol [146]
navigate discrete scales of detail as precomputed
layered spatial models, with 3DGB and Genome-
Flow [69], the successor to Gmol, adding the ability
to align 2D track data to the 3D. However, Globe3DV
and 3DGB the 3D setting for non-3D data, and the
extra navigational perceptual overhead to manipu-
late data may overwhelm comprehension and, in
Genome3D and Gmol/GenomeFlow GSS format,
have restrictive hierarchies, which may not reflect
current (and future) models of genome organization.
Hi-C data browsers, on the other hand, supply tools
to inform 3D knowledge of the genome in 2D: Rondo
CIRCOS-style graphs [70] and Juicebox matrices
[71] align Hi-C interactions with epigenomic tracks;
several dedicated tools provide databases for
exploring interactions, for example, “3D Genome
Browser” [72] and 3Div [73]; and HiGlass facilitates
interactive comparison of matrices [74]. Other tools
integrate modeling and visualization of 3D from Hi-C:
HiC-3Dviewer displays matrix and 3D side-by-side
[75]; 3Dgnome provides an analytical suite that can
output 3D [76]; and 3Disease Browser integrates
disease-associated data for comparison [77], Also of
note, a number of prototypes propose how such 3D
data may be explored in VR [78,120,139]. Finally,
three further examples expand on this by taking
Website/repository Ref.

m/tools/mmaya [62]
rflipbook.org [63]
ripps.edu [64]
er.org [65]
ilable [66]
d.org [67]
mcgill.ca [68]
m/jianlin-cheng/GenomeFlow [69]

[70]
.org/juicebox [71]
r.bx.psu.edu/hi-c [72]
3div [73]

[74]
u.tsinghua.edu.cn/member/nadhir/HiC3DViewer [75]
.cent.uw.edu.pl [76]
.pku.edu.cn/disease [77]
m/NoobsDeSroobs/VRVizualizer [78]
.ac.cn [79]
es.github.io/TADkit [80]
rg [81]
.edu/chimerax [36]
org [82]

http://clarafi.com/tools/mmaya
http://molecularflipbook.org
http://epmv.scripps.edu
http://bioblender.org
http://genome3d.org
http://3dgb.cs.mcgill.ca
http://github.com/jianlin-cheng/GenomeFlow
https://rondo.ws
http://aidenlab.org/juicebox
http://promoter.bx.psu.edu/hi-c
https://www.kobic.kr/3div/
https://higlass.io/
http://bioinfo.au.tsinghua.edu.cn/member/nadhir/HiC3DViewer
http://3dgnome.cent.uw.edu.pl
http://3dgb.cbi.pku.edu.cn/disease
http://github.com/NoobsDeSroobs/VRVizualizer
http://delta.big.ac.cn
http://3dgenomes.github.io/TADkit
http://csynth.org
http://rbvi.ucsf.edu/chimerax
http://allencell.org
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distinct routes to an integrative model. Delta pre-
sents a suite of tools for bringing together data [79].
Csynth generates interactive 3D, which can be
overlaid with external sources [81]. TADkit, used in
the Multiscale Genomics VRE, is able to intercon-
nect and display all three types of data within a single
exploratory interface [80].
Concluding Perspectives

Since Hooke's Micrographia and Jenner's pro-
vaccination pamphleteering in 1888, the visual
image has played a key role, not only in construct
and explore biology but also to disseminate convinc-
ingly the important learnings. The power invested in
biovisualization to shape understanding is not merely
representative. Likewise, the image can distort the
data it represents and therefore requires careful study.
In particular, the move toward a 3D comprehension of
the components and mechanisms of the genome
creates the need for 3D representation. The data
tasks need to be clearly defined to assess whether to
use abstract or spatial models of the genome. These
tasks can beassembled into a common tool, a “virtual”
ormodelingmicroscope. The collation of live data sets
into a unified parametric visualization can be used as
a simulacrum of a genome for either hypothesis
testing or exploratory perturbation by setting param-
eters for specific genotypes, epigenetic states, ar-
rangements or conformations. This is already being
practiced in laboratories as they explore disjointed
and quite often poorly annotated data in disparate,
self-assembled software pipelines.
With the gap in 3D genome resolution [3] closing, it

brings discernment of a functional cartography,
although the new tools reveal new gaps in our
knowledge. As we leave the genomic Flatland explo-
ration of new unexplored realms, phase separation,
quantum mechanics and computational-microscopic
resolution will sharpen our focus and expand research
frontiers. Defining new conceptual visualization of this
is a non-trivial, iterative process that requires the
support not only of browsers but also of analytical
engines for classification assisted bymachine learning,
predictive models and discussion in mixed reality.
Biovisualization is vital to this journey, to chart, to test
and to tell of the discoveries. Principles of genome
visualization can be distilled from the inheritance
Eduard Tufte: reducing visual clutter, increasing the
data to voxel ratio and 3D where 3D is concerned. The
model genome must aim to become an extended
experimental environment that facilitates research
bringing together the data for intuitive exploration. The
model will not only be used by differing classes of user
for differing tasksbut alsobeessential for newcontexts,
especially clinical, and this will require new forms of
tools [147]. Also, through biovisualization, the genome
can be shared with the public by initiatives such as the
immersive dome of the Cell Observatory at the Garvan
Institute, the VR installation Chromos, by Andy Lomas
for Max Cooper's musical collaboration with the
Babraham Institute [148] and the exhibition of Csynth
as part of theRoyal AcademySummerExhibition [149].
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As Emil Heitz was sketching genome function,
architect Le Corbusier was defining fresh, functional
design for novel human activity, inspired by techno-
logical innovations. Today, there exists a new spirit
in research, discovering how biological form follows
function. We must rely even more on biovisualization
to move toward an new genome architecture.
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