
Articles
https://doi.org/10.1038/s41588-019-0457-0

1Section of Epigenomics and Disease, Department of Medicine, and National Institute for Health Research Imperial Biomedical Research Centre, Imperial 
College London, London, UK. 2Regulatory Genomics and Diabetes, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 
Barcelona, Spain. 3CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain. 4Genomic Programming of Beta Cells Laboratory, Institut 
d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain. 5CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and 
Technology, Barcelona, Spain. 6Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK. 7Josep Carreras Leukaemia Research Institute, 
Campus ICO-Germans Trias i Pujol, Barcelona, Spain. 8Barcelona Supercomputing Center, Joint BSC-CRG-IRB Research Program in Computational Biology, 
Barcelona, Spain. 9Endocrine Regulatory Genomics Laboratory, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain. 10Novo 
Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. 
11Center for Clinical Research and Disease Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark. 12Department of Clinical Medicine, 
Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. 13Department of Public Health, Aarhus University, Aarhus, 
Denmark. 14Danish Diabetes Academy, Odense, Denmark. 15Université Sorbonne, UPMC Univ Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle—
Hôpital Pitié-Salpêtrière, Boulevard de l’Hôpital, Paris, France. 16Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain. 17Programs 
in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA. 18Diabetes Unit and Center for Genomic 
Medicine, Massachusetts General Hospital, Boston, MA, USA. 19Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy. 20Vita-Salute 
San Raffaele University, Milan, Italy. 21Cell Isolation and Transplantation Center, University of Geneva, Geneva, Switzerland. 22Department of Medicine, Leiden 
University Medical Center, Leiden, the Netherlands. 23Hubrecht Institute/KNAW, Utrecht, the Netherlands. 24European Genomic Institute for Diabetes, 
Lille, France. 25Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. 26Amsterdam Public Health Research 
Institute, Amsterdam, the Netherlands. 27Genomics, Diabetes and Endocrinology, Department of Clinical Sciences, Clinical Research Centre, Lund University, 
Malmö, Sweden. 28Section of Genomics of Common Disease, Department of Medicine, Imperial College London, London, UK. 29Department of Clinical and 
Experimental Medicine, University of Surrey, Guildford, UK. 30Universitat Pompeu Fabra, Barcelona, Spain. 31Gene Regulation, Stem Cells and Cancer, Centre 
for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain. 32Department of Biological Science, Florida State University, 
Tallahassee FL, USA. 33These authors contributed equally: Irene Miguel-Escalada, Silvia Bonàs-Guarch, Inês Cebola. *e-mail: jorge.ferrer@crg.eu

Type 2 diabetes affects more than 400 million people world-
wide1, and is a classic example of a polygenic disease in which 
the genetic susceptibility is largely driven by noncoding 

variants2,3. T2D susceptibility variants are enriched in active islet 

enhancers that cluster in linear genome maps—variously defined 
as super-enhancers, clusters of open regulatory elements (COREs), 
enhancer clusters or stretch enhancers4–7. Enhancer clusters from 
other tissues or cell types are similarly enriched in risk variants for 
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Genetic studies promise to provide insight into the molecular mechanisms underlying type 2 diabetes (T2D). Variants asso-
ciated with T2D are often located in tissue-specific enhancer clusters or super-enhancers. So far, such domains have been 
defined through clustering of enhancers in linear genome maps rather than in three-dimensional (3D) space. Furthermore, their 
target genes are often unknown. We have created promoter capture Hi-C maps in human pancreatic islets. This linked diabetes-
associated enhancers to their target genes, often located hundreds of kilobases away. It also revealed >1,300 groups of islet 
enhancers, super-enhancers and active promoters that form 3D hubs, some of which show coordinated glucose-dependent 
activity. We demonstrate that genetic variation in hubs impacts insulin secretion heritability, and show that hub annotations 
can be used for polygenic scores that predict T2D risk driven by islet regulatory variants. Human islet 3D chromatin architec-
ture, therefore, provides a framework for interpretation of T2D genome-wide association study (GWAS) signals.
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various common diseases5,7–11. So far, however, genome-wide maps 
of enhancer clusters have been largely defined with unidimensional 
epigenomic maps, which do not necessarily reflect the capacity of 
enhancers to cluster in 3D space, as shown for well-characterized 
loci such as Hbb (β-globin) and Hoxd12,13. In addition, linear maps do 
not reveal the target genes of enhancers, which are often separated 
by hundreds of thousands of base pairs. Therefore, there is a need to 
obtain accurate representations of enhancer domains, and to con-
nect them to the target genes that underpin disease mechanisms.

Here, we used promoter capture Hi-C (pcHi-C)14 to generate a 
genome-scale map of interactions between gene promoters and their 
regulatory elements in human pancreatic islets. This uncovered 
~1,300 hubs of islet enhancers that cluster in 3D space. We show 
that islet enhancer hubs are connected with key islet gene promoters 
and exhibit properties of regulatory domains. We use genome/epig-
enome editing to demonstrate the functional connectivity of hubs 
and we validate functional interactions between enhancers bearing 
T2D risk variants and their target genes. Finally, we show that islet 
hubs not only are enriched for T2D association signals, but also can 
be used to partition polygenic scores to identify T2D genetic sus-
ceptibility driven by pancreatic islet regulatory variation.

Results
The promoter interactome of human islets. To create a genome-
wide, high-resolution map of long-range interactions between gene 
promoters and distant regulatory elements in human pancreatic 
islets, we prepared Hi-C libraries from four human islet samples, 
and then performed hybridization capture of 31,253 promoter-con-
taining HindIII fragment baits and their ligated DNA fragments. 
These were then sequenced and processed with the CHiCAGO algo-
rithm to define 175,784 high-confidence interactions (CHiCAGO 
score > 5) between annotated promoters and distal promoter-inter-
acting DNA fragments14,15 (Fig. 1a,b and Supplementary Fig. 1).  
These high-confidence interactions were called with pooled sam-
ples, but for 89% of interactions all individual samples showed 
CHiCAGO scores above the 95% confidence interval of random 
distance-matched regions (Supplementary Fig. 1d–g). We also 
validated pcHi-C landscapes by 4C-seq analysis in the EndoC-βH1 
human β cell line in two selected loci (Supplementary Fig. 1h,i).

To define the chromatin landscape of interacting regions, we 
refined existing human islet epigenome annotations by generating 
human islet ATAC-seq maps and 30 new chromatin immunoprecip-
itation (ChIP)-seq datasets (Fig. 1b–d and Supplementary Table 1).  
This enabled a subclassification of active enhancers according to 
Mediator, cohesin and H3K27ac occupancy patterns (Fig. 1b–d 
and Supplementary Dataset 1). As expected, promoter-interacting 
genomic regions were enriched in active enhancers, promoters and 
CTCF-bound regions (Fig. 1e and Supplementary Fig. 2a–c). pcHi-
C interactions observed in pcHi-C maps from distant cell types 
were enriched in CTCF-binding sites and active promoters, whereas 
islet-selective interacting regions were enriched in active enhanc-
ers (particularly those with strongest Mediator occupancy, which 
we term class I enhancers) and were connected with genes showing 
islet-specific expression (Supplementary Fig. 2d–f). This genome-
scale map of the human pancreatic islet promoter interactome is 
accessible for visualization along with pcHi-C maps of other human 
tissues (www.chicp.org)16, or as virtual 4C representations of all 
genes along with islet regulatory annotations (isletregulome.org)17.

Identification of target genes for islet enhancers. Long-range 
chromatin interactions are largely constrained within topologi-
cally associating domains (TADs), which typically span hundreds of 
kilobases (kb) and are often invariant across tissues (Supplementary 
Fig. 3a–e)18,19. TADs, however, define broad genomic intervals that 
do not necessarily inform on the specific interactions that take place 
in each tissue between individual cis-regulatory elements and their 

target genes. Human islet pcHi-C maps identified high-confidence 
pcHi-C interactions (CHiCAGO score > 5) between gene promot-
ers and 18,031 different islet enhancers (Fig. 2a). Remarkably, 
42.2% of enhancers that showed interactions with gene promoters 
had high-confidence interactions with more than one gene, thereby 
illustrating an unexpected complexity of islet enhancer–promoter 
interactions (Supplementary Fig. 3f).

We used pcHi-C maps to further expand the number of enhancers 
that could be assigned to target genes. We reasoned that interactions 
between enhancers and their target genes can be missed due to the 
stringency of detection thresholds, the strong bias of Hi-C methods 
against proximal interactions or their dependence on specific environ-
mental conditions. To impute additional enhancer–promoter assign-
ments, we considered promoter-associated three-dimensional spaces 
(PATs). A PAT space was defined as the space containing all pcHi-C 
interactions that stem from a promoter bait (Supplementary Fig. 3g,h). 
We observed that PATs that had one high-confidence enhancer–pro-
moter interaction were more likely to show other enhancer–promoter 
interactions, and they exhibited chromatin features that distinguished 
them from other PATs (Supplementary Fig. 3i–k). This prompted us 
to leverage PAT features to impute plausible target promoter(s) of an 
additional 18,633 islet enhancers that did not show high-confidence 
interactions (Fig. 2a; see Supplementary Fig. 3l and Methods for a 
detailed description of the imputation pipeline). Imputed promoter–
enhancer pairs showed higher CHiCAGO scores than distance-
matched regions (Kruskall–Wallis P < 10−16), suggesting that many 
imputed assignments represent physical interactions that do not reach 
our stringent significance thresholds (Supplementary Fig. 3m). In 
total, we used high-confidence interactions and imputations to assign 
36,664 human islet active enhancers (80% of all enhancers) to at least 
one target gene (Fig. 2a and Supplementary Dataset 2).

We validated these enhancer-to-gene assignments with comple-
mentary approaches. First, we calculated normalized H3K27ac sig-
nals in assigned enhancer–promoter pairs across human tissues and 
human islet samples, and found that assigned pairs had distinctly 
higher correlation values than enhancers paired with distance-
matched promoters from the same TAD or an overlapping PAT 
(Fig. 2b). Importantly, this was true for both high-confidence and 
imputed assignments (Fig. 2b). As expected, islet-selective expres-
sion was enriched in enhancer-assigned genes but not in unassigned 
genes from the same TAD (Supplementary Fig. 3n). Furthermore, 
we determined 1,091 expression quantitative trait loci (eQTL) genes 
(eGenes) from 183 human islet samples (Supplementary Table 2), 
and found that eQTLs were enriched in enhancer-to-gene assign-
ments determined through either high-confident interactions or 
imputations, compared with distance-matched regions (odds ratio 
3.18 and 4.36; P = 3.05 × 10−9 and 9.01 × 10−23, respectively) (Fig. 2c).

We further tested enhancer–promoter assignments in a dynamic 
perturbation model. We exposed human islets from seven donors 
to moderately low (4 mM) or high (11 mM) glucose for 72 h, which 
correspond to quasi-physiological glucose concentrations. This 
led to glucose-dependent H3K27ac changes in 3,850 enhanc-
ers at adjusted P < 0.05, most of which showed increased activity 
at high glucose (Supplementary Fig. 3o). This result, therefore, 
showed that changes in glucose concentrations elicit quantitative 
chromatin changes in a large number of human islet enhancers. 
We next reasoned that glucose-regulated enhancers should tend 
to cause glucose-regulated expression of their target genes. Indeed, 
we observed that glucose-induced enhancers were preferentially 
assigned to genes showing glucose-induced messenger RNA, com-
pared with distance-matched active control genes from the same 
TAD (odds ratio 2.7 and 2.6, Fisher’s P = 4.9 × 10−16 and 6.4 × 10−12, 
for high-confidence or imputed assignments, respectively) (Fig. 2d).  
Likewise, genes assigned to glucose-induced enhancers showed 
greater glucose induction of promoter H3K27ac than of distance-
matched promoters in the same TAD (Fig. 2e). Collectively, these 
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studies validated pcHi-C maps for the identification of functional 
target genes of transcriptional enhancers in human pancreatic islets.

Genome editing of T2D-relevant enhancers. A fundamental 
challenge to translate GWAS data into biological knowledge lies 
in identifying the target genes of noncoding elements that carry 
disease-associated regulatory variants. To link noncoding variants 
to their target genes, we compiled T2D- and fasting glycemia (FG)-
associated variants from 109 loci, most of which have been fine-
mapped to a credible set (Supplementary Fig. 4a and Supplementary 
Dataset 3). For fine-mapped loci, variants with a high posterior 
probability (PP > 0.1) of being causal were most enriched in active 
islet enhancers (Z = 20.9 relative to control regions in the same 
locus) and promoters (Z = 7.2) (Z < 2 for other accessible chro-
matin regions) (Supplementary Fig. 4b). In 61 loci we identified 
T2D- and/or FG-associated variants overlapping islet enhancers, 
and assigned one or more candidate target genes for 53 (87%) of 
these (Fig. 3a and Supplementary Table 3). Some of these target 
genes were expected, based on their linear proximity to the variants 
(for example, ADCY5, TCF7L2, ZFAND3, PROX1, FOXA2), but for 
75% of loci we identified more distant candidate genes. Examples of 
unexpected distal target genes, sometimes in addition to previously 
nominated proximal genes, include SOX4 (in the CDKAL1 locus), 
OPTN (CDC123/CAMK1D), TRPM5 (MIR4686), PDE8B (ZBED3), 
SLC36A4 (MTNR1B), POLR3A and RPS24 (ZMIZ1), MDGA1 

(ZFAND3) and PHF21A (CRY2) (Fig. 3a and Supplementary  
Table 3; see isletregulome.org or www.chicp.org). Selected unex-
pected targets, including ABCB9 and STARD10, were additionally 
supported by concordant eQTLs (Supplementary Fig. 4c,d).

We used genome editing to validate target genes of ten enhanc-
ers bearing T2D- or FG-associated variants from eight loci (Fig. 3b 
and Supplementary Table 4). We performed these experiments in 
EndoC-βH3 cells, a glucose-responsive human β cell line20.

In the CDC123/CAMK1D locus, only one SNP from a small set of 
fine-mapped T2D-associated variants is located in an islet enhancer 
(Fig. 3c, Supplementary Fig. 5a,b and Supplementary Table 3). 
This variant was previously proposed to be a regulatory variant 
on the basis of plasmid reporter studies21, allele-specific chroma-
tin accessibility22 and as an eQTL for CAMK1D23,24 (Supplementary 
Table 2). The enhancer showed moderate-confidence interactions 
(CHiCAGO = 4.42) with CAMK1D, but, more surprisingly, showed 
high-confidence pcHi-C interactions with a more distant gene, 
OPTN (Fig. 3c and Supplementary Fig. 5a). Accordingly, deletion 
of this enhancer (but not an adjacent region), or silencing with 
KRAB-dCas9, led to selectively decreased expression of both OPTN 
and CAMK1D, whereas targeted activation of the enhancer stimu-
lated their expression (Fig. 3d and Supplementary Fig. 5c,d). These 
results, therefore, confirm functional relationships predicted by 
pcHi-C maps. Although the role of OPTN and CAMK1D as media-
tors of this T2D-associated genetic signal remains to be defined, the 
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findings highlight an example of a diabetes-relevant enhancer with 
multiple target genes.

We also examined rs7903146, a plausible causal SNP in the 
TCF7L2 locus. This is the strongest known genetic signal for T2D, 
and it is known to influence islet cell traits in non-diabetic individu-
als2,25,26. SNP rs7903146 lies in a class I enhancer with unusually high 
Mediator occupancy (Supplementary Fig. 6a). The SNP alters allele-
specific accessibility and episomal enhancer activity6, and has been 
associated with differences in TCF7L2 mRNA27. However, deletion 
of this enhancer in human colon cancer cells affects ACSL5 rather 
than TCF7L2 (ref. 28), thereby questioning the true target gene(s) 
of this enhancer in islet cells. We found that the rs7903146-bearing 
enhancer has imputed and moderate-confidence pcHi-C interactions  

with TCF7L2, but no evidence of proximity with any other gene in 
human islets (Supplementary Fig. 6a). Consistently, targeted dele-
tion, functional inhibition or stimulation of the enhancer caused 
selective changes in TCF7L2 mRNA (Supplementary Fig. 6b,c). 
Therefore, the enhancer that harbors rs7903146 regulates TCF7L2 
in human β cells. Regardless of the possible metabolic role of this 
locus in other cell types29, this finding indicates that TCF7L2 is a 
likely mediator of the genetic association between rs7903146 and 
islet-related traits.

For all eight tested loci, at least one of the genes assigned by 
pcHi-C to an enhancer showed gene expression changes, and four 
showed changes in expression of more than one gene (Fig. 3b, 
Supplementary Table 4 and Supplementary Dataset 4). This included  
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functionally validated imputed target genes, such as VEGFA, 
as well as MDGA1 and ZFAND3 (Supplementary Fig. 7). These 
functional studies, therefore, underscore the complexity of 
enhancer–promoter interactions, with long-range interactions 

that cannot be predicted from linear genome maps, interactions 
that are not functionally essential and frequent target gene multi-
plicity. Importantly, the results validate the use of human pcHi-C 
maps to connect regulatory elements that harbor T2D-associated  
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variants with the genes that can mediate disease susceptibility 
mechanisms.

Islet-specific transcription is linked to enhancer hubs. Earlier 
studies demonstrated that risk variants for common diseases such 
as T2D are enriched in clusters of enhancers that regulate key cell 
identity genes4–7. However, spatial clustering of enhancers is not 
necessarily apparent from linear genome maps. To identify 3D 
enhancer clusters, we again considered promoter-associated 3D 
spaces, or PATs, and empirically defined enhancer-rich PATs as 
those containing three or more class I enhancers (enhancers with 
high H3K27ac and Mediator occupancy, Fig. 1c). This definition 
of enhancer-rich PATs was supported by a multivariate analysis of 
genomic and epigenomic PAT features that were most predictive of 

islet-specific gene expression (Supplementary Fig. 8a and Methods). 
In total, we identified 2,623 enhancer-rich PATs (Supplementary 
Fig. 8b). As noted above, many active enhancers (~40%) had 
interactions with one or more promoters (Supplementary Fig. 3f).  
Thus, separate enhancer-rich PATs were often connected. We 
therefore merged enhancer-rich PATs with other PATs connected 
through enhancer-mediated high-confidence interactions, yield-
ing 1,318 islet enhancer hubs (Fig. 4a and Supplementary Fig. 8c). 
Compared to alternative enhancer hub definitions, this definition 
maximized the enrichment of islet cell functional annotations and 
the number of mapped hubs (Supplementary Fig. 9). The 1,318 islet 
enhancer hubs are, in essence, 3D chromatin domains that contain 
a median of 18 enhancers, two active promoters and two shared 
enhancer interactions (Supplementary Fig. 8d). They are often 
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tissue-selective interaction domains, because hub promoters had a 
2.8-fold higher fraction of islet-selective interactions than did non-
hub promoters (Wilcoxon’s P = 2.8 × 10−36) (Supplementary Fig. 
8e; examples in Figs. 1b and 5a and Supplementary Figs. 1h,i and 
10a). Furthermore, the genes that form part of enhancer hubs were 
enriched in islet-selective transcripts, and in functional annotations 
that are central to islet cell identity, differentiation and diabetes (Fig. 
4b,c, Supplementary Table 5 and Supplementary Dataset 5).

Hubs exhibit domain-level chromatin changes. Consistent with 
the high internal connectivity of hubs, gene pairs from the same 
hub showed increased RNA expression correlation values across 

tissues and islet samples, as compared to control active gene pairs 
in the same TAD as the hubs (P = 6.3 × 10−8) (Fig. 4d). Moreover, 
hub enhancers showed higher H3K27ac correlations with their tar-
get promoters than when they were paired with non-hub promot-
ers from the same TAD (P = 2.2 × 10−16) (Fig. 4e). These findings 
are consistent with enhancer interaction hubs as functional regula-
tory domains.

To further explore the behavior of hubs as functional domains, 
we again examined islets exposed to moderately low versus high 
glucose concentrations. Glucose-induced enhancers and mRNAs 
were highly enriched in hubs, compared with their non-hub coun-
terparts (Fisher’s P = 1.1 × 10−7 and 2.2 × 10−16, respectively). Of 297 
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promoters that showed glucose-induced H3K27ac, 94 were con-
tained in hubs, and 65% of these showed glucose-induced mRNA 
(Supplementary Tables 6 and 7). We predicted that if hubs are func-
tional regulatory domains, hub enhancers connected to glucose-
induced genes should tend to show coordinated glucose-dependent 
changes. Our analysis showed that hub enhancers assigned to 
glucose-induced promoters showed a widespread parallel increase 
in H3K27ac (Fig. 4f–h and Supplementary Table 8). Thus, varying 
glucose concentrations elicit chromatin changes in human islets at 
the level of broad regulatory domains. Taken together, our findings 
indicate that enhancer hubs have properties of functional units.

Enhancer hubs contain super-enhancers and enhancer clusters. 
We compared islet enhancer hubs with previously defined islet 
enhancer domains, such as linear enhancer clusters and super-
enhancers (Supplementary Fig. 8f). This showed that hubs have 
at least some spatial overlap with 70% of enhancer clusters7, and 
with 87% of super-enhancers defined with a standard algorithm4 
(Supplementary Fig. 8g–i). Hubs, however, differ in that they can 
be connected with their target genes. Furthermore, enhancer hubs 
capture spatial clusters of Mediator-bound (class I) enhancers that 
do not cluster in the linear genome and therefore do not fulfill defi-
nitions of super-enhancers and enhancer clusters (Supplementary 
Fig. 8j–l)4,7. In fact, many hubs contained several interconnected 
enhancer clusters or super-enhancers (Supplementary Fig. 8m–o). 
This is illustrated by the ISL1 locus, which has several enhancer 
clusters and super-enhancers distributed across an entire TAD, 
whereas pcHi-C points to a single hub that connects dozens of 
enhancers with ISL1 and long noncoding RNA HI-LNC57 (Fig. 5a). 

Thus, enhancer hubs are 3D domains that often include one or more 
enhancer clusters or super-enhancers and their target gene(s).

Tissue-specific architecture of the ISL1 enhancer hub. To gain 
insight into the 3D conformation of enhancer hubs, we built 3D 
models of hubs using islet pcHi-C interaction data (Fig. 5a). We 
focused on the ISL1 locus because it contains a single hub within 
a TAD-like domain, with few other annotated genes. We used islet 
pcHi-C data to build interaction matrices at 5-kb resolution, and 
transformed the frequency of interactions between genomic seg-
ments into spatial restraints30,31. We then used molecular dynamic 
optimization to generate an ensemble of 500 models that best sat-
isfied the imposed restraints. This showed colocalization of islet 
enhancers and target genes in a constrained space of the TAD, 
whereas models built from B lymphocyte pcHi-C libraries showed 
decreased aggregation of these regions (Fig. 5b,c, Supplementary 
Fig. 10b,c and Supplementary Videos 1 and 2). Quantitative 
analysis of ISL1 and six other T2D-relevant hubs showed analo-
gous tissue-specific aggregation of hub enhancers and promoters 
(Supplementary Figs. 10d–I and 13f–h). These models, which cap-
ture the average topology in a population of cells, serve to highlight 
that whereas TADs are defined as single intervals in linear genome 
maps, hubs are formed by multiple interspersed regions that occupy 
a shared 3D subspace within a TAD.

Epigenome editing of T2D-associated islet hubs. We used 
enhancer perturbations to test the functional connectivity of 
selected enhancer hubs. In the ZBED3 locus, we targeted a class I 
enhancer that contains a variant with highest posterior probability  
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for causality in T2D fine-mapping studies (PP = 0.461) (Fig. 6a, 
Supplementary Fig. 11a and Supplementary Table 4). Targeted epig-
enomic activation or inhibition of this single enhancer led to sig-
nificant changes in the expression of five of the six genes connected 
with this hub, but not of non-hub genes from the same TAD (Fig. 
6b). In three other hubs we perturbed single enhancers containing 
candidate T2D susceptibility causal variants, which led to expres-
sion changes in CRY2 and PHF21A (Supplementary Fig. 11b,c), 
VPS13C, C2CD4A and C2CD4B (Supplementary Fig. 12) and GLIS3 
(Supplementary Fig. 13). These findings highlight a remarkable 
functional connectivity of enhancer hubs.

Islet hub variants impact insulin secretion. Previous evidence 
that T2D susceptibility variants are enriched in islet enhancer 
clusters5–7,24,32 prompted us to examine the enrichment of diabe-
tes-associated variants in our newly defined annotations. T2D/
FG-associated SNPs were enriched in islet pcHi-C interaction 
regions (Fig. 7a) and in islet enhancer hub class I enhancers, rather 
than in other active enhancers (Fig. 7b, Supplementary Figs. 9 and 
14a–f and Supplementary Table 9). This indicates that hub class I 
enhancer variants are important for T2D susceptibility.

A major portion of the heritability of common diseases is driven 
by many variants that, individually, have not achieved genome-wide 
significance, yet exert a large aggregate effect33–35. Consistent with 
this notion, common variants that have so far not shown genome-
wide significance for T2D association, but are located in pcHi-C 
interacting regions or hub class I enhancers, showed more signifi-
cant association P values than expected distributions (Fig. 7c,d). 
This observation prompted us to quantify the overall contribution 
of common variants in islet hubs to the heritability of T2D. We used 
stratified linkage disequilibrium (LD) score regression36, and found 
that hub class I enhancers showed the most significantly increased 
per-SNP T2D heritability coefficient (q = 1.64 × 10−2) compared 
with various islet and non-islet genomic annotations (Fig. 7e, 
Supplementary Fig. 15a and Supplementary Table 10).

Although islet dysfunction is central to the pathophysiology of 
T2D, other tissues (liver, adipose, muscle, brain, among others) are 
also critically important37. Genetic variation in islet hub enhanc-
ers should, therefore, predominantly impact on the heritability of 
pancreatic islet function. Indeed, islet hub variants showed higher 
heritability enrichment estimates for islet cell traits than for T2D 
(Fig. 7e, Supplementary Fig. 15a–f and Supplementary Table 10). 
Consequently, common variation in hub class I enhancers (0.26% 
of genomic SNPs) explained 9.9% of observed genetic heritability 
for T2D, 21.9% for acute insulin secretory response in intravenous 
glucose tolerance tests26, 17.2% for HOMA-B models of β-cell func-
tion and 31.2% for an insulinogenic index on the basis of oral glu-
cose tolerance tests (OGTT) 38 (Supplementary Table 10). In sharp 
contrast, islet hub variants showed no enrichment for HOMA-IR, 

an estimate of insulin resistance (Supplementary Fig. 15e). Of 
note is that significant heritability enrichments were generally also 
observed for enhancer clusters, stretch enhancers or super-enhancer 
annotations, yet estimates were consistently larger for hub enhanc-
ers (Fig. 7e and Supplementary Fig. 15a–d). These results indicate 
that enhancer hubs define genomic spaces that play a prominent 
role in the heritability of T2D and insulin secretion.

Hub variants provide tissue-specific risk scores. Recent studies 
suggest that polygenic risk scores (PRS) that integrate effects of a 
very large number of variants, including many that lack genome-
wide significant association, can identify individuals with extreme 
levels of risk for polygenic diseases, including T2D33,35,39–41. We 
assessed whether islet hub variants could be harnessed to more 
specifically identify individuals in whom variation in islet function 
plays a preponderant role in T2D susceptibility.

We first created a PRS model using all common variants from a 
recent body mass index (BMI)-adjusted T2D GWAS meta-analy-
sis42, and examined the ability of this genome-wide PRS to predict 
T2D in the UK Biobank population cohort43,44. This showed that 
2.5% of the UK Biobank individuals with the highest PRS had 
a 7.11-fold higher frequency of T2D than those with the lowest 
2.5% (Fig. 7f).

Next, we created PRS models that contained DNA variants from 
either: (1) islet hub enhancers and promoters (1.6% of the genome), 
(2) all other islet open chromatin regions (5.0% of the genome) or 
(3) the rest of the genome. Despite the fact that islet hub regions 
encompass <2% of the genome, the T2D risk ratio—defined as the 
T2D frequency in the top versus bottom risk bins—was 4.02-fold, 
which was comparable to that observed with variants from the rest 
of the genome (risk ratio 3.96), and larger than that of other open 
chromatin regions (risk ratio 3.01) (Fig. 7f and Supplementary Fig. 
15g,h). Thus, islet hub variants possess a capacity to predict T2D 
risk that plausibly reflects their observed impact on the heritability 
of islet function (Fig. 7e).

Although, as expected, the genome-wide PRS model shows 
higher risk ratios than islet hub PRS models (Fig. 7e), the latter 
could potentially define qualitatively distinct T2D risk profiles. 
Monogenic defects in islet transcription factors typically cause 
early-onset diabetes in lean individuals, suggesting that islet cis-
regulatory variants could also predominantly impact T2D risk at 
an earlier age and lower BMI. We thus compared the effect of hub 
PRS across BMI and age of onset of diabetes, and considered how it 
deviated from PRS calculated from genomic regions of similar size 
and distribution as hubs (100 iterations of 1,000 pseudo-enhancer 
hubs redistributed across TADs). For hub PRS, this T2D risk ratio 
showed greatest deviations from pseudo-hub PRS in individuals 
with BMI < 30 (hub risk ratio = 6.25, Z = 5.68) and T2D diagnosed 
before 50 years (hub risk ratio = 6.67, Z = 5.27), but then sharply 

Fig. 7 | Islet hub variants impact insulin secretion and provide tissue-specific risk scores. a, Variant set enrichment (VSE) for T2D and FG (n = 2,771 
variants; Supplementary Table 9) and breast cancer (n = 3,048 variants) in high-confidence interacting fragments in islets. Box plots show 500 
permutations of matched random haplotype blocks. Red dots indicate significant enrichments (Bonferroni-adjusted P < 0.01). NS, not significant. b, 
T2D and FG GWAS significant variants are selectively enriched in hub class I islet enhancers. Box plots show median and IQR. c, Genomic inflation 
of T2D association P values for non-GWAS significant variants (P > 5 × 10−8) from a T2D GWAS meta-analysis (12,931 cases, 57,196 controls) in islet 
high-confidence interacting regions (magenta), non-interacting islet open chromatin (beige) and all other variants (brown). d, Genomic inflation of 
T2D association P values for non-GWAS significant variants in hub class I islet enhancers (blue), non-hub islet open chromatin (beige) and all other 
variants (brown). e, Heritability estimates based on GWAS summary statistics for T2D (12,931 cases, 57,196 controls), insulinogenic index (OGTT, 7,807 
individuals), homeostasis model assessment of β-cell function (HOMA-B) and insulin resistance (HOMA-IR) (~80,000 individuals), for indicated islet 
enhancer domains. Bars show category-specific τc divided by LD Score heritability (h2) of each trait. τc coefficients were obtained independently for each 
trait, controlling for 53 functional annotation categories. Values were multiplied by 107 and are shown with s.e.m. f, T2D frequency across 40 bins, each 
representing 2.5% of individuals in the UK Biobank test dataset (226,777 controls; 6,127 T2D cases) with increasing PRS, calculated with hub (pink dots) 
or genome-wide variants (light green). g, Odds ratios (OR) for T2D calculated for 2.5% individuals with highest PRS versus all other individuals, using islet 
hub (pink) or genome-wide models (green), stratified by BMI and T2D age of onset. Box plots show ORs for PRS from 100 permutations of pseudo-hubs 
(IQRs). Z-scores are standard deviations of pseudo-hub averages. See also Supplementary Fig. 15 and Supplementary Table 17.
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declined with increasing BMI and age of onset of T2D (BMI ≥ 35, 
hub risk ratio = 2.67, Z = 2.98; T2D onset ≥60 years, hub risk 
ratio = 3.01, Z = 2.94) (Supplementary Fig. 15h). This contrasted 

from PRS models built with the rest of the genome, which showed 
greatest deviations from pseudo-hubs in individuals with BMI > 35 
and T2D diagnosed after 65 years, or PRS built with other islet open 
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chromatin regions, which showed modest deviations of risk ratios 
in all groups (Supplementary Fig. 15h). We further stratified UK 
Biobank individuals by both BMI and age of onset of diabetes, and 
found that individuals with 2.5% top hub risk scores had an odds 
ratio of 2.71 for T2D diagnosed at <60 years of age and BMI < 35 
(Fig. 7g). This odds ratio was a major deviation from that observed 
with pseudo-hub PRS (Z = 8.50), and was equivalent to the T2D 
risk of the highest genome-wide PRS (Fig. 7g; see Supplementary 
Fig. 15i for other control regions). At the other extreme of the phe-
notypic spectrum (BMI ≥ 35 and age of onset ≥ 60), individuals 
with the highest islet hub PRS showed a lower odds ratio, which 
did not differ from pseudo-hub genomic regions (odds ratio = 1.52, 
Z = 0.37) (Fig. 7g). Taken together, these results indicate that islet 
enhancer hub variants, which impact islet gene regulation and insu-
lin secretion, can provide distinct T2D risk scores.

Discussion
We have created human islet 3D genome maps that link human 
pancreatic islet enhancers to gene promoters. We validated them 
with experimental perturbation models and eQTLs, and showed 
how they can identify the target genes of diabetes-relevant regula-
tory elements. This resource can therefore assist efforts to under-
stand the molecular mechanisms that influence T2D susceptibility.

Our study has systematically mapped >1,300 enhancer hubs in 
human islets. These enhancer domains align with earlier obser-
vations derived from lower resolution Hi-C maps, which showed 
broad genomic regions that exhibit unusually high interaction fre-
quencies45, with numerous well-characterized chromatin hubs12,13, 
and with evolutionarily conserved noncoding sequence blocks46,47. 
We show that enhancer hubs exhibit features of regulatory domains 
that control genes important for islet cell function, differentiation 
and diabetes. They also contain DNA variants that have a major 
impact on the heritability of insulin secretion. Hub elements, there-
fore, define a genomic space that has direct relevance to islet func-
tion and human diabetes. Islet enhancer hubs should thus provide 
a useful gene-centric framework for genetic studies that aim to dis-
cover regulatory variants underlying T2D and monogenic diabetes.

Our work is relevant to the dissection of the polygenic under-
pinnings of T2D. Recently, genome-wide polygenic risk scores have 
shown promise for the prediction of common diseases35. Because 
T2D pathophysiology is heterogeneous and multiorganic37,48,49, it is 
reasonable to presume that partitioned polygenic risk scores could 
also provide risk estimates that distinguish mechanisms of suscepti-
bility across individuals. Polygenic scores based on islet hub variants 
could thus be leveraged to quantify patient-specific genetic risk act-
ing through islet gene regulation and insulin secretion.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41588-019-0457-0.
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Methods
Human islets. Human pancreatic islets from organ donors without a history 
of glucose intolerance were purified using established isolation procedures50–53, 
shipped in culture medium and re-cultured at 37 °C in a humidified chamber 
with 5% CO2 in glucose-free RPMI 1640 supplemented with 10% fetal calf serum, 
100 U ml−1 penicillin, 100 U ml−1 streptomycin and 11 mM glucose for 3 d before 
analysis. RNA was extracted from flash-frozen islet pellets using TRIzol Reagent 
(ThermoFisher Scientific). For glucose regulation studies, islets were cultured in 
identical time and medium, except that glucose-free RPMI 1640 medium was 
supplemented with glucose to achieve final concentrations of either 4 or 11 mM 
glucose. Donor and sample characteristics are provided in Supplementary Table 11.

Compliance with ethical regulations for human research studies is described in 
Supplementary Note 1.

pcHi-C. From four islet donors, 30–60 million human islet cells per donor were 
cultured as described above for 3 d before fixation in 2% paraformaldehyde (Agar 
Scientific) at room temperature for 10 min with mixing, quenched in 125 mM 
glycine for 5 min at room temperature and 15 min in ice and washed twice in PBS. 
Dry pellets were flash-frozen and stored at −80 °C.

Hi-C libraries were prepared with in-nucleus ligation and processed to capture 
22,076 HindIII fragments containing 31,253 annotated promoters for 18,202 
protein-coding and 10,929 non-protein-coding genes (Ensembl v.75), using 
SureSelect target enrichment (Agilent Technologies), as described previously14,54. 
After library enrichment, a post-capture PCR amplification step was carried out 
with four PCR amplification cycles.

Twelve sequencing replicates from four human islet donor libraries were 
processed using a reported pipeline that maps di-tags against the human genome 
(GRCh37), filters out experimental artifacts, such as re-ligations, and removes PCR 
duplicates55. Reads from replicates from each donor were then pooled. Alignment 
statistics are shown in Supplementary Tables 12 and 13.

Interaction confidence scores were computed with CHiCAGO14,15. High-
confidence interactions were defined as CHiCAGO scores >5, as described14. 
pcHi-C datasets from unrelated tissues14 were processed identically. CHiCAGO 
analysis is generally performed with pooled libraries as this increases sensitivity 
and mitigates subsampling in individual libraries14,15. We assessed reproducibility 
across individual samples, and observed that high-confidence interaction calls 
showed (1) high CHiCAGO scores in individual samples, with limited overlap with 
distance-matched regions (Supplementary Fig. 1d), (2) pairwise Pearson ρ values of 
individual sample CHiCAGO scores ranging 0.62 to 0.74 (Supplementary Fig. 1e) 
and (3) consistent above-background scores in individual samples (Supplementary 
Figs. 1f,g and 5a).

ChIP-seq and ATAC-seq. ChIP and ATAC were performed as previously 
described7,56, with modifications (Supplementary Note 2). Adaptor trimming of 
ChIP-seq reads was performed with cutadapt v.1.9.1 (options: -m 20)57. For ATAC-
seq, low quality bases and adaptor trimming were processed using TrimGalore 
v.0.4.1 (options: --quality 15 --nextera). Trimmed reads were aligned to hg19 using 
bowtie2 v.2.1.0 (options: --no-unal) allowing no mismatches58, retaining uniquely 
mapped reads (MAPQ ≥ 30) using SAMtools v.1.2 (ref. 59), removing duplicate 
reads (picard v.2.6.0)60, blacklisted regions61 and, for ATAC-seq, mitochondrial 
reads. Data quality was assessed with SPP.R script from phantompeaktools62. ChIP-
seq and ATAC-seq information is shown in Supplementary Table 1.

For histone modifications, broad enriched regions were called with MACS2 
(ref. 63) using --g hs --extsize = 300 --keep-dup all --nomodel --broad, and narrow 
regions were called without using --broad flag. For transcription factors and 
cofactors, narrow regions were called using --g hs --extsize = 300 --keep-dup all. 
For ATAC-seq, we used --shift 100 --extsize = 200 --keep-dup all --nomodel.

To obtain a robust set of ChIP-seq peaks, we called peaks in individual human 
islet samples with relaxed stringency (P < 0.01), and in pooled samples using a 
stringent threshold (false discovery rate (FDR) q < 0.05 for Mediator and cohesin; 
and q < 0.01 for histone modification marks). We then identified peaks present 
in at least three individual samples, or at least two samples if only three replicates 
were processed, as well as in the pooled set. For accessible chromatin sites, we 
called peaks at P < 0.01 in 13 individual samples, and FDR q < 0.05 from pooled 
samples. We then defined consistent peaks present in at least three samples as well 
as in the pooled set. Consistent ATAC peaks that showed multiple subpeaks in 
>3 islet samples were manually split, leading to n = 241,481 ATAC peaks. A final 
set of accessible chromatin regions (n = 249,582) was defined by adding regions 
lacking ATAC-seq peaks that showed either Mediator or CTCF binding (n = 1,319, 
n = 9,596 respectively) or were bound by at least two islet transcription factors 
(n = 1,514)7. bigWig files were generated using bamCoverage from deepTools 
(-e = 300 --normalizeTo1x2451960000).

Classification of human islet-accessible chromatin. We classified 249,582 
consistent islet open chromatin regions using k-medians clustering of ChIP-seq 
signal distributions of H3K27ac, H3K4me1, H3K4me3, Mediator, cohesin and 
CTCF, using islet samples with the greatest signal to noise for these marks. Briefly, 
−log10 (P value) signal was calculated for each mark using 100 base pair bins 
across a 6-kb window centered on consistent open chromatin regions. K-median 

clustering (flexClust64) was used to classify open chromatin regions into 14 clusters, 
which were manually merged into eight clusters based on the chromatin mark 
enrichment patterns. Each open chromatin class was ranked by CTCF binding 
to highlight a subset of CTCF-bound enhancers. Post-hoc analysis showed that 
human islet transcription start sites defined by cap-analysis of gene expression 
(CAGE) were markedly enriched in regions classified as active promoters and, 
to a lesser extent, in class I enhancers (Fig. 1c). See Supplementary Dataset 1 for 
genomic locations.

PATs and enhancer–promoter assignments. We defined 16,030 promoter-
associated three-dimensional spaces (PATs) as the linear space covered by all 
interactions originating from a pcHi-C bait, within the same islet TAD-like 
compartment (Supplementary Note 3).

We used PAT features to assign enhancers to promoters, following a stepwise 
approach such that each step was performed on unassigned enhancers from 
previous steps. We assigned enhancers to baits with at least one active islet 
promoter according to our regulome annotations (Supplementary Dataset 1) 
or ChromHMM analyses (Supplementary Note 6), and report target genes 
with average human islet RNA expression >1.5 transcripts per million (TPM) 
(Supplementary Dataset 2), based on the following criteria:

 (1) Presence of high-confidence interactions (CHiCAGO > 5) to one or more 
baits, including those that cross TAD boundaries (also referred to as assign-
ment by interaction).

 (2) For enhancers with no high-confidence interactions, we defined PAT(s) in 
which they were contained. We did not assign enhancers to all overlapping 
PATs because only some active genes are regulated by enhancers, and instead 
only imputed orphan enhancers to PAT(s) anchored by an active promoter 
that already showed high-confidence interactions with other islet enhancers.

 (3) For remaining enhancers located <10 kb away from a bait containing active 
promoter(s), we assumed that (1) this linear distance is more likely to provide 
functional enhancer–promoter communication than for promoters located 
more distally that do not show high-confidence interactions, and (2) random 
collisions are too frequent to detect high-confidence interactions above back-
ground noise, and thus we imputed these enhancer–promoter assignments.

 (4) For the remaining enhancers that were exclusively contained within a single 
PAT with an active promoter, we imputed the assignment to expressed genes 
in that PAT bait. We refer to assignment criteria 2–4 as imputations here.

Enhancer–promoter assignments can be found in Supplementary Dataset 
2 and were validated by analysis of (1) CHiCAGO scores in imputations, (2) 
increased enhancer–promoter correlations, (3) islet-specificity of assigned genes, 
(4) concordance with eQTLs and (5) coordinated changes after exposure to varying 
glucose concentrations (Supplementary Note 7).

Candidate target genes of T2D/FG-associated variants. We integrated lists of 
T2D/FG-associated variants (Supplementary Note 8) with enhancer–promoter 
assignments to identify candidate target genes. We associated 555 enhancer 
variants from 51 loci to islet-expressed genes using high-confidence interactions 
and imputations. Supplementary Table 3 provides a more extensive list of 830 
T2D/FG-associated variants overlapping an active enhancer or promoter, 
with information on connections to candidate target genes through (1) high-
confidence interactions (CHiCAGO > 5), (2) moderate-confidence interactions 
(CHiCAGO = 2.5–5), (3) imputations, (4) indirect connections through a common 
hub and (5) location of actively expressed gene within 10 kb. This category also 
included actively transcribed genes from associated variant-containing promoters 
that overlap pcHi-C baits. Supplementary Table 3 additionally lists T2D/
FG variants overlapping a promoter-interacting region that do not overlap an 
annotated regulatory element.

Cell-based genome and epigenome editing. Experimental validation of T2D-
relevant enhancer–promoter assignments in EndoC-βH3 cells20 is described in 
Supplementary Note 10 and Nature Protocol Exchange (I.C. and A. Beucher, 
https://protocolexchange.researchsquare.com/article/nprot-7395).

Classification of PATs based on enhancer content. We defined enhancer-rich 
PATs as those with three or more class I enhancers (Supplementary Fig. 8b). This 
was supported by logistic regression analysis (Supplementary Note 11) showing 
that the number of class I enhancers assigned to a PAT was independently 
predictive of islet-selective expression of PAT genes. This effect was optimized with 
PATs with ≥3 assigned class I enhancers (Supplementary Fig. 9).

Enhancer hubs. Enhancer-rich PATs were frequently interconnected through one 
or more shared enhancers (42.4% of all active enhancers had high-confidence 
interactions with >1 bait). We thus merged enhancer-rich PATs with other PATs 
that were connected by one or more common enhancers through high-confidence 
interactions (CHiCAGO > 5). For 99.5% of hubs, all hub components were 
restricted to one chromosome. Alternative definitions of hubs were created to 
test how, (1) the number of enhancers in enhancer-rich PATs, (2) the inclusion 
of enhancer–gene imputed assignments and (3) criteria to merge PATs, influence 
definitions of enhancer hubs (Supplementary Fig. 9).
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To annotate hub genes, we considered annotated promoters of genes with 
median RNA expression >1.5 TPM in human islets. In a few cases (n = 426), 
pcHi-C bait fragments contained active enhancers that established high-confidence 
pcHi-C interactions with non-baited fragments containing active islet promoters, 
which were also considered as constituents of islet hubs. A list of human islet 
enhancer hubs is presented in Supplementary Dataset 5. Functional enrichments of 
hub Ensembl genes were performed with Enrichr65.

The analysis of correlated hub promoter and enhancer activity, and islet 
selectivity of enhancer interactions, is described in Supplementary Note 12.

3D modeling of hubs. 3D modeling and analysis of enhancer hubs were partly 
based on previously described methods66,67, and are described in Supplementary 
Note 13.

T2D/FG variant enrichments in regulatory annotations. Variant set enrichment68 
was used to compute the enrichment of T2D- and FG-associated variants in 
regulatory annotations, using lead SNPs from 109 loci (Supplementary Table 9), 
and is described in Supplementary Note 14.

GWAS meta-analysis of insulin secretion. A total of 7,807 individuals from four 
population studies were included in these analyses: the Inter99 study (ClinicalTrials 
ID no.: NCT00289237) (n = 5,305)38, the Health2008 cohort (n = 605)69, the 1936 
Birth Cohort (n = 709)70 and the ADDITION-Pro cohort (n = 1,188)71. All study 
participants gave informed consent and studies were approved by the appropriate 
ethical committees in accordance with the scientific principles of the Helsinki 
Declaration II.

In all cohorts, glucose-stimulated insulin secretion was evaluated by 
measurement of plasma glucose and serum insulin at 0, 30 and 120 min 
during a 75-g OGTT. We calculated insulinogenic index = (s-insulin at 30 min 
[pmol l−1] − fasting s-insulin [pmol l−1])/p-glucose at 30 min (mmol l−1). Individuals 
with known diabetes were excluded.

Two sample sets (Inter99 and Health2008) were genotyped by Illumina 
OmniExpress array and others by Illumina CoreExome array. Genotypes were 
called by the Illumina GenCall algorithm. Genotype data were filtered for 
variants with call rate <98% and Hardy–Weinberg equilibrium P < 10−5. Samples 
were excluded if they were ethnic outliers, had mismatch between genetic and 
phenotypic sex or had a call rate <95%.

Genotype data were imputed to the Haplotype Reference Consortium reference 
panel v.1.1 (ref. 72) at the Michigan Imputation Server using Minimac3 after 
phasing genotypes into haplotypes with Eagle2 (ref. 73). Post-imputation SNP 
filtering included exclusion of variants with minor allele frequency (MAF) < 0.01 
or info score < 0.70. In each cohort, association analysis was performed by applying 
a linear regression model including age and sex as covariates via SNPTEST74. The 
phenotype was rank-normalized within each cohort before analysis. A fixed-effects 
meta-analysis implemented in the R package meta75 was finally performed.

Heritability estimates. See also Supplementary Notes 16 and 17. To estimate 
the polygenic contribution of different genomic annotations to GWAS-based 
heritability of T2D and related traits, we applied the stratified LD Score regression 
method36,76. This method leverages the relationship between LD structure 
and association test statistics to estimate the average per-SNP contribution to 
heritability (τc coefficient) of functional genomic categories. We used a panel 
of 53 baseline genomic annotations36,76, and interrogated a broad range of islet 
regulatory annotations, including enhancer hubs, as well as control annotation 
sets, such as central nervous system functional annotations, random non-open 
chromatin regions and pseudo-enhancer hubs. We provide the per-SNP heritability 
τc coefficient for each regulatory annotation. To facilitate comparisons across 
traits and annotations, we normalized the τc estimates by dividing them by the 
LD Score heritability for each phenotype, and multiplied by 107. To correct for 
multiple testing, we generated τc q values (FDR-adjusted P values calculated from 
the Z-scores of the τc coefficients) with the qvalue R package over 17 functional 
categories and six traits. The FDR significance threshold was set at 0.05.

PRS. See also Supplementary Note 18. We created PRS based on T2D GWAS 
summary statistics from 70kfort2d42 (base dataset). UK Biobank individuals43 were 
used as the target datasets, which comprised training and testing datasets.

To select markers for PRS we first considered all genetic markers that were 
used as input for phasing and genotype imputation by UK Biobank, and filtered 
for variants with MAF ≥ 5% and imputation quality score >0.8. We then reconciled 
the base and target datasets by looking at the variant overlap between summary 
statistics and the imputed UK Biobank data, discarding variants showing allele 
inconsistency between both datasets. We also removed those located in the major 
histocompatibility complex region, resulting in a final collection of 5,352,737 variants.

We excluded UK Biobank individuals with: (1) excess of relatives (showing >10 
putative third-degree relatives, as provided by UK Biobank), (2) greater than third-
degree of relatedness (from each pair of related individuals we excluded the subject 
with the highest missing rate for a set of high-quality markers, as provided by UK 
Biobank), (3) no gender information, (4) International Classification of Diseases 
(ICD-10) codes E10 (insulin-dependent diabetes mellitus), E13 (other specified 

diabetes mellitus) and E14 (unspecified diabetes mellitus), (5) no BMI information. 
T2D cases were defined by the E11 ICD-10 code.

The sample size of UK Biobank qualifying individuals was 377,981 controls and 
15,764 cases, which were divided into training and testing datasets. For the training 
dataset, we included only control subjects with age at recruitment ≥55 years and no 
family history of diabetes mellitus, yielding a final training dataset sample size of 
6,305 T2D cases and 73,922 controls. The remaining 236,236 individuals were used 
as a test dataset, and were not filtered by age or family history.

PRS models were calculated from the above-mentioned base and training 
datasets using the PRsice software77 with default settings and clumping parameters 
(--clump-r2 0.6 --clump-p 0.01). We included 11 covariates in the analysis: the 
seven principal components provided by UK Biobank investigators as well as BMI, 
age at recruitment, batch information and sex.

We generated PRS models based on the following common genetic variants: 
(1) the entire genome-wide set shared by the training and testing dataset (total of 
5,352,737 variants; 1,152 qualifying variants in the model), (2) variants overlapping 
hub pcHi-C baits and enhancers (total variants = 86,158; 179 qualifying variants 
in the model), (3) variants overlapping islet open chromatin regions, excluding 
islet hub baits and enhancers and those in LD (r2 > 0.1) with islet hub index 
variants (total variants = 269,342; 160 qualifying variants in the model), (4) the 
remaining genome, excluding variants overlapping islet hub regions or other 
islet open chromatin regions or those in LD with islet hub index variants (total 
variants = 4,913,005; 355 qualifying variants in the model).

To enable comparisons of PRS effects in stratified subgroups, we created 
regions with similar genomic space and distribution as hubs (pseudo-enhancer 
hubs). Pseudo-enhancer hubs were generated essentially as for LD Score regression 
analysis, except that they resembled hubs used for PRS, in that they contained 
all enhancers and baits of hubs. We created 100 sets of ~1,000 pseudo-enhancer 
hubs by shuffling hub pcHi-C baits and their assigned enhancer fragments across 
randomly selected size-matched TADs, excluding those in TADs with real hubs 
or if they crossed TAD boundaries. We then built PRS models using variants 
overlapping these pseudo-baits and pseudo-enhancers (average of 265 qualifying 
variants per pseudo-hub PRS model).

To assess PRS, we first stratified the entire UK Biobank test dataset 
(n = 236,236) in 40 bins, each one containing 2.5% of individuals ranked by 
PRS score. To enable assessment of PRS for T2D stratified by BMI and age of 
diagnosis, all measures of T2D frequency were performed exclusively with the 
6,127 T2D cases with known age of diagnosis, and diagnosed after 20 years of 
age, and all 226,777 controls, which were censored at enrollment to UK Biobank. 
We calculated either the T2D frequency ratios in top versus bottom bin, or the 
odds ratio for T2D in individuals with highest PRS scores (top 2.5% bin) versus 
remaining individuals in the same age and BMI categories, using a logistic 
regression model adjusted for the first seven principal components of ancestry, sex, 
age, BMI and batch information. We expressed values as Z-scores relative to the 
distribution of 100 sets of pseudo-hub PRS to enable comparisons of hub scores in 
the different stratified subgroups.

Data visualization. Data from this study can be visualized in the following 
browsers: islet regulome browser (http://isletregulome.org/isletregulome)17, CHiCP 
browser (https://www.chicp.org)16 and WashU Epigenome browser using this 
session link: http://epigenomegateway.wustl.edu/browser/?genome=hg19&session
=62hGf7nfcS&statusId=140947077

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw sequence reads from pcHi-C, RNA-seq, ChIP-seq, ATAC-seq and 4C-seq 
are available from EGA (https://www.ebi.ac.uk/ega), under accession number 
EGAS00001002917. Processed data files for islet pcHi-C interactions, islet 
regulome annotations, enhancer–promoter assignments, hub coordinates and 
components and 3D model videos are provided as supplementary data. The 
robust set of ATAC-seq peaks, consistent set of Mediator, cohesin, H3K27ac and 
H3K4me3 peaks, list of islet super-enhancers defined using ROSE algorithm, islet 
regulome, ChromHMM segmentation model, list of islet TAD-like domains, PATs 
and the list of high-confidence pcHi-C interactions are provided as Supplementary 
Datasets and are also deposited at https://www.crg.eu/en/programmes-groups/
ferrer-lab#datasets.

Code availability
Custom code in this manuscript is available upon request.
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Trimgalore v0.4.1: https://github.com/FelixKrueger/TrimGalore 
Bowtie2: http://bowtie-bio.sourceforge.net/bowtie2/index.shtml 
Picard v2.6.0: https://broadinstitute.github.io/picard/ 
MACS2: https://github.com/taoliu/MACS 
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BedTools v2.25.0: https://bedtools.readthedocs.io 
ChromHMM v1.11: http://compbio.mit.edu/ChromHMM/ 
FlexClust: https://cran.r-project.org/package=flexclust 
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ROSE algorithm: https://bitbucket.org/young_computation/rose/src/master/ 
Michigan imputation server: https://imputationserver.sph.umich.edu/index.html 
STAR v2.3.0: https://github.com/alexdobin/STAR 
WASP pipeline v0.2.2: https://github.com/bmvdgeijn/WASP/blob/master/CHANGELOG.md 
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edgeR v3.20.9: https://bioconductor.org/packages/release/bioc/html/edgeR.html 
PEER: https://www.sanger.ac.uk/science/tools/peer 
Matrix eQTL: https://cran.r-project.org/web/packages/MatrixEQTL/index.html 
METAL: http://csg.sph.umich.edu/abecasis/metal/download/ 
qvalue R package v2.16.0: https://bioconductor.org/packages/release/bioc/html/qvalue.html 
DESeq2 v1.10.1: http://bioconductor.org/packages/release/bioc/html/DESeq2.html 
PLINK v1.9.0: https://github.com/chrchang/plink-ng/ 
VSE R package v.0.99: https://cran.r-project.org/web/packages/VSE/index.html 
PRSice v1 (February of 2018 release): http://prsice.info 
TADdyn: custom code available upon request. 
NetworkAnalyzer: http://manual.cytoscape.org/en/stable/Network_Analyzer.html 
ClusterMaker2: http://www.rbvi.ucsf.edu/cytoscape/clusterMaker2/ 
Chimera: http://www.cgl.ucsf.edu/chimera/
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-Raw sequence reads from pcHi-C, RNA-seq, ChIP-seq, ATAC-seq and 4C-seq are available from EGA (https://www.ebi.ac.uk/ega), under accession number 
EGAS00001002917.   
-Processed data files for islet pcHi-C interactions, islet regulome annotations, enhancer-promoter assignments, hub coordinates and components and 3D model 
videos are provided as supplementary data. The robust set of ATAC-Seq peaks, consistent set of Mediator, cohesin, H3K27ac and H3K4me3 peaks, list of islet super-
enhancers defined using ROSE algorithm, islet regulome, ChromHMM segmentation model, list of islet TAD-like domains, PATs and the list of high-confidence pcHiC 
interactions are provided as Supplementary Data Sets and also deposited at https://www.crg.eu/en/programmes-groups/ferrer-lab#datasets 
-Data from this study can be visualized in the following browsers: Islet regulome browser (http://isletregulome.org/isletregulome), CHiCP browser (https://
www.chicp.org) and WashU Epigenome browser using this session link: 
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Sample size At least 3 different human islet donors were used for each epigenomic map, (13 for ATAC-Seq, 4 for pcHiC, 3 at least for each ChIP and 7 for 
each RNA-Seq condition, see Supplementary Table 13), which is consistent with the number of donors used by international consortia for 
chromatin profiling  (p.e. The Roadmap Epigenomics Consortium, Nature 2015).  
For CRISPR/Cas9 perturbations we designed all experiments with at least two different targeting and non-targeting pairs of guide RNAs (for 
deletion experiments) or at least three targeting and non-targeting individual guide RNAs (for CRISPRa and CRISPRi) per target region. All 
genomic regions deleted/perturbed by CRISPR/Cas9 in this study were targeted a minimum of three times.

Data exclusions Exclusions are detailed in Methods section: for CRISPR/Cas9 experiments, all data acquired is available in Supplementary Data Set 4. Because 
we targeted TSS regions as internal positive controls, we excluded from the analysis TSS guide RNAs that clearly did not yield upregulation of 
the target gene, since they were non-informative. Outliers identified by Grubbs’ test (P < 0.05) were also excluded from the statistical analysis.

Replication pcHiC high-confidence interactions were called on 4 pooled human islet samples but we also evaluated to what extent interactions detected 
in the pooled set are detected in individual samples: 89% of interactions all individual samples showed CHiCAGO scores above the 95% 
confidence interval of random distance-matched regions (Supplementary Figure 1d). Also, CHiCAGO scores in all pairs of samples showed high 
Pearson correlation values (0.62-0.84) (Supplementary Figure 1e).  
For CRISPR/Cas9 deletions, we used two different guide RNA pairs per region, each of them tested in at least two independent experiments. 
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For CRISPRa and CRISPRi experiments, we always used a minimum of three different targeting guide RNAs per region, which we tested in two 
to three independent experiments. We observed that the great majority of guide RNAs used in CRISPRa and CRISPRi experiments yielded 
comparable results.

Randomization Not applicable. All human islets used in this study came from de-identified cadaveric donors without previous history of glucose intolerance.

Blinding Not applicable. All human islets used in this study came from de-identified cadaveric donors without previous history of glucose intolerance.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry
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Antibodies
Antibodies used Rabbit polyclonal Anti-Histone H3 (acetyl K27) antibody - ChIP Grade (ab4729) from Abcam (lot GR125454-2). Concentration: 

1μg/ChIP reaction; Rabbit polyclonal to CRSP1/TRAP220 (Mediator) - A300-793A from Bethyl Laboratories (lot #3). 
Concentration: 3μg/ChIP reaction; Rabbit Polyclonal to SMC1 (Cohesin)  - A300-055A from Bethyl Laboratories (lot #5).

Validation The use of antibody for H3K27ac in human islets for ChiP-Seq was validated in Pasquali et al 2014 (PMID: 24413736). The use of 
Mediator and cohesin antibodies was validated in Kagey et al 2010 (PMID:20720539) and specificity in beta cells in vitro was 
tested using Western blot.

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) The human pancreatic beta cell lines EndoC βH1 and βH3 were generated and provided by Philippe Ravassard, a co-author of 
this study.  The human hepatocellular carcinoma cell line HepG2 was obtained from ATCC. The transformed human 
embryonic kidney cell line 293FT was purchased from Invitrogen.

Authentication Cell lines were authenticated by routinary morphological inspection and qPCR measurement of cell-type-specific markers. 
The β-cell lines EndoC βH1 and βH3 were further authenticated by comparing their interactome, epigenome and 
transcriptome to those of human islets (which contain about 70% of β-cells).

Mycoplasma contamination All cell lines tested negative for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used.

ChIP-seq
Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

https://www.crg.eu/en/programmes-groups/ferrer-lab#datasets

Files in database submission High-confidence pcHiC interactions in human islets (washU format): PI_Merged_washU_text.txt 
Human islet enhancer hubs: Islet_enhancer_hubs.bed 
Human islet super-enhancers defined using ROSE algorithm: Islet_super_enhancers.bed 
Human islet regulome: Islet_regulome_simplified.bed.zip 
ChromHMM segmentation model (15-states): Islet_ChromHMM.bed.zip 
Human islet TAD-like domains: Islet_TAD-like_domains.bed 
Human islet PATs (Promoter Associated Three Dimensional Spaces): Islet_PATs.bed 
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Robust set of ATAC-Seq peaks in human islets: ATAC_consistent_peaks.bed 
Consistent set of Mediator peaks in human islets: MED1_consistent_peaks_q001_r0.5.bed 
Consistent set of cohesin peaks in human islets: SMCA1_consistent_peaks_q001_r0.5.bed 
Consistent set of CTCF peaks in human islets: CTCF_consistent_peaks_q001_r0.5.bed 
Consistent set of H3K27ac peaks in human islets: H3K27Ac_consistent_peaks_q005_r0.5.bed 
Consistent set of H3K4me3 peaks in human islets: H3K4ME3_consistent_peaks_q005_r0.5.bed

Genome browser session 
(e.g. UCSC)

A) islet regulome (http://isletregulome.org/regulomebeta/), B) CHICP Browser (https://www.chicp.org)  and C) - WashU 
Epigenome browser using this session: http://epigenomegateway.wustl.edu/browser/?
genome=hg19&session=62hGf7nfcS&statusId=140947077

Methodology

Replicates - 4  human islet samples for pcHiC experiment.  
- 6 Mediator ChiP-Seq datasets in human islets 
- 3 Cohesin ChIP-Seq datasets in human islets 
- 17 H3K27ac ChiP-Seq datasets in human islets cultured in high-glucose conditions  
- 7 H3K27ac ChIP-Seq datasets in human islets cultured in low glucose conditions  
- 13 ATAC-Seq datasets in human islets  
- 7 RNA-Seq datasets in human islets cultured in high-glucose conditions  
- 7 RNA-Seq datasets in human islets cultured in low-glucose conditions  
- 2 4C-Seq datasets in EndoC-BH1.  

Sequencing depth Sequencing depth and read length for all ChIP-Seq, ATAC-Seq and RNA-Seq datasets is presented in Supplementary Table 13.

Antibodies Rabbit polyclonal Anti-Histone H3 (acetyl K27) antibody - ChIP Grade (ab4729) from Abcam (lot GR125454-2). 
Concentration: 1μg/ChIP reaction; Rabbit polyclonal to CRSP1/TRAP220 (Mediator) - A300-793A from Bethyl Laboratories 
(lot #3). Concentration: 3μg/ChIP reaction; Rabbit Polyclonal to SMC1 (Cohesin)  - A300-055A from Bethyl Laboratories (lot 
#5).

Peak calling parameters For ChIP-seq reads from histone modification marks, broad regions of enrichment were called using the options --g hs --
extsize=300 --keep-dup all --nomodel --broad and narrow regions of enrichment were called without using --broad flag. For 
TF and co-factor ChIP-seq reads, narrow regions of enrichment were called using –g hs –extsize=300 --keep-dup all. For 
ATAC-seq reads, we used the following options --shift 100 --extsize=200 --keep-dup all --nomodel.

Data quality For ChIP-Seq we first used MACS2 to call peaks in individual human islet samples with a relaxed stringency threshold (p < 
0.01). Then, we pooled all the biological replicates for each mark and identified pooled peaks using a stringent threshold 
(FDR q < 0.05 for Mediator and cohesin and q < 0.01 for histone modification marks). Finally, we identified a set of 
consistent peaks when they were present in at least 2 individual human islet samples (out of 3) or at least 3 human islet 
samples (if we had more than 3 replicates) as well as in the pooled set

Software Illumina TruSeq adapters were removed from ChIP-seq reads using cutadapt 1.9.1 (options: -m 20). In ATAC-seq reads, low 
quality bases were trimmed using Trimgalore 0.4.1 (options --quality 15 --nextera), which also removes Nextera transposase 
adapters (https://github.com/FelixKrueger/TrimGalore). Trimmed reads were aligned to hg19 genome build using bowtie2 
2.1.0 (options: --no-unal) allowing no mismatches. Aligned reads were filtered to retain only uniquely mapped reads 
(MAPQ>=30) using samtools 1.2 14 and duplicate reads were removed using picard 2.6.0 15. Reads mapping to blacklisted 
regions 16 were also removed using BEDTools 2.13.3. Peaks were called with MACS2.
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