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Abstract 
 
Gene expression, epigenetic states and topological conformation are 

three fundamental aspects of genome organization that are tightly 

regulated in space and time. Epigenetic states, protein occupancy and 

chromatin modifications are mapped on linear chromatin and constitute 

a mono-dimensional perspective of chromatin functional states. 

Importantly, they are linked to the topological conformation of the 

genome for proper spatiotemporal regulation of gene expression. 

However, the characterization of the relationship between the genome-

wide occupancy of chromatin-associated factors, chromatin states and 

genome three-dimensional (3D) structure is still elusive. For this 

purpose, in this thesis, I investigate the role of histone H1 in genome 

3D conformation and gene expression and present a novel 

computational method to integrate chromatin interactions and factor 

occupancy data with the goal of characterizing chromatin states in 3D. 
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Resumen 

 
La expresión génica, los estados epigenéticos y la conformación 

topológica son tres aspectos fundamentales de la organización del 

genoma, los cuales están estrechamente regulados en el espacio y 

tiempo. Los estados epigenéticos, la ocupación de proteínas y las 

modificaciones de la cromatina se estudian de forma lineal y constituyen 

una perspectiva mono-dimensional de los estados funcionales del 

genoma. Sin embargo, estos aspectos del genoma están relacionados 

con la su conformación topológica para permitir la correcta regulación 

espaciotemporal de la expresión génica. Desafortunadamente, la 

caracterización de la relación entre la ocupación en el genoma de 

factores asociados a la cromatina, los estados de la cromatina y la 

estructura 3D del genoma es todavía difícil de estudiar. En esta tesis, he 

investigado la función de la histona H1 en la conformación 3D del 

genoma y en la expresión génica, y presento un nuevo método 

computacional para integrar datos de interacciones de la cromatina con 

datos de ocupación de factores, con el objetivo de caracterizar los 

estados de la cromatina en 3D. 
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Preface  
 
The vast majority of hereditary information necessary for the 

development and function of eukaryotic organisms is stored within the 

cell nucleus. All this information is encoded in large polymer of DNA 

of about 2 m, which must be organized and compacted at multiple levels 

to be accommodated in the confined space of the nucleus. Genome 

organization solves such challenging topological problem, while at the 

same time it provides the substrate for the correct execution of gene 

expression programs at the right time, and in the right tissue and cell 

type. The characterization of the mechanisms underlying how 

chromatin is organized within the nucleus and how this three-

dimensional (3D) architecture is linked to gene regulation, cell fate 

decisions, and evolution are major questions in cell biology. Topological 

organization in the 3D space occurs through a hierarchy of structures 

with increasing complexity, from nucleosomes and chromatin fibers, to 

chromatin loops, domains, compartments and, finally, chromosome 

territories. Recent technological developments in quantitative biology, 

genomics and cell and molecular biology approaches are helping gaining 

insights into the precise nature of genome topology and its regulatory 

functions in gene expression and genome maintenance, in development 

and disease (Bonev & Cavalli, 2016). 

 

This thesis is composed of multiple chapters. In the introduction, we 

review genome organization within the nucleus and its relationship with 

genome function across different genomic scales. The introduction 

encompasses main experimental and computational approaches for the 

analysis and representation of chromatin 3D organization. Following, 



 x 

the core of the thesis is articulated in chapter 1 and 2 and presents the 

results obtained in two projects of the candidate. In chapter 1, we 

investigate the relationship between histone H1, genome architecture 

and gene expression. In this study, the candidate has specifically 

contributed by performing the analysis and 3D modeling of chromatin 

conformation data. The rest of the experiments, performed by our 

collaborators at the Jordan Lab (IBMB-CSIC), are also included in the 

chapter for proper understanding of the results. In chapter 2, we present 

a novel computational method to characterize chromatin states in 3D 

by integrating chromatin interactions and protein occupancy data, and 

we study the evolution of 3D chromatin states during stem cell 

differentiation. The entirety of the Chapter 2 constitutes the main body 

of work of the candidate. The thesis is ended with a conclusion chapter 

highlighting the main contributions to the field of 3D genomics by the 

candidate. Finally, annexes 1, 2, and 3 contain three published articles, 

where the candidate specifically contributed by carrying out the 

computational analyses related to genome 3D conformation.  
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Objectives  
 
The global goal of this thesis is the exploration of the role chromatin-

associated factors in genome 3D organization within the cell nucleus. 

This main goal has been addressed by three different projects or 

objectives, which aim at: 

 

1. Studying the consequences of histone H1 variants depletion in 

human breast cancer cells, to gain insights in the role of histone 

H1 variants in gene expression, chromatin state and genome 3D 

conformation (Chapter 1). 

 

2. Developing of a novel and generalized computational tool that 

integrates chromatin interactions and factor occupancy data 

with genome structural data, to reveal the contribution of 

chromatin-associated factors to genome topology (Chapter 2, 

first half).  

 

3. Applying our new approach to mouse embryonic stem cells 

(ESCs) and neural progenitor cells (NPCs) to identify and to 

study genome 3D chromatin state changes during stem cell 

differentiation (Chapter 2, second half). 
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INTRODUCTION 
 

1. The DNA macromolecule: structure and 
organization  
 

Despite the incredible diversity characterizing life on Earth, the coding 

instructions of all living organisms are written in the same language of 

nucleic acids. In the middle of the XX century, biologists recognized 

that, whatever its nature, the genetic material must (1) store large 

amounts of instructions, for all the attributes and functions of an 

organism, (2) replicate faithfully, to be transmitted to descendant cells 

with great accuracy, and (3) encode a phenotype, translating into the 

amino acid sequence of proteins.  

The discovery of the double-stranded structure of DNA (Franklin & 

Gosling, 1953; Watson & Crick, 1953; Wilkins, Stokes, & Wilson, 1953), 

with its specific base pairing, provided an elegant model that helped to 

explain how the DNA could store and transmit genetic information. It 

was found that DNA consists of two complementary and antiparallel 

strings composed of a large number of repeating units, called 

nucleotides, joined together by phosphodiester linkages. Each 

nucleotide contains a pentose deoxyribose sugar, a phosphate group, 

and a nitrogenous base. The phosphate group and the pentose sugar are 

the same for all nucleotides and constitute the sugar-phosphate 

backbone of the DNA molecule. Differently, there are two basic types 

of nitrogenous bases: purines, that are adenine (A) and guanine (G), and 

pyrimidines, which are cytosine (C) and thymine (T). Since bases are the 

variable part of the molecule, they encode for genetic instructions. Also, 
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they are complementary in pairs: A pairs with T, and C with G. Their 

pairing by hydrogen bonds allows for the stabilization of the two 

polynucleotide chains, which have complementary sequences and thus 

encode for the same biological information. Notably, the 

complementarity of polynucleotide strands provided an elegant 

molecular explanation for the ability of DNA to replicate faithfully into 

two identical copies, and to translate instructions into a phenotype by 

ultimately specifying the amino acid sequence of proteins. The two 

strands of nucleotides wound around each other, with the sugars and 

phosphates in the exterior and the bases in the interior. DNA can adopt 

a number of different configurations, depending on the conditions in 

which the molecule is placed and on its base sequence. The B-DNA 

structure (Fig. 1a) is the most stable configuration for a random 

sequence of nucleotides under physiological conditions, and most 

evidence suggests that it is the predominant structure in cells. B-DNA 

is an alpha helix, with a diameter of around 2 nm, and approximately 10 

base pairs (bp) per 360-degree rotation of the spiral. Base pairs are 0.34 

nanometer (nm) apart from one another, so one complete rotation of 

the helix encompasses 3.4 nm. The spiraling of the polynucleotide 

strands generates major and minor grooves, which are important for the 

binding of proteins that regulate the expression of genes. B-DNA 

structure confers advantages both for information accessibility and for 

DNA packaging (Travers & Muskhelishvili, 2015). 

 



 

 3 

 
Figure 1. From the DNA macromolecule to the chromatin fiber. 
(a) Diagrammatic representation of B-DNA structure. (b) Chromatin compaction 
within the interphase nucleus occurs through a hierarchy of histone-dependent 
interactions. The nucleosome is formed by ~147 bp of DNA wrapped around a 
histone octamer core, composed of two copies of H2A, H2B, H3, and H4. Histone 
tails are subject to hundreds of different histone post-translational modifications 
(PTMs) that influence chromatin compactions. Nucleosomal arrays undergo short-
range interactions with neighboring nucleosomes to form compacted chromatin 
fibers. Figure adapted from (Fyodorov, Zhou, Skoultchi, & Bai, 2018; Pierce, 2012). 
 
 

2. The Genetic Code 
 

Since the revelation of DNA structure, much research focused on how 

genetic information is encoded, copied and translated. The 

determination of the human genome reference was a milestone in 

modern biology. The considerable challenge that derived was to identify 

and annotate its functional DNA elements. Intriguingly, nearly 99% of 

the ~3.3 billion nucleotides constituting the human genome does not 
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code for proteins (Lander et al., 2001). Furthermore, studies of 

comparative genomics and genome-wide association studies (GWAS) 

revealed that non-coding elements correspond to the majority of 

mammalian-conserved and recently adapted regions, and to most of 

trait-associated loci (Kellis et al., 2014). These findings indicate that 

non-coding DNA harbors a rich array of functionally significant 

elements. To better delineate them, the Encyclopedia of DNA 

Elements (ENCODE) project aims to systematically map cell and tissue 

repertoires of RNA transcription, chromatin modification and 

structure, DNA methylation, transcription factors occupancy and 

RNA-binding proteins, in human and mouse genomes. These data 

enabled to assign biochemical functions to discrete, linearly ordered 

sequence features covering around 80% of the genome. Such elements 

specify either molecular products, like protein-coding genes and non-

coding RNAs, or biochemical activities with mechanistic roles in gene 

regulation, like enhancers and promoters (Consortium et al., 2020). 

Non-coding RNAs are transcribed RNA molecules that are not 

translated into proteins, and modulate complex molecular and cellular 

processes (P. Zhang, Wu, Chen, & Chen, 2019). Enhancers are 10-100 

bp regions, target for transcription factors binding, that modulate 

transcription of target genes in a cell type-specific manner and 

independently of the enhancer’s relative distance. Promoters are ~100 

bp protein binding regions upstream of transcription start sites (TSSs) 

of genes, associated to transcription initiation of the proximal gene 

(Zabidi & Stark, 2016). Therefore, the past years have witnessed 

enormous progress in our knowledge about transcriptional regulation, 

and genome topological rearrangements emerged as an important player 
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in the communication between different DNA functional elements for 

correct function of the genetic machinery. 

 

 

3. Chromatin and epigenetics 
 

Despite having the same linear sequence map, the genome of 

multicellular organisms must produce different phenotypes in 

specialized cell types. To do so, information on genome function and 

gene regulation is also encoded in the way the DNA molecule is 

condensed in the cell nucleus. To reach this condensed state, genomic 

DNA in eukaryotic cells is folded up with proteins and RNAs to form 

chromatin. Chromatin structure is dynamic and exerts profound control 

over gene expression and other fundamental cellular processes. Indeed, 

it must ensure to be made accessible for readout by the complex 

machineries involved in gene transcription, DNA repair and DNA 

replication.  

Maintenance of cell identity during somatic cell division and modulation 

of cell-type specific gene expression patterns is achieved thanks to the 

transmission of epigenetic information. Epigenetics can be defined as 

the study of molecules and mechanisms that can perpetuate alternative 

gene activity states in the context of the same DNA sequence, 

encompassing molecular signals peripheral to the DNA such as DNA 

methylation or histone post-translational modifications (PTMs), as well 

as gene regulatory signals such as 3D genome organization. Such 

definition includes both mitotic inheritance of these signals and 

inheritance across generations via direct replicative mechanisms or 

indirect reconstruction of the signal in subsequent generations 
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(Bantignies, Grimaud, Lavrov, Gabut, & Cavalli, 2003; Fitz-James & 

Cavalli, 2022; Margueron & Reinberg, 2010). The convergence of 

genetic, biochemical, and cell biological observations have revealed that 

chromatin epigenetic and architectural states dynamically control 

genome function at multiple levels of chromatin organization, in normal 

development (Cheutin & Cavalli, 2019; Ogiyama, Schuettengruber, 

Papadopoulos, Chang, & Cavalli, 2018) and disease (Loubiere, 

Martinez, & Cavalli, 2019; Sati et al., 2020). 

 

3.1  Nucleosomes 
 

The building block of chromatin is the nucleosome, which is formed by 

~145-147 bp of DNA wrapped around a histone octamer core, 

composed of two copies of H2A, H2B, H3, and H4 (Luger, Mader, 

Richmond, Sargent, & Richmond, 1997). Nucleosomes are connected 

by short segments of linker DNA into nucleosomal arrays, which 

constitute the primary structure of chromatin (Fig. 1b). Linker histones, 

such as H1 and its isoforms, bind linker DNA at the base of the 

nucleosome, near the DNA entry and exit, and are involved in 

chromatin compaction (Happel & Doenecke, 2009; Willcockson et al., 

2021). The amino-termini of core histones are flexible histone tails that 

extend away from nucleosomal DNA. They interact with neighboring 

nucleosomes or nuclear factors, and are the site of most PTMs.  

An important feature of chromatin is its accessibility, corresponding to 

the degree at which nuclear macromolecules are able to physically 

contact chromatin. This parameter is determined by the occupancy and 

topological organization of nucleosomes and other chromatin-binding 
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factors that interfere with access to DNA. Since nucleosome and linker 

histone occupancy and positioning, protein composition of 

nucleosomes, and nucleosome chemical stability are dynamically 

variable across the genome, they generate a continuum of DNA 

accessibility levels that range from closed chromatin to permissive and 

open chromatin. Pioneer factors are able to bind closed and condensed 

chromatin, initiate remodeling and increase local accessibility. 

Accessible chromatin allows transcription factors (TFs) to bind 

internucleosomal DNA and initiate sequence-specific accessibility 

remodeling to establish an open chromatin conformation, that in turn 

allows for the binding of RNA polymerases or other chromatin-binding 

factors. The landscape of accessibility dynamically changes in response 

to external stimuli and developmental cues, so it represents a critical 

determinant of chromatin organization and function (Klemm, Shipony, 

& Greenleaf, 2019). 

 

3.2  Chromatin fiber 
 

Nucleosomal arrays undergo short-range interactions with neighboring 

nucleosomes to form compacted chromatin fibers, where DNA is 

packaged and coiled into a shorter and thicker fiber. For a long time, on 

the basis of in vitro electron microscopy, nucleosomes were thought to 

form arrays (often called the 30 nm chromatin fibers) with either 

solenoid or zigzag shapes (Finch & Klug, 1976; Schalch, Duda, Sargent, 

& Richmond, 2005; Tremethick, 2007). However, over the years several 

orthogonal studies have questioned the biological relevance of the 30 

nm chromatin fiber (Fussner et al., 2012; T. S. Hsieh et al., 2020; Luger, 

Dechassa, & Tremethick, 2012; Sanborn et al., 2015; Woodcock, 2005).  
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Nowadays, the most widely accepted idea is that in vivo chromatin is 

not a stable and periodic structure, but a flexible, heterogeneously 

organized and unevenly condensed granular chain that is packed 

together at different concentration densities, with a diameter that ranges 

from 5 to 24 nm (Cai et al., 2018; Eltsov, Maclellan, Maeshima, 

Frangakis, & Dubochet, 2008; Ou et al., 2017). Furthermore, stochastic 

optical reconstruction microscopy (STORM) has shown that at 

nanoscale level nucleosomes assemble in discrete heterogenous groups 

of varying sizes, called nucleosome clutches, in the interphase nuclei of 

mammalian cells (Fig. 2a) (Ricci, Manzo, Garcia-Parajo, Lakadamyali, & 

Cosma, 2015). Interestingly, large dense clutches are associated to 

compact heterochromatin and include more linker histone H1, while 

nucleosome-depleted regions correspond to active chromatin regions. 

These evidences support the idea that modulation of compactness and 

accessibility occurs also at the level of the chromatin fiber, is cell type-

specific and correlates with chromatin activity states. 

 

3.3  Modulation of chromatin compaction 
 

Chemical modifications to DNA and histone proteins form a complex 

regulatory network that has profound implications for regulation of key 

nuclear processes. Changes in nucleosome structure, stability and 

dynamics affect the compaction of nucleosomal arrays into higher-

order structures, which influences how molecular complexes such as  
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Figure 2. Snapshot of the state-of-the-art knowledge about the architecture of the 
eukaryotic genome. 
(a) Hierarchical chromatin structure. (b) Schematic Hi-C maps representing 
compartments as a plaid-pattern on top, and TADs as triangles along the diagonal 
below. Loops at TAD borders appear as enriched punctuate signal at the upper corner 
of some TADs. Stripes are consistent with the idea that contacts reflect a captured 
moment of a dynamic process. Figure adapted from (Dogan & Liu, 2018; van Steensel & 
Furlong, 2019). 
 
the transcriptional and repair machineries interact with DNA and 

chromatin (Bartke et al., 2010; Luger et al., 2012). Epigenetic 

modifications refer to the complete repertoire across the genome of 

these potentially heritable changes (Bernstein, Meissner, & Lander, 

2007).  

In higher eukaryotes, cytosine DNA methylation at CpG dinucleotides 

is associated with gene silencing (Chodavarapu et al., 2010). Although 

the precise relationship between DNA methylation and nucleosome 

positioning remains poorly understood, methylated DNA presents 

decreased flexibility and, thus, is less accessible for the transcriptional 

machinery (Segal & Widom, 2009). Furthermore, the amino acid side 

chains of core histones that compose the nucleosome are subject to 
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hundreds of different PTMs, including acetylation, methylation, 

phosphorylation, and ubiquitination. Such modifications chemically 

alter histones, they can be added and removed by enzymes, and thus 

dynamically modulate DNA accessibility. It has become evident that the 

enzymes responsible histone modifications function in a coordinated 

pattern to control gene expression, supervising cell fate decisions and 

differentiation (Margueron, Trojer, & Reinberg, 2005). Indeed, histone 

modifications may recruit other enzymes and proteins, which in turn 

recruit nucleosome remodeling complexes and, depending on the 

specific case, activating or repressing complexes. Histone acetylation 

contrasts nucleosome array compaction, resulting in an increase in 

chromatin accessibility and enhanced RNA transcription (Bowman & 

Poirier, 2015). It acts by reducing the positive charge of histones, thus 

decreasing the strength of interaction between the negatively charged 

DNA phosphate backbone and the positively charged histone residues 

mainly located on histone tails. Moreover, acetylated lysine residues are 

recognized by protein domains of nucleosome remodeling complexes 

that favor chromatin accessibility and transcription. Specifically, 

acetylation of histone 3 lysine 27 (H3K27) is generally associated to 

both active enhancers and promoters (Z. Wang et al., 2008). Histone 

methylation, instead, can have different effects depending on which 

residue is modified. Methylation of histone H3 lysine 4 (H3K4) and H3 

lysine 36 (H3K36) is associated with transcribed DNA. Specifically, 

H3K4me3 marks transcription start sites (TSSs) and promoters of 

active genes, it stimulates recruitment of the transcriptional and 

spliceosomal machinery, and is antagonistic to DNA methylation. In 

contrast, methylation of H3 lysine 9 (H3K9), H3 lysine 27 (H3K27), 

and H4 lysine 20 (H4K20) generally correlate with repression. 
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Methylated H3K9 and H3K27 are bound by HP1 and Polycomb, 

respectively, which mediate chromatin compaction. In pluripotent 

embryonic stem cells, H3K27me3 and H3K4me3 mark the so-called 

bivalent promoters of developmental genes, which result repressed in 

absence of differentiation signals, while poised for timely activation. 

During differentiation, lineage-specific gene repression and activation 

are associated with the corresponding loss of H3K4me3 and 

H3K27me3, respectively (Voigt, Tee, & Reinberg, 2013). 

In addition to DNA and histone chemical modifications, a variety of 

factors influences nucleosome positioning, and thus chromatin 

compaction, such as DNA sequence preferences, ATP-dependent 

nucleosome remodeling complexes, transcription factors (TFs) binding, 

architectural chromatin proteins, Polycomb group proteins (PcG), and 

histone composition (Segal & Widom, 2009). ATP-dependent 

chromatin remodellers, such as SWI/SNF or ISWI, are large molecular 

machines that use the energy of ATP hydrolysis to move, destabilize, 

eject, or restructure nucleosomes along the DNA (Clapier & Cairns, 

2009; Gangaraju & Bartholomew, 2007). TFs can influence nucleosome 

positioning by competing with them for access to DNA, depending on 

their relative affinities to the underlying DNA and on their 

concentrations (Segal & Widom, 2009). Architectural chromatin 

proteins (ACPs) are abundant nuclear proteins that interact with 

nucleosomes, influence the three-dimensional arrangement of 

nucleosomal arrays and orchestrate higher-order chromatin 

organization through the establishment of interactions between 

regulatory elements across multiple spatial scales (Gomez-Diaz & 

Corces, 2014). Their role in 3D genome organization will be discussed 

in chapter XXX. The best characterized architectural protein in 
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vertebrates is CCCTC-binding factor (CTCF), which is located at 

55,000-65,000 sites in the genome of mammalian cells, mainly located 

in intergenic regions, introns and exons, and near promoters (T. H. Kim 

et al., 2007). CTCF binding sites might both insulate different genomic 

regions, and facilitate enhancer-promoter interactions in a cell type 

specific manner (Gomez-Diaz & Corces, 2014). 

PcG proteins are evolutionarily conserved chromatin-modifying factors 

that are essential for maintaining epigenetic cellular memory of 

transcriptional repressed state, and dynamically regulating cellular 

identity and cell differentiation through epigenetic repression of key 

developmental regulatory genes. They have been involved in a plethora 

of cellular processes and have been discovered to orchestrate chromatin 

architecture at multiple levels (Di Croce & Helin, 2013; 

Schuettengruber, Bourbon, Di Croce, & Cavalli, 2017). At the scale of 

the linear genome, PcG proteins modify histones and local chromatin 

compaction. Even though multiple pathways and mechanisms 

contribute to recruit PcG proteins in Drosophila and vertebrates (Aranda, 

Mas, & Di Croce, 2015), it is known that in vertebrates hypomethylated 

CpG islands (CGIs) and long non-coding RNAs (lncRNAs) play a 

critical role in PcG recruitment, which catalyzes H3K27 trimethylation. 

Once recruited to their targets, PcG proteins employ diverse 

mechanisms to regulate their target genes. However, within the most 

described scenario, H3K27me3 can directly block the deposition of the 

antagonistically activating acetylation mark on H3K27 (H3K27ac) and 

can interfere with the recruitment of RNA polymerase II (RNA Pol II) 

to target promoters.  

One more factor influencing chromatin compaction is the 

incorporation of histone variants. As a demonstration of their 
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functional relevance, most histone variants are highly conserved 

between different species (Luger et al., 2012). H1 linker histone variants 

are the most abundant chromatin-binding proteins. Mammals express 

11 different linker histone proteins and they have been reported to be 

essential for mammalian development. Indeed, whereas deletion of one 

or two H1 genes does not cause overt phenotypes, simultaneous 

inactivation of H1-2, H1-3 and H1-4 leads to embryonic lethality (Fan 

et al., 2005). Several studies have demonstrated that H1 variants are 

non-randomly distributed in the genome and interact with different 

protein partners, supporting the idea of functional specificity (Cao et al., 

2013; Izzo et al., 2013; Millan-Arino et al., 2014). Moreover, by 

promoting genomic compaction, their association with chromatin 

determines nucleosome spacing and controls the balance of repressive 

and active chromatin domains (Willcockson et al., 2021). Chapter 1 of 

this thesis is dedicated to the study of the role of histone H1 variants in 

chromatin compaction and regulation.  

Detailed mechanistic insights about how regulatory proteins influence 

chromatin remodeling and gene regulation are fundamental to 

characterize of how cells reshape their gene regulatory networks to 

selectively respond to external signals. 

 

3.4  Chromatin states 
 

Given the central role of chromatin in regulatory signals and control of 

DNA accessibility, chromatin profiling provides a systematic means of 

detecting cis-regulatory elements. Indeed, specific histone modifications 

correlate with regulatory binding, transcriptional initiation and 

elongation, enhancer activity and repression (Barski et al., 2007; Birney 
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et al., 2007; Guenther, Levine, Boyer, Jaenisch, & Young, 2007; 

Heintzman et al., 2007; Mikkelsen et al., 2007). In order to segment the 

genome into biologically meaningful units, unbiased computational 

approaches like multivariate hidden Markov model (HMM) (Ernst & 

Kellis, 2012, 2017) have been developed to identify chromatin states, 

defined as specific combinations of multiple epigenomic datasets. 

Chromatin states may correspond to known classes of genomic 

elements, such as enhancers, promoters, transcribed and repressed 

regions, or may help discover novel classes of elements (Day, 

Hemmaplardh, Thurman, Stamatoyannopoulos, & Noble, 2007; Ernst 

& Kellis, 2010; Ernst et al., 2011; Filion et al., 2010; Hon, Wang, & Ren, 

2009; mod et al., 2010). Chromatin state annotation has a unique 

advantage of data reduction, since a large number of datasets involving 

partially redundant RNA-seq and ChIP-seq data is reduced into a single 

simple data set, whereby each locus of the genome is annotated with 

one of several states. Notably, chromatin states build more or less 

favorable chromatin environments for gene expression, but do not fully 

determine gene activity.  

Mostly depending on the parameters used in the computational analysis, 

various studies report somewhat different classifications of chromatin 

types. However, the general consensus is that there are a few types of 

repressive chromatin, which are Polycomb-bound euchromatin, 

heterochromatin and a chromatin state that has no strong enrichment 

for any of the specific analyzed factors or marks (Cavalli & Misteli, 

2013). In contrast, it has been more challenging to rigorously classify 

active or open chromatin states. Typically, at least four types of open 

chromatin can be distinguished, encompassing enhancers, promoters, 

transcribed regions and regions bound by chromatin insulator proteins 
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(Bernstein et al., 2012). Chromatin state annotations for different cell 

types and tissues are included in the ENCODE project (Siggens & 

Ekwall, 2014); they provide an important resource for epigenetic and 

medical genetic studies and represent a useful framework to track 

regulatory pattern changes across cell types (Ernst et al., 2011). 

However, the study of combinatorial patterns of multiple proteins and 

marks offer a mono-dimensional perspective on chromatin states by 

considering chromatin as a linear entity, even though, as described in 

the next sections, chromatin displays a highly organized 3D structure 

with an important role in gene expression control. To fill this gap, 

chapter 2 of this thesis presents a novel computational method to 

characterize combinations of multiple chromatin-associated factors that 

take place thanks to the 3D folding of the genome and that may 

contribute to proper gene regulation. At present, there is no other 

computational tool to identify chromatin states in 3D, and such 

advancement extends the advantages offered by 1D chromatin 

segmentation by classifying major types of chromatin interaction that 

are linked to a specific biological function. 

 

 

4. Genome 3D Organization 
 

A growing body of work has shown that the genome is a highly 

organized hierarchical 3D structure, yet involving dynamic 

conformational changes, that is intimately connected with essential 

biological functions such as transcription, replication, DNA repair and 

chromosome translocation (Bickmore & van Steensel, 2013; Gonzalez-

Sandoval et al., 2015; Gross, Chowdhary, Anandhakumar, & Kainth, 



 

 16 

2015; Pombo & Dillon, 2015; Sexton & Cavalli, 2015; Therizols et al., 

2014). These insights have mainly arisen from application of high-

resolution microscopy approaches and molecular biology techniques, 

two complementary classes of techniques that will be discussed in 

Chapter 5.   

Over the multiple scales of loops, hubs, topologically associating 

domains (TADs), compartments, and nuclear positioning of 

chromosomes, genome topological organization can be seen as an 

emergent property of a self-organizing system (Rajapakse & Groudine, 

2011), built up from progressive stabilization of homotypic interactions 

between genes and regulatory elements. Since association of the 

majority of DNA-bound factors with their cognate sites is transient 

(Phair & Misteli, 2000), such model of self-organized spatial clustering 

of related genetic loci may be important for their efficient regulation: a 

chance encounter between two loci bound by common regulatory 

factors increases the factors’ local concentration, so that when a factor 

dissociates it is more likely to be re-trapped by the cluster of binding 

sites within its locale than to diffuse away to another location (Kang et 

al., 2011; Rajapakse et al., 2009). This model is consistent with the 

maintenance of active chromatin hubs with expressed genes (Palstra et 

al., 2003; Schoenfelder et al., 2010), the formation of Polycomb 

repressive domains (Lanzuolo, Roure, Dekker, Bantignies, & Orlando, 

2007), and heterochromatic clustering (Taddei et al., 2009). 

Furthermore, in this view, beyond preventing aberrant communication 

between genetic loci, TADs may allow for co-regulated genes to be 

more efficiently bound by their regulators for prompt transcriptional 

response, by increasing the local concentrations of diffusible regulatory 

factors around their sites of activity. 
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Collectively, mounting evidence demonstrates that chromatin topology 

can be regulated and exploited by a variety of molecules such as 

transcription factors, architectural proteins and non-coding RNAs, in 

order to coordinate underlying gene activity at multiple scales within the 

nucleus (Sexton & Cavalli, 2015). However, the detailed mechanistic 

relationship between chromosome folding and genomic functions is 

still a matter of considerable debate. 

 

4.1  Nuclear positioning 
 

At the scale of the whole nucleus, nuclear positioning of genetic material 

is not random, is related to gene expression levels, and undergoes 

changes during physiological processes such as differentiation, 

development, aging, and in pathological conditions (Cavalli & Misteli, 

2013). Depending on their transcriptional activity, genes tend to occupy 

preferred positions in the 3D nuclear space, relative to other regions in 

the genome, or to nuclear structures such as the nuclear lamina, 

domains of heterochromatin or nuclear bodies (Finlan et al., 2008; 

Lanctot, Cheutin, Cremer, Cavalli, & Cremer, 2007; Misteli, 2007; Peric-

Hupkes et al., 2010; Rajapakse & Groudine, 2011). 

Fluorescence DNA and DNA in situ hybridization (FISH) have 

revealed that in the nuclear space interphase chromosomes occupy 

distinct chromosome territories (CTs) (Cremer & Cremer, 2010), which 

constitute a basic feature of nuclear architecture. Gene-rich and 

transcriptionally more active chromosomes tend to be located in the 

euchromatic interior of the nucleus, whereas gene-poor and less active 

chromosomes are closer to the predominantly heterochromatic 

periphery (Lanctot et al., 2007). The observation of CTs was later 
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validated by genome-wide Hi-C data, which showed that interactions 

between loci on the same chromosome are much more frequent than 

contacts in trans between different chromosomes (Lieberman-Aiden et 

al., 2009). 

A variety of orthogonal techniques have uncovered a plethora of long-

range interactions between genes that share regulation by a common 

factor, such as Polycomb-mediated repression (Bantignies et al., 2011; 

Denholtz et al., 2013), activation by tissue-specific TFs (Papantonis et 

al., 2012; Schoenfelder et al., 2010), pluripotency-linked TFs (Apostolou 

et al., 2013; de Wit et al., 2013; Denholtz et al., 2013; Z. Wei et al., 2013), 

or multiple super-enhancers (Beagrie et al., 2017). Such associations 

occur specifically in cell types where the regulation is mediated, even 

when genes occupy different chromosomes. The existence of functional 

clusters of genes at nuclear foci enriched in their regulatory factors and 

coalescing around different nuclear bodies such as nuclear speckles may 

facilitate their coordinate expression, and has emerged as prominent 

regulatory feature of nuclear architecture (Bantignies et al., 2011; 

Papantonis et al., 2012; Quinodoz et al., 2021; Quinodoz et al., 2018; 

Schoenfelder et al., 2010; Vangala et al., 2020). 

Due to contrasting evidences about the deterministic link between the 

spatial position of an individual locus and its activity (Kubben et al., 

2012; Peric-Hupkes et al., 2010; Reddy, Zullo, Bertolino, & Singh, 2008; 

Shachar, Voss, Pegoraro, Sciascia, & Misteli, 2015; Therizols et al., 

2014), it is known that nuclear positioning is correlated with and 

underlies gene expression, but the extent of such relationship is still not 

fully resolved.  
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4.2  Compartments 
 

At the genomic scale, the eukaryotic genome is partitioned into 

chromatin compartments, which are spatially segregated genomic 

regions, located either on the same or on different chromosomes, with 

distinct biochemical and functional properties.  

Prominent nuclear compartments are heterochromatin and 

euchromatin, which were originally defined based on differences in 

apparent chromatin compaction, as visible by microscopy. Generally, 

transcriptionally inactive or repressed genomic regions are 

heterochromatic, whereas transcribed regions are euchromatic. 

Heterochromatin tends to be marked by H3K27me3 mark, or by 

H3K9me3 and H3K9me2 (Bernstein et al., 2012; Filion et al., 2010). In 

metazoan cells, heterochromatin marked by H3K9me2 and H3K9me3 

is typically concentrated at the nuclear lamina and, to a lesser extent, 

around nucleoli. Euchromatin regions are densely populated by active 

genes and enhancer elements, and are typically marked by a multitude 

of histone modifications, such as methylation of H3K4 and acetylation 

of various histone lysine residues. Euchromatin is generally located in 

the nuclear interior, although it can also interact with nuclear pores (van 

Steensel & Furlong, 2019). Partitioning of euchromatin and 

heterochromatin has also been reflected in chromosomal contact maps 

generated by chromosome conformation capture technologies, such as 

Hi-C. Hi-C contact maps exhibit a chromosome-wide plaid pattern of 

extensive long-range intrachromosomal and interchromosomal 

contacts (Fig. 2), which can be >10 Mb apart, corresponding to two 

major classes of self-associating compartment with little inter-mixing 

(Lieberman-Aiden et al., 2009). They were termed compartment A and 
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compartment B, and are enriched in active or inactive chromatin marks, 

respectively. Lamina-associated domains (LADs) and heterochromatin 

overlap with compartment B, while euchromatic inter-LAD regions 

overlap with compartment A. 

Subsequently, higher resolution Hi-C and other 3C-based techniques 

suggested that these two major compartments can be further 

partitioned into six different subcompartments, with two 

subcompartments for A compartment and four subcompartments for 

B compartment (S. S. Rao et al., 2014; Wijchers et al., 2016).  

The partitioning between compartments is dynamic and genomic loci 

can switch between compartments in a cell-type specific manner (Dixon 

et al., 2015; Lieberman-Aiden et al., 2009). Accordingly, during cell 

differentiation, hundreds of genes are repositioned from peripheral 

heterochromatin to the internal euchromatin and vice versa (Shachar & 

Misteli, 2017), corresponding in most case to their activation and 

repression, respectively. 

In mammalian cells, knockdown of architectural protein cohesin, which 

is a key factor for chromatin looping (see below), results in 

strengthening of existing compartmentalization and reduction of TADs 

(Haarhuis et al., 2017; S. S. P. Rao et al., 2017; Schwarzer et al., 2017). 

This and similar results suggest that chromatin looping and 

compartmentalization are distinct and competing mechanisms 

contributing to chromatin folding (van Steensel & Furlong, 2019). 

Currently, the most accepted albeit speculative scenario describes local 

mechanisms such as looping and gene activity as the basis of TAD 

formation, whereas compartments may be formed by attraction and/or 

repulsion between individual TADs with similar epigenetic marks. This 

model is supported by super-resolution microscopy, which showed that 
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spatial interactions between neighboring TADs with different 

epigenetic states are remarkably different; for instance, Polycomb-

repressed domains are particularly condensed and exclude neighboring 

domains to a large extent (Boettiger et al., 2016).  

Although their mechanistic nature is still unclear, compartments appear 

to emerge from the superposition of highly stochastic and mutually 

exclusive interactions between different types of chromatin regions (S. 

Wang et al., 2016), possibly mediated by mechanisms involving liquid–

liquid phase separation (LLPS) of chromatin-associated proteins (Falk 

et al., 2019; Nuebler, Fudenberg, Imakaev, Abdennur, & Mirny, 2018; 

Strom et al., 2017; L. Wang et al., 2019). 

A variety of proteins contribute to the self-association of 

heterochromatin in compartment B, including heterochromatin protein 

HP1 mediating long-range interactions between H3K9me2 and 

H3K9me3-marked loci (Strom et al., 2017). In mammalian cells, 

H3K27me3-marked Polycomb domains form intrachromosomal and 

interchromosomal contacts that can be part of either the A 

compartment or the B compartment, depending on the cell type (van 

Steensel & Furlong, 2019).  

The role of euchromatin proteins in mediating the self-association of 

the euchromatic loci is much less established. Despite direct evidence is 

still lacking, transcription factors, cofactors and the transcription 

machinery, whose nuclear foci have been known for decades (Jackson, 

Hassan, Errington, & Cook, 1993), may collectively be responsible for 

the organization and function of the euchromatin compartment 

through the formation of condensates (Boehning et al., 2018; Boija et 

al., 2018; Hnisz, Shrinivas, Young, Chakraborty, & Sharp, 2017; Sabari 

et al., 2018). 
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Further genome-wide experiments in mutants deficient in chromatin 

modifiers and proteins are required to determine the role of different 

factors and epigenetic marks in genome architecture. 

 

4.3  TADs 
 

Genome-wide 3C technologies have shown that at the sub-megabase 

scale, chromosomes of many metazoan genomes fold into distinct 

modules, called topologically associating domains (TADs), that can be 

considered as functional units of the genome (Dixon et al., 2012; Hou, 

Li, Qin, & Corces, 2012; Nora et al., 2012; Sexton et al., 2012). They are 

typically 100kb-1Mb in length, and in Hi-C maps appear as contiguous 

squares or triangles along the diagonal (Fig. 2). Genomic interactions 

are extensive within domains but are depleted on crossing the boundary 

between neighboring TADs.  

TADs display dynamics and cell-to-cell variability that cannot be 

captured by Hi-C data, since this one reflects the population-average 

folded state of the chromosome in fixed cells. However, domains 

identified on Hi-C maps show a surprising developmental and 

evolutionary robustness, suggesting that TADs may be chromosome 

building blocks required for appropriate genome function. Indeed, most 

domains correlate well with many linear markers of chromatin activity, 

such as histone modifications and replication timing (Dixon et al., 2012; 

Le Dily et al., 2014; Sexton et al., 2012), and coordinated gene 

expression (Le Dily et al., 2014; Nora et al., 2012). Moreover, TADs 

may avoid inappropriate enhancer–promoter (E-P) interactions and 

insulate promoters from the action of enhancers located in neighboring 

TADs (Sexton & Cavalli, 2015; Shen et al., 2012), by constraining the 
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effective search space of enhancers and promoters to find each other 

(Symmons et al., 2016; Symmons et al., 2014). Loss of a TAD boundary 

could thereby lead to the misexpression of genes in a neighbouring 

TAD, as observed at some loci (Flavahan et al., 2016; Lupianez et al., 

2015).  

Furthermore, technological advances have revealed smaller and finer-

scale structures, hierarchically nested within TADs, that exhibit high 

developmental dynamics and may even encompass a single gene unit. 

Multiple studies called them with different names, such as sub-TADs, 

mini-domains, microTADs, chromatin nanodomains (CNDs), or 3D 

nanocompartments (T. S. Hsieh et al., 2020; Krietenstein et al., 2020; 

Phillips-Cremins et al., 2013; S. S. Rao et al., 2014; Rowley et al., 2017; 

Szabo et al., 2020; Szabo et al., 2018). Due to the nested structure of 

TADs, their exact definition is ambiguous, and strongly depends on the 

resolution of the performed experiment and to some extent on the 

employed detection method (Soler-Vila, Cusco, Farabella, Di Stefano, 

& Marti-Renom, 2020).  

In general, TADs are characterized by sharp boundaries that 

correspond to binding sites for CTCF, other chromatin insulator-

binding proteins and transcription factors, as well as to active 

transcriptional start sites (Bonev et al., 2017; Dixon et al., 2012; 

Krietenstein et al., 2020; Sexton et al., 2012). In mammals, strong 

chromatin loops, that will be discussed below, are observed at the 

borders of ∼40% of the domains (Fig. 2), suggesting a strong 

relationship between chromatin loop formation and the demarcation of 

domain boundaries. The role of boundary factors such as CTCF and 

loops could thus be to strengthen the stability of the boundaries 
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between domains of different chromatin types or to sharpen their 

localization. 

Domains of the same type have the tendency to establish strong inter-

TAD interactions, whether they are active, Polycomb domains, or HP1-

heterochromatic domains (Csink & Henikoff, 1996; Sexton et al., 2012). 

Polymer physics-based modeling showed that the simple assumption of 

homotypic interactions between domains of these chromatin types are 

sufficient to generate polymer structures that mimic those represented 

in Hi-C contact maps (Jost, Carrivain, Cavalli, & Vaillant, 2014). This 

result suggests that homotypic interactions between domains may 

contribute to TADs establishment.  

Overall, in higher eukaryotic cells a diversity of mechanisms underlies 

the existence of physical chromosomal domains, including 

transcriptional levels, epigenetic compositions, architectural proteins, 

and chromatin modifying factors like PcG proteins. However, the 

detailed cause–consequence relationship between these factors is still 

poorly understood, and it is still unknown whether TADs are 

dynamically built by transcriptional silencing or activation machineries 

and chromatin-modifying complexes, or TADs themselves set the stage 

for cooperative binding of specific chromatin factors to determine gene 

expression. TADs organization may be explained by the propensity of 

chromatin to establish preferential transient contacts in the form of 

loops, that are increasingly likely for smaller distances along the same 

chromosome, with the specificity added by different chromatin factors 

that contribute to the separation between types of loops, such as those 

involving active and repressive chromatin. 

Future research, including new genome-engineering tools such as 

CRISPR/Cas9 and live imaging of chromatin interactions in single cells 
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following their dynamics over the cell cycle, should tease out the details 

of TADs formation and functions in different nuclear environments.  

 

4.4  Chromatin looping 
 

Higher-order chromosome organization levels are thought to arise from 

multiple, dynamic and cell type-specific chromatin interactions, that 

occur at the kilobase-to-megabase scale between regulatory elements 

and are crucial for proper gene expression and cell identity (Fig. 2a) 

(Kieffer-Kwon et al., 2013; G. Li et al., 2012; Palstra et al., 2003; S. S. 

Rao et al., 2014; Sanyal, Lajoie, Jain, & Dekker, 2012).  

The pervasive tendency of chromatin to engage in contacts with other 

chromatin fibers is reflected in the fact that at the TAD level the 

predominant structural features are point-like focal interactions or 

stripe-like structures of hundreds of kb (Fig. 2b), that often connect 

sequences bound by CTCF and cohesin (de Wit et al., 2015; Fudenberg, 

Abdennur, Imakaev, Goloborodko, & Mirny, 2017; Guo et al., 2015; S. 

S. Rao et al., 2014; Vian et al., 2018). Stripes are consistent with the idea 

that contacts within TADs in individual cells reflect not static loops, but 

a captured moment of a dynamic process (Giorgetti et al., 2014; Hansen, 

Cattoglio, Darzacq, & Tjian, 2018). 

Chromatin loops appear as a ubiquitous means for enhancer-promoter 

(E-P) or promoter-promoter (P-P) communication (Fig. 3a) (Tolhuis, 

Palstra, Splinter, Grosveld, & de Laat, 2002). Although the mechanistic 

details of enhancers’ stimulation of transcription are not yet clarified, 

distal enhancers carry a large regulatory potential and are bridged with 

their target gene promoters for the induction of transcription. One well 

known example is the locus control region (LCR) of the β-globin 
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cluster, which in erythroid cells, where the β-globin gene is active, forms 

an active chromatin hub with its target genes (Palstra et al., 2003).   

The leading mechanism governing loop formation is thought to involve 

loop-extruding complexes like cohesin, and border elements such as 

CTCF architectural protein (Fig. 3b) (Fudenberg et al., 2016; Nichols & 

Corces, 2015; Sanborn et al., 2015). Interestingly, loop extrusion and 

compartmentalization appear as two separated principles of 

chromosome folding (Schwarzer et al., 2017). 

Cohesin is large ring-shaped protein complex, that is important for 

genome stability in dividing cells, and is involved in sister chromatid 

cohesion and DNA repair (Nasmyth & Haering, 2009). CTCF is a 

DNA-binding protein that recognizes a specific sequence motif and, 

among architectural proteins, has probably received the most attention 

(Ong & Corces, 2014). It is conserved in most bilaterians, is 

ubiquitously expressed, and is essential for embryonic development 

(Soshnikova, Montavon, Leleu, Galjart, & Duboule, 2010). Originally, 

it was characterized as an insulator protein, capable of restricting E-P 

interactions and establishing discrete functional chromatin domains 

(Narendra et al., 2015).  

In the mechanistic model of loop extrusion, cohesin loads on DNA and 

bidirectionally extrudes loops until it is blocked in each end of the loop 

by CTCF proteins binding in convergent orientation (Davidson et al., 

2019; Fudenberg et al., 2016; Ganji et al., 2018; Golfier, Quail, Kimura, 

& Brugues, 2020; Hansen, 2020; Y. Kim, Shi, Zhang, Finkelstein, & Yu, 

2019). This model can explain the nesting of domains and loops as the 

assembly of possible states within a population. Also, it predicts the 

observed enrichment of CTCF at TAD boundaries, and the 

consequences of CTCF motif deletion or inversion for loop and domain 
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formation. Furthermore, it is consistent with changes in 3D 

chromosome architecture observed in cohesin-depleted or CTCF-

depleted cells, where the decrease in TAD insulation most likely results 

from loss of preferential contacts within TADs, and increased 

randomness in interactions (Bintu et al., 2018; Nora et al., 2017).  

Thus, CTCF-mediated loops are believed to play a fundamental role in 

maintenance of TAD structure (Giorgetti et al., 2014), and appear to be 

linked to multiple nuclear processes, such as transcriptional regulation 

and DNA repair (Oudelaar & Higgs, 2021). 

Besides CTCF-loops, nucleosome-resolution interaction maps spotlight 

dots and ~10-15 kb stripes linking accessible co-expressed loci, such as 

P-P or E-P sites, that are driven by the transcription machinery and are 

independent from CTCF and cohesin (T. S. Hsieh et al., 2020). 

Furthermore, TAD borders often coincide with active promoters but 

not CTCF sites (Bonev et al., 2017; Dixon et al., 2012; Ramirez et al., 

2018; Ulianov et al., 2016). These data suggest a dynamic, reciprocal 

interplay between genome organization and active transcription (van 

Steensel & Furlong, 2019). 

In mammals and flies, Polycomb complexes have been proven to have 

an important role in the formation of long-range contacts involving 

repressed gene promoters in early development (Fig. 3c) (Bantignies et 

al., 2011; Bonev et al., 2017; Denholtz et al., 2013; Rowley et al., 2017; 

Schoenfelder et al., 2015; Vieux-Rochas, Fabre, Leleu, Duboule, & 

Noordermeer, 2015), even at the nucleosomal level (T. S. Hsieh et al., 

2020). Despite PcG proteins have been historically described as 

transcriptional repressors, it has also been found that during Drosophila 

development PcG subunits might support transcriptional activation, by 

forming 3D loops that involve active promoters and enhancers and 
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fine-tune their expression (Loubiere, Papadopoulos, Szabo, Martinez, 

& Cavalli, 2020). Also, other transcriptional regulators have been 

involved in repressive loop interactions, and in general the molecular 

principles underlying repressive looping, including Polycomb looping, 

remain elusive. 

Additional types of long-range chromatin contacts with direct 

functional have been described. In the so-called intragenic loops (Fig. 

3d), the 5′ end of transcribed genes joins the transcription termination 

site (TTS). This may allow efficient recycling of the RNA polymerase II 

(Pol II) and may help establish a short-term memory of the 

transcriptionally active state for the gene (Mas et al., 2018; Tan-Wong, 

Wijayatilake, & Proudfoot, 2009; Tan-Wong et al., 2012).  

Interestingly, in addition to proteins, long non-coding RNAs (lncRNAs) 

may participate in the formation of loops, even though it is unclear to 

what extent. LncRNAs have been shown to mediate the colocalization 

of several genomic regions located on different chromosomes 

(Hacisuleyman et al., 2014), and to exploit 3D chromatin organization 

in order to spread across the X chromosome during X chromosome 

inactivation (Engreitz et al., 2013; Simon et al., 2013). Future work is 

required to dissect the precise role of lncRNAs in establishing and 

maintaining 3D chromatin structure, which has been recently hinted by 

computational models (Farabella, Di Stefano, Soler-Vila, Marti-

Marimon, & Marti-Renom, 2021). 

Overall, nested structures are the prevalent folding feature within TADs 

and, together with constraints provided by the nuclear lamina and sub-

nuclear compartments such as speckles and nucleoli, several factors 
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Figure 3. Different types of transcription regulatory loops. 
(a) Enhancer-promoter loops leading to transcriptional activation.  (b) Insulator-
mediated loops may segregate genes and their regulatory elements from surrounding 
genome landscape, favoring proper gene expression. (c) Loops between Polycomb-
bound regions (PREs) and promoters prevent RNA Pol II recruitment and mediate 
transcriptional silencing. (d) Intragenic loops joining the 5’ and 3’ end of genes may 
allow recycling of RNA Pol II and facilitate maintenance pf transcriptional 
directionality. Figure from (Cavalli & Misteli, 2013). 
 
interact together to shape the complex pattern of chromatin 

interactions of mammalian chromosomes, including the transcriptional 

machinery, architectural proteins, lncRNAs, TFs and chromatin-

remodeling complexes like PcG. However, because of contrasting 

evidences among different studies, how these interactions are 

established and regulated is still a matter of considerable debate. It 

would be important to clarify the contribution of the chromatin 
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environment and transcription to loop formation, and to investigate 

whether chromatin loops can be formed also through other processes.  

 

4.5  Biomolecular condensates 
 

Phase separation is emerging as key principle in the spatiotemporal 

organization of living cells. Increasing evidence indicates that cells also 

organize membrane-less biomolecular condensates of protein, RNA, 

and other biomolecules, that are thought to form through the physical 

process of liquid-liquid phase separation (LLPS) and might operate as 

versatile biochemical 3D interaction hubs inside the cell (Banani, Lee, 

Hyman, & Rosen, 2017; Y. Shin & Brangwynne, 2017).  

Super-enhancers (SEs) have been proposed to be phase-separated 

condensates formed by clusters of enhancers, remarkably occupied by 

interacting master TFs that may cooperatively assemble the 

transcriptional apparatus to drive robust expression of genes, with 

prominent roles in cell identity (Hnisz et al., 2017; Sabari et al., 2018). 

Similarly, transcription factor condensates have been suggested to 

regulate transcriptional initiation and amplify transcriptional burst 

frequency and size of expressed genes, being enriched in regulatory 

elements such as enhancers or silencers, and facilitating the interaction 

with gene promoters in a cell-specific manner (Beagrie et al., 2017; 

Javierre et al., 2016; Y. Shin et al., 2018; Stevens et al., 2017).  

Interestingly, macromolecular condensates may be dynamically 

assembled in response to a tunable external stimulus, as in the case of 

droplets of nuclear receptors TFs, protein kinases and enhancers, in 

breast cancer hormone responsive cells upon steroid hormone stimulus 

(Zaurin et al., 2021). 
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Chromatin interactions driven by ATP-dependent loop extrusion have 

emerged as key organizing principles of the genome (Di Pierro, Zhang, 

Aiden, Wolynes, & Onuchic, 2016; Mirny, Imakaev, & Abdennur, 

2019). Also, spatial compartmentalization is a hallmark of eukaryotic 

genomes emerging on various length scales, but its intrinsic physical 

properties have remained unclear. In conventional nuclei, euchromatin 

is localized in the nuclear interior and heterochromatin at the nuclear 

periphery. Inverted nuclei of rods in nocturnal mammals, instead, 

present the opposite distribution and provided an opportunity to 

elucidate the mechanisms that underlie compartmentalization. 

Experiments and modelling suggest that phase separation of the active 

and inactive genome in inverted and conventional nuclei is achieved 

thanks to attractions between heterochromatic regions, and chromatin 

interactions with the lamina are essential to build the conventional 

architecture from these segregated phases (Falk et al., 2019). 

Therefore, in a phase separation-based model for genome organization 

and regulation, the intrinsic property of chromatin to phase separate 

within the nucleoplasm may enable establishment and maintenance of 

distinct chromatin compartments (Gibson et al., 2019), tuned through 

engagement of cellular factors such as linker histone binding, histone 

acetylation, interactions with histone tail readers, and spacing of 

nucleosomes. Functional chromatin states, corresponding to 

promoters, enhancers, insulators, PcG regions, etc. (Bernstein et al., 

2012; Filion et al., 2010) may adopt different phase-separated states with 

specific structural and dynamic properties that are important for their 

unique functions in cells and for the formation and segregation of 

chromatin domains. 
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Theoretically, phase separation is associated to the heterogeneous 

mixing of two components, either by spinodal decomposition, or 

nucleation. In living cells, it has been proposed that intrinsically 

disordered regions (IDR) are the main driving mechanism promoting 

LLPS (Boija et al., 2018). However, a quantitative understanding of the 

biophysical parameters controlling transcription factor condensation in 

the living cell nucleus is largely missing. 

 

 

5. Experimental approaches for the analysis of genome 
3D organization  
 

Deciphering the rules of genome folding in the cell nucleus is essential 

to understand its functions. Insights about genome 3D organization 

have mostly arisen thanks to major technological breakthroughs in two 

orthogonal classes of techniques, high-resolution microscopy 

approaches and sequencing-based methods. Due to their respective 

strengths and limitations and to the high complexity of genome 

organization, chromatin architecture is best studied using a combination 

of approaches, neither of which is comprehensive on its own. 

Mathematical modelling can complement biological investigation, 

rationalizing and predicting important aspects of chromatin behavior. 

Microscopy-based methods provide important information about the 

relative and radial positioning of genomic regions, as well as the 

variability of spatial DNA organization within cell populations, but 

these methods often suffer from limited throughput, coverage and 

genomic resolution. By contrast, sequencing-based approaches are 
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genome-wide, but their results may represent a superimposition of 

individual genome conformations rather than one stable structure.  

The simultaneous advances in technological and scientific approaches 

is leading us to an integrated understanding of the function of the 

genome and its associated components in development, physiology and 

disease. The development of novel single cells technologies is essential 

to capture structural features in rare cell populations, as well as 

structural changes in dynamic processes, and is helping deepen the 

characterization of cell type-specific gene regulation. Further 

improvements of current live imaging may allow tracking of the 

dynamics of chromatin domains and interactions in live cells in order to 

investigate conformational changes upon various stimuli and in relation 

to gene expression. The combination of these tools with functional 

studies, particularly those made possible by the advent of genome-

engineering technologies such as CRISPR–Cas9 (Wright, Nunez, & 

Doudna, 2016), promises to lead to major advances in the near future. 

These complex multi-dimensional data generated with different 

modalities require advanced computational strategies for integration 

and extensive quantitative analyses.  

 

5.1  Super-resolution microscopy  
 

Remarkable improvements in microscopy techniques are expanding our 

understanding of the fine-scale structure of the chromatin fiber to a 

degree that was unthinkable a decade ago. Their incompatibility with 

sequence determination has been circumvented by a second 

complementary class of genomic methods, here collectively referred to 
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as sequencing-based techniques, that will be discussed in the next 

section. 

Historically, fluorescent in situ hybridization (FISH) has mostly been 

used to study the position and organization of chromosomes, domains 

and specific loci within the nucleus. Despite its key advantage of direct 

visualization of the spatial position and arrangement of genomic loci in 

the nucleus, it has been traditionally limited in throughput and 

resolution. 

Recent advancements in super-resolution microscopy and imaging 

techniques have enabled direct visualization of the fine-scale structures 

of the genome of single cells at sub-diffraction resolution and at 

unprecedented throughput. 

Some examples are stochastic optical reconstruction microscopy 

(STORM) (Rust, Bates, & Zhuang, 2006), photo-activated localization 

microscopy (PALM) (Betzig et al., 2006), and oligonucleotide arrays 

such as Oligopaint (Beliveau et al., 2015; Beliveau et al., 2012). Also, 

HIPMap identifies novel factors affecting the radial positioning of 

different types of genomic locus, with high-throughput (Shachar et al., 

2015). Super-resolution chromosome tracing approaches employing 

highly multiplexed FISH probes perform distance measurements 

between thousands of loci in single cells, at unprecedented scales (S. 

Wang et al., 2016). Oligopaint design in conjunction with STORM 

(OligoSTORM) (Beliveau et al., 2017; Nir et al., 2018) remarkably 

improved the resolution, at the same time allowing the analysis of 

regions at the megabase scale. Furthermore, sequential Oligopaints 

method in conjunction with super-resolution allows to sequentially label 

continuous genomic coordinates of the genome at the level of single 

gene, loops, TADs, compartments (Bintu et al., 2018; Nir et al., 2018). 



 

 35 

OligoFISSEQ has remarkably improved high throughput imaging and 

tracing of genomic loci in thousands of cells (Nguyen et al., 2020). 

Other flavours of Oligopaint-based methods, such as Hi-M (Cardozo 

Gizzi et al., 2019), jointly detect of the positioning and transcriptional 

activity of loci.  

In addition to improvements in spatial resolution, live imaging in 

combination with genome engineering using CRISPR–Cas9 systems 

facilitates and improves the study of 4D chromatin contact dynamics 

(changes in 3D chromatin structure over time) of individual loci. 

Chimeric array of gRNA-oligo (CARGO) and CRISPR–Cas-mediated 

Live FISH are two examples (Gu et al., 2018; H. Wang et al., 2019).  

The integration of single-cell information of spatial positioning of 

genomic loci with functional genomic and epigenomic features, such as 

gene activity, or epigenetic states, will enable the tracking of chromatin 

and transcription dynamics in live cells during cell differentiation 

(McCord, Kaplan, & Giorgetti, 2020), opening venues for application 

ranging from basic science to diagnostics. 

 

5.2  Sequencing-based methods 
 

In contrast to microscopy, sequencing-based methods represent an 

orthogonal approach to investigate large-scale chromatin organization, 

providing rich sequence context but uncertain spatial context (Belmont, 

2014). 
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5.2.1 Proximity ligation-based methods: 
chromosome conformation capture (3C)  
 

A major breakthrough in chromatin biology was the establishment of 

proximity ligation-based methods (Cullen, Kladde, & Seyfred, 1993) 

and, in particular, chromosome conformation capture (3C) technologies 

(Dekker, Rippe, Dekker, & Kleckner, 2002), which marked the 

beginning of the era of high-throughput next-generation sequencing-

based methods for the investigation of chromosome conformation. 3C-

based methods provide quantitative, high-resolution, genome-wide 

measurements of physical proximity events within and across 

chromosomes, generally called chromatin contacts or interactions.  

The first step of most 3C-based methods involves the formaldehyde 

crosslinking of cells, usually followed by in situ chromatin 

fragmentation by digestion with restriction enzymes such as HindIII or 

DpnII. Then, proximity-based ligation of adjacent DNA ends is 

followed by determination of pairwise interactions (Fig. 4a). After 

reverse crosslinking, different approaches can be used (de Wit & de 

Laat, 2012; Denker & de Laat, 2016). The classical 3C method 

interrogates a single pair of interacting loci (one-versus-one). In the 

circular chromosome conformation capture (4C) protocol, genome-

wide interactions involving one locus of interest are detected (one-

versus-many) (van de Werken et al., 2012). In the carbon copy 

chromosome conformation capture (5C) approach, chromatin 

interactions between two sets of loci are captured (many-versus-many) 

(Dostie & Dekker, 2007). In Capture-C methodology, biotin-labelled 

probes complementary to specific restriction fragment ends interrogate 

hundreds of pairs of loci of interest 
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Figure 4. 3C methods and fundamental principles of mammalian chromosome 
organization. 
(a) Scheme of the core steps in 3C protocols. Chromatin is crosslinked in cell nuclei 
and digested with a restriction enzyme (or endonuclease in the case of Micro-C), 
followed by ligation and decrosslinking. This results in the formation of hybrid DNA 
molecules that can be identified by high-throughput sequencing. In the case of Hi-C, 
the resulting list of genome-wide pairwise contacts can be represented by contact 
maps. Maps need to be corrected for biases and artifacts. (b) Hi-C contact maps 
illustrating the folding of mammalian chromosomes into A/B compartments (left), 
TADs (middle), and finer-scale structures (right). (c) Chromosome folding may be 
mainly driven by compartmentalization and loop extrusion. Figure adapted from 
(McCord et al., 2020). 
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(Hughes et al., 2014; Mifsud et al., 2015). In the Hi-C method, the 

coupling of 3C to high-throughput sequencing generates genome-wide 

catalogs of pairwise chromatin interactions (all-versus-all) within 

populations of billions of nuclei (Lieberman-Aiden et al., 2009). 

Progressively, these techniques have been tweaked by combination with 

chromatin immunoprecipitation to allow for enrichment of specific 

contacts associated to proteins of interest, including chromatin 

interaction analysis with paired-end tag (ChIA-PET) (Fullwood, Wei, 

Liu, & Ruan, 2009), HiChIP (Mumbach et al., 2016) and proximity 

ligation-assisted ChIP followed by sequencing (PLAC–seq) (Fang et al., 

2016).  

Despite their immense contribution to the field of genome structure, 

3C-based approaches currently have limitations.  First, resolution is 

strictly linked to sequencing depth and to the distribution of restriction 

sites. Techniques that are based on different fragmentation methods, 

such as DNase-Hi-C with DNase I (X. Deng et al., 2015; Ma et al., 2014; 

Ramani et al., 2016) and Micro-C with MNase (T. H. Hsieh et al., 2015), 

have successfully improved Hi-C resolution.  Furthermore, it is still 

unclear what structural features at the cell population level represent at 

a single cell level (see Section 5.3). The typical maps obtained by 3C-

based approaches represent a superimposition of different 

conformation states present in a population of cells, and the 

interpretation of the relationship between the number of detected 

ligation products with actual contact probabilities between genomic 

sequences has important implications for the biological significance of 

chromatin contacts, for the determination of an appropriate polymer 

model from experimental data (Fudenberg & Mirny, 2012), and for how 

data are normalized (Imakaev et al., 2012). Indeed, 3C-based data lack 
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internal normalization criteria, limiting the ability to compare contact 

frequencies different conditions and cell types. Another challenge is due 

to the fact that 3C-based methods rely on formaldehyde crosslinking 

and ligation, two molecular processes that represent potential sources 

of bias (Belmont, 2014; Gavrilov, Razin, & Cavalli, 2015; Williamson et 

al., 2014). For this reason, products captured by 3C-based approaches 

do not always reflect spatial proximity, and crosslinking might capture 

contacts between sequences located hundreds of nanometers apart, a 

distance range that is about one order of magnitude larger than the 

typical distance of contacts mediated by direct molecular interactions of 

the chromatin fiber through protein complexes.  Moreover, techniques 

that rely on standard formaldehyde crosslinking inherently bias 

fragmentation towards open chromatin regions, and are potentially 

limited in capturing interactions of proteins with short residence time. 

Cap-C approach aims at circumventing such problem through 

dendrimer crosslinking, to achieve uniform fragmentation (You et al., 

2021). 

Reassuringly, general features of large-scale chromatin organization are 

generally recapitulated by 3C-based methods, microscopy and ligation-

independent methods (see Section 5.2.2) (McCord et al., 2020). Despite 

significant discrepancies between DNA FISH and Hi-C have 

occasionally been reported (Williamson et al., 2014), these comparisons 

also show that Hi-C data are directly proportional to the fraction of cells 

in the population where a certain contact occurs at the moment of 

crosslinking, importantly for the development of mechanistic physical 

models of chromosome folding. Last but not least, standard 3C-based 

methods are unable to reveal whether multiple regions are interacting 

simultaneously (cooperativity) or mutually exclusively (exclusion), while 
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it is known that biologically relevant chromosome interactions may 

occur between pairs of loci as well as within hubs of cooperative 

contacts (Schoenfelder et al., 2015; Strom et al., 2017; Sutherland & 

Bickmore, 2009). Modified 3C versions have been developed to detect 

multi-contact configurations (Allahyar et al., 2018; Ay et al., 2015; 

Olivares-Chauvet et al., 2016; Oudelaar et al., 2018; Zheng et al., 2019) 

and, overall, have revealed common cooperative interactions between 

multiple loci, as well as multi-contact configurations occurring in a small 

subset of cells, which would be missed in population-averaged pairwise 

contact maps. Furthermore, complementary approaches, such as 

ligation-free genomic methods and super-resolution chromosome 

tracing, have revealed extensive evidence for cooperative multiway 

contacts, including highly transcribed regions that form transcription 

factories and super-enhancers (McCord et al., 2020). This type of data, 

combined with perturbative studies, may clarify the role of phase 

separation in the collective spatial partitioning of chromosome regions.  

 

5.2.2 Ligation-independent techniques 
 

The invention of ligation-independent techniques allowed to investigate 

chromosome conformation at the same time probing the nuclear 

position of chromatin contacts and multiway contacts, complementing 

intrinsic limitations and potential source of bias inherent of 3C-based 

methods (Kempfer & Pombo, 2020). Indeed, in 3C-like methods, 

genomic fragments ligation prior to sequencing is only partially efficient, 

and short paired-end sequencing, which does not provide information 

about multipartite in vivo chromatin interactions. 
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Among ligation-independent methods there are tyramide signal 

amplification (TSA), DNA adenine methyltransferase identification 

(DamID), split-pool recognition of interactions by tag extension 

(SPRITE), and genome architecture mapping (GAM) (Beagrie et al., 

2017; Y. Chen et al., 2018; Guelen et al., 2008; Quinodoz et al., 2018; 

van Steensel & Henikoff, 2000; L. Zhang et al., 2020). 

In SPRITE, crosslinked nuclei are isolated and fragmented, individual 

crosslinked pieces of chromatin are uniquely barcoded. After high-

throughput sequencing, reads carrying the same combination of 

barcodes represent genomic sites that are a part of the same crosslinked 

cluster. In GAM, fixed cells are embedded in sucrose, frozen and cryo-

sectioned, and DNA is extracted and sequenced from each section. Loci 

that are closer to each other in the nuclear space are co-sequenced more 

frequently than distant loci. As sections are taken from multiple nuclei 

sliced at random orientations, the co-segregation of all possible pairs of 

loci among a large collection of nuclear section profiles is used to 

generate a matrices of inferred locus proximities. Such maps are similar 

to Hi-C ones, even though GAM requires fewer cells — a few hundred 

nuclei produce maps that approximate those obtained from large 

populations of cells in Hi-C. Like SPRITE, GAM can identify multiple 

interactions, thereby enabling the direct study of multivalent enhancer–

promoter interactions and of higher-order chromatin structures. 

The combination of genome structure analysis with additional omics 

modalities is likely to offer critical information for revealing nuclear 

function. For instance, SPRITE has been further adapted into RD-

SPRITE (Quinodoz et al., 2021), to enable mapping the interactions of 

RNA relative to other DNA and RNA, thereby allowing to determine 
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the relationship of some RNAs with the nuclear landmarks and 

compartments. 

 

5.3    Heterogeneity and dynamics in chromosome 
conformation 

Sequencing-based assays generally represent snapshots of chromosome 

conformation at a given time point, averaged over an entire cell 

population. Their relationship with the actual conformations of the 

chromatin fiber in single cells and their evolution in time is still unclear. 

In order to study chromatin conformation stochasticity and inter-cell 

variability while not compromising high throughput, an increasing 

number of chromatin analysis techniques are being developed into 

single-cell applications.  

The first of these single-cell adaptations was single-cell Hi-C (scHi-C) 

(Nagano et al., 2013). Also, ligation-free tools have been migrated 

towards single cell assays, such as scSPRITE (Arrastia et al., 2021). A 

major observation from single cell chromatin conformation 

experiments and computational analyses is the existence of extensive 

inter-cell conformational variability at all genomic length scales (Finn et 

al., 2019). At the sub-TAD level, pairwise contacts and CTCF loops 

occur as stochastic events (Flyamer et al., 2017; Nagano et al., 2013; 

Ramani et al., 2017; Stevens et al., 2017; Tan, Xing, Chang, Li, & Xie, 

2018), with only a subset of the contacts identified by population-

average assays being present within an individual cell. Patterns of TADs 

and compartments in single cells are highly variable as well, and the ones 

observed in population Hi-C maps emerge when superimposing many 

single-cell conformations, reflecting preferential interactions in a highly 

stochastic ensemble of structures (Bintu et al., 2018; Boettiger et al., 
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2016; Cardozo Gizzi et al., 2019; Cattoni et al., 2017; Giorgetti et al., 

2014; Mateo et al., 2019; Nagano et al., 2013; Nora et al., 2012; Szabo 

et al., 2020; Szabo et al., 2018). 

Thus, the probabilistic nature of higher-order spatial genome 

organization is a critically important feature, and average interaction 

maps generated using population-based methods appear as an ensemble 

of many different genome landscapes pertaining to multiple 

subpopulations of cells. 

Since stochastic interactions between regulatory elements are likely to 

result in the stochastic transfer of regulatory information, pervasive cell-

to-cell structural variability might have important implications for 

transcriptional regulation. However, single-cell genomics and fixed-cell 

imaging still generate static snapshots of 3D genome structures in single 

cells. Therefore, there are still many open questions about the degree of 

stochasticity and dynamicity of the exchange of regulatory information. 

For instance, very little is known about the timescale over which 

enhancer-promoter contacts assemble and disassemble, and how they 

relate to transcription and other nuclear processes. To address this issue, 

live-cell imaging (Brandao, Gabriele, & Hansen, 2021) and advances in 

genomic engineering are opening exciting possibilities to characterize 

the dynamics of chromatin looping and its link to the dynamic exchange 

of regulatory information and transcription. 
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6. Computational strategies for the analysis and 
representation of chromatin organization  
 

The continuous evolution of experimental methods dedicated to the 

study of genome 3D organization is accompanied by rapid 

advancements of specialized algorithms to grasp the full biological 

significance of the experimental data. Since in the last decades massive 

amount of Hi-C data has been produced and greatly improved our 

characterization of nuclear structure. 

 

6.1   Analysis of Hi-C data 
 

Within Hi-C data, a series of factors introduce biases and limits in the 

resolution for the call of contact regions or domain boundaries. The 

achievable spatial resolution of Hi-C is affected by sequencing depth, 

library complexity and the DNA-cutting frequency of the enzyme used 

for chromatin fragmentation. This typically results in sparse Hi-C 

matrices, with many null entries, where the genuine absence of contacts 

and the absence of contacts due to low sequencing depth are 

undistinguishable. Moreover, uneven restriction fragment sizes and 

mappability levels across the genome make Hi-C matrices very 

heterogeneous at different genomic locations, while the decay of 

interaction frequencies with increase in genomic distance differentially 

affects Hi-C signal across different distances. Next, I briefly outline the 

major approaches affecting each of the key steps of Hi-C analysis (Fig. 

4a, 4b): 

Normalization. For the filtering and normalization of Hi-C data, different 

tools based on alternative strategies cope with typical Hi-C data biases. 



 

 45 

Some of the most common methods are Yaffe and Tanay’s one (Yaffe 

& Tanay, 2011), ICE (Imakaev et al., 2012), HICNorm (Hu et al., 2012), 

and OneD (Vidal et al., 2018).  

Compartment analysis. In the first Hi-C study (Lieberman-Aiden et al., 

2009), compartments have been identified by conversion of Hi-C 

matrices into correlation matrices, followed by principal component 

analysis to distinguish A and B compartment types. Later studies 

produced Hi-C maps based on much deeper sequencing, and 

additionally applied clustering steps such as Gaussian hidden Markov 

modelling for improved specification of epigenetic compartment 

signatures, leading to more detailed stratification of the A compartment 

into two sub-compartments and of the B compartment into three sub-

compartments (S. S. Rao et al., 2014). 

TAD detection. As regards TAD calling, although it is routinely done, 

there are numerous TAD callers that are based on different principles. 

Initial computational approaches, such as the insulation score and the 

directionality index, could not identify nested TADs (Dixon et al., 2012; 

H. Shin et al., 2016). Subsequently, other computational approaches 

were developed to inform on TAD hierarchy, such as Matryoshka 

(Malik & Patro, 2018), by further development of the linear score 

approach, ICFinder (Haddad, Vaillant, & Jost, 2017) and TADpole 

(Soler-Vila et al., 2020), by clustering of contacts’ map data, or 

3DnetMod (Norton et al., 2018), by graph theory-based algorithms.  

Loop analysis. Thanks to the increase in Hi-C maps resolution, it became 

possible to detect specific chromatin contacts and loops, corresponding 

to statistically significant enrichment in contact frequency compared 

with a general background model. One of the first loop-dedicated 

algorithms, HiCCUPS (S. S. Rao et al., 2014), identifies a chromatin 
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loop as the most enriched bin compared with its immediate 

neighborhood. The tool Fit-Hi-C instead assigns statistical confidence 

to contacts by using random polymer modelling, while accounting for 

known Hi-C biases such as genomic distance, to find significant 

interactions (Ay, Bailey, & Noble, 2014). HiCPlus is a machine learning 

approach based on deep convolutional neural network that enhances 

Hi-C maps with low-sequence depth, to overcome the resolution limit 

of Hi-C maps for better loops and TAD borders detection (Y. Zhang 

et al., 2018). 

 

6.2   3D modeling approaches 
 

Computational modeling provides an important avenue for 

interpretation of data generated by experimental techniques that probe 

chromatin conformation and inference of the underlying chromatin 3D 

structure. The configuration in space of the genome serves as a 

quantitative framework to integrate information from different types of 

experimental datasets, often allows to test hypothesis regarding 

underlying molecular mechanisms and to generate predictions that can 

be experimentally tested. Importantly, models translate 3C information 

into a context of distances/space helping discern simultaneous from 

exclusive contacts, and representing heterogeneity between cells and 

dynamics across time.   

Most modelling approaches subdivide the genome in chunks, by either 

specific underlying features or a defined genomic length. Each chunk is 

then represented by connected points or spheres, or alternatively as 

elements composing a polymer (Oluwadare, Highsmith, & Cheng, 

2019). A set of parameters or physics rules constrains such particles to 
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define how they interact with the rest of particles and how the model 

folds.  

Chromatin modelling approaches can be divided into two main 

categories: ab initio models aim at understanding the processes of 

genome folding and identifying components shaping the genome, while 

data-driven models are focused on the more refined analysis of the 

represented chromatin (Bendandi, Dante, Zia, Diaspro, & Rocchia, 

2020; Lin, Bonora, Yardimci, & Noble, 2019; Marti-Renom & Mirny, 

2011).  

On the one hand, Ab initio models use as input statistical features and 

physics principles to simulate the behavior of chromatin in the 3D 

space, by applying a conjunction of known and hypothesized properties 

to the chromatin fiber. Usually, varying levels of packing conformation 

of the chromatin fiber and the behavior of the bead-spring polymer 

models are assumed, with defined toughness, elasticity and behavior 

(Finch & Klug, 1976; Rosa & Everaers, 2008). Polymer folding has been 

typically modelled as an equilibrium globule (Mirny, 2011), or as a fractal 

globule (Grosberg, Nechaev, & Shakhnovich, 1988). The last modality 

is consistent with the first genome-wide chromosome interaction maps, 

where it was observed that different chromatin regions poorly 

intermingle, probably allowing for rapid access to active regions by the 

transcriptional machinery (Lieberman-Aiden et al., 2009). Methods 

following these approaches have contributed to prove that loop 

extrusion processes could be sufficient to drive chromatin compaction 

(Goloborodko, Marko, & Mirny, 2016) and form chromosomal 

domains (Fudenberg et al., 2016), and that epigenetic features such as 

chromatin states contribute to the formation of TADs and 

compartments (Di Pierro, Cheng, Lieberman Aiden, Wolynes, & 
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Onuchic, 2017; Falk et al., 2019; Jost et al., 2014; Jost & Vaillant, 2018). 

A current limitation of such models is that typically they do not perform 

equally well at the different scales of loops, TADs, compartments, 

chromosome territories, partly due to the considerable computational 

time that they require. 

On the other hand, data-driven models are focused on the treatment 

and transformation of experimental data into restraints, to reliably 

reconstruct its 3D organization. Restraints may be inferred from 

interaction data, such as Hi-C experiments, additional experimental 

observations such as nuclear dimensions or chromatin-lamina 

interactions, and physics properties of the chromatin like the bending 

rigidity of the fiber (Serra et al., 2015). The resolution of the experiment 

and the computational workload are the main limiting factors. 

Therefore, when analyzing long chromatin fibers such as the whole 

human genome, resolution is normally lowered at about a megabase. 

When instead models are focused on specific selected regions of 

interest, they typically reach a resolution of few kilobases, closer to the 

limit defined by the experiment itself (Serra et al., 2015). Scoring 

functions infer how well the 3D distances between the output model 

represent the input interaction data, and, finally, the conformations that 

best satisfy the imposed restraints are retained.  Modelling methods are 

further divided into two classes. Consensus-based modeling approaches 

analytically provide a single consensus structure that best explains the 

input interaction data, with reduced computational time. Ensemble-

based modeling methods, instead, determine a set of 3D conformations 

that try to account for the variability of population 3C-based datasets 

(Lin et al., 2019). Among ensemble-based methods, TADbit (Serra et 

al., 2017) is well-suited for chromatin 3D modeling from Hi-C data, 
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serving of the Integrative Modeling Platform (IMP) (Russel et al., 2012) 

for the application of spatial restraints. First, the input interaction data 

is normalized and transformed via log10 and Z-score. Then, chromatin 

is represented as a chain of particles, with a diameter defined by the 

resolution of the data. A combination of parameters is used to 

transform the Z-scores of non-consecutive particles into different types 

of restraints and assign a range of allowed distances to each pair of 

particles, while consecutive particles are spatially restrained by their 

occupancy. Finally, the restraints are applied starting from randomly 

distributed particles, by a series of Monte Carlo rounds combined with 

standard simulated annealing. The output of this process is an ensemble 

of models that best fit the input restraints, while minimizing the defined 

scoring function for the different parameter combinations. 

Subsequently, the comparison of obtained ensembles with the input 

interaction matrix allows to optimize the parameters. By using only Hi-

C data as input, TADbit was able to generate models at the kilobase 

scale representing distinct 3D features associated to previously defined 

epigenetic states (Filion et al., 2010; Serra et al., 2017). Additionally, 

provided Hi-C data from time course experiments are available, this 

type of modelling can interpolate the restraints through the various time 

points to deliver information about chromatin folding dynamics (Di 

Stefano et al., 2020). 

Overall, modelling strategies have mostly focused their attention on 

technologies like Hi-C, which have been widely used in the last decade. 

However, other chromatin interaction technologies, like 4C, Promoter 

Capture Hi-C (PCHi-C) or HiChIP, are being increasingly employed, 

and, since they produce sparser interaction datasets compared to Hi-C, 
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the use of appropriate methods is required (Mendieta-Esteban, Di 

Stefano, Castillo, Farabella, & Marti-Renom, 2021).  

Improvements in algorithms and computation power are crucial 

complementary tools to experimental methods, and will hopefully soon 

allow to model the dynamics of whole-genome folding at high spatial 

and temporal resolution. 

 

 

7. The relationship between genome function and 
structure 
 

Abundant experimental evidence suggests that chromatin structural 

dynamics contributes to the specification of distinct gene expression 

programs and biological functions (Galupa & Heard, 2017; Spitz, 2016). 

Perturbative studies coupling existing methods, notably 3C-based, with 

recently developed techniques such as CRISPR–Cas9 technology, give 

unprecedented opportunities to manipulate genome architecture and 

explore the mechanistic connections between chromosome structure 

and nuclear biology. However, because of contradicting evidences, the 

mechanisms regulating dynamic chromatin changes and the causality 

between genome topology and transcription are under intense 

investigation. 

Positioning patterns of genes and chromosomes differ between cell 

types, and undergo changes during physiological processes such as 

differentiation, development, aging, and in pathological conditions. The 

genomic landscape in embryonic stem (ES) cells is abundantly 

associated to active marks (Meshorer et al., 2006; Mikkelsen et al., 2007), 

and its structure is maintained in a globally open, readily accessible 
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configuration, allowing for maximum plasticity (Fussner et al., 2011). 

Upon ES cells differentiation, many of ES cell-specific chromatin 

hallmarks rapidly disappear.  

Despite primary domain architecture seems to be mainly preserved in 

different cell types and across species (Dixon et al., 2012; S. S. Rao et 

al., 2014; Sexton et al., 2012), during lineage specification in early stages 

of human development intra-TAD interactions in some domains are 

strongly altered, often correlate with relocation of the TAD from one 

compartment to another, and with changes in chromatin accessibility 

and transcription status (Dixon et al., 2015). On the same line, in 

response to the transient stimuli of hormone treatment in breast cancer 

cells, substantial changes in transcription are accompanied by only few 

dynamic TAD boundary regions, but TADs respond to the hormone 

treatment as a unit. Responsive TADs change epigenetic signature, 

switch between the A and B compartments and undergo changes in 

their level of compaction, suggesting that the transcription status might 

be coordinated within a TAD (Le Dily et al., 2014).  

It has also been described that mature B cell formation and activation 

involves a strong relationship between nuclear architecture, TFs, and 

the epigenetic machinery (Azagra, Marina-Zarate, Ramiro, Javierre, & 

Parra, 2020; Stadhouders et al., 2018), including the formation of DNA 

loops between distant regulatory regions mediated by CTCF, and 

potentially also by lncRNAs (Bunting et al., 2016; Kieffer-Kwon et al., 

2017; Ramachandrareddy et al., 2010).  

In human primary hematopoietic cell types and embryonic stem cell-

derived cardiomyocytes, the promoters interactome has been 

demonstrated to be crucial for enhancers to contact their target genes 

in a cell-type specific manner, and for non-coding genome-wide 
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association study (GWAS) variants to be linked with putative target 

genes, shedding light on the genomic regulatory mechanisms underlying 

common diseases (Choy et al., 2018; Javierre et al., 2016). 

Several elegant genetic perturbation studies have together favored a 

model in which TADs ensure proper spatiotemporal regulation of gene 

expression, by creating insulated neighborhoods that demarcate the 

enhancer search space for target gene promoters in the appropriate 

developmental time window (Beagan & Phillips-Cremins, 2020; Norton 

& Phillips-Cremins, 2017; Symmons et al., 2014). Hox gene cluster 

domains constitute a representative example of this principle. They are 

among the best-studied Polycomb domains, which in general are 

formed by clusters of Polycomb-bound sites with preferential 

interactions (Bantignies et al., 2011; Lanzuolo et al., 2007; 

Schuettengruber et al., 2014; Sexton et al., 2012). In mouse embryonic 

stem cells, where Hox genes are transcriptionally inactive, they associate 

into a single Polycomb domain that is well separated from flanking 

active regions (Vieux-Rochas et al., 2015). Upon Hox gene activation 

during differentiation, active genes progressively segregate into an active 

TAD, and the transition in spatial configuration coincides with the 

change of chromatin marks from a repressed to an active state 

(Noordermeer et al., 2014; Noordermeer et al., 2011). Architectural 

protein CTCF seems to be a key protein in insulating active and 

repressed Hox clusters into spatially disjoint domains (Narendra et al., 

2015).  

Although the relationship between TAD boundaries, insulation and 

disease is not entirely clear, structural variations perturbing TAD 

boundaries, CTCF binding, and insulation can lead to aberrant gene 

expression, developmental defects and disease (Akdemir et al., 2020; 
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Andrey & Mundlos, 2017; Bruneau & Nora, 2018; Despang et al., 2019; 

Dowen et al., 2014; Flavahan et al., 2016; Franke et al., 2016; Hnisz et 

al., 2016; Kraft et al., 2019; Laugsch et al., 2019; X. S. Liu et al., 2018; 

Lupianez et al., 2015; Lupianez, Spielmann, & Mundlos, 2016; Narendra 

et al., 2015; Valton & Dekker, 2016; van Bemmel et al., 2019; 

Weischenfeldt et al., 2017).  

Chromatin looping has been demonstrated to play a critical role in 

activation or repression of gene expression, depending on the specific 

cases. In a landmark study, forcing a loop between the β-globin 

promoter and its locus control region (LCR) in absence of the TF 

GATA1, which is normally required for β-globin expression, was 

sufficient to recruit RNAPII and upregulate the expression of the β-

globin gene (W. Deng et al., 2012). In D. melanogaster, the prevention of 

loop formation showed that Polycomb-dependent genomic loops can 

contribute to gene silencing during development (Ogiyama et al., 2018).  

Interestingly, acute depletion of CTCF or of cohesin complex subunits 

results in the disruption of most of loop domains across the genome, 

while compartmentalization is unaffected or strengthened (Nora et al., 

2017; S. S. P. Rao et al., 2017; Schwarzer et al., 2017), and changes in 

gene expression are unexpectedly modest (Beagan & Phillips-Cremins, 

2020). Extensive genome-wide deletions, duplications and inversions in 

Drosophila impact chromatin-domain placement, but generate only 

minor alterations in gene expression (Ghavi-Helm et al., 2019). These 

results indicate that possibly not all genes might be regulated through 

long-range spatial contacts (Beagan & Phillips-Cremins, 2020). Overall, 

the data available to date indicate a dynamic, reciprocal interplay 

between transcription and fine-scale genome organization. Loops and 

domains can modulate function, albeit to a modest degree in some 
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cases, and genome transcription can also influence looping structures. 

In contrast, transcription has only moderate effects on domain 

organization and is not sufficient to create new domain boundaries (van 

Steensel & Furlong, 2019). As regards A and B compartments, since yet 

there is no way to prevent their formation without perturbing the 

nuclear processes by which they form, i.e. self-association and/or phase 

separation of similarly modified chromatin, experiments to test their 

functional role are still missing. 

Globally, the emerging picture points to a self-organizing function-

structure-function model of genome organization. Genome topology 

might be a modulatory, rather than deterministic, regulator of genome 

function, consistently with the observed stochastic nature of gene 

expression. In this model, genome activity would primarily be dictated 

by DNA sequence, and drive genome topology and epigenetic patterns. 

Resulting topological and epigenetic features would in turn reinforce 

genome function, superimposing additional layers of regulation, 

maintaining the ground state generated by the genetic information and 

acting as a buffer to potentially detrimental environmental influences, 

such as cellular stress or aberrant signaling. Possibly, epigenetic and 

structural mechanisms may alter the functional state of a certain 

genomic region, such as by placing an active gene into a 

heterochromatic, repressed environment. Consequently, the newly 

induced functional state would strengthen the epigenetic and structural 

features of the genomic region. 
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CHAPTER 1  
 
Coordinated changes in gene expression, H1 variant 

distribution and genome 3D conformation in response 

to H1 depletion  
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ABSTRACT  
Up to seven members of the histone H1 family may contribute to 

chromatin compaction and its regulation in human somatic cells. In 
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breast cancer cells, knock-down of multiple H1 variants deregulates 

many genes, promotes the appearance of genome-wide accessibility 

sites and triggers an interferon response via activation of 

heterochromatic repeats. However, how these changes in the 

expression profile relate to the re-distribution of H1 variants as well as 

to genome conformational changes have not been yet studied. Here, we 

combined ChIP-seq of five endogenous H1 variants with Chromosome 

Conformation Capture analysis in wild-type and H1.2/H1.4 knock-

down T47D cells. The results indicate that H1 variants coexist in the 

genome in two large groups depending on the local GC content and 

that their distribution is robust with respect to H1 depletion. Despite 

the small changes in H1 variants distribution, knock-down of H1 

translated into more isolated but de-compacted chromatin structures at 

the scale of topologically associating domains (TADs). Such changes in 

TAD structure correlated with a coordinated gene expression response 

of their resident genes. This is the first report describing simultaneous 

profiling of five endogenous H1 variants and giving functional evidence 

of genome topology alterations upon H1 depletion in human cancer 

cells.  

 

INTRODUCTION  
DNA is packaged within the nucleus to efficiently regulate nuclear 

processes. Chromatin packing involves several hierarchical levels of 

organization that have been mostly described by chromosome 

conformation capture techniques, among others. First, at megabases 

scale, the genome can be segregated into the so-called A and B 

compartments. The A compartment represents active, accessible 

chromatin with a tendency to occupy a more central position in the 
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nucleus. The B compartment corresponds to heterochromatin and gene 

deserts enriched at the nuclear periphery (1). Second, topological 

associating domains (TADs), which are submegabase structures, 

interact more frequently within themselves than with the rest of the 

genome (2–4). TADs are conserved across species and cell types and 

show a coordinated transcriptional status (5,6). Third, these domains 

are formed by assemblies of chromatin loops with physical properties 

that, ultimately, depend on the histone composition and modifications 

of its resident nucleosomes. In particular, histone H1, which has 

classically been regarded as a simple condenser, is now known to 

contribute to the higher-order organization of the genome (7–9). 

Histone H1 family is evolutionary diverse and human somatic cells may 

contain up to seven H1 variants (H1.1 to H1.5, H1.0 and H1X). H1.1-

H1.5 variants are expressed in a replication-dependent manner while 

H1.0 and H1X are replication-independent. H1.2 to H1.5 and H1X are 

ubiquitously expressed, while H1.1 is restricted to certain tissues and 

H1.0 accumulates in terminally differentiated cells (8,10,11). 

Several studies support the idea that H1 variants are not redundant and 

that functional specificity may exist with H1 variants non-randomly 

distributed in the genome and interacting with different protein partners 

(12–18). For example, in breast cancer cells, knock-down (KD) of each 

individual H1 variant deregulates different subsets of genes (17,19). In 

mouse embryonic stem cells (ESCs), H1c and H1d (orthologs of the 

human H1.2 and H1.3, respectively) are depleted from high GC/gene-

rich regions and are enriched at major satellites (14). In IMR90 cells, 

H1.2-H1.5, in contrast to H1.1, are depleted from CpG-dense and 

regulatory regions (15), with H1.5 binding correlating with depletion of 

RNA polymerase II (RNApol II) and repression of target genes in 
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differentiated cells (13). In skin fibroblasts, H1.0 distribution correlates 

with GC content and is abundant at gene-rich chromosomes (18). In 

T47D breast cancer cells, all H1 variants are depleted at promoters of 

active genes (16) and tagged-H1s are enriched at high GC regions with 

endogenous H1.2 and H1X resulting in opposite profiles. That is, while 

H1.2 is found in low GC regions and lamina-associated domains 

(LADs), H1X strongly correlates with GC content and is associated to 

RNApol II binding sites (16,17). Moreover, H1.2 and H1X have an 

opposite distribution among Giemsa bands (G bands), being H1.2 and 

H1X associated with low and high GC bands, respectively (20). Finally, 

a strong correlation has been observed between high H1.2/H1X ratio 

and the so-called genome B compartment, low GC bands and compact, 

late-replicating chromatin (20). Although no functional Hi-C 

experiments have been performed in H1-depleted human cells, the 

direct involvement of linker histones in chromatin structure has been 

proved in mouse ESCs. Hi-C experiments were performed in wild-type 

and H1-triple knockout (TKO) ESCs. In H1 TKO, an increase in inter-

TAD interactions correlated with changes in active histone marks, 

increased number of DNA hypersensitivity sites and decreased DNA 

methylation (21). These results point to an essential role of histone H1 

in modulating local chromatin organization and chromatin 3D 

organization. 

To study the consequences H1 depletion in human cells, we have 

previously generated a derivative T47D cell line containing a short-

hairpin-RNA that affects the expression of several H1 genes as well as 

the protein levels of mainly H1.2 and H1.4 (22). In such cell line, the 

H1 total levels are reduced to ≈70%, which results in heterochromatic 

repeats including satellites and endogenous retroviruses overexpression 
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that triggers a strong interferon response. Using this system, here we 

aim at studying the effects of H1 variant depletion in chromatin 

organization and nuclear homeostasis. To address this question, we 

have performed ChIP-seq in T47D breast cancer cells, and Hi-C 

experiments under basal conditions and after combined depletion of 

H1.2 and H1.4 (H1 KD). Profiling of endogenous H1 variants revealed 

that H1.2, H1.5 and H1.0 were abundant at low GC regions while H1.4 

and H1X preferentially co-localized at high GC regions. Profiling of 

H1s within chromatin states showed that all H1 variants were enriched 

at heterochromatin and low-activity chromatin, but H1X was more 

abundant at promoters compared to other H1 variants. After H1 KD, 

chromatin accessibility increased genome-wide, especially at the A 

compartment where H3K9me3 abundance was reduced. Similarly, the 

B compartment, where H1.2 was enriched at basal conditions, also 

showed a more open state. Interestingly, these changes occurred with 

only slight H1 variant redistributions across the genome. For example, 

H1.4 profile switched towards the H1.2 group and H1X decreased at 

heterochromatin and increased in almost all other chromatin states. Our 

Hi-C results also indicate that upon H1 KD, parts of the genome 

suffered changes in compartmentalization with no specific direction 

and TADs increased their internal interactions, which resulted in an 

increased TAD border strength. In particular, those regions of the 

genome with high H1.2 overlap resulted in increased local interactions 

upon H1 KD. Such structural changes were parallel to coordinated gene 

expression changes within TADs with up-regulated genes enriched in 

TADs with low basal gene expression and high H1.2 content. Finally, 

the three-dimensional (3D) modeling of TADs with coordinated gene 

response indicate that they suffered a general decompaction upon H1 
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KD. This is the first report describing simultaneous profiling of five 

endogenous H1 variants within a cell line and giving functional evidence 

of genome topology alterations upon H1 KD in human cancer cells. 

 

RESULTS 
A stable genome distribution of H1 variants correlates with GC 

content and chromatin state  

It has been previously described that the content of histone H1 variants 

varies between cell types and along differentiation (8,40). Moreover, its 

genomic distribution is non-homogeneous and with specific patterns 

depending on the variants (13–18,20). Therefore, we hypothesize that 

altering the H1 variants composition in a particular cell type may affect 

the genomic distribution of the different variants. To test this, we 

performed ChIP-seq experiments in T47D cells harboring an inducible 

multiH1 shRNA expression vector which, upon Doxycycline treatment, 

efficiently depletes H1.2 and H1.4 proteins (H1 KD) (22). After testing 

the efficacy of H1 KD by Western blot (Figure 1A), we performed ChIP 

with antibodies against endogenous H1.2, H1.4, H1.5, H1.0 and H1X. 

The amount of DNA immunoprecipitated with H1.2 and H1.4 

antibodies decreased >65% in treated cells compared to untreated, 

confirming the antibody specificity and the effect of the H1 knock-

down. ChIPed DNA was qPCR-amplified with oligonucleotides for 

TSS and distal promoter regions of CDK2 (active) 

and NANOG (inactive) genes (Figure 1B), which confirmed that all 

ChIPs efficiently worked compared to unspecific IgG. The active gene 

presented the characteristic H1 valley at the Transcription Starting Site 

(TSS) compared to the distal region, but not the inactive gene (16). 

Upon H1 KD, the signal of H1.2 and H1.4 significantly decreased, while  
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Figure 1. Genomic distribution of histone H1 variants upon H1 knock-down in 
breast cancer cells. (A) Immunoblot analysis of H1 depletion in H1 KD cells. 
Chromatin extracts (1 or 5µg of protein) from T47D multiH1 KD cells cultured in 
the presence or not of Doxycycline for 6 days were run in SDS/PAGE and 
immunoblotted with the indicated antibodies against H1 variants or histone H3 as 
loading control. ImageJ Immunoblot quantification of multiple experiments is 
indicated as mean (ratio + Dox/untreated) and SD. Number of biological replicates 
used for quantification were: n = 6 (H1.2, H1.4 and H1.0), n = 4 (H1X), n = 2 (H1.3, 
H1.5). (B) ChIP-qPCR of H1 variants in multiH1 KD cells. Chromatin from 
untreated or Dox-treated H1 KD cells was used for ChIP with antibodies against H1 
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variants and unrelated IgG as a control. Resulting DNA was amplified by qPCR with 
oligos for distal promoter (3kb upstream TSS) and TSS regions of 
genes CDK2 and NANOG. ChIP amplification is shown relative to input DNA 
amplification. A representative experiment quantified in triplicate is shown. Statistical 
differences between Untreated (–Dox) and + Dox immunoprecipitated DNA for 
each H1 variant are supported by paired-t-test. (***) P < 0.001; (ns/non-
significant) P > 0.05. (C) Heat map and cluster analysis of the input-subtracted ChIP-
seq abundance of H1 variants within Gpos and Gneg bands from untreated T47D 
cells. The color of heatmap grids represents the relative input-corrected coverage of 
the H1 variant indicated at the X-axis within each G band, while the Y-axis shows to 
which group the band belongs. Two main clusters of H1 variant distribution are 
formed, one with abundant H1.X and H1.4 at high GC bands, the other with H1.2, 
H1.5 and H1.0 enriched at low GC bands. Two replicates are shown (r1, r2). (D) 
Scatter plots of the indicated H1 variant pairs input-subtracted ChIP-seq abundance 
within 100-kb bins of the human genome. The GC content at each bin is color-coded. 
Pearson's correlation coefficient is shown (P-value < 0.001). (E) Heat map and cluster 
analysis of the input-subtracted ChIP-seq abundance of H1 variants from WT or H1 
KD T47D cells (−/+Dox) within 10 chromatin states (ChromHMM segmentation). 
The profile of H3K9me3 is included. For each heatmap grid, the color represents the 
input-corrected coverage of the H1 variant identified by the X-axis within each region, 
while the Y-axis shows the ChromHMM group the region belongs to. (F) Scatter plots 
of H1 variants input-subtracted ChIP-seq abundance within 100-kb bins of the human 
genome in multiH1 KD cells treated or not with Doxycycline. The GC content at each 
bin is color-coded. (C, E) Heatmaps were performed by using the R package 
‘pheatmap’. The ‘euclidean’ distance measure and the ‘complete’ cluster method were 
used in clustering rows and columns. 
 
H1.0 signal increased, in agreement with the Western blot results 

(Figure 1A-B). The effect of H1 KD as well as the specificity of H1 

antibodies were further confirmed RT-qPCR, western blot, ChIP-qPCR 

and mass-spectrometry (Supplementary Figure S1 and Supplementary 

Table S2). Cell cycle analysis in H1 KD cells is also shown 

(Supplementary Figure S1). 

We have previously shown that H1.2 strongly correlates with B 

compartment, late replicating, inaccessible chromatin and low GC 

bands (20). To further extend this analysis, we measured the ChIP-seq 

abundance of each H1 within G bands and compared its distribution 

upon H1 KD. A browser snapshot of the distribution of the H1 variants 
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in the genome is shown in Supplementary Figure 2. Unsupervised 

clustering of H1 variant distributions in G bands clearly show the 

existence of two major clusters of H1 variants within G bands 

(Figure 1C and Supplementary Figure S3A). In untreated cells, H1.2 

was enriched towards low GC content regions (that is, 

Gpos100/Gneg4, repressed bands), and H1X was enriched at high GC 

(that is, Gpos25/Gneg1, active bands). Additionally, H1.4 was also 

enriched at high GC bands, whereas H1.5 and H1.0 were enriched 

towards low GC bands. These results confirm and expand previous 

findings on the distribution of H1 variants in the genome (16,20). 

Interestingly, correlation analysis of the distribution of H1 variants 

genome-wide using bins of 100-kb confirmed the existence of these two 

groups of variants (i.e. H1.2, H1.5 and H1.0 in low GC regions as well 

as H1.4 and H1X in high GC regions) with H1.2 and H1X selected as 

prototypes of the two groups and opposed distribution within the 

genome (Figure 1D and Supplementary Figure S3B, C). Next, we 

assessed whether the clustering distribution of H1 variants would also 

correlate with genomic chromatin states. To do so, we used as a proxy 

10-chromatin states (colors) maps generated elsewhere from several 

genomic datasets of HeLa-S3 cells (41). Most H1 variants were 

particularly abundant within heterochromatin/repetitive and low-

activity chromatin states, but also at polycomb-repressed, transcription-

associated and weak-enhancer (Figure 1E and Supplementary Figure S3D). 

In concordance, such variants were underrepresented 

at active and inactive promoter states. This trend was broken by the H1X 

variant, which was enriched at promoters, compared to other variants, 

confirming that this variant is the most specific of all with respect its 
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genome-wide distribution. H1.4 was the variant that overlapped the 

most with H3K9me3 profile within chromatin states. 

Changes of H1 variants distribution upon H1 KD were further analyzed 

within 100-kb bins throughout the genome. Upon H1 KD, H1.0 

distribution was unaltered, while H1.2 and H1.5 were slightly increased 

specially at high GC bins. H1X occupancy increased at high GC bins 

and decreased at low GC bins, whereas H1.4 decreased at high GC bins 

(Figure 1F and Supplementary Figures S2, 3A). Similarly, upon H1 KD, 

H1.2, H1.5 and H1.0 profiles within chromatin states were not altered 

and H1X profile decreased at heterochromatin and increased in almost all 

other chromatin states, particularly at Polycomb-repressed regions 

and promoters, and among them the highest increase occurred at inactive 

promoters (Figure 1E and Supplementary Figure S3D). Finally, H1.4 

profile switched towards the H1.2 group. It has to be considered that 

H1.2 and H1.4 profiles refer to the relative ChIP-seq signal remaining 

after efficient KD (ca. ≈65% of the H1.2 or H1.4 genomic abundance 

was disappeared). 

The average profiles of all H1 variants around transcription start sites 

(TSS) or termination sites (TTS) and around coding genes was 

calculated using CEAS software and is shown in Supplementary Figure 

S4A. All H1 variants showed depletion around TSS of active genes and 

no changes upon H1 KD, except for H1X, which was enriched around 

TSS of genes, especially upon H1 KD. Annotation of genomic regions 

enriched for the different variants showed that H1.2, H1.5 and H1.0 

were enriched at intergenic regions both in the absence or presence of 

Doxycycline, whereas H1X and H1.4 were enriched at promoters and 

introns, compared to the other variants, in wild-type conditions, but 

distribution was altered upon H1 KD (Supplementary Figure S4B). 
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H1X was further enriched at promoters, exons and UTRs upon H1 KD, 

whereas the remaining H1.4 was decreased from introns and increased 

at intergenic regions. 

Furthermore, differential genomic distribution of H1 variants in T47D 

cells established by ChIP-seq here is compatible with 

immunofluorescence imaging of H1 variants within the nuclei 

(Supplementary Figure S5). H1.2 showed enrichment towards the 

nuclear periphery and co-localized with lamin A, features of 

heterochromatin; H1.5 presented a similar pattern. Instead, H1X and 

H1.4 showed a punctuated pattern inside the nuclei, without lamin A 

overlapping. Notably, H1X was highly enriched at the nucleolus, as 

previously reported (17,42). H1.0 was also distributed overall the 

nucleus but no general overlapping with H1.4 was found, confirming 

that they occupied different genomic regions. Upon H1 KD, 

abundances of H1.2 and H1.4 were highly reduced, whereas H1X and 

H1.0 were increased. However, H1 variants redistribution within 

chromatin states upon H1 KD was difficult to evaluate with this 

technique. 

In summary, ChIP-seq data in T47D cells demonstrated that H1 

variants are differentially distributed through the genome in two 

profiles: H1.2, H1.5 and H1.0 enriched towards low GC regions and 

H1X and H1.4 more abundant at high GC regions. Still, all H1 variants 

are abundant within heterochromatin or inactive regions of the genome. 

Upon H1.2 and H1.4 depletion, H1.2, H1.0 and H1.5 did not 

significantly change their genomic distribution, whereas H1X increased 

at high GC regions, where H1.4 was selectively depleted. H1.0, whose 

expression and protein levels increased, was homogeneously 

incorporated throughout the genome. 
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Changes on genome architecture upon depletion of multiple 

histone H1 variants 

Chromosome conformation capture techniques such as Hi-C allows to 

detect local and distal contacts within the genome and to establish the 

position of borders flanking the so-called topologically associating 

domains (TADs). Hi-C experiments also allow to establish a division of 

the genome into two compartments, active (A) and inactive (B). To 

address the consequences of histone H1 depletion on genome 

architecture, we prepared nuclear DNA from untreated and 6-days 

Doxycycline-treated multiH1 shRNA cells, in two independent 

experiments with a total of 3 replicates, and performed the Hi-C 

protocol (Supplementary Figure S6). After assessing the similarity 

between Hi-C replicates using HiCRep score (Materials and Methods 

and Figure 2A), replicates within samples were merged and analysed as 

a single experiment for WT and H1 KD. Analysis of the average Hi-C 

interactions as a function of genomic distance indicates that upon H1 

depletion there was a decrease in short and medium-range interactions 

(<30 Mb), and an increase in long-range contacts (>30 Mb) (Figure 2B). 

To further characterize where those average changes occurred, we 

segmented the genome first into compartments and then into TADs for 

WT and H1 KD samples (Supplementary Figure S2). 

The segmentation of the genome into the A and B compartments 

remained largely unchanged upon H1 KD (∼80% of the 100-kb bins 

did not change compartment, Figure 2C). However, significant 

differences in compartmentalization were observed. For example, about 

280 Mb of the genome decompacted (B to A direction) after H1 KD 

with 1/3 of the bins moving from the B compartment to an A 

compartment. Conversely, about 294 Mb of the genome compacted (A  
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Figure 2. A/B compartments redistribution upon H1 KD. (A) Hierarchical clustering 
of Hi-C replicates from WT (–Dox) and multiH1 KD (+Dox) cells based on the Hi-
C reproducibility score between paired experiments. (B) Plot comparing the 
distribution of Hi-C interactions versus genomic distance across the genome for a 
maximum distance of 500 Mb for WT and H1 KD cells. (C) Scatter plot of principal 
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component (PC) coefficients for 100-kb genomic segments (bins) from WT (–Dox) 
and H1 KD (+Dox) cells. PC coefficients were used to define A (positive PC) and B 
(negative PC) compartments, as well as compartment shifting (A-to-B and B-to-A), 
compaction (blue bins AA-A and BB + B) and decompaction (red bins AA + A and 
BB-B) upon H1 KD. Unchanged segments AA and BB are black-colored. A 
polynomial regression line was used to model the relationship between the dependent 
and the independent variables. (D) A/B compartments redistribution within 
chromosomes. Scatter plot between the percentage of bins that changed from A to B 
or vice versa upon H1 KD, and the average H1.2 ChIP-seq signal in untreated cells 
within TADs, for each chromosome. Spearman's correlation coefficient is shown as 
well as P-value. (E) Gene expression changes upon H1 KD within bins changing 
compartment or compaction rate. Normalized RNA-seq reads of coding and non-
coding genes before and after Dox-induced H1 KD within 100-kb bins of the eight 
categories obtained in (C) were used to calculate the +/−Dox fold-change (expressed 
as log2). (F, G) Box plot showing H1 variants input-subtracted ChIP-seq signal within 
bins of each category in WT cells (–Dox) (F), or the ratio of change (log2) in H1 KD 
(+Dox) compared to untreated cells (–Dox) (G). (***) P < 0.001; (**) P < 0.01; 
(*) P < 0.05. Kruskal–Wallis test determined that there were statistically significant 
differences between the groups (P < 0.001). One-sample Wilcoxon signed-rank test 
was used to compare each group of bins against the median gene expression changes 
(E), H1 variants input-subtracted ChIP-seq signal (F), or ratio of change (G). 
 
to B direction) with about 1/4 completely changing compartment 

category (Figure 2C). Interestingly, these changes in 

compartmentalization were not homogenous across the genome, being 

B-to-A shifts upon H1 KD more frequent within chromosomes with 

high H1.2 content. Notably, the expected anti-correlation for bins 

moving from the A compartment to the B compartment was not 

observed, despite chromosomes rich in A compartment were poor in 

H1.2 (Figure 2D and Supplementary Figure S7). To assess if changes in 

compartment were related to gene activity, we also explored whether 

gene expression was altered within bins changing compaction upon H1 

KD using RNA-seq data previously acquired in the same cell systems 

(22). Significant overall gene up-regulation was observed within bins 

being decompacted (B-to-A and A or B decompaction), but the 

opposite was not observed for bins being compacted (Figure 2E). We 
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next wondered whether the changes in compartmentalization and 

expression were dependent on the basal distribution of H1 variants in 

the genome as well as their re-distribution upon H1 KD. As expected, 

we found that H1X and H1.4 were enriched in the A compartment and 

H1.0, H1.5 and H1.2 were enriched in the B compartment (Figure 2F). 

Interestingly, such a trend was pronounced for all the bins in the 

genome which compartmentalization did not change upon H1 KD 

indicating that the basal state of different H1 variants could determine 

how compartments respond to H1 depletion. However, was the 

observed trend upon H1 depletion also accompanied by a change of H1 

variant distribution? Interestingly, H1X decreased upon H1 KD in B 

compartment bins (regardless of their change in compartmentalization) 

as well as in A-compartment bins that compacted or even moved to the 

B compartment (Figure 2G), which could indicate that decrease of H1X 

is associated to B compartmentalization. Similarly, H1.2 decreased in all 

A compartment bins as well as B compartments that decompacted or 

even moved to the A compartment, which again indicates that H1.2 

decrease is associated to A compartmentalization. To note that, despite 

H1.4 clear depletion after H1 KD, its changes associated to 

compartmentalization did not correlate with the observed changes in 

H1X (Figure 2G). In fact, H1.4 decreased in all A compartment bins 

and increased in all B compartment bins after H1 depletion, which 

could indicate a redistribution that could play a significant role in 

compartmentalization. 

Topologically Associating Domains or TADs comprise the next scale 

of the so-called higher-order organization of chromatin after 

compartmentalization (43). Similar to the compartmentalization 

changes, the large majority of TAD borders (i.e. 71.0%) remained  
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Figure 3. TAD boundaries changes upon H1 KD. (A) Hi-C interaction maps of 6.25 
Mb region in chromosome 3 at 50-kb resolution. Left panel is a heat map of Hi-C maps 
normalized by reads coverage in Log2 scale with TADs overlayed by black lines. Top 
triangle of the map corresponds to Hi-C in WT and lower triangle to H1 KD. Green 
arrow points to the de-novo detected TAD border in H1 KD. Right panel, differential 
Hi-C map showing the enrichment of internal interaction in the two separated TADs 
around the new detected border. (B) Box plot showing the H1.2 and H1.4 input-
subtracted ChIP-seq signal in WT cells within TADs containing the TAD borders 
divided in conserved, shifted <100 kb and non-conserved according to their behavior 
upon H1 KD. (C) TAD border dynamics. Box plot of normalized border strength 
distribution for TAD borders in WT and H1 KD cells, divided in conserved, 
shifted <100 kb and non-conserved borders. (***) P < 0.001; (**) P < 0.01; 
(*) P < 0.05 (Mann–Whitney test). 
 
unchanged upon H1 KD (Supplementary Figure S2), 12.4% shifted by 

only one 100-kb bin, and 16.5% were not conserved (that is, shifted by 
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>1 bin, newly formed or disappeared; Figure 3A as example of a de 

novo detected border after H1 KD). To determine whether those 

changes could be linked to the basal distribution of H1 variants prior 

H1 KD, we interrogated the TAD enrichment of H1.2 or H1.4, which 

we identified above having a role in A/B compartmentalization. The 

results indicate that H1.2 was significantly depleted at non-conserved 

compared to conserved TAD borders and H1.4 was higher at TADs 

with non-conserved borders (Figure 3B). Interestingly, the differences 

in border position were also associated to changes in border strength. 

Upon H1 KD there was an increase in border strength for conserved 

and shifted TAD borders but not for the non-conserved borders, which 

slightly decreased its border strengths but with no statistically significant 

differences (Figure 3C). The results suggest, thus, that ‘soft’ borders 

were prone to be altered upon histone H1 depletion, both in its position 

as well as in its strength. 

The observed increased border strength was associated to an increase in 

intra-TAD (i.e. local interactions) both within A and B compartments and 

a decrease of inter-TAD interactions (i.e. non-local interactions) within the 

A and between A and B compartments (Figure 4A). The increase of local 

interactions (intra-TAD) with a decrease of non-local interactions (inter-

TAD) was also observed with the D-score, which measures the differential 

local interactions per each of the 100-kb bins in a Hi-C matrices. 

Specifically, the D-score is the average of differential interactions between 

WT and H1 KD of each bin with any other bin within a window of 2 Mb. 

Thus, it measures if a bin is surrounded by mainly a region in the genome 

of increased (D-score> 0) or decreased (D-score< 0) interactions (Figure 4B). 

Next, we compared the basal distribution of H1 variants with the D-

score and found that H1.2 signal was a strong predictor of the D-score across  
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Figure 4. Dynamics of Hi-C genomic interactions and chromatin changes upon H1 
KD. (A) Box plot showing average number of differential intra- or inter-TAD 
interactions per chromosome upon H1 KD in different compartments, at 100 kb 
resolution. The average number per chromosome of differential interactions for each 
category is indicated in the ticks of X axes. (B) Top, Differential Hi-C map. Increased 
(red colored) and decreased (blue colored) interactions in contact matrices of 
chromosome 11 (0–135 Mb) of H1 KD compared to WT cells, at 100 kb bins 
resolution. Bottom, D score. Profiles of differential interaction D score and input-
subtracted H1.2 ChIP-seq abundance from WT cells along chromosome 11, 
calculated within 100 kb bins. (C) Scatter plots between differential 
interaction D score and H1.2 or H1X abundance from WT cells, genome-wide. 
Spearman correlation coefficient is shown as well as P-value. The GC content at each 
bin is color-coded. (D, E) Box plots showing the relative number of ATAC-seq peaks 
(normalized by length) within TADs classified according to H1.2/H1X ratio (Groups 
1–4) (D) or within A/B compartments (E), at WT and H1 KD (−/+Dox) cells. The 
ChIP-seq H1.2/H1X signal ratio within TADs in the four groups reported is shown 
for reference in (D). (F) Box plots showing the H3K9me3 input-subtracted ChIP-seq 
signal within TADs classified according to H1.2/H1X ratio (left) or within A/B 
compartments (right), at WT and H1 KD (−/+Dox) cells. (***) P < 0.001; Wilcoxon 
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signed-rank test. A compartment, N = 1032; B compartment, N = 1014; 
TADs, N = 756 TADs per group. 
 
the genome (corr.coef. = 0.707 and Figure 4B, C). Conversely, there was 

an inverse correlation between the D-score and the basal abundancy of H1X 

variant (corr. coeff. = −0.422). In other words, those regions of the 

genome with high H1.2 overlap are likely to result in increased local 

interactions once H1 is depleted while regions with high H1X are likely to 

decrease interactions. 

Next, to identify if there was a correlation between the observed 

changes in H1 variants upon H1 KD within the spatial genome and the 

underlying chromatin state, we further classified TADs by their content 

in H1.2 and H1X variants (that is, we generate four discreate groups of 

TADs from lowest to highest H1.2/H1X ratio; 

Figure 4D and Supplementary Figure S2). Upon H1 depletion, 

accessibility measured by ATAC-seq was significantly increased at all 

TAD categories, but its increase was more pronounced at low 

H1.2/H1X TADs (Figure 4D). Accordingly, accessibility was also 

increased at the A and B compartments but most notably in A 

compartment (Figure 4E and Supplementary Figure S2). As expected, 

the opposite trend was observed in analyzing the distribution of the 

repressive mark H3K9me3 upon H1 KD. Indeed, H3K9me3 ChIP-seq 

signal decreased more in the A compartment compared to the B 

compartment and in low H1.2/H1X ratio TADs (Figure 4F), which 

indicates again that chromatin decompaction upon H1 depletion occurs 

more prominently in already open regions of the genome. 

Altogether our findings indicate that the genome structure is not 

generally but specifically altered upon depletion of H1 variants. First, 

local and non-local interactions genome-wide were differentially altered 
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with short and mid-range interactions decreasing and long-range 

increasing. Second, these changes in interactions correlated with 

changes in A and B compartments associated to changes of gene 

expression. Third, intra-TAD interactions increased, mostly within A or 

B compartments, which resulted in a clear increase of TAD border 

strength. Fourth, these genome interaction changes were more 

prominent depending on the basal H1 variant occupancy being the 

distribution of H1.2 and H1X most informative of the observed 

changes. Fifth, and final, depletion of H1 variants resulted in an overall 

increase of accessibility of chromatin, which also depended on the basal 

occupancy of H1.2 and H1X. 

 

Gene expression is coordinately altered within TADs upon H1 KD 

As previously observed, H1 variant depletion resulted in deregulation 

of hundreds of genes with about one third of the up-regulated genes 

associated to transcriptional response to interferon (22). In our 

experiments, a total of 1089 and 1254 genes were up-regulated and 

down-regulated, respectively (FC ≥ 1.4, adjusted P-value ≤ 0.05, 

Figure 5A). Interestingly, groups of regulated genes were more often 

than expected co-localized within the same TAD. The 2,343 

deregulated genes were distributed across 1,292 TADs with an 

enrichment of TADs with either only up or down regulated genes 

(Supplementary Figure S8A). For example, there was 531 TADs with at 

least one up-regulated genes and no down-regulated genes (here called 

‘Up’). Similar numbers were observed for down-regulated TADs with 

520 with at least one down-regulated gene and no up-regulated genes 

(here called ‘Dw’). Finally, a total of 241 TADs contained at least 2 

genes deregulated with mix directions (here called ‘UpDw’). UpDw  
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Figure 5. Gene expression is coordinately altered within TADs upon H1 KD. (A) Top, 
Histogram of the frequencies of TADs for the observed (gray) or randomized (purple) 
position of genes, for TADs containing an increasing proportion of genes per TAD 
with positive FC. Observed and expected values were compared using Pearson's chi-
square test. Gene locations were randomized 10 000 times, constraining by 
chromosome, not allowing overlapping, and only considering TADs with ≥4 
genes. Bottom- Ratio of observed versus expected frequencies of TADs with distinct 
proportions of genes with positive or negative H1 KD-induced FC; FC > 1 or FC←1. 
(B) TADs with ≥4 genes where at least 90% of genes are down- (left) or up-regulated 
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(right) with FC←1 or FC > 1, respectively (total N = 115). Log2 of gene expression 
FC is shown. TADs are ordered from low to high abundance of genes per TAD. 
Dashed lanes indicate FC = −1.4 or FC = 1.4. Red dots represent ISGs. Example 
genes shown in (C) are located within TADs marked with an arrow. (C) Examples of 
TADs with biased coordinated response to H1 KD. Fold change +Dox/–Dox (log2) 
is shown for all coding and non-coding genes present within a representative TAD 
containing 90–100% of genes with negative (left) or positive (right) FC, respectively. 
Genes are ordered according to their position within the genome. Red asterisk 
represents ISGs. (D) Box plot showing the H1.2 ChIP-seq signal in untreated cells 
within TADs in the 10 groups described in (A). (E) Box plot showing the ATAC-seq 
accessibility gain upon H1 KD (+/−Dox) within TADs in the 10 groups described in 
(A). Kruskal–Wallis test determined that there were statistically significant differences 
between the groups in (D) and (E). Comparison between each group of TADs and 
the median ChIP-seq H1.2/H1X log2 ratio (D) or the ATAC-seq accessibility changes 
(E) was performed using the one-sample Wilcoxon signed-rank test (***) P < 0.001; 
(**) P < 0.01. (F) Bar plots showing the frequency of overlap between all the TAD 
groups described in (A) and genome segments within A/B compartment categories 
described in Figure 2C that changed compaction upon H1 KD. The observed and 
expected count of bins of the different groups of TADs were significantly different 
(P < 0.001, Pearson's chi-squared test). 
 
TADs corresponded to higher gene density and lower H1.2 content 

compared to either TAD-Up or TAD-Dw. Finally, TADs without 

deregulated genes (here called Control) had the highest H1.2 content as 

well as the lowest gene richness (Figure 5B). Accordingly, H1X was 

significantly enriched within UpDw TADs and depleted from Control 

TADs contrary to the observed trend for H1.2 variant. Most TADs 

containing significantly deregulated genes upon H1 KD were located 

before KD within the A compartment (Figure 5C), while Control TADs 

were enriched at the B compartment. Chromatin remodeling also 

followed the expected trends for the TAD groups classified by their 

change in expression of the resident genes. For example, upon H1 KD, 

ATAC-seq accessibility increased globally in all TADs, especially in 

UpDw type (Figure 5D). Conversely, H3K9me3 abundance 

significantly decreased in Dw and UpDw TADs (Figure 5E). The same  
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Figure 6. Gene expression is coordinately altered within TADs upon H1 KD. (A) Top, 
Histogram of the frequencies of TADs for the observed (gray) or randomized (purple) 
position of genes, for TADs containing an increasing proportion of genes per TAD 
with positive FC. Observed and expected values were compared using Pearson's chi-
square test. Gene locations were randomized 10 000 times, constraining by 
chromosome, not allowing overlapping, and only considering TADs with ≥4 
genes. Bottom- Ratio of observed versus expected frequencies of TADs with distinct 
proportions of genes with positive or negative H1 KD-induced FC; FC > 1 or FC←1. 
(B) TADs with ≥4 genes where at least 90% of genes are down- (left) or up-regulated 
(right) with FC←1 or FC > 1, respectively (total N = 115). Log2 of gene expression 
FC is shown. TADs are ordered from low to high abundance of genes per TAD. 
Dashed lanes indicate FC = −1.4 or FC = 1.4. Red dots represent ISGs. Example 
genes shown in (C) are located within TADs marked with an arrow. (C) Examples of 
TADs with biased coordinated response to H1 KD. Fold change +Dox/–Dox (log2) 
is shown for all coding and non-coding genes present within a representative TAD 
containing 90–100% of genes with negative (left) or positive (right) FC, respectively. 
Genes are ordered according to their position within the genome. Red asterisk 
represents ISGs. (D) Box plot showing the H1.2 ChIP-seq signal in untreated cells 
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within TADs in the 10 groups described in (A). (E) Box plot showing the ATAC-seq 
accessibility gain upon H1 KD (+/−Dox) within TADs in the 10 groups described in 
(A). Kruskal–Wallis test determined that there were statistically significant differences 
between the groups in (D) and (E). Comparison between each group of TADs and 
the median ChIP-seq H1.2/H1X log2 ratio (D) or the ATAC-seq accessibility changes 
(E) was performed using the one-sample Wilcoxon signed-rank test (***) P < 0.001; 
(**) P < 0.01. (F) Bar plots showing the frequency of overlap between all the TAD 
groups described in (A) and genome segments within A/B compartment categories 
described in Figure 2C that changed compaction upon H1 KD. The observed and 
expected count of bins of the different groups of TADs were significantly different 
(P < 0.001, Pearson's chi-squared test). 
 
correlations were obtained using TADs containing genes deregulated 

upon H1 KD considering a FC ≥ 2 (Supplementary Figure S8B-F). 

As previously described in T47D cell lines (6), we observed an intra-

TAD coordinated response of gene expression. Indeed, we found an 

enrichment of gene-rich TADs (that is, with at least four genes) where 

most of its genes changed expression in the same direction (FC > ±1). 

Specifically, TADs with over 70% of their genes up-regulated or at least 

80% down-regulated were observed in proportions beyond random 

expectation (Figure 6A). These correspond to TADs where all or most 

of the genes changed expression in the same direction upon H1 KD, 

including Interferon stimulated genes (ISGs) such as ISG20, CMPK2, 

DDX60 or GBP3 (Figure 6B, C and Supplementary Figure S9A). This 

could result from two hypothetical scenarios: (i) upon H1 depletion, the 

whole TADs were (architecturally) affected and most resident genes 

became up- or down-regulated coordinately; (ii) upon H1 depletion, 

some gene within a TAD became deregulated and, consequently, 

neighbor genes within the same TAD changed expression in the same 

direction. To discern between these two scenarios, we characterized the 

groups of TADs with most coordinated changes of expression upon 

depletion of H1. Generally, these were poor in gene density, low in GC 
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content, low in basal expression (except group 0–0.1), and high in H1.2 

(Figure 6D and Supplementary Figure S9B–F). Moreover, the selected 

TADs were poor in H1X and H1.4 (Supplementary Figure S9G). 

Interestingly, these TADs suffered less prominent changes in H1 

variant distribution or ATAC-seq coverage than non-coordinated 

response TADs (Figure 6E and Supplementary Figure S9H). Despite 

this, coordinated TADs were enriched in regions of the genome that 

suffered decompaction as measured by the Hi-C compartmentalization 

analysis (Figure 6F). 

Altogether, the results support that upon H1 depletion the majority of 

the genome does not alter its expression. However, genes located in 

regions of high H1.2 content harbored more genes whose expression 

was coordinated within entire TADs. Therefore, our results indicate 

that upon H1 depletion, the entire TADs were architecturally altered 

and most resident genes were coordinately deregulated. 

 

3D modeling of TADs with coordinated transcriptional response 

To further characterize architecturally changes within TADs with 

coordinated transcriptional response to H1 KD, we next generated 3D 

models of genomic regions harboring TADs that contained at least 90% 

of genes down or up-regulated (group 0–0.1, ‘d’, N = 42; group 0.9–1, 

‘u’, N = 73; Figure 6B), both in WT and H1 KD conditions. As a 

control, we also modeled TADs with the most extreme H1.4 decrease 

upon H1 KD (group ‘h1’, N = 100), TADs with a bidirectional 

transcriptional response (‘bi’, N = 174, picked from groups 0.4–

0.6; Supplementary Figure S9C), TADs with minimum gene expression 

changes (‘mi’, N = 100), and TADs with no annotated genes 

(‘wi’, N = 12). Models were built based on our Hi-C data at 10 kb  
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Figure 7. Structural properties of TADs. (A) Violin plots of structural properties 
measured on the 3D models computed for seven classes of TADs, both in WT and 
H1 KD conditions (−/+Dox): TADs with the most extreme H1.4 decrease upon H1 
KD (h1, N = 100), TADs presenting a bidirectional transcriptional response to H1 
KD (bi, N = 174), TADs presenting the minimum gene expression 
changes (mi, N = 100), TADs presenting a coordinated transcriptional response to H1 
KD (u, only up-regulated genes, N = 73; d, only down-regulated genes, N = 42; ud, 
TADs u and d together, N = 115), TADs without genes (wi, N = 12). For each TAD 
1000 models have been generated and clustered, and plotted measures are relative to 
the main cluster of models. Reported measures are consistency, radius of gyration, 
accessibility, density and walking angle. Matrices next to violin plots indicate classes 
of TADs that are significantly different for each measure. Statistical significance of the 
difference between distributions was computed with Kolmogorov-Smirnov test (P-
value < 0.01). See Materials and Methods for details. (B) 3D models of the indicated 
TADs within chr10, chr17 and chr4, from the wi, h1 and u groups, respectively, in WT 
(blue) and KD (orange) conditions. The 3D modelling reflected a tendency to 
chromatin opening upon H1 KD.  
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resolution using TADbit as previously described (29). Several structural 

measures were computed and compared between groups of modeled 

TADs, such as: consistency, radius of gyration, accessibility, density and 

walking angle (Figure 7 and Materials and Methods for the definition of 

the structural measures). Additionally, the analyzed TAD groups were 

characterized in terms of H1 abundance, gene expression changes, GC 

content and ATAC-seq accessibility for comparison with the structural 

data (Supplementary Figure S10). All modeled TAD groups resulted in 

highly consistent models, this indicates that the input Hi-C data did not 

contain many contradictory interactions and that fairly structural similar 

conformations were obtained from the ensemble of models for all cases. 

Only TADs harboring no genes resulted in 3D models with lower 

consistency measures indicating that more different conformations 

could satisfy the input restraints (Figure 7A). Interestingly, TADs with 

the highest H1.4 decrease upon H1 KD (‘h1’ group) as well as TADs 

with no genes (‘wi’ group) overall resulted in more different structural 

properties. Specifically, both h1 and wi TADs are more compact (lower 

radius of gyration) compared to the rest of the groups (Figure 7A). 

However, h1 results in the densest DNA (bp per nanometer) models 

compared to the wi, which are the least dense of all. Other groups have 

similar density values and between these two extremes. It is important 

to note that there is an apparent discrepancy in TAD structural features 

and ATAC-seq data for some TAD groups such as h1. These TADs 

result in models that tend to be dense/compact while highly accessible 

in the ATAC experiment. Nevertheless, at the level of resolution of the 

3D models (that is 10 kb) it is impossible to assess whether the apparent 

discrepancy is due to the data or the modeling exercise. The reason is 

that the measures are averaged over entire TADs and the comparison 
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of both datasets cannot be done directly as ATAC-seq data is ∼100 base 

pair resolution and our models are 10 kb resolution. The high gene 

expression rate and GC content in h1 TADs group explains the high 

ATAC accessibility at low resolution. However, at 10 kb resolution the 

‘density’ measure says that at the TAD level the DNA fiber is more 

compacted. 

Finally, the models indicate that upon H1 KD and across all types of TAD 

groups there is a significant increase of the walking angle measure 

indicating a change of stiffness of the chromatin (Figure 7A). In general, 

changes in the structural properties of TADs reflected a tendency to 

chromatin opening upon H1 KD, such as the significant increase of 

chromatin walking angle and tendency to increase of the radius of gyration. 

The observed changes are exemplified in three models from 

the wi, h1 and ud groups (Figure 7B). In general, we observed no significant 

differences in structural changes upon H1 KD in TADs with no genes (wi), 

while the changes were more evident in the h1 group and also in 

the ud group independently of the direction of the changes in gene 

expression. Indeed, although without significance, changes in the TADs 

with a coordinated transcriptional response to H1 KD (u, d) have the same 

trends, indicating that TADs that were coordinately up- or down-regulated 

were similarly structurally altered upon H1 KD. Our 3D models indicate 

that all TADs are altered in a similar way due to H1 KD, with different 

consequences in gene expression deregulation that might depend on local 

features or distinct H1 abundance. 

 

DISCUSSION 

In this study, we have analyzed the genomic distribution of five 

endogenous H1 variants within T47D breast cancer cells by ChIP-seq 

using specific antibodies. This is almost the whole somatic H1 
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complement of this cell line with the exception of H1.1, which is not 

expressed in these cells, and H1.3 that was not profiled due to the lack 

of ChIP-grade antibodies. This is, to our knowledge, the first time that 

most of endogenous variants have been profiled in a mammalian cell. 

Antibodies for H1.2, H1X and H1.0 were used before on ChIP-seq 

experiments (16–18,20); H1.4 and H1.5 antibodies have been used here 

for the first time, to our knowledge. Specificity of all H1 antibodies used 

has been assayed extensively (Supplementary Figure S1). 

In previous studies, we mapped endogenous H1.2 and H1X, 

demonstrating that they have different distributions across the genome 

(16,17,20). On the one side, H1.2 is enriched within intergenic, low gene 

expression regions and lamina-associated domains. On the other side, 

H1X is enriched at gene-rich chromosomes, RNA polymerase II 

enriched sites, coding regions and hypomethylated CpG islands. The 

apparent differential distribution of the two H1 variants in active versus 

inactive chromatin, also correlates with the CG content of the regions 

where they localize. Indeed, we have observed here that H1.5 and H1.0 

colocalize with H1.2, at low GC regions, while H1.4 distribution is 

similar to H1X with the exception of H1X being highly enriched at high 

GC regions. Previously, we profiled H1.0 and H1.4 fused to an HA tag 

at C-termini, stably expressed through a lentiviral vector into T47D 

cells. Using this technique, both H1.4-HA and H1.0-HA were enriched 

at high GC regions, indicating that profiling exogenous, tagged H1 

proteins may give different results than endogenous proteins (16). In 

apparent contradiction, H1.0 has been profiled in human skin 

fibroblasts, being enriched at high GC regions (18) while in mouse, 

tagged, knocked-in H1c (H1.2), H1d (H1.3) and H1.0 have been 

profiled in ESCs and found enriched at low GC regions (14). 
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Altogether, this suggests that H1 variants distribution might be different 

among cell types, and could be explained by the relative levels of 

expression of the different variants. Extensive profiling of H1 variants 

among different cell types with the same methodology should be done 

to clarify whether the observed distribution of H1 variants is cell type-

specific or universal for some of the variants. 

In T47D cells, the H1 content was estimated to be 9% for H1.0, 23% 

for H1.2, 13% for H1.3, 24% for H1.4 and 31% for H1.5 (19). Our 

distribution analysis thus indicates that most of H1 variants we profiled 

are located in low GC regions, which supports its role as 

heterochromatic protein. However, and as previously described (17), 

H1X is enriched at high GC regions suggesting its possible role as 

regulatory H1. We also found that the enrichment of H1.4 at high GC 

regions is intriguing as it was suggested that, because of its K26 residue 

which may be methylated and bind HP1, it could be related to 

heterochromatin (44,45). Still, a fraction of H1.4 is at low GC regions, 

and even at high GC bands it could have a role in repression at particular 

sites. In fact, when profiled within chromatin states, H1.4 overlapped 

H3K9me3 distribution, a bona fide heterochromatin marker. 

To study whether alteration of the total H1 content and relative 

abundance of the different variants affected the genomic localization of 

remaining histones, we performed ChIP-seq in T47D cells knocked-

down for H1.2 and H1.4 with an inducible system, previously 

characterized (22). Interestingly, upon H1 KD, H1.4 preferentially 

remained at low GC regions, supporting its putative role in 

heterochromatin, and was displaced from high GC regions. In parallel, 

H1X redistributed to high GC regions. H1.0 maintained its distribution 

across the genome despite its expression and protein levels increased to 
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compensate the H1 overall ≈ 30% decrease. Overall, H1.2 was depleted 

but did not change much its relative genomic distribution. Profiling 

within chromatin states showed that H1.4 slightly switched towards the 

H1.2 group upon H1 KD, and H1X decreased at heterochromatin and 

increased in almost all other chromatin states. The redistribution of 

remaining H1.4 upon H1 KD (i.e its preferential depletion from high 

GC regions), is puzzling. An alternative explanation could be that the 

H1.4 antibody, upon depletion of its specific epitope, cross-reacted with 

other variants located at low GC regions (H1.0, H1.2 or H1.5). Our 

specificity analysis, so far, does not support this hypothesis 

(Supplementary Figure S1). Whether this H1.4-distribution occurs in 

other cell types would be interesting to investigate. 

Immunofluorescence analysis of H1 location within the nuclei 

confirmed the expression changes described upon H1 KD, but any 

redistribution within chromatin states is difficult to pick up with this 

technique. Still, it was possible to confirm that H1.4 and H1X 

localization differs from H1.2, H1.5 and H1.0. Further studies at super 

resolution fluorescence microscopy might help to characterize, in the 

future, the differential localization of H1 variants and their role in 

chromatin organization and genomic functions. 

In this work, we have shown that H1 KD caused changes in chromatin 

accessibility and H3K9me3 distribution, shifts in A/B compartments 

and TAD borders, and changes in the 3D architecture of TADs 

(Figure 8). Some of these changes were dependent on the compaction 

or GC content of genomic domains. In fact, we have previously shown 

that A and B compartments positively correlate with the measured 

H1.2/H1X ratio (20). Here we have further shown that the A/B 

compartments present different abundance of H1 variants and respond  
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Figure 8. Chromatin organization and consequences upon H1 depletion on genome 
structure. Chromatin organization and H1 variants distribution (upper panel): Hi-C data allows 
determination of B (inactive) and A (active) compartments. B compartment is 
characterized by closed chromatin, long TADs with a high H1.2/H1X ratio and a 
great overlap with low GC Giemsa bands, while the opposite occurs for A 
compartment. H1 variants were differentially distributed along the genome and two 
profiles could be distinguished in T47D breast cancer cells: H1.2, H1.5 and H1.0 co-
localized at low GC regions whereas H1.4 and H1X occupied high GC regions. Upon 
multiple H1 depletion (H1 KD), H1.2 and H1.4 were strongly depleted while H1.0 
became up-regulated but without changing its distribution. Remaining H1.4 
redistributed to low GC regions, whereas H1.2, H1.5 and especially H1X were 
redistributed to higher GC regions. Consequences of H1 KD in chromatin structure (middle 
panel): Upon H1 KD, chromatin accessibility increased and H3K9me3 signal 
decreased, especially at A compartment. Intra-TAD interactions increased both at B 
and A compartments whereas inter-TAD interactions were reduced at A 
compartment. TAD-border strength increased, together with some TAD borders 
being lost or shifted. Upon H1 KD, shifts between and within A/B compartments 
occurred, being more frequent compaction shifts at A compartment (including A-to-
B shifts) and decompaction at B compartment (incl. B-to-A). Consequences of H1 KD in 
genome structure are related to gene expression deregulation (bottom panel): TADs presenting a 
coordinated response to H1 KD were enriched compared to the expected frequency. 
Up-regulated genes accumulated within TADs with poor basal expression and low 



 

 88 

gene density. Gene-dense TADs contained both up- and down-regulated genes 
simultaneously. TADs with only down-regulated genes showed intermediate features. 
 
differently to H1 depletion. Upon H1 KD, ATAC-seq chromatin 

accessibility increased genome-wide but more markedly at A 

compartment. Accordingly, the repressive histone mark H3K9me3 

decreased majorly from A compartment. Recent reports have shown 

that H1 depletion in mouse T cells and germinal centre B cells lead to 

B-to-A compartment shifting (46,47). These could be due to the fact 

that differentiated cells present a well-constituted heterochromatin rich 

in histone H1, compared to pluripotent and cancer cells where 

chromatin may be more plastic, partially because of a lower H1 content 

(48,49). H1-mediated compartmentalization may be established along 

differentiation, sequestering the stem cell programs within the B 

compartment. Deregulation of H1 levels and compartmentalization 

may occur in cancer and along reprogramming (40,50,51). The 

observation of A-to-B and B-to-A shifting in our cancer model T47D 

cells in similar proportions could be due to an overall less compacted 

chromatin, or to the simultaneous depletion of H1 variants assayed here 

to occupy distinct genomic compartments. We here show that H1.2 is 

abundant at the B compartment and its depletion in H1 KD cells 

resulted in decompaction and B-to-A shifts, accompanied by gene 

induction and local increase of DNA interactions. Conversely, H1.4 is 

abundant at the A compartment and its depletion upon H1 KD 

preferentially accompanied A-to-B shifts or compaction. However, as 

A decompaction also occurred in regions with H1.4 occupancy, our 

results could suggest a dual role of this H1 variant, which requires 

further investigation. 
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We reported before that multiH1 KD (H1.2 + H1.4) effects were more 

drastic than the simple addition of H1.2 or H1.4 KD effects, e.g. in the 

number of genes being deregulated, or in causing the induction of the 

interferon response due to de-repression of heterochromatic repeats 

(Supplementary Figure S11) (22). This appeared to be due to the 

synergistic function of these two variants, more than to the total amount 

of H1 being depleted, because other H1 variants KD combinations did 

not produce the observed effects. Using our RNAseq data we have 

explored whether genes that showed coordinated expression within 

TADs in multiH1 KD cells (Figure 6C) changed expression in H1.2 or 

H1.4 individual KD cells. The result was that these changes did not 

occur, neither in intensity nor sense (Supplementary Figure S12). This 

is an indirect demonstration that single H1 KDs would not alter TADs 

in the manner shown here for multiH1 KD. All this would support our 

hypothesis that effects on accessibility or topology would be seen 

importantly in multiH1 KD but not on the single H1 KD cells. 

Previously, we and others have shown that epigenetic states and H1 

distribution are more homogeneous within a TAD, suggesting that 

TAD borders prevent the spreading of these features (6,20). In our 

work, TADs hardly changed its size or distribution upon H1 KD, 

however, a clear increased TAD border strength and intra-TAD 

contacts was observed. Interestingly, the concomitant inter-TAD 

contacts reduced more predominantly in A compartment compared to 

the B compartment. Indeed, several reports have also shown that TAD 

organization remains largely unchanged when disturbing chromatin 

homeostasis, including mouse H1-depleted cells or epithelial-to-

mesenchymal transition (6,21,28,52). However, our work now 

highlights novel relevant changes in TAD organization due to depletion 



 

 90 

of H1 variants, including an increase in border strength accompanied 

by an increase of intra-TAD interactions. 

Severe H1 depletion causes cell cycle arrest and transcription-

replication conflicts (22,53,54). One could speculate that this could be 

the basis for the observed changes in genome topology. It has been 

shown that topology changes along the cell cycle in ES cells analyzed at 

single-cell resolution (55). Upon transition of ES cells from G1 to S 

phase there is a gradual decrease of TAD insulation and a gradual 

increase on compartmentalization peaking at G2 phase. If we were 

comparing T47D cells completely shifting from S to G1, we could 

speculate that observed changes are due to those described in ES cells, 

but this is not the case. Normal T47D cells cycle slowly and in basal 

conditions (–Dox) show a ≈50% of cells in G1. Upon H1 KD, G1 

increases up to ≈60% (Supplementary Figure S1). In addition, we have 

found some of the topological changes enriched at regions abundant in 

H1 variants that have been depleted in the H1 KD, concomitant with 

chromatin opening. For all this, we consider that changes observed are 

compatible with the depletion of H1 from the genome more than with 

changes linked to cell cycle shift. 

We have shown here and previously that H1 variants selective depletion 

results in changes in expression of hundreds of genes, including de-

repression of intergenic and intronic RNAs, as well as heterochromatic 

repeats and ERVs, which leads to the induction of the interferon 

response (22). Moreover, we have shown that responsive genes are non-

randomly located throughout the genome but enriched in a limited 

number of TADs with their resident genes coordinately changing 

expression to H1 depletion. We have previously reported that, upon H1 

KD in T47D cells, the interferon response is induced with many ISGs 
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being up-regulated. This is due to the accumulation of RNAs from 

repeats and ERVs, which stimulate the response at cytoplasm 

mimicking a viral infection and resulting in the transcription of many 

genes involved in such response. A part of this direct effect of H1 

depletion, our results may also indicate that other genes not directly 

related to such response may be deregulated due to structural changes, 

chromatin decompaction, or simply by co-existing within the same 

TAD with genes directly activated. Indeed, we show that ISGs up-

regulated genes co-exist within TADs with other genes that coordinated 

respond to H1 KD. Despite this observation, we also found that many 

TADs with a coordinated response do not contain annotated ISGs 

genes, so we propose that the response may be a consequence of 

architectural changes upon H1 KD. This result is further supported by 

the 3D modeling of TADs. 

Overall, our results indicate that the non-random genomic distribution 

of H1 variants, their re-location upon variant depletion, and the 

subsequent genome structural changes have a read-out in their direct 

(but also indirect) change of the gene expression program. 
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MATHERIALS AND METHODS 
Cell lines, culturing conditions and H1 knock-down 

Breast cancer T47D-MTVL derivative cell lines, which carry one stably 

integrated copy of luciferase reporter gene driven by the MMTV 

promoter, were grown at 37°C with 5% CO2 in RPMI 1640 medium, 

supplemented with 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin, 

and 100 µg/ml streptomycin, as described previously (19). HeLa and 

HCT-116 cell lines were grown at 37°C with 5% CO2 in DMEM 

GlutaMax medium, supplemented with 10% FBS and 1% 

penicillin/streptomycin. The T47D-MTVL multiH1 shRNA cell line 

(22) was used as a model for H1 depletion. This cell line contains a drug-

inducible RNA interference system that leads to the combined 

depletion of H1.2 and H1.4 variants at protein level although it reduces 

the expression of several H1 transcripts. Construction, establishment 

and validation of single-H1 knock-downs have been previously 

described (19). Specifically, shRNA expression was induced with 6 days 
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treatment of Doxycycline (Dox), in which cells were passaged on day 3. 

Dox (Sigma) was added at 2.5 µg/ml. 

Immunoblot 

Chromatin samples were exposed to SDS-PAGE (14%), transferred to 

a PVDF membrane, blocked with Odyssey blocking buffer (LI-COR 

Biosciences) for 1 h, and incubated with primary antibodies overnight 

at 4°C as well as with secondary antibodies conjugated to fluorescence 

(IRDye 680 goat anti-rabbit IgG, Li-Cor) for 1 h at room temperature. 

Bands were visualized in an Odyssey Infrared Imaging System (Li-Cor). 

Coomassie staining or histone H3 immunoblotting were used as loading 

controls. ImageJ software was used for immunoblot quantification. 

Chromatin immunoprecipitation (ChIP) 

Chromatin immunoprecipitation was performed according to the 

Upstate (Millipore) standard protocol. Briefly, cells were fixed using 1% 

formaldehyde for 10 min at 37ºC, chromatin was extracted and 

sonicated to generate fragments between 200 and 500 bp. Next, 30 µg 

of sheared chromatin was immunoprecipitated overnight with the 

indicated antibody. Immunocomplexes were recovered using 20 µl of 

protein A magnetic beads, washed and eluted. Cross-linking was 

reversed at 65ºC overnight and immunoprecipitated DNA was 

recovered using the IPure Kit (Diagenode). Genomic regions of interest 

were identified by real-time PCR (qPCR) using SYBR Green Master 

Mix (Invitrogen) and specific oligonucleotides in a Roche 480 Light 

Cycler machine. Each value was corrected by the corresponding input 

chromatin sample. Oligonucleotide sequences are detailed in previous 

studies (17). 

ChIP-Seq  



 

 95 

Library construction and sequencing: Qualified ChIP and Input samples were 

subjected to end-repair and then 3’ adenylated. Adaptors were ligated 

to the ends of these 3’ adenylated fragments. Fragments were PCR-

amplified and PCR products were purified and selected with the 

Agencourt AMPure XP-Medium kit. The double stranded PCR 

products were heat denatured and circularized by the splint oligo 

sequence. The single strand circle DNA (ssCir DNA) were formatted 

as the final library and then quality-checked. The library was amplified 

to make DNA nanoball (DNB) which had more than 300 copies of one 

molecular. The DNBs were loaded into the patterned nanoarray and 

single end 50 bases reads were generated in the way of sequenced by 

combinatorial Probe-Anchor Synthesis (cPAS). 

ChIP-seq data analysis: Single-end reads were quality-checked via FastQC 

(v0.11.9) and aligned to the human GRCh37/hg19 reference genome 

using Bowtie2 (v2.3.5.1) (23) with default options. SAMtools (v1.9) (24) 

utilities were used to filter out the low-quality reads with the flag 3844. 

Input, H1 variants, and H3K9me3 genome coverage was calculated and 

normalized by reads per million with BEDTools (v2.28.0) (25), and 

regions with zero coverage were also reported in the ChIP-Seq 

annotation (genomecov -ibam -bga -scale). MACS2 (v2.1.2) (26) was used to 

subtract input coverage from H1 variants and H3K9me3 to generate 

signal tracks (bdgcmp -m subtract). 

ChIP-Seq data on histone H1 variants and H3K9me3 epigenetic 

modification from T47D multiH1 shRNA cells treated or not with Dox 

has been deposited in NCBI’s Gene Expression Omnibus and is 

accessible through GEO Series accession number GSE156036. ChIP-

Seq data on histone H1 variants from WT T47D cells is at GSE166645. 

Antibodies 
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Specific antibodies recognizing human H1 variants used for 

ChIP/ChIP-seq were: anti-H1.0/H5 clone 3H9 (Millipore, 05–629-I), 

anti-H1.2 (Abcam, ab4086), anti-H1.4 (Invitrogen, 702876), anti-H1.5 

(Invitrogen, 711912) and anti-H1X (Abcam, ab31972). ChIP-seq of 

H3K9me3 was performed using anti-H3K9me3 (Abcam, ab8898). 

Other antibodies used were: anti-H1.0 (Abcam, ab11079), anti-H1.3 

(Abcam, ab24174), anti-H1.5 (Abcam, ab24175), anti-H3 (Abcam, 

ab1791) and anti-Lamin A (Abcam, ab8980).  

In situ Hi-C 

Hi-C libraries were generated from T47D multiH1 shRNA cells treated 

or not with Dox, as single replica (r1) or duplicate (r2 and r3), as 

previously described (27,28). In brief, adherent cells were cross-linked 

with 1% formaldehyde in PBS for 10 min at room temperature and 

glycine 0.125 M was added for 5 min at room temperature and for 15 

min at 4°C to stop the cross-link reaction. Before permeabilization, cells 

were treated for 5 min with trypsin. Nuclei digestion was performed 

with 400 units of MboI restriction enzyme. The ends of restriction 

fragments were labeled using biotinylated nucleotides and ligated with 

T4 DNA ligase. After reversal of cross-links, DNA was purified and 

sheared (Diagenode BioruptorPico) to obtain DNA fragments between 

300 and 500 bp and ligation junctions were pull-down with streptavidin 

beads. Hi-C libraries were amplified, controlled for quality and 

sequenced on an Illumina HiSeq 2500 sequencer (r1) or DNBseq 

(r2,r3). 

Hi-C data pre-processing, normalization and generation of 

interaction matrices 

The analysis of Hi-C data, from FASTQ files mapping to genome 

segmentation into A/B compartments and TADs, was performed 
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using TADbit (29), which started by performing a quality control on the 

raw data in FASTQ format. Next, sequencing reads were mapped to the 

reference genome (GRCh37/hg19) applying an iterative strategy (30) 

and using the GEM mapper (31). Mapped reads were filtered to remove 

those resulting from unspecified ligations, errors or experimental 

artefacts. Specifically, nine different filters were applied using the 

default parameters in TADbit: self-circles, dangling ends, errors, extra 

dangling-ends, over-represented, too short, too long, duplicated and 

random breaks (29). Hi-C data were next normalized with OneD 

correction to remove Hi-C biases and artifacts (32). Filtered read-pairs 

were binned at the resolutions of 1 Mb, 500, 100 and 10 kb, applying 

biases from the normalization step and decay correction to generate 

interaction matrices. Hi-C data on T47D breast cancer cells has been 

deposited in NCBI’s Gene Expression Omnibus and is accessible 

through accession number GSE172618. A summary of the number of 

valid reads obtained per replica and filtered artifacts is shown 

as Supplementary Table S1. Replicates were compared and merged 

with TADbit merge that implements the HiCRep score (33). 

Genome segmentation into Topologically Associating Domains 

(TADs) 

TADs were identified at the resolution of 50 kb using TADbit 

segment with default parameters. Briefly, TADbit segments the genome 

into constitutive TADs after analyzing the contact distribution along 

the genome using a BIC-penalized breakpoint detection algorithm (29). 

This algorithm leads to a ∼99% average genome coverage. To assign a 

strength value to each TAD border, TADbit repeats the dynamic 

programming segmentation 10 times after the optimum is reached, each 

time decreasing the by a fix off-set the optimal TAD border detection 
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path. The strength of a TAD border is then calculated as the number of 

times it was included in the optimal pathway. If a TAD border is found 

in all 10 sub-optimal paths, then the score of the border is equal to 10, 

if it was found only one time, the score is 1. Finally, TADbit also returns 

a TAD density score as the ratio between the number of interactions 

within TADs and the number of interactions of the rest of the genome. 

Genome segmentation into A/B compartments 

A/B compartments were identified at 100kb resolution using HOMER 

(34). Briefly, HOMER calculates correlation between the contact 

profiles of each bin against each other, and performs principal 

component analysis (PCA) on chromosome-wide matrices. Normally, 

the A compartment is assigned to genomic bins with positive first 

principal component (PC1), and the B compartment is assigned to 

genomic bins with negative PC1. However, in some chromosomes and 

in cell lines with aberrant karyotypes, the PC1 is reversed in the sign, 

with A compartment corresponding to negative PC1, and B 

compartment corresponding to positive PC1. Additionally, sometimes 

the PC1 captures other correlations in the chromosome that do not 

correspond to the compartments. For these reasons, all PC1 and PC2 

for all chromosomes were visually inspected and correctly assigned to 

decipher the proper segmentation of the genome into the A and B 

compartments. 

3D modelling of TADs based on Hi-C data 

TADbit model (29) was used with default parameters to generate 3D 

models of selected TADs at the resolution of 10 kb. Hi-C interaction 

maps were transformed into a set of spatial restraints that were then 

used to build 3D models of the TADs that satisfied as best as possible 

the imposed restraints, as previously described (35,36). For each TAD, 
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we generated 1000 models, structurally aligned and clustered them in an 

unsupervised manner, to generate sets of structurally related models. 

For every TAD, we used the main cluster to compute consistency, 

accessibility, density, radius of gyration, and walking angle (29). 

Consistency quantifies the variability of the position of particles across 

the considered set of models. Accessibility measures with a fraction 

from 0 to 1 how much each particle in a model is accessible to an object 

(i.e. a protein complex) with a radius of 100 nm. Density measures a 

proxy for local DNA compactness as the ratio of DNA base pairs and 

the distances between two consecutive particles in the models – the 

higher the density, the more compact the DNA. Walking angle 

measures the angle between triplets of consecutive particles—the 

higher the value, the straighter the models— and can be used as a proxy 

for the stiffness of the chromatin fiber. Finally, radius of gyration 

measures 3D structure compactness as the root mean square distance 

of the all particles in a model from its center of mass. 

ATAC-Seq data analysis 

ATAC-Seq data identified by the accession number GSE100762 was 

reprocessed as previously described (37) with slight modifications. 

Paired-end reads were quality-checked via FASTQC (v0.11.9), trimmed, 

and subsequently aligned to the human GRCh37/hg19 reference 

genome using Bowtie2 (v2.3.5.1) (23). SAMtools (v1.9) (24) was used to 

filter out the low-quality reads with the flag 1796, remove reads mapped 

in the mitochondrial chromosome and discard those with a MAPQ 

score below 30. The peak calling was performed with MACS2 (v.2.1.2) 

(26) by specifying the -BAMPE mode. Filtered BAM files were also used 

to compute the ATAC-Seq genome coverage, which was normalized to 

reads per million (genomecov -ibam -bga -scale). 
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Genomic data retrieval  

Genome-wide GC content, G bands coordinates at 850 bands per 

haploid sequence (bphs) resolution and chromosomes coordinates were 

obtained from the UCSC human genome database (38,39). G bands 

were classified as G positive (Gpos25 to Gpos100, according to its 

intensity upon Giemsa staining), and G negative (unstained), which 

were further divided into four groups according to their GC content 

(Gneg1 to Gneg4, from high to low GC content). HeLa-S3 genome 

segmentation by ChromHMM (ENCODE) was obtained from UCSC 

human genome database (38,39). RNA-seq and ATAC-seq datasets 

were download from GEO (accession numbers GSE83277 and 

GSE100762, respectively) an parsed as previously described (22). 
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CHAPTER 2  
 

CHROMATIC reveals chromatin-associated factors 

contributing to genome topology 

 
 

Candidate’s contribution: Design, development and 
coding of the CHROMATIC method. Application of 
CHROMATIC to biologically relevant samples. Analysis and 
interpretation of the results.  
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ABSTRACT 

Chromatin-associated factors play a fundamental role in chromatin 

long-range interactions, which in turn are key for proper spatiotemporal 

regulation of gene expression. However, the identification of factor-

associated chromatin interactions and the characterization of their role 

in transcription are still elusive. Here we introduce CHROMATIC, a 
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novel computational method that integrates Hi-C and ChIP-seq data to 

study chromatin three-dimensional (3D) interactions associated with 

any factor of interest. CHROMATIC is faster and less expensive than 

performing experiments that probe protein-directed genome 

architecture, such as HiChIP. Thanks to the deconvolution of the Hi-C 

data into factor-specific interactions, our strategy allows discerning the 

role of each studied factor in genome 3D structure in a cell-type-specific 

manner. Furthermore, the classification of 3D colocalization patterns 

of factors using CHROMATIC identifies types of functional 3D 

interactions, that we call ‘3D-types’. 3D-types may reflect already 

known interactions between different chromatin factors or may help 

discover new associations between molecules with specific functional 

roles. By applying our algorithm to mouse embryonic stem cells (ESCs) 

and neural progenitor cells (NPCs), we analyzed changes in the types of 

3D interactions during early stages of neuronal cell differentiation. We 

found that pluripotency transcription factors (TFs) play a major role in 

the genome structure of pluripotent stem cells. When differentiating 

from ESCs to NPCs, cells switch to a less plastic and more specialized 

configuration. Overall, the CHROMATIC tool unifies factor 

occupancy and genome topology analyses, to shed light on their link 

with gene expression.   

 

INTRODUCTION 
Gene expression, epigenetic states, and topological conformation are 

three facets of the genome that tightly operate in space and time (Zheng 

& Xie, 2019). Unfortunately, the detailed characterization of the link 

between them is still largely missing.  
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The 3D architecture of eukaryotic genomes is organized in multiple 

layers with a relevant role in gene expression control (Bonev et al., 2017; 

Rowley & Corces, 2018). At the chromosomal scale, the genome is 

partitioned into regions of preferential long-range interactions, called A 

and B compartments, which resemble euchromatin and 

heterochromatin, respectively (Lieberman-Aiden et al., 2009). A 

compartment is enriched in histone post-translational modifications 

(PTMs) associated with transcriptional activity, while B compartment in 

chromatin modifications that are typical of transcriptional repression. 

At the sub-megabase scale, Topologically Associating Domains 

(TADs), or domains in general, are self-interacting regions considered 

functional units of the genome (Dixon et al., 2012; Nora et al., 2012). 

Compartments and domains emerge as a result of multiple, dynamic, 

and cell-type-specific interactions between distal regulatory elements, 

such as gene promoters and enhancers, driven by different classes of 

proteins that tightly interact with DNA via either specific or unspecific 

sequence recognition (Cavalli & Misteli, 2013).  

Chromatin interactions can be either loops between pairs of DNA loci 

or hubs of multiple DNA loci that are clustered together (Bonev & 

Cavalli, 2016; Rao et al., 2014), likely via loop-extrusion (Alipour & 

Marko, 2012; Fudenberg et al., 2016; Sanborn et al., 2015) and phase 

separation (Banani, Lee, Hyman, & Rosen, 2017; Shin & Brangwynne, 

2017) mechanisms. Indeed, the loop extrusion model proposed that 

CTCF and cohesin mediate loop interactions, which are important for 

accurate gene regulation (Alipour & Marko, 2012; Fudenberg et al., 

2016; Sanborn et al., 2015). Also, Polycomb group proteins (PcG) 

repress target genes via their clustering into repressive 3D hubs known 

as Polycomb bodies (Blackledge et al., 2020; Eagen, Aiden, & Kornberg, 
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2017; Huseyin & Klose, 2021; Kundu et al., 2017; Ogiyama, 

Schuettengruber, Papadopoulos, Chang, & Cavalli, 2018). Additionally, 

key ESC TFs such as NANOG, SOX2, OCT4, KLF4, and ESRRB are 

found at most pluripotency genes in ESCs (Whyte et al., 2013) and are 

associated with 3D enhancer rewiring and transcriptional changes 

during reprogramming (Stadhouders et al., 2018). Overall, protein-

associated chromatin interactions are fundamental to ensure proper 

gene expression (Di Giammartino et al., 2019), but their identification 

and the characterization of the underlying mechanisms are still lacking. 

Hi-C is an experimental technique combining DNA proximity ligation 

(Cullen, Kladde, & Seyfred, 1993; Dekker, Rippe, Dekker, & Kleckner, 

2002) with high-throughput sequencing, that is mostly used to probe 

compartments, domains, loops, and hubs (Lieberman-Aiden et al., 

2009). The result of a population-based Hi-C experiment is a list of 

DNA-DNA contacts between pairs of loci in at least hundreds of 

thousands of cells, usually represented by a map of contact frequencies. 

To elucidate the map of chromatin long-range interactions driven by 

specific proteins, several methods have been developed that combine 

ChIP-seq with 3C-based (Chromosome Conformation Capture) 

experiments (Furey, 2012). Currently, HiChIP is the most suitable 

strategy (Mumbach et al., 2016), in which ChIP is performed on the Hi-

C library of proximity-ligated DNA fragments. The comparison of 

HiChIP of cohesin subunit SMC1a with Hi-C revealed that this method 

enhances the signal-to-background ratio, enriching the signal at 

chromatin loops associated with cohesin and depleting it elsewhere 

(Mumbach et al., 2016).  

The study of combinations of multiple proteins and marks in linear 

chromatin (1D) has been fundamental to annotate chromatin states, 



 

 114 

discover regulatory regions, and characterize their cell type-specific 

patterns (Day, Hemmaplardh, Thurman, Stamatoyannopoulos, & 

Noble, 2007; Ernst & Kellis, 2010; Ernst et al., 2011; Filion et al., 2010; 

mod et al., 2010). These combinatorial patterns often capture known 

classes of genomic elements, such as enhancers, promoters, 

transcriptionally active and repressed regions, or can help discover 

novel classes of elements. ChromHMM learns chromatin states from 

multiple ChIP-seq epigenomic tracks using a multivariate hidden 

Markov model (HMM) and is the most widely used software for this 

purpose (Ernst & Kellis, 2012, 2017). However, ChromHMM offers a 

mono-dimensional perspective on chromatin states by considering 

chromatin as a linear entity. Thus, it does not take advantage of the 

insights gained from studying chromatin in its 3D context. A recent 

study based on machine learning and polymer physics discovered a 

combinatorial code linking 3D chromatin architecture to 1D chromatin 

states, that allows to derive models of genome 3D conformations from 

1D chromatin states through physics mechanisms, outperforming the 

3D modeling based on epigenetic linear segmentation only (Esposito et 

al., 2022). Hence, 1D chromatin states and genome architecture are 

intimately linked, but at present there is no computational method to 

characterize chromatin states directly in 3D, by integrating chromatin 

interactions and factor occupancy. 

To address this limitation, we have developed CHROMATIC, a 

computational method to characterize chromatin functional states in 

3D. CHROMATIC systematically integrates chromatin structure data 

from Hi-C interaction matrices and genome-wide factor occupancy data 

from ChIP-seq profiles, to identify chromatin 3D interactions 

associated with proteins and histone post-translational modifications 
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(PTMs). Importantly, since different chromatin factors may cooperate 

for proper gene regulation thanks to their colocalization in the 3D 

genome, the application of CHROMATIC to a certain set of factors 

reveals ‘3D-types’, i.e., types of 3D interactions associated with specific 

combinations of factors.  

To demonstrate its applicability, we used CHROMATIC on a 

comprehensive set of 37 ChIP-seq tracks of chromatin factors in two 

different cell types, mouse ESCs and NPCs. We characterized four 

major types of functional 3D interactions for each cell line. Finally, by 

comparing the results obtained for the two, we identified factors that 

mostly contribute to genome structure in a cell type-specific manner 

and analyzed changes in types of 3D interactions during early stages of 

neuronal cell differentiation.  

CHROMATIC is fast and conceptually simple, resulting in the 

classification of major types of chromatin interactions that are linked to 

a specific biological function. Thus, CHROMATIC constitutes an 

inexpensive and reliable alternative to study factor-associated 

interactions compared to performing experiments such as HiChIP. 

 

METHODS 
Experimental datasets 

Genome interaction maps for mouse ES cells (mESC) and neural 

progenitor cells (NPC) were obtained from in situ Hi-C experiments 

previously generated (GEO database accession number GSE96107) 

(Bonev et al., 2017). ChIP-seq datasets were previously generated by our 

(Stevens et al., 2017) and other labs and are available in the GEO 

database with accession codes GSE99530 (Mas et al., 2018), GSE79606 

(Beringer et al., 2016), GSE42466 (Morey, Aloia, Cozzuto, Benitah, & 
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Di Croce, 2013), GSE44288 (Whyte et al., 2013), GSE22557 (Kagey et 

al., 2010), GSE11431 (Chen et al., 2008), GSE89575 (C. Huang et al., 

2017), GSE53542 (Aloia et al., 2014), GSE57186 (McAninch & 

Thomas, 2014), GSE35496 (Lodato et al., 2013), GSE65462 (Nishi et 

al., 2015), GSE96107 (Bonev et al., 2017), GSE36203 (Phillips-Cremins 

et al., 2013), GSE74330 (Kloet et al., 2016). Interaction datasets for 

SMC1 and OCT4 HiChIP were also downloaded from GEO 

(GSE80820) (Mumbach et al., 2016). Constitutive Lamin Associating 

Domains (LADs) dataset was downloaded from GEO (GSE17051) 

(Peric-Hupkes et al., 2010) and converted from mouse 

MGSCv37/mm9 to GRCm38/mm10 reference genome using the Lift 

Genome Annotation tool (Kent et al., 2002). To find active enhancers, 

the command intersect -v from BEDTools toolkit (Quinlan & Hall, 2010) 

was used to select peaks of H3K27ac not overlapping with peaks of 

H3K4me3, the command genomeDistribution from SeqCode toolkit 

(Blanco, Gonzalez-Ramirez, & Di Croce, 2021) was used to calculate 

the distribution of the selected peaks into different genomic features, 

and the peaks annotated as intergenic and intronic were considered as 

active enhancers. Analogously, poised enhancers were found as 

intergenic and intronic peaks H3K27me3. To find active promoters, the 

command intersect from BEDTools toolkit (Quinlan & Hall, 2010) was 

used to find the overlap between peaks of H3K4me3 and H3K27ac, 

that was then intersected with the position of the Transcription Start 

Site (TSS) of RefSeq genes (TSS±500bp). For bivalent promoters, the 

same process was applied, considering instead the overlap between 

H3K4me3 and H3K27me3 peaks. Super-enhancers were computed 

using HOMER (Heinz et al., 2010) on H3K27ac ChIP-seq data and 
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relative to the control, with the command findPeaks -style super -o auto. All 

datasets were parsed as described in the following sections. 

ChIP-seq data processing 

Single-end reads were aligned to mouse GRCm38/mm10 reference 

genome using Bowtie2 (Langmead & Salzberg, 2012) with default 

options. SAMtools utilities (Li et al., 2009) were used to filter out 

unaligned reads with the flag -F 0x4. The command buildChIPprofile 

from SeqCode toolkit (Blanco et al., 2021) was used to generate 

BedGraph profiles from BAM files, where the total number of reads of 

the experiment was used to normalize the height of the resulting profile. 

To avoid mapping artifacts, the set of genomic regions reported in the 

ENCODE blacklist was removed from the aligned sequences 

(Amemiya, Kundaje, & Boyle, 2019). To reduce the influence of 

outliers, we held out values that are more than five standard deviations 

higher than the average, since their probability is significantly low 

(p=3x10-7 in case of normal distribution) and possibly correspond to 

artifacts. We set this selected group of values to the maximum value 

among the retained ones, corresponding to five standard deviations 

above the average value. Next, ChIP-seq BedGraph tracks were binned 

at a resolution of 5 kb for their subsequent integration with the Hi-C 

data. The resulting tracks were further divided by the corresponding 

tracks of control (IgG, WCE, GFP) for normalization, and linearly 

transformed in the range of values between zero and one to be able to 

compare the output obtained for different ChIP-seq tracks. Finally, the 

MAC2 software (Y. Zhang et al., 2008) was used for peak calling from 

BAM files against controls using the command callpeak --nomodel --extsize 

150, with the --broad option for H3K36me3, H3K27me3, RNA Pol II 

Serine 5P, and RNA Pol II tracks. 
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Hi-C and HiChIP data processing 

Hi-C datasets were processed using TADbit (Serra et al., 2017). 

Specifically, for both mESC and NPC datasets, paired-end FASTQ files 

of four Hi-C replicates, previously assessed for reproducibility (Bonev 

et al., 2017), were merged and mapped to mouse GRCm38/mm10 

reference genome applying a fragment-based iterative strategy (Imakaev 

et al., 2012) using the GEM mapper (Marco-Sola, Sammeth, Guigo, & 

Ribeca, 2012). Mapped reads were filtered using TADbit with default 

parameters, which removed self-circles, dangling ends, duplicated and 

random breaks among other minor artifactual reads (Serra et al., 2017). 

After mapping and filtering, the resulting Hi-C matrices contained a 

total of 1,537,751,681 valid pairs for mESC (Supplementary Table 2) 

and 3,974,901,849 for NPC (Supplementary Table 3). The resulting 

raw Hi-C interaction matrices were next normalized using OneD (Vidal 

et al., 2018) at the resolution of 5kb, which removed experimental Hi-

C biases. Similarly, the available merged FASTQ files from four 

replicates of SMC1 and OCT4 HiChIP (Mumbach et al., 2016) were 

processed, mapped, filtered, and normalized with TADbit with default 

parameters, which resulted in a total of 219,998,058 valid pairs for 

SMC1 and 252,920,123 valid pairs for OCT4 (Supplementary Table 

4). 

Genome segmentation into A/B compartments 

A/B compartments were identified at the resolution of 100kb using 

TADbit (Serra et al., 2017). Briefly, TADbit calculates the correlation 

between the contact profiles of each bin against each other and 

performs principal component analysis (PCA) on chromosome-wide 

matrices. Normally, the A compartment is assigned to genomic bins 

with positive first principal component (PC1), and the B compartment 
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is assigned to genomic bins with negative PC1. However, in some 

chromosomes the PC1 is reversed in the sign, with A compartment 

corresponding to negative PC1, and B compartment corresponding to 

positive PC1. Additionally, sometimes the PC1 captures other 

correlations in the chromosome that do not correspond to 

compartments. For these reasons, and since GC content correlates with 

A compartment, PC1 and PC2 were compared to GC content for all 

chromosomes, visually inspected, and correctly assigned to decipher the 

proper segmentation of the genome into A and B compartments. 

The CHROMATIC pipeline 

The CHROMATIC pipeline takes as input a Hi-C normalized 

interaction matrix and integrates it with a series of ChIP-seq tracks to 

identify colocalization of groups of marks in the 3D space of the 

nucleus. Specifically, the pipeline is composed of several steps: 

1. ChIP-seq and Hi-C pre-processing. For each studied factor, 

CHROMATIC takes as input the ChIP-seq track 𝑐 of the factor 

and an intra-chromosomal Hi-C matrix 𝐻 obtained from the 

same cell type and obtained as described above. Before the 

integration of the two types of data, the input Hi-C matrix is 

smoothed with the function medfilt from scipy.signal package with 

kernel_size=5. Also, the input ChIP-seq values are re-scaled as 

follows to increase the spread of the signal: 

𝑓(𝑐&) = )	+−𝑎𝑏𝑠(𝑐& − 0.5)
3 + 0.8, 𝑖𝑓	𝑐& < 0.5

3:;, 𝑖𝑓	𝑐& ≥ 0.5
 

where 𝑐& is the ChIP-seq signal at bin 𝑖. To choose the re-

scaling function, we employed a heuristic strategy where 

several different transformations were applied to our ChIP-seq 



 

 120 

to identify the one that best separated low and high ChIP-seq 

values (Suppl. Figure 1). 

2. Hi-C re-weighting. Intra-chromosomal Hi-C matrices were next 

re-weighted using the following formula: 

𝐶&> = 𝐻&> 	𝑥	𝑓(𝑐&)	𝑥	𝑓(𝑐>) 

where 𝐶&> is the re-weighted Hi-C interaction between bins 𝑖 

and 𝑗, 𝐻&>  is the Hi-C normalized interaction frequency, and 

𝑓(𝑐&) and 𝑓(𝑐>) are the transformed ChIP-seq values of bins 𝑖 

and 𝑗.  To minimize the computational burden for re-

weighting large Hi-C matrices, a sliding window of 2,000 bins 

of 5 kb resolution was used allowing the re-weighting of 

interactions as far as 10 Mb in sequence using a single 

computer. 

3. Detection of patches of 3D interaction. To detect chromatin 

interactions associated with a given factor, CHROMATIC 

generated a binary matrix 𝑃 for each chromosome and for each 

factor, whose pixels 𝑃&> were equal to 1 if there was a ChIP-seq 

peak in at least one of the bases of the interaction or their 

adjacent bins and its 𝐶&> values were equal to or larger than 0.2. 

Next, a series of four operations from morphological image 

processing was applied to the 𝑃&> matrix, with scipy.ndimage 

python package: 1) a binary opening using a square 4 by 4 

structuring element, 2) a binary closing with a cross-shaped 3 by 

3 structuring element, 3) a binary dilation with a square 5 by 5 

structuring element, and 4) a binary closing with a square 5 by 5 

structuring element. The resulting matrix 𝐿, thus, included all 
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patches of interactions corresponding to significant integration 

of ChIP-seq and Hi-C signals. 

4. Identification of ‘3D-types’. Next, CHROMATIC implements 

Latent Semantic Analysis (LSA) (Dumais, 2005), a technique in 

natural language processing. LSA analyzes relationships 

between a set of documents and their contained terms to 

automatically identify sets of topics with shared terms. As 

implemented in CHROMATIC, LSA aims to identify types of 

3D interaction (“topics”) based on the overlap of 3D 

interactions associated with different factors (“terms”). In 

general, LSA generates a document-term array describing the terms 

contained in each document. In our case, it generates an 

interaction-factor array describing the factors participating in each 

interaction. Next, LSA uses Singular-Value Decomposition 

(SVD) to find the main combinations of terms that define 

topics. Thus, in CHROMATIC it finds the main combination 

of factors in the detected genome interactions, which represent 

the types of 3D interactions (or ‘3D-types’). This is performed 

by two functions: first TfidfVectorizer from the 

sklearn.feature_extraction.text package (stop_words='english', max_df 

= 1.0, smooth_idf=True), and then TruncatedSVD from 

sklearn.decomposition package (algorithm='randomized', n_iter=100, 

random_state=122). CHROMATIC applied to the ESC, found 18 

3D-types, which corresponds to the maximum allowed with 19 

factors. In NPC, CHROMATIC found 17 3D-types for a total 

of 18 factors. As output, CHROMATIC generates two 

matrices: the interaction-3Dtype, which allowed to associate each 

3D interaction to one of the identified 3D-types and the 3Dtype-



 

 122 

factor arrays, which described the composition of each 3D-type 

in terms of enrichment or depletion of the studied factors. 

5. Overlap of 3D-types with functional genomic features. 3D-types 

identified by CHROMATIC were next mapped into genomic 

loci, which allowed to assess their overlap with functional 

genomic features for active enhancers (AE), active promoters 

(AP), super-enhancers (SE), poised enhancers (PE), bivalent 

promoters (BP), and constitutive LADs (CL). The enrichment 

of selected 3D-types in each of the functional genomic features 

was measured by its odds ratio (OR), which quantified the level 

of association between two events. OR was defined as: 

𝑂𝑅 =
𝑎/𝑐
𝑏/𝑑 

where 𝑎 is the number of bins of overlap between a functional 

state and a 3D-type, 𝑐 is the number of bins of the functional 

state that do not overlap with the 3D-type, 𝑏 is the number of 

bins of 3D-type that are not of the functional type, and 𝑑 is 

the number of classified bins that are neither of the functional 

type or the 3D-type. 

6. Clustering of 3D-types into major types of 3D interactions. The log10 of 

the OR of the overlap between 3D-types and functional 

genomic features (AE, BP, SE, PE, BP, CL) was used as input 

data for a Principal Component Analysis (PCA). Data 

standardization was performed by the function StandardScaler of 

the sklearn.preprocessing package and fitting of data was done by 

using PCA().fit of the sklearn.decomposition module. For each cell 

type, the minimum number of principal components (PC) 
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explaining more than 80% of the variance was chosen. 

Specifically, in ESC the first two PC were kept, capturing 92.2% 

of the variance, while in NPC the first three PC were kept, 

explaining 90.9% of the variance. Then, PCA was performed 

with the chosen number of components and the obtained data 

was used for K-means clustering to cluster the 3D-types. To 

determine the number of clusters to compute, the K-means 

algorithm was run multiple times with a different number of 

clusters: from 1 to 18 in ESC, where 18 3D-types were 

identified, and from 1 to 17 in NPC, where 17 3D-types were 

classified. For each solution, the Within Cluster Sum of Squares 

(WCSS) was computed. To determine the number of clusters to 

use, the approach known as the Elbow method was used, which 

consists of looking for a kink or elbow in the plot of the values 

of WCSS against the number of clusters. The elbow point is 

identified by the different exponential of the descent on the left 

and the right of the plot. In both ESC and NPC, the elbow 

appeared in correspondence with 4 clusters of major types of 

interactions (Suppl. Figure 2). 

Functional characterization of major types of 3D interactions 

To assign the identified major types of interactions to their biological 

function, the following analyses were performed: 

1. Overlap with AE, AP, SE, PE, BP, CL. Each major 3D-type was 

mapped to 1D genomic loci, whose overlap with AE, AP, SE, 

PE, BP, and CL was measured by odds ratio as described above. 

2. Proportion of highly-, lowly-expressed and silent genes. The command 

matchpeaksgenes from SeqCode toolkit (Blanco et al., 2021) was 

used to match the genomic loci corresponding to each major 
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3D-types to mouse genes (mm10), within the promoter, 2.5 kb 

upstream of TSS, and the body of genes. Subsequently, in ESC 

and NPC, genes were divided into three categories based on 

whether they were highly-, lowly-expressed or silent. For this 

purpose, 2 RNA-seq replicates per cell type were analyzed. So, 

for each gene, the average between the RPKM values of the two 

replicates was computed, and the gene was considered highly-, 

lowly-expressed or silent if the RPKM value was respectively 

RPKM>10, 1<RPKM£10, and RPKM£1.  

3. Proportion of overlap with A/B compartments. Genomic loci 

corresponding to each major 3D-types were intersected with the 

list of loci assigned to the A compartment or the B 

compartment as calculated from the Hi-C maps using TADbit 

(Serra et al., 2017).  

Statistical tools for benchmarking 

For the comparison between CHROMATIC output and HiChIP data, 

linear regression was performed by the polyfit function from 

numpy.polynomial package. The function ks_2samp from scipy.stats package 

was used to perform two-sample Kolmogorov-Smirnov test, that 

compares the distribution of HiChIP values corresponding to loops and 

hubs detected by CHROMATIC against the distribution of HiChIP 

values in the rest of the interaction matrix. 

Statistical tools for clustering 

Unsupervised hierarchical clustering results were obtained by the 

clustermap function from seaborn library (method=average, metric=euclidean). 

To assess how the resulting clustering resembled an ideal one (i.e., when 

factors cluster according to their functional role), we used the 

normalized_mutual_info_score from sklearn.metrics package (NMIS). Thus, 
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from the obtained hierarchical clustering the ideal number of clusters 

was computed and then compared with the ideal solution. NMIS value 

was between 0 (no correlation between clusters) and 1 (perfect 

correlation).  

Cell culture and differentiation 

Sox1:GFP E14Tg2a mouse embryonic stem cells (mESC) (Ying, 

Stavridis, Griffiths, Li, & Smith, 2003) were routinely cultured in 

Serum/LIF conditions using Glasgow minimum essential medium 

(Sigma, G5154) supplemented with 20% inactivated fetal bovine serum 

(Cytiva HyClone SV30160.03), Glutamax (Gibco, 35050-038), 

Pen/Strep (Gibco, 15140-122), non-essential amino acids (NEAA, 

Gibco, 11140-050), β-Mercaptoethanol (Gibco, 31350-010), and 

Leukemia inhibitory factor (LIF, produced and titrated in-house) on cell 

culture treated plates coated with 0.1% gelatin (Millipore, ES-006-B). 

Neural precursor cells (NPCs) were obtained as described in ref. (Ying 

et al., 2003). Briefly, 1.8 x 103 cells cm-2 were plated on gelatin-coated 

plate in Serum/LIF conditions. After 24h the medium was changed to 

N2B27 differentiation medium, composed of a 1:1 mixture of 

Neurobasal (Gibco, 21203-049) supplemented with N2 (17502-048) 

and DMEM-F12 (11320-074) supplemented with B27 (17504-044), to 

which Glutamax, Pen/Strep, NEAA, and 0.33% BSA fraction V 

(15260-037) were added. Differentiation medium was changed every 

other day. Cell differentiation was monitored via cytometre using the 

Sox1:GFP internal reporter, that marks early neuroectoderm committed 

cells (Wood & Episkopou, 1999; Ying et al., 2003) and harvested after 

6 days of differentiation. 
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Gene expression analysis 

RNA extraction was performed using the RNeasy kit (Qiagen, 74134) 

according to manufacturer’s instructions. For RNA-seq application, 

RNA samples were processed as follows: samples were quantified using 

the Nanodrop spectrophotometer (Thermo Fisher Scientific) and 

libraries were prepared using the TruSeq stranded mRNA Library Prep 

(Illumina, 20020595) according to the manufacturer's protocol. 

Libraries were sequenced on a single end for 50+8bp on Illumina’s 

HiSeq2500. A minimum of 40 x 106 reads per sample was generated. 

Next, raw sequencing data was analyzed as follows: RNA-seq samples 

were mapped against the mm10 mouse genome assembly using TopHat 

(Trapnell, Pachter, & Salzberg, 2009) with the option –g 1 to discard 

reads that could not be uniquely mapped. DESeq2 (Love, Huber, & 

Anders, 2014) was run to quantify the expression of every annotated 

transcript using the RefSeq catalogue of exons (O'Leary et al., 2016) and 

to identify each set of differentially expressed genes between two 

conditions. Raw counts and mapped statistics are provided as 

supplementary material (Supplementary Table 1). 

 

RESULTS 
Overview of the CHROMATIC algorithm 

CHROMATIC characterizes chromatin states in 3D by combining Hi-

C data with ChIP-seq tracks of proteins and histone PTMs. First, Hi-C 

and ChIP-seq data are pre-processed and normalized to remove biases 

and artifacts (Methods). Second, for each factor, CHROMATIC 

combines the Hi-C map with its ChIP-seq track, generating a new 

matrix (C) where the coefficient for each pair of bins is given by the  
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Figure 1. Overview of the CHROMATIC algorithm. a Schematic representation 
of the fundamental steps of CHROMATIC. Left, normalized Hi-C matrix and ChIP-
seq tracks of two generic factors X and Y. Center, for each factor the combination of 
the Hi-C map with the ChIP-seq track generates a new matrix resembling Hi-ChIP 
maps (CHROMATIC map), where the coefficient Cij is high if bins i and j interact in 
3D and have also ChIP-seq enrichment for the factor. Right, a series of morphological 
image processing operations detects loops and hubs associated with each factor. b 
Specific example for SMC1 in ESCs at the resolution of 5kb, in a region containing 
HoxA gene cluster. Left, normalized Hi-C map and ChIP-seq track of SMC1. Center, 
CHROMATIC map generated for SMC1. Right, loops and hubs detected for SMC1. 
 
corresponding normalized Hi-C coefficient multiplied by the 

transformed ChIP-seq values of the two anchoring bins (Fig. 1a) 

(Methods). Thus, the value Cij in matrix C is high if loci in bins i and j 

interact in 3D and exhibit enrichment for the factor signal. Next, to 

automatically detect loops and hubs associated with the factor, a series 

of operations from morphological image processing is applied to matrix 

C. Such operators are applied to identify loops/hubs up to 10 Mb in 

sequence range and with at least a ChIP-seq peak at one of the two  
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Figure 2. CHROMATIC interactions correlate with HiChIP. a Comparison of 
CHROMATIC SMC1 maps (left) to HiChIP data (right) in a region in chromosome 
6 including HoxA cluster, at the resolution of 5kb for ESC. SMC1 ChIP-seq is shown 
underneath each matrix. b Correlation between CHROMATIC coefficients and 
HiChIP values for SMC1 in chromosome 6. Spearman correlation coefficient r=0.6 
(p-value = 0). c Spearman correlation coefficients per chromosome. Genome-wide 
median r=0.5 genome-wide. d Boxplots of HiChIP values of SMC1 from detected 
CHROMATIC SMC1 patches compared HiChIP interactions elsewhere in the matrix 
(statistically different distributions as for Kolmogorov-Smirnov statistical test=0.76, 
p-val=0). 
 
anchors (Methods). As an example, CHROMATIC efficiently detects 

loops associated with SMC1 on the HoxA locus (Fig. 1b). 

 

CHROMATIC interactions correlate with HiChIP 

To benchmark the CHROMATIC detection of significant interactions 

mediated by a given factor, we used already published HiChIP datasets 

for the structural protein SMC1 and the TF OCT4 in mESC (Mumbach 

et al., 2016) (Fig. 2a and Suppl. Figure 3). For each chromosome, 
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CHROMATIC interactions were compared with the corresponding 

HiChIP maps (Fig. 2b), resulting in a median Spearman correlation 

coefficient of 0.5 genome-wide (Fig. 2c). To further assess the accuracy 

of CHROMATIC detection of significant interactions directed by 

SMC1, next, we studied the frequency of HiChIP interactions within 

CHROMATIC detections compared to sites with no detection (Fig. 

2d). Our analysis clearly indicated that sites with detected 

CHROMATIC interaction corresponded to pairs of loci that highly 

interact in HiChIP (Kolmogorov-Smirnov statistical test=0.76, p-

val~0). Similar results were obtained for the OCT4 factor (Suppl. 

Figure 3). Overall, CHROMATIC accurately identifies factor-

associated chromatin interactions experimentally determined by 

HiChIP. 

CHROMATIC identifies 3D chromatin functional interactions 

CHROMATIC can be regarded as a Hi-C matrix deconvolver where 

the original interaction map is separated into a series of layers associated 

with each of the different analyzed factors (Fig. 3a). This 

deconvolution exercise allows CHROMATIC to efficiently identify 

interactions associated with a given factor, which would have been 

difficult to detect from the original Hi-C map. CHROMATIC was 

indeed applied genome-wide to 5 kb Hi-C maps and two distinct ChIP-

seq datasets of 19 factors and 18 factors in mouse ESC and neural 

progenitor cells (NPC), respectively (Fig. 3b and Suppl. Figure 4a). 

ChIP-seq data included Polycomb group proteins, pluripotency and 

neuronal TFs, architectural proteins, and chromatin marks related to 

both activity and repression.  

Genome-wide, CHROMATIC detected 49,597 and 46,850 patches of 

interactions in ESC and NPC, respectively (that is, 5.5% less in NPC  
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Figure 3. CHROMATIC identifies 3D chromatin functional interactions. a In 
essence, CHROMATIC deconvolves the original Hi-C matrix in layers associated with 
each of the analyzed factors, allowing to efficiently identify interactions associated 
with each of them. b Example of CHROMATIC applied to Hi-C interaction maps 
and ChIP-seq profiles at the resolution of 5kb, for 19 factors in ESC.  Factors are 
colored according to their factional role. c Top, value distributions of original Hi-C 
interactions corrected by decay and median filter in ESC, before CHROMATIC 
processing, in correspondence of the patches detected by CHROMATIC. For each 
patch, the average of the corresponding Hi-C values is considered. Bottom, 
CHROMATIC coefficient distributions in ESC, in correspondence of the detected 
patches. d Top, number of ChIP-seq peaks for each factor with respect to their 
median length (base pairs), in ESC. Bottom, number of patches detected genome-
wide by CHROMATIC for each factor with respect to their median area (number of 
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5kb x 5kb pixels). e Unsupervised hierarchical clustering of factors studied in ESC 
based on their genome-wide pair-wise correlation, of ChIP-seq tracks on the left and 
of CHROMATIC maps on the right. 
 
than in ESC). The values of original Hi-C, before CHROMATIC 

processing, in correspondence with the detected patches, reveal that 

architectural proteins, especially CTCF and SMC1, are associated with 

the strongest Hi-C interactions (Fig. 3c and Suppl. Fig. 4b, top 

panels). This result agrees with the fact that CTCF-driven peaks were 

the first ones to be systematically discovered in Hi-C maps (Rao et al., 

2014). However, the values of the CHROMATIC score are appreciably 

balanced among different factors (Fig. 3c and Suppl. Fig. 4b, bottom 

panels). CHROMATIC can, thus, detect significant interactions also for 

factors whose interactions appear comparatively weak in the Hi-C map 

such as H3K36me3 in ESC (Fig. 3c).  

To explore the relative contribution of the studied factors to the spatial 

organization of the genome, we next compared the number and length 

of ChIP-seq peaks to the number and area of CHROMATIC detected 

patches (Fig. 3d and Suppl. Fig. 4c). In ESC, histone PTMs related to 

transcriptional activity, RNA Pol II-Ser5P, and RNA Pol II subunit 

RPB1 have a high number of mid-sized ChIP-seq peaks. However, they 

appear in fewer and smaller 3D interactions compared to other factors 

(Fig. 3d bottom). This may indicate that, in ESCs, histone marks related 

to transcriptional activity, RNA Pol II-Ser5P, and RNA Pol II subunit 

RPB1 may not play a genome-wide structural role and could be rather 

considered of a more specific functional role. Instead, pluripotency TFs 

may play a more relevant role in ESC genome topology than previously 

reported (i.e., they result in the highest number of CHROMATIN 

patches of largest size, Fig 3d bottom). Interestingly, in NPC, histone 



 

 132 

PTM H3K27ac and neuronal TF OLIG2 result in the most abundant 

CHROMATIC interactions and of larger sizes, indicating that they may 

have a more prominent structural role (Suppl. Fig. 4c bottom). 

Notably, at the structural level H3K27ac may be more related to 

organizing the genome structure (more patches and of larger size) in 

NPC compared to ESC. In NPC, CTCF is also found in a large number 

of CHROMATIC interactions of mid-size (Suppl. Fig. 4c bottom). 

The apparent stronger correlation between factor type and their role in 

3D genome organization, especially in ESC, prompted us to further 

analyze the correlation of the factors at ChIP-seq tracks (1D) and 

CHROMATIC (3D) levels (Fig. 3e and Suppl. Fig. 4d). The results 

indicate that the dendrogram of unsupervised hierarchical clustering of 

factors based on CHROMATIC correlations better separates the 

functional role of factors, especially in ESC. For example, EPOP and 

SUZ12, two Polycomb (PcG) proteins, are known to co-bind the same 

set of loci, same for CBX7 and RING1B. Importantly, although this is 

not reflected in the clustering of ChIP-seq signals, CHROMATIC 

correctly associates PcG components together. 

In summary, CHROMATIC allows the discovery of factor-specific 

interactions by deconvolving the Hi-C signal into factor-specific signals 

otherwise hidden by the background levels of the experimental data. 

The detection of CHROMATIC signal results in the identification of 

factors that may contribute to genome structure in a cell type-specific 

manner. Finally, the CHROMATIC interactions detected are more 

informative of the functions of the studied factors. 
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CHROMATIC classifies functional types of chromatin 3D 

interactions 

To study the function of the analyzed factors in mediating genome 

structure, we next aimed to classify all CHROMATIC interactions into 

a limited number of interaction types similar to what ChromHMM does 

in 1D signal (Ernst & Kellis, 2012). To do so, we implement a Latent 

Semantic Analysis (LSA) approach that aims at identifying the co-

operativity of signals in the spatial genome (Fig. 4a and Methods). LSA 

is conceptually simple and computationally fast. Indeed, for its genome-

wide application, the computing time was less than 10 minutes in a 

single modern workstation for both studied cell types. The LSA output 

is represented as a heatmap (Fig. 4b and Suppl. Fig. 5a) defining a set 

of types of chromatin 3D interactions (‘3D-types’) based on specific 

combinations of factors found in those genome interactions. In ESC, 

3D-type ‘1’ is the most abundant and is concomitantly enriched in 

pluripotency factors OCT4, NANOG, SOX2, CDK8, and CDK9, 

while it is moderately depleted of the rest of factors. 3D-type ‘2’, instead, 

is enriched in the association of NANOG and SOX2, and is depleted 

of CDK9, CDK8, and OCT4 (Fig. 4b). To functionally characterize 

the identified 3D-types, all CHROMATIC interactions were mapped 

into their genomic coordinates and their overlap with functional 

genomic features was computed. These included active enhancers (AE), 

active promoters (AP), super-enhancers (SE, i.e., 3D clusters of 

enhancers), poised enhancers (PE), bivalent promoters (BP), and 

constitutive LADs (CL) (Fig. 4c and Suppl. Fig. 5b). Interestingly, in 

ESC 3D-type ‘4’ is characterized by the presence of SOX2 and the 

absence of NANOG and OCT4, and has a strong overlap with CLs. 

3D-type ‘5’ is enriched in PcG components EPOP and CBX7, together  
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Figure 4. CHROMATIC classifies functional types of chromatin 3D 
interactions. a Patches detected by CHROMATIC for different factors colocalize in 
3D in a set of limited combinations detected by latent semantic analysis (LSA). b 
Resulting emissions of LSA in ESC defining sets of types of 3D interactions (3D-
types) in terms of enrichment (in red) or depletion (in blue) of factors. Factors are 
colored according to their functional role as in Fig. 3b. Left, bar plot indicates the 
number of 5kb x 5kb pixels associated with each 3D-type. c Overlap in number of 
5kb-bins between 1D loci corresponding to each 3D-type and chromatin types, in 
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ESC. d LogOdds of the overlap between 1D loci corresponding to each 3D-type and 
the functional genomic features in c were used as input for principal component 
analysis. The first two PC were considered, capturing 92.2% of the total variance. Plots 
depict the values of principal components 1 and 2 (PC1, PC2) for the different 3D-
types, which were further classified by K-means unsupervised clustering, in ESC. The 
arrow shows the direction from inactive to active for the identified 3D-types. e 
LogOdds of the overlap between 1D loci corresponding to each major 3D-type and 
the functional genomic features in ESC. f Percentage of silent (si), lowly-expressed 
(lo), and highly-expressed (hi) genes, and percentage of A and B compartments for 
the whole genome (in gray) and for the 4 major 3D-types, in ESC. 
 

with SMC1, while it is depleted in pluripotency TFs and strongly 

overlaps with BPs and PEs. Conversely, 3D-type ‘7’ is enriched in 

SMC1 while it is depleted of EPOP, and overlaps more with AEs and 

APs compared to 3D-type ‘5’. Similar to 3D-type ‘5’, 3D-types ‘8’, ‘13’, 

‘14’ and ‘15’ are enriched in Polycomb components and mainly overlap 

with BPs and PEs. Unexpectedly, 3D-type ‘10’ is enriched in CTCF and, 

to a lesser extent, in H3K9me3, and overlaps mainly with CLs. 3D-type 

‘11’ is strongly enriched in H3K9me3, partially enriched in RNA Pol II 

subunits, histone marks related to transcriptional activation, and PcG 

proteins, at the same time that mildly depleted of pluripotency TFs, and 

sharply overlap with CLs. 3D-type ‘14’, where H3K9me3 and Polycomb 

Repressive Complex 2 (PRC2) subunit SUZ12 are strongly enriched 

simultaneously, with depletion of H3K36me3, H3K27ac, and 

H3K4me3, overlaps with BPs and PEs. 3D-types ‘12’, ‘17’ and ‘18’ are 

among the least abundant types, are enriched in histone marks related 

to transcriptional activity (i.e., H3K36me3 or H3K27ac and RNA Pol II 

subunit RPB1), and mainly overlap with SEs. Surprisingly, 3D-type ‘16’ 

is enriched in H3K27me3 and weakly in RNAPII-Ser5P, and overlaps 

with APs and SEs. 

In NPC, 3D-type ‘1’ is the most abundant of all and is simultaneously 

enriched in neuronal TF OLIG2, PRC1 component RING1B, PRC2 
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component EZH2 and heterochromatic protein CBX3. 3D-type ‘2’ is 

again enriched in OLIG2 but it is depleted in PcG components, and 

compared to 3D-type ‘1’ it is more associated with AEs, APs, and SEs. 

3D-type ‘3’ is enriched in EZH2 and CBX3, depleted in RING1B and 

OLIG2, and mainly overlaps with CLs and APs. 3D-type ‘4’ is enriched 

in CBX3 and depleted in EZH2, it overlaps with CLs similar to 3D-type 

‘3’, but also with BPs. 3D-type ‘5’ is enriched in SMC1, neuronal TF 

NKX6.1, activator ZRF1, and active mark H3K4me3, is depleted of 

factors enriched in 3D-types ‘1’-‘4’ and strongly overlaps with BPs, APs, 

and SEs. 3D-type ‘7’ is similar to 3D-type ‘5’, but it is enriched only in 

H3K4me3 and ZRF1, while being depleted in SMC1 and NKX6.1. 3D-

type ‘9’ is enriched in Pol II, CTCF, and H3K27me3, and overlaps with 

AEs, APs, SEs, and BPs. 3D-type ‘10’ is enriched in CTCF and 

H3K27me3 but it is depleted in Pol II, and overlaps more with PEs and 

CLs. Surprisingly, 3D-type ‘11’ is enriched in H3K27me3, H3K9me3, 

and neuronal TF NKX2.2, and mainly overlaps with APs. 3D-type ‘14’ 

is enriched in SOX2, PcG proteins SUZ12 and PCGF2 and active mark 

H3K27ac, and overlaps with PEs and BPs.  

Next, the results of the overlap between loci corresponding to each 3D-

type and AEs, APs, SEs, PEs, BPs, and CLs were used as input for 

principal component analysis (PCA) to reduce the dimensionality of the 

data, which finally was further classified by K-means unsupervised 

clustering (Fig. 4d, Suppl. Fig. 5c, and Methods). In each cell type, 

3D-types were clustered into four groups of interactions with different 

functional roles according to their enrichment or depletion of 

functional marks (Fig. 4e and Suppl. Fig. 5d). The PCA analysis 

indicates that for both cell types, the detection of interaction types by 

CHROMATIC allows for functionally classifying the 3D-types from 
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inactive to active regions of the 3D genome (i.e., in ESC the axis 

composed of PC1 and PC2, while for NPC PC1 axis can be considered 

the path from inactive to active interactions). Therefore, the four 

identified clusters based on the PCA analysis correspond to four 

functional types: Active, cell-type-specific Transcription Factors, PcG-

bivalent and Inactive.  

To assess whether the four types of spatial interactions indeed represent 

ranges of activity in the genome, mouse genes were assigned to their 

3D-type/s (Methods). Once mapped, genes were classified as silent 

(“si”, RPKM<1), lowly (“lo”, 1<RPKM<10), and highly expressed 

(“hi”, RPKM>10) and their proportion in each of the four groups of 

3D-type interactions was assessed (Fig. 4f and Suppl. Fig. 5e). For 

both cell types, and as expected by their chromatin states (both 1D and 

3D), there is a correlation between the expression of the resident genes 

and the type of 3D interaction they concur. The “Active” 3D-type is 

enriched in active genes and occurs more often in the A compartment 

compared with the genome-wide distribution. Conversely, the 

“Inactive” 3D-type is enriched in silent genes and occurs more often in 

the B compartment (Fig. 4f and Suppl. Fig. 5e). 

In total, 5,216,011 5Kb x 5Kb patches are classified in ESC, while 

6,710,882 are classified in NPC (22.3% less in ESC than in NPC). In 

ESC the vast majority (73.4%) of 3D interactions are associated with 

pluripotency TFs, 20.1% is associated with a bivalent state characterized 

by the presence of PcG proteins, and only 6.5% is specialized in either 

active or inactive states (Fig. 5a left panel). In NPC, TFs are associated 

with structure (40.2%), but to a lower extent compared to ESC, there 

are many more 3D interactions that are specialized in either active or  
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Figure 5. Changes in 3D interaction types during mouse neural development. 
a Distribution of the four major types of interactions in ESC (left) and NPC (right). 
Percentages refer to the number of 5kb x 5kb cells of each type compared to the total 
number of 5kb x 5kb cells classified in each cell type (reported at top of the pie charts). 
b Sankey plot describing the transitions between the different types of 3D interactions, 
between ESC (left) and NPC (right). “Unclassified” cells indicate 5kb x 5kb cells that 
were not classified by CHROMATIC. 
 
inactive states (57.6%), and bivalent interactions have a 10-fold decrease 

(2.2%) (Fig. 5a right panel). Most interactions that are classified in ESC 

are unclassified in NPC, and vice versa (Fig. 5b). Considering only 

interactions that are classified in both cell types, each major 3D-type 
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identified in ESC mainly transitions into “Active” and “Neuronal TFs” 

in NPC, except for “Inactive” interactions that mainly remain 

“Inactive” (Suppl. Fig. 6). 

Altogether, CHROMATIC classification into 3D interaction types 

allows for further investigation of structural interactions with functional 

meaning. Such classes can be regarded as the 3D chromatin state of a 

cell type in a similar way that ChromHMM classifies linear chromatin 

states based solely on co-occupancy of ChIP-seq tracks (Ernst & Kellis, 

2012, 2017). 

Changes in complex functional 3D hubs during mouse neural 

development 

To assess whether specific loci alter their chromatin states in 3D, we 

studied the changes on CHROMATIC identified interactions between 

ESC and NPC of two loci of interest for their involvement in the 

development of neurons (that is, the Zfp608 and HoxA loci). The Zfp608 

locus is a neural-specific region where, during differentiation, a novel 

domain boundary is formed at the TSS of Zfp608, concomitantly with 

the activation of the gene (Bonev et al., 2017). In ESC, the gene is 

involved in a few interactions that CHROMATIC classified as PcG-

bivalent, while in NPC it participates in a larger number of interactions 

that were classified as active and associated with neuronal TFs involving 

H3K27ac (Fig. 6). In contrast to the Zfp608 locus, the structural 

changes between ESC and NPC of the HoxA locus are less dramatic. 

However, the chromatin binding of factors changes significantly, which 

is identified by the altered 3D-types of interactions as determined by 

CHROMATIC. In ESC, the HoxA cluster genes are not expressed and 

are found within a bivalent domain associated with PcG proteins. In  
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Figure 6. Changes in complex functional 3D hubs during mouse neural 
development.  Interactions classified into major 3D-types, in ESC (left) and NPC 
(right), in a neural-specific region in chromosome 18. Hi-C maps (top) and ChIP-seq 
tracks (below) are in grey. Major 3D-types classified by CHROMATIC are in colors. 
The Zfp608 gene is highlighted. During differentiation, a novel TAD boundary is 
formed at the TSS of Zfp608, concomitantly with the activation of the gene. In ESC, 
there are no CHROMATIC interactions involving the gene. In NPC, multiple 
interactions are classified as active or associated with neuronal TFs, possibly allowing 
the gene to scan downstream putative enhancers. 
 
NPC, instead, they are still enclosed by a bivalent cage, but in the 

interior a small active domain appears, in agreement with the activation 

of a small group of HoxA genes (Noordermeer et al., 2014; 

Noordermeer et al., 2011) (Suppl. Fig. 7). 

 

DISCUSSION 
To better capture the relationship between gene expression, epigenetic 

states, and genome topology, here we presented CHROMATIC, a novel 

computational method that for the first time integrates Hi-C and ChIP-
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seq data in a single map of in silico HiChIP. CHROMATIC results in 

fast, inexpensive, and accurate identification of factor-associated 

chromatin interactions in the 3D space, which agree with those already 

determined experimentally by HiChIP. Effectively, CHROMATIC 

deconvolves the Hi-C signal into factor-specific interactions otherwise 

hidden by the background levels of the Hi-C experimental data. 

Moreover, compared to the analysis of ChIP-seq data alone, the 

detected CHROMATIC interactions will provide more information on 

the function(s) of these factors on chromatin. 

The application of CHROMATIC between two or more different cell 

types also helps to identify factors that contribute to genome topology 

in a cell type-specific manner. Thus, we applied it to a total of 37 

different factors in ESC and NPC. Among the analyzed factors, 

pluripotency TFs in ESC and H3K27ac and neuronal TF OLIG2 in 

NPC are associated with an unexpectedly large fraction of 3D 

chromatin interactions, suggesting that they may play the most relevant 

structural role. On the one hand, in line with pieces of evidence from 

other studies (Kim & Shendure, 2019), TFs might play a crucial role in 

shaping the genome, especially in pluripotent cells, to properly regulate 

genes in a cell-type manner. On the other hand, H3K27ac, which 

decorates AEs and APs, results in a more prominent structural role in 

NPC compared to ESC, which may be explained by the fact that in ESC 

it is dispensable for enhancer activity (T. Zhang, Zhang, Dong, Xiong, 

& Zhu, 2020), in agreement with the remarkable structural role 

observed for this mark in NPC. Some other factor may intervene to 

bridge together H3K27ac enhancers in NPC. 

Based on the 3D colocalization of the studied factors, we identified 

different types of functional 3D interactions. In ESC, 3D-type ‘1’ is the 
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most abundant and is enriched in OCT4, SOX2, NANOG, CDK8, and 

CDK9. This may represent the cooperative association of pluripotency 

TFs that is known to be crucial for the efficiency of stem cell 

transcriptional regulation (Chronis et al., 2017; X. Huang & Wang, 2014; 

Yeo & Ng, 2013), which could correspond to condensates of 

pluripotency TFs (Boija et al., 2018; Hnisz, Shrinivas, Young, 

Chakraborty, & Sharp, 2017). 3D-type ‘2’, instead, is enriched 

exclusively in SOX2 and NANOG, whose cooperative interaction has 

been already reported to be central to ESC self-renewal (Gagliardi et al., 

2013; Yesudhas D, Anwar MA, & S, 2019). 3D-type ‘4’ is enriched in 

SOX2, depleted in NANOG and OCT4, and mainly overlaps with CLs. 

Interestingly, SOX2 has been shown to act also as a transcriptional 

repressor in neural stem cells (Liu et al., 2014), thus 3D-type ‘4’ 

interactions could help SOX2 to exert its repressive role. As expected, 

3D-types that are enriched in Polycomb components (3D-types ‘5’, ‘8’, 

‘13’, ‘14’, and ‘15’) mainly overlap with BPs and PEs. As it happens for 

most of the analyzed proteins, SMC1 participates in 3D interactions 

with different functional roles depending on its 3D-colocalizing factors. 

When it associates in 3D with Polycomb proteins, the involved loci 

strongly overlap with BPs and PEs (3D-type ‘5’). In absence of 

Polycomb, SMC1 interactions overlap more with APs and AEs (3D-

type ‘7’). Notably, the 3D association of CTCF and SMC1 described in 

the loop-extrusion model is not particularly enriched in any identified 

3D-type. However, this does not exclude that it is a participant in more 

than one 3D-type of interaction. For example, 3D-types ‘5’ and ‘7’ are 

enriched in SMC1 and show mild enrichment in CTCF. Thus, 3D-types 

‘7’ might correspond also to the well-known CTCF-SMC1 extruded 

loops. 3D-type ‘10’ instead, which is strongly enriched in CTCF and 



 

 143 

H3K9me3 and mainly overlaps with CLs, might capture the repressive 

role of CTCF which has been previously described (Lutz et al., 2000). 

3D-type ‘11’ is particularly enriched in H3K9me3 and sharply overlaps 

with CLs. It is interesting that, despite being the most inactive 3D-type 

in ESC (Fig. 4d), it is also enriched in RNA Pol II subunits, histone 

marks related to transcriptional activation, and PcG proteins. This 

might indicate that in pluripotent stem cells inactive regions are not 

completely silent, but are instead ready to be activated at the right time 

during differentiation, reflecting the high plasticity characteristic of 

ESCs. Differently, in 3D-type ‘14’, where H3K9me3 and PRC2 subunit 

SUZ12 are simultaneously enriched together with the depletion of 

H3K36me3, H3K27ac, and H3K4me3, chromatin interactions are 

associated with a bivalent state. Finally, 3D-types ‘12’, ‘17’ and ‘18’ are 

enriched in histone marks related to transcriptional activity H3K36me3 

or H3K27ac and RNA Pol II subunit RPB1, and mainly overlap with 

SEs. They are among the least abundant 3D-types, meaning that only a 

portion of SEs may be exclusively characterized by H3K36me3, 

H3K27ac, RPB1, while most SEs may also be enriched in pluripotency 

TFs (3D-types ‘1’ to ‘4’). Surprisingly, 3D-type ‘16’ includes 3D 

interactions marked by H3K27me3 in the absence of Polycomb and 

involving active loci. Further investigations are needed to properly 

interpret such observation. 

In NPC, 3D-type ‘1’ is enriched in neuronal TFs OLIG2 and NKX6.1, 

RING1B, EZH2, and CBX3. This result agrees with the fact that PRC2 

component EZH2 colocalizes with OLIG2 in neurogenic astroglia 

(Hwang et al., 2014). Olig2 is a direct target of EZH2, and its repression 

is critical for neuronal differentiation. Thus, regions involved in 3D-

type ‘1’ might include genes like Olig2 that will be shut down for mature 
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neuron differentiation. Conversely, 3D-type ‘2’ is enriched in OLIG2 

and NKX6.1 but it is depleted of RING1B, EZH2, and CBX3 and 

overlaps more with AEs, APs and SEs compared to 3D-type ‘1’. OLIG2 

can function either as a repressor or an activator in oligodendrocyte 

formation (Wei et al., 2021) and this might be reflected in the different 

functional roles of 3D-types ‘1’ and ‘2’. 3D-types ‘3’ and ‘4’ are enriched 

in heterochromatic protein CBX3 and show marked overlap with CLs. 

However, 3D-type ‘3’ is also enriched in PRC2 subunit EZH2 and 

slightly in H3K4me3, and overlaps more with APs. This might reflect 

the fact that, beyond its well-known repressive function, PRC2 binds 

APs and contacts nascent RNAs (Kaneko, Son, Shen, Reinberg, & 

Bonasio, 2013). 3D-type ‘5’ and ‘7’ are enriched in ZRF1 and active 

mark H3K4me3, with 3D-type ‘5’ involving also SMC1 and NKX6.1. 

Both 3D-types mainly overlap with BPs, APs, and SEs, and might 

involve loci that are important for the establishment and maintenance 

of neural progenitor identity (Aloia et al., 2014). 3D-type ‘9’ is enriched 

in RNA Pol II, CTCF, and mildly in H3K27me3, and overlaps with 

AEs, APs, SEs, and BPs. It might correspond to regions that in ESC 

were covered by H3K27me3 and kept in a bivalent state and that began 

to be expressed in NPC. 3D-type ‘10’ is also enriched in CTCF and 

H3K27me3 but it is depleted in Pol II, and indeed it overlaps more with 

PEs and CLs. Such type of 3D interaction is consistent with the 

observed role of CTCF-based loops in the spreading of repressive 

H3K27me3 mark at distant micro-domains that repress euchromatic 

genes (Heurteau et al., 2020). Surprisingly, 3D-type ‘11’ is enriched in 

H3K27me3, H3K9me3, and neuronal TF NKX2.2, and mainly overlaps 

with APs. NKX2.2 can function both as a transcriptional repressor and 

activator, depending on temporal and cellular context (Doyle & Sussel, 
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2007), thus regions involved in 3D-type ‘11’ interactions might be 

repressed in ESC and start to be expressed in NPC. Further analyses 

are needed to characterize this type of interaction. 3D-type ‘14’ is 

enriched in SOX2, PcG proteins, and H3K27ac and overlaps with PEs 

and BPs; like 3D-type ‘4’ in ESC, SOX2 might act as a transcriptional 

repressor in such interactions and, thanks to Polycomb and H3K27ac, 

contribute to set the involved loci in a bivalent state. 

The study of combinatorial patterns of multiple proteins and chromatin 

marks has been fundamental to annotate chromatin states, discover 

novel regulatory elements and characterize their cell type-specific 

patterns (Day et al., 2007; Ernst & Kellis, 2010; Ernst et al., 2011; Filion 

et al., 2010; mod et al., 2010). Chromatin states have recently been 

linked to genome 3D conformation by machine learning and polymer 

physics approaches (Esposito et al., 2022), but they continue to be 

considered as a 1D entity. CHROMATIC follows principles that are 

similar to the ones of ChromHMM, but it extends the potential of such 

combinatorial approaches being the first computational method to offer 

a 3D perspective on chromatin states. Identified 3D-types may indeed 

reflect already known interactions between different chromatin factors, 

or may help discover new associations between molecules with specific 

functional roles that need to be validated by specific experiments. 

To further investigate the functional implications of chromatin 

interaction types, in each studied cell we grouped chromatin interaction 

types into four major functional classes: Active, TFs-associated, PcG-

bivalent, and Inactive. Such classes can be regarded as the 3D chromatin 

states of a cell type, similar to how we consider linear chromatin states 

(Ernst & Kellis, 2012, 2017). Overall, ES cells result in about 50% of all 

genome interactions as unclassified (that is, with no CHROMATIC 
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significant interaction type), which is about 20% fewer classified pixels 

compared to NPC. Hence, the structure of the NPC genome is more 

restrained by functional interactions compared to the ESC genome. 

Moreover, most ESC interactions are associated with pluripotency TFs 

and with a Polycomb-bivalent state, leaving only 6.5% of the genome 

associated with active or inactive states. In NPC, instead, most of the 

classified interactions are active or inactive (57.6%), while bivalent 

interactions have a 10-fold decrease compared to ESC. Overall, this 

suggests that ESC transitions from a mostly flexible, open, plastic state 

to a more specialized configuration when differentiating to NPC. 

Interestingly, most of the interactions that are classified in ESC are 

unclassified in NPC, and vice versa, pointing to substantial changes in 

the overall chromatin 3D conformation and factor occupancy between 

the two cell types. Considering only interactions that are classified in 

both cell types, each major 3D-type identified in ESC mainly transitions 

into the Active or Neuronal-TFs state in NPC. However, most of the 

interactions that are Inactive in ESC remain Inactive in NPC, which 

suggests that a subgroup of 3D interactions associated with a repressed 

transcriptional state in NPC was already present in ESC. 

Finally, beyond global changes in structure and factor occupancy, we 

explored changes in complex functional 3D hubs occurring at specific 

loci during early stages of neural cell differentiation. The Zfp608 gene is 

specifically activated in NPC, concomitantly with the appearance of a 

novel TAD border at its transcription starting site. CHROMATIC 

identifies that the gene promoter site switches from a configuration 

where it is involved in a few PcG-bivalent interactions in ESC, to one 

with a large number of interactions mainly classified as active and 

associated with neuronal TFs. Eventually, this structural change might 
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be driven by the active factors and neuronal TFs, and might allow the 

gene to scan putative enhancers marked by peaks of H3K27ac.  

Our classification is limited by 5 kb resolution that we employed for 

computational feasibility. Furthermore, the integration of data from 

different experimental assays, such as chromatin accessibility and DNA 

methylation assays, would provide a more complete picture of 3D 

chromatin states. Overall, we consider that CHROMATIC will allow 

researchers to have a better understanding of the link between 

chromatin states, genome topology, and gene transcription in the 

studied cell type. 
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SUPPLEMENTARY FIGURES 
 
 
 
 

 
 
Supplementary Figure 1. Re-scaling of ChIP-seq values.  a ChIP-seq values 
before re-scaling. Values are distributed from 0 to 1. b ChIP-seq values after re-scaling. 
Re-scaled values are separated in two groups, one of low ChIP-seq values and one of 
high ChIP-seq values. 
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Supplementary Figure 2. Determination of the number of clusters for major types 
of 3D interactions. a K-means algorithm was run multiple times with a different 
number of clusters, from 1 to 18 in ESC, where 18 3D-types were identified. For each 
solution, the Within Cluster Sum of Squares (WCSS) is shown. The elbow point 
appeared in correspondence of 4 clusters of major types of interactions. b Same as a, 
for NPC. K-means algorithm was run multiple times with a different number of 
clusters, from 1 to 17 in NPC, where 17 3D-types were classified. 
 
 
 
 
 
 

 
 
Supplementary Figure 3. Validation with HiChIP data of OCT4. a Correlation 
between CHROMATIC coefficients and HiChIP values for OCT4 in chromosome 6. 
Spearman correlation coefficient r=0.57 (p-value = 0). b Spearman correlation 
coefficients per chromosome. Genome-wide median r=0.44 genome-wide. c 
Boxplots of HiChIP values of OCT4 from detected CHROMATIC OCT4 patches 
compared HiChIP interactions elsewhere in the matrix (statistically different 
distributions as for Kolmogorov-Smirnov statistical test=0.45, p-val=0). 
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Supplementary Figure 4. CHROMATIC applied to NPC. a Example of 
CHROMATIC applied to Hi-C interaction maps and ChIP-seq profiles at the 
resolution of 5kb, for 18 factors in NPC.  Factors are colored according to their 
factional role. b Top, value distributions of original Hi-C interactions corrected by 
decay and median filter in NPC, before CHROMATIC processing, in correspondence 
of the patches detected by CHROMATIC. For each patch, the average of the 
corresponding Hi-C values is considered. Bottom, CHROMATIC coefficient 
distributions in NPC, in correspondence of the detected patches. c Left, number of 
ChIP-seq peaks for each factor with respect to their median length (base pairs), in 
NPC. Right, number of patches detected genome-wide by CHROMATIC for each 
factor with respect to their median area (number of 5kbX5kb pixels). d Unsupervised 
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hierarchical clustering of factors studied in NPC based on their genome-wide pair-
wise correlation, of ChIP-seq tracks on the left and of CHROMATIC maps on the 
right. 
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Supplementary Figure 5. 3D-types identified in NPC. a Resulting emissions of 
LSA in NPC defining sets of types of 3D interactions (3D-types) in terms of 
enrichment (in red) or depletion (in blue) of factors. Factors are colored according to 
their functional role as in Suppl. Fig. 4. Left, bar plot indicates the number of 
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5kbX5kb pixels associated to each 3D-type. b Overlap in number of 5kb-bins between 
1D loci corresponding to each 3D-type and chromatin types, in NPC. c LogOdds of 
the overlap between 1D loci corresponding to each 3D-type and the functional 
genomic features in b was used as input for principal component analysis. Plots depict 
the values of principal components 1 and 2 (PC1, PC2) for the different 3D-types, 
which were further classified by K-means unsupervised clustering, in NPC. The arrow 
shows the direction from inactive to active for the identified 3D-types. d LogOdds of 
the overlap between 1D loci corresponding to each major 3D-type and the functional 
genomic features in ESC. e Percentage of silent (si), lowly-expressed (lo) and highly-
expressed (hi) genes, and percentage of A and B compartments for the whole genome 
(in gray) and for the 4 major 3D-types, in ESC. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Supplementary Figure 6. Changes in 3D interaction types during mouse neural 
development. Sankey plot describing the transitions between the different types of 
3D interactions, between ESC (left) and NPC (right). Here, “Unclassified” cells are 
excluded. 
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Supplementary Figure 7. Changes in complex functional 3D hubs during 
mouse neural development at the HoxA locus.  Interactions classified into major 
3D-types, in ESC (left) and NPC (right), in the HoxA locus in chromosome 6. Hi-C 
maps (top) and ChIP-seq tracks (below) are in grey. Major 3D-types classified by 
CHROMATIC are in colors. The HoxA gene cluster is highlighted. In ESC, HoxA 
cluster is not expressed and is kept in a bivalent domain by Polycomb proteins (in 
blue). In NPC, a small active domain appears, in agreement with the already known 
activation of a portion of HoxA genes. 
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SUPPLEMENTARY TABLES 
 
Supplementary Table 1. 

Raw counts and mapped statistics of RNA-seq experiments. 

Sample Raw reads Mapped reads 

ESC rep1 48463796 46557499 (96%) 

ESC rep2 40148534 38336872 (95%) 

NPC rep1 41686101 40318090 (97%) 

NPC rep2 50350011 48441325 (96%) 

 

 

Supplementary Table 2. 

Hi-C experimental statistics for merged replicates of mESCs. 

Filtered artifacts 

Random
 breaks 

Self-circle  

Too close from
 RE

S  

O
ver-represented 

D
angling-end  

Too large 

E
xtra dangling- end 

E
rror 

Too short  

D
uplicated 

4,220,714 

2,116,071 

497,700,422 

31,102,973 

163,593,222 

19,470 

323,042,784 

26,144,108 

63,891,817  

104,577,419 

 

Valid reads 

Total Valid  % valid 

7,260,480,082  1,537,751,681 21.18 
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Supplementary Table 3. 

Hi-C experimental statistics for merged replicates of NPCs. 

Filtered artifacts 

Random
 breaks 

Self-circle  

Too close from
 RE

S 

O
ver-represented 

D
angling -end 

Too large  

E
xtra dangling -end 

E
rror 

Too short 

D
uplicated 

20,843,082 

4,702,795 

1,563,662,772  

98,650,960 

301,911,787 

78,448 

626,655,991 

30,930,472 

191,364,911 

2,906,553,357  

 

Valid reads 

Total Valid  % valid 

8,677,570,910  3,974,901,849 45.81 
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Supplementary Table 4.  

Hi-ChIP experimental statistics for merged replicates of mESCs. 

 

SMC1a 

Filtered artifacts 

Random
 breaks 

Self-circle 

Too close from
 RE

S 

O
ver-represented  

D
angling-end  

Too large 

E
xtra dangling-end 

E
rror 

Too short 

D
uplicated 

3,398,952  

3,015,462 

80,263,176 

11,885,254 

92,950,614 

4,460 

111,269,935 

590,117 

19,258,610 

142,222,792 

 

Valid reads 

Total Valid % valid 

585,071,818 219,998,058 37.6 

 

 

OCT4 

Filtered artifacts 

Random
 breaks 

Self-circle 

Too close from
 RE

S  

O
ver-represented 

D
angling- end 

Too large 

E
xtra dangling -end  

E
rror 

Too short 

D
uplicated 
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2,175,642 

2,104,720 

87,065,455 

6,648,950 

69,916,554 

4,670 

106,603,963 

314,290 

20,572,571 

189,316,364 

 

Valid reads 

Total Valid  % valid 

657,261,466 252,920,123 38.48 
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CONCLUSIONS 
 
This thesis is focused on the characterization of the role of chromatin-

associated factors in genome topology, which in turn is important for 

proper spatiotemporal regulation of gene expression and cell fate 

decisions. 

 

In Chapter 1, we studied the transcriptional and architectural 

consequences of histone H1 variants depletion in human breast cancer 

cells. From this chapter, we can specifically conclude that: 

1. Despite the small changes in H1 variants distribution, knock-

down of H1 translated into more isolated but de-compacted 

chromatin structures at the scale of Topologically Associating 

Domains (TADs). 

2. Such changes in TAD structure correlated with a coordinated 

gene expression response of their resident genes. 

 

 

In Chapter 2, we presented CHROMATIC, a novel and generalized 

computational method that integrates chromatin interactions and factor 

occupancy data with genome structural data to reveal the contribution 

of chromatin-associated factors to genome topology.  

 

From the first part of this chapter, dedicated to the description of the 

computational tool and of its utility, we can specifically conclude that: 
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1. CHROMATIC integrates Hi-C and ChIP-seq data in a single 

map of in silico HiChIP, representing chromatin interactions 

associated to any factor of interest. 

2. CHROMATIC interactions correlate with HiChIP data, while 

being much faster and less expensive than real HiChIP 

experiments. 

3. By deconvolving the Hi-C data into factor-specific interactions 

otherwise hidden by background levels, CHROMATIC allows 

to discern the role of each studied factor in the global genome 

structure and to better identify factors participating in genome 

architecture in a cell-type specific manner. 

4. Compared to the analysis of data mapped exclusively on linear 

chromatin (1D) such as ChIP-seq, CHROMATIC output is 

more informative of the functional role performed by factors in 

the nucleus.  

5. The study of 3D co-localization patterns of factors allows to 

identify types of functional 3D interactions, which may reflect 

already known interactions between different chromatin 

factors, or may help discover new associations between 

molecules with specific functional roles. Such types of 3D 

interactions can be regarded as 3D chromatin states and 

represent a functional annotation of chromatin 3D interactions. 

 

From the second part of Chapter 2, dedicated to the application of 

CHROMATIC to embryonic stem cells (ESCs) and neural progenitor 

cells (NPCs) data, we can specifically conclude that: 

1. ES cells transition from a plastic state to a more specialized one 

when differentiating to NPCs, 
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2. Stem cell differentiation involves substantial changes in 

chromatin 3D conformation and factor occupancy, even 

though a subgroup of NPC interactions associated to an 

inactive state are already established in ESCs.  
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ANNEX 1  
 
In vivo temporal resolution of acute promyelocytic 

leukemia progression reveals a role of Klf4 in 

suppressing early leukemic transformation 
 

 

 

Candidate’s contribution: Analysis of the Hi-C 
experiments.  
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G, Vidal E, Mugianesi F, Ballaré C, Gutierrez A, Sparavier A, Marti-
Renom MA, Minucci S, Di Croce L. In vivo temporal resolution of 
acute promyelocytic leukemia progression reveals a role of Klf4 in 
suppressing early leukemic transformation. Genes Dev. 2022 Apr 
1;36(7-8):451-467. doi: 10.1101/gad.349115.121. Epub 2022 Apr 21. 
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ANNEX 2 
 
TADs enriched in histone H1.2 strongly overlap with the 

B compartment, inaccessible chromatin, and AT-rich 

Giemsa bands  

 

 

Candidate’s contribution: Analysis of the Hi-C 
experiments.  
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ANNEX 3  
 
Differential contribution to gene expression prediction 

of histone modifications at enhancers or promoters 

 
 
 

 

 

Candidate’s contribution: Analysis of the Hi-C 
experiments.  
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enhancers or promoters. PLoS Comput Biol. 2021 Sep 2;17(9):e1009368. 
doi: 10.1371/journal.pcbi.1009368.  
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