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Abstract

Microscopy and Chromosome Conformation Capture (3C) are the two main techniques
for studying the three-dimensional (3D) organization of the genome. Microscopy,
allowing the visualization of genomic /oci in individual nuclei, pioneered the field of
structural genomics and became the gold-standard for the validation of new discoveries.
3C and 3C-based techniques, identifying the number of contacts between pairs of
genomic /oci, have already been key to unveil the importance of the 3D genome
organization in many cellular processes: Both techniques are continuously evolving
pushing forward the technologies and giving rise to innovative assays that require the
support of new computational methods for data collection, analysis and modeling.

In this thesis, I have contributed to provide these essential computational methods to the
Structural Genomics community. In Microscopy, I participated in the design and
implementation of OligoFISSEQ, a novel multiplexing imaging technology to visualize
multiple genomic regions in hundreds and thousands of individual cells. In 3C-based
techniques, I contributed to the development of a tool for the reconstruction of the 3D
organization of chromatin from highly-sparse 3C-based datasets (e.g. Promoter Capture
Hi-C). Finally, I have introduced pT ADbit, a novel approach for the reconstruction of the
3D Genome organization integrating both Microscopy and 3C data via the application of

Machine Learning methods.
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General Introduction




Nuclear Organization

Each human cell contains around 2 meters of DNA packed inside its nucleus which has a
diameter of approximately 10-15 micrometers. Despite this level of compaction, DNA
folds and unfolds efficiently allowing the dynamic interactions that are essential for the
transcriptional and regulatory processes occurring inside the nucleus. Such processes are
only possible by virtue of a highly organized nuclear structure. Furthermore, although
containing identical genomic sequence, nuclei of different cell types exhibit specialized
types of processes which are only feasible by the acquirement of specific organizations

(Winick-Ng et al. 2021)

The first level of organization of the DNA is the wrapping of the double helix molecule
around the histone proteins forming nucleosomes and preventing the stretching and
possible breakages of the chain (van Emmerik et al. 2019). Free linker DNA connects
adjacent nucleosomes constituting a “beads-on-a-string” 10-nm structure that we refer as
the chromatin fiber. The specific positions of the nucleosomes and linker DNA in the
chromatin denotes a further degree of organization and compaction. The spacing between
consecutive nucleosomes differ between cells and regions and it influences gene
expression by controlling DNA accessibility of many binding proteins and regulatory
elements (Bai et al. 2010). The 10-nm chromatin fiber is further compacted and organized

in higher-order structures up to 30 nm width in conformations that are still focus of study.
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Figure 1. The Organization of the Eukaryotic Genome. DNA is hierarchically organized, first
wrapped around histone proteins assembled in nucleosomes, forming all together the chromatin fiber.
Chromatin folds into loops, often bringing gene regulatory elements (yellow), like enhancers, into
proximity to promoters of genes (gold/blue) to control their transcription (black arrow). Then it is further
organized in chromatin domains, referred as TADs, and in larger domains referred as compartments.
Each chromosome occupies distinct volumes, or chromosome territories inside the cell nucleus. The
nucleus also contains RNA and protein aggregates which form nuclear bodies (blue). Figure from
(Misteli 2020).

In mammalian cells, evidences exist that cohesin, a ring-shaped structural maintenance
of chromosome (SMC) complex, extrude the chromatin fiber until it finds a CCCTC-
binding factor (CTCF) site in what is known as the loop-extrusion model (Sanborn et al.
2015). The mechanism would produce the folding of the chromatin in globular 3D
conformations that have been observed in single cells imaging experiments (Bintu et al.
2018). Although the high variability between cells (Nagano et al. 2013; Szabo et al. 2020),
a preferential position of the borders of the blobs of chromatin in CTCF motifs explains
the chromatin organization of Topologically Associating Domains (TADs) and loops
observed in population-based Chromosome Conformation Capture (3C) experiments

(Lieberman-Aiden et al. 2009; Dixon et al. 2012; S.S. Rao et al. 2014).

TADs were identified in the context of Hi-C and 5-C assays, 3C-based experiments
(Dekker et al. 2002). TADs have been defined as domains of contiguous sequential
regions of dense self-interactions and have been highlighted as architectural chromatin
units in many cellular contexts (Nora et al. 2012; S.S. Rao et al. 2014). TADs are stable

across different cell types and highly conserved across mammalian species and often



isolate and constraint the essential interactions for gene regulation, for example between
enhancers and gene promoters (Bonev et al. 2017; Zhan et al. 2017). During
differentiation, the likelihood of co-regulation of genes located within the same TAD is
maximized (Zhan et al. 2017) and during replication, TADs are stable units of replication

timing (Pope et al. 2014).

At larger scales, Hi-C has also revealed the existence of another layer of organization
constituted by the preferential long-range interaction of domains that segregates
chromosomes in two different compartments, referred as “A” and “B” (Lieberman-Aiden
et al. 2009). The A compartment contains active and open chromatin (euchromatin) while
the B compartment inactive and close chromatin (heterochromatin). Later studies have
further subdivided those compartments by the association of different epigenetic marks

(S.S.Rao et al. 2014; Xiong et al. 2019; Liu et al. 2021; Vilarrasa-Blasi et al. 2021).

Cohesin depletion experiments has shown the abolishment of the preferential position of
TAD boundaries at CTCF sites but also the prevalence of TAD-like structures and
compartments in bulk Hi-C and single cells (S.S.P. Rao et al. 2017; Schwarzer et al. 2017;
Bintu et al. 2018), which indicates the existence of multiple mechanisms complementary
to loop-extrusion in chromatin folding. One of such mechanisms that has been proposed
to shape the structure of the genome is phase-separation. In this thermodynamic process,
a high-concentrated macromolecule in a mixture is partitioned into two or more distinct
phases with different physical and chemical properties. During the process, the
macromolecules condense into a dense phase characterized by the formation of liquid-
like compartments which coexists with a dilute phase (Banani et al. 2017; Alberti et al.
2019). Indeed, membrane-less assemblies in the form of liquid-phase condensates have
been shown to be involved in transcriptional control (Boija et al. 2018; Sabari et al. 2018)

and gene regulation (Larson et al. 2017; Guo et al. 2019).

Polymer models strengthen the idea that both mechanisms, loop-extrusion and phase
separation, co-exist having complementary tasks in the shaping of chromatin architecture.
For instance, loop-extrusion establishing TAD borders and loop interactions and phase
separation segregating different regions and creating less variable regulatory structures

(Nuebler et al. 2018; Conte et al. 2021).



Chromosomes occupy defined regions of the genome called Chromosome Territories
(CT) (Cremer et al. 2001) with gene-rich chromosomes preferentially positioned towards
the nuclear interior, whereas gene-poor chromosomes preferentially positioned towards
the periphery (Tanabe et al. 2002). During interphase, long-range chromatin repositioning
occurs only during a relatively short time window, after which chromatin movements are
constrained within small nuclear subdomains (Walter et al. 2003). CTs intermingle
significantly creating regions that have been shown to potentially contain transcription
factories and shape the chromatin structure (Branco et al. 2006). One of the most visible
and notorious example of nonrandom inter-chromosomal assembly in human nuclei is the
formation of the nucleolus (Figure 1) in which five different acrocentric chromosomes

come into physical proximity in the human genome (Maass et al. 2018).

Surrounding the nucleus, the lamina constitutes the outer functional organization of the
genome with the association of chromatin in lamina-associated domains (LADs). LADs
are blocks of chromatin ranging from 50kb to 10Mb in size that are in close proximity to
the nuclear lamina. They represent a strongly repressive chromatin type exhibiting
heterochromatic features, including low gene density, low transcriptional activity and
late replication timing (Buchwalter et al. 2019). If we aggregate the contacting regions
with the lamina over multiple individual cells, LADs account for approximately 35% to
40% of the mammalian genome (Guelen et al. 2008). In reality, given the stochastic
nature of the contacts between LADs and the lamina, any given locus may be contacting

the lamina only in a subpopulation of cells.

All these highlighted genomic features reveal a complex and hierarchical organization of
the genome emerging from the stochastic nature of the chromatin movements. A
coordinated system of segregation and congregation in which compartmentalization is
key to guarantee the correct regulation and function of the nuclear processes. An
organization flexible enough to ensure the creation of the needed micro-environments in
which the most essential and conserved gene transcription occur but also able to facilitate

the creation of more transient domains.



Methods to study chromatin structure

Microscopy

Microscopy has been one of the main techniques traditionally used to study the nuclear
structure. However, it has been long time undermined by the low statistical power of low-
throughput techniques both in terms of the number of /oci that can be visualized in each
individual cell and in the number of cells that can be analyzed in a single sample. It is
only now that the latest developments in the field (see next sections), to which I
contributed (Nguyen et al. 2020), have allowed us to reach the required resolution and
statistical power to study in detail the organization of chromatin.

New imaging techniques have been designed to capture the high variability observed in
the cell population by increasing the number of /oci detected in each individual nucleus
and optimizing the processes to provide large numbers of imaged cells. A key
breakthrough in the field have been the development of array-based oligonucleotide
synthetic probes, being Oligopaints (Beliveau et al. 2012) the variant used by the majority
of imaging methods in the field due to its improved computational design and probe
synthesis. Oligopaints are computationally designed DNA sequence-specific probes with
additional non-genomic sequences (streets) that enable additional functionalities,
including amplification, indirect labeling, barcode-based multiplexing, and sequential
and combinatorial labeling.

The following technologies deserve special mention in the field of multiplexed genomic

imaging:

- Multiplexed diffraction-limited FISH (Wang et al. 2016; Bintu et al. 2018): it relies
on the sequential labeling and imaging of multiple DNA /oci with Oligopaints. The
oligonucleotides targeting each genomic locus contain unique streets with specific
sequences or barcodes that could be independently read by complementary, fluorescently
labeled oligonucleotide readout probes. The amplification of the signal is achieved by the
aggregation of hundreds of probes per target that share the same barcode. Strand
displacement and photobleaching is used to extinguish the signal between rounds.

The technique has been used to study the conformation of regions of approximatively

2Mbp regions in around 40 sequencing rounds using two imaging channels.



- Optical reconstruction of chromatin architecture (ORCA) (Mateo et al. 2019):
regions of interest (100-700 kb) are tiled in short sections (2—10 kb) targeted by primary
Oligopaint probes with unique barcodes that are similar to the ones used in multiplexed
error-robust fluorescence in situ hybridization (MERFISH) that allows the measurement
of hundreds to thousands RNA molecules within a single cell (K.H. Chen et al. 2015).
The primary probes are labelled with fluorophores and imaged sequentially. One of the
streets is labelled with a fiducial fluorophore (fiducial oligo) that improves the registration
of the images through the sequencing rounds and therefore enhance the genomic
resolution. The readout probe (readout oligo) binds to the barcode sequence in the other
street, is imaged together with the fiducial oligo and subsequently removed by strand
displacement. The process is repeated for each barcode. Each barcoded region contains
at least 20 primary probes allowing the resolution of the targets in diffraction-limited
images.

ORCA improves the resolution attained by other methods by focusing on specific regions
of interest and improving the registration of round-to-round images. The use of strand
displacement for the removal of the imaged readout oligo allows for repeated
measurements of the same barcode which is especially useful for error quantification and

correction.

- Hi-M (Cardozo Gizzi et al. 2019): it also relies on the sequential labeling and imaging
of multiple DNA loci with Oligopaints. The probes in this technique contain a cleavable
bond allowing the elimination of the fluorescence signal of a particular barcode from one
cycle to the next. The amplification of intensity in the images is achieved by the
aggregation of hundreds of oligos per detected target. By multiple sequential cycles of
hybridization, washing, and imaging of each barcode, Hi-M has proven to simultaneously
label around 20 different loci.

The incorporation of combinatorial labeling schemes should make it possible to
considerably increase the number of detected loci without increasing the number of

hybridization cycles.

- OligoFISSEQ (Nguyen et al. 2020): is the combination of fluorescent in situ
sequencing (FISSEQ) technologies developed originally for in situ transcript localization

and quantification (Je Hyuk Lee et al. 2015) and Oligopaints. In OligoFISSEQ, barcodes



are embedded in the Oligopaint streets and sequenced in sifu. By bringing together
hundreds to thousands of identically barcoded Oligopaints to a genomic target,
OligoFISSEQ does not require the type of amplification FISSEQ needs; the signal is
strong enough to acquire diffraction-limited images using conventional microscopes
achieving throughputs on the order of hundreds to thousands of cells and thus providing
the statistical power necessary for addressing cell-to-cell variability.

OligoFISSEQ allows also an exponential increase of the number of targeted regions with
the number of hybridization rounds, potentially reaching thousands of different loci in 5

rounds and 4 channels.

- DNA-MERFISH (Su et al. 2020): it is also a natural extension of MERFISH that allows
the measurement of hundreds to thousands RNA molecules within a single cell (K.H.
Chen et al. 2015). In DNA-MERFISH, synthetic single-stranded DNA probes are used to
image many chromatin loci simultaneously in each round of sequencing. Each probe
incorporates two distinct readout sequences corresponding to the sequencing round in
which the locus is expected to be detected. The distinct identities of the loci are
determined based on the combinations of rounds in which they appear and that match the
designed barcodes. Not all combinations of rounds correspond to a possible barcode
increasing the error-robustness of the scheme. Bringing together hundreds of consecutive
oligos allows for the use of diffraction-limited images.

The technology has been used to image thousands of genomic loci in 50 rounds of

hybridization and 2 color channels per round.

- seqFISH+ (Takei et al. 2021): it is based on seqFISH, a sequential barcoding scheme
to multiplex different mRNAs. SeqFISH+ is based on sequential hybridization and the
aggregation of hundreds of synthetic single-stranded DNA probes per target to amplify
the signal intensity. Primary probes are ligated to the DNA binding sites and padlocked
(Nilsson et al. 1994) at the binding sites after the initial hybridization to stabilize them
during the sequential rounds. Each primary probe is flanked by the several unique readout
probe binding sequences which are hybridized by fluorescent oligos, imaged and stripped
over sequential rounds.

The schema allows the identification of 2,460 different loci in 80 rounds of sequential

hybridization and 2 channels.



- In situ genome sequencing (IGS) (Payne et al. 2021): it uses a different approach to
identify multiple targets per cell combining in situ and ex situ sequencing. The main idea
behind the method is the imaging of the positions of genomic /oci without specifically
target DNA motifs and the determination of their genomic sequence a posteriori.

To accomplish that, IGS randomly incorporates DNA sequencing adaptors into fixed
genomic DNA with Tn5 transposase preserving genomic fragments in their spatial
positions (X. Chen et al. 2016). Tn5 transposase selectively inserts the adaptors into
accessible chromatin loci in the living cells. Those transposed fragments are circularized
in situ by the ligation of two DNA hairpins that contain a unique molecular identifier
(UMI) and primer sites used for in sifu and ex situ DNA sequencing, followed by the
amplification of the circular templates using rolling circle amplification. The spatial
positions of the amplicons are determined using sequential rounds of in situ sequencing
by ligation (SBL) and fluorescence imaging (J. H. Lee et al. 2014). Then, the amplicons
are dissociated and amplified using PCR to produce an in vitro sequencing library.
Finally, in situ amplicon positions and ex situ paired-end sequencing reads are
computationally matched.

IGS allows the simultaneous sequencing and imaging of genomes within intact biological
samples, spatially localizing thousands of genomic loci in individual nuclei. Due to its
genome-wide sampling frequency (at most ~1 Mb), IGS is currently limited in its ability

to examine specific genetic loci at higher-resolutions.

Chromosome Conformation Capture (3C) and derived technologies

Chromosome Conformation Capture (3C) techniques appeared already twenty years ago
(Dekker et al. 2002) and have been key to unveil the importance of the 3D structure of
the genome in many cellular processes by resolving finer details of the genome structure.
3C-based assays provide rich, high-throughput and genome-wide data describing genome
topology and enabling systematic studies at high resolutions.

The principal strategy of 3C techniques to study chromatin topology is the quantification
of the contact frequencies between distal /oci in cell populations. The main steps of 3C-
based protocols are similar and consist in chromatin crosslinking using most often
formaldehyde, digestion by sonication and/or using restriction enzymes and re-ligation

of the resulting sticky ends to form chimeric molecules (Figure 2).
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Figure 2. Comparison of different 3C-based methodologies. Figure adapted from (Davies et al. 2017)

After reversing the crosslink, the molecules (3C templates) are amplified by PCR,

sequenced and mapped to the appropriate reference genome. The crosslinked DNA

fragments may be distant in the genomic sequence, but they are close in 3D space

allowing the inference of the chromosomal conformations by counting the number of

occasions that those fragments co-occur in the chimeric molecules.

The following techniques are part of the 3C-based family:

- Chromosome Conformation Capture (3C) (Dekker et al. 2002): after the re-ligation

of the fragments and using PCR primers designed to amplify specific ligation junctions,

3C can retrieve interactions between two targeted loci in the cell population. The kind of

information obtained with this technique is a one-versus-one interaction profile. The

requirement for PCR primers designed to amplify regions of interest limits the method to

the detection of spatial relationships between known DNA sequences.
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- Circular Chromosome Conformation Capture (4C) (Simonis et al. 2006; Zhao et
al. 2006): the most important innovation of the 4C techniques is that it allows the
detection of unknown DNA regions with a targeted region of interest (viewpoint). The
4C protocol differs after reversing the crosslink; a second digestion with a different
restriction enzyme creates fragments that can re-ligate and circularize. Primers binding
the known DNA fragment are used to amplify the DNA circles containing the viewpoint
and its interacting DNA and the result can be analyzed by microarrays or next generation

sequencing (NGS).

- Chromosome Conformation Capture Carbon Copy (5C) (Dostie et al. 2006): it
enhances the main 3C technique by incorporating special primers designed with
oligonucleotides containing universal sequences. Thanks to those sequences, all 3C
templates can be simultaneously amplified in a multiplex PCR reaction. The junctions
can be analyzed by microarrays or by NGS. The information obtained by the technique
is the interacting profiles of a set of continuous regions of interest in a "many versus
many" form. The main disadvantage of the 5C protocol is the primer design needed to

interrogate the region of interest, making it unfeasible for genome-wide studies.

- Hi-C (Lieberman-Aiden et al. 2009): after the digestion with restriction enzymes the
sticky ends are filled with biotin-labeled nucleotides. The 3C templates are re-ligated,
sheared and purified by biotin pull-down using streptavidin beads. The purification
ensures that only junctions with biotin are selected for high-throughput sequencing. The
chimeric reads are mapped to the reference genome allowing the construction of matrices
of interactions between all fragments in the genome providing "all versus all"
information.

A variation of Hi-C that increases considerably the resolution of the obtained contact
matrices is Micro-C (Hsieh et al. 2015) in which micrococcal nuclease is used instead of
restriction enzymes to fragment chromatin and obtain single nucleosome resolutions.
Further adaptations of the Hi-C technique have allowed the application of the protocol to
individual cells (Nagano et al. 2013; Ramani et al. 2017).

- Chromatin Interaction Analysis by Paired-end Tag sequencing (ChIA-PET)
(Fullwood et al. 2009): combines 3C with chromatin immunoprecipitation (ChIP) to

study chromatin interactions bound by one specific protein. The 3C templates are

11



enriched by ChIP using a specific antibody and DNA sequences tethered together and to
the protein of interest are re-ligated with oligonucleotide DNA linkers, the sequence of
which contains restriction sites for a posterior digestion. The resulting Paired-End Tags
(PETs) are sequenced and mapped to the reference genome. This technique provides
information of interactions between regions brought together by proteins. An improved
version of ChiA-PET is HiChIP (Mumbach et al. 2016) which lower the requirements in
terms of number of input cells while achieving better signal-to-background ratios than in

situ Hi-C.

- Capture-C (Hughes et al. 2014): combines 3C, NGS and oligonucleotide capture
technology (OCT). After the standard 3C experiment, the 3C templates are sonicated and
paired-end sequencing adaptors are added. Then, capture probes with biotin hybridize in
a set of fragments of interest and are pull-down by streptavidin beads. The captured DNA
fragments are amplified and sequenced allowing the generation of genome-wide contact
profiles from hundreds of selected loci at a time with a reduction of the costs compared
to standard 3C experiments.

The application of the Capture-C strategy can be used to enrich Hi-C libraries in a
technique known as Capture Hi-C (CHi-C) (Mifsud et al. 2015) enabling deep sequencing

of target fragments and excluding uninformative background.

12



Three-dimensional modelling of the genome from 3C data

The inherent nature of proximity-based crosslinking of the 3C techniques do not allow a
direct measurement of the physical distances between regions in the genome. Instead,
they provide a quantification of the frequencies of contact between distal /oci that is a
proxy for its spatial distance. The inference of those distances from interaction
frequencies is a transformation to which we refer as modelling. The reconstruction of 3D
chromatin structures from its interaction data allows the analysis of the genome in
metaphase and interphase in its spatial context providing richer information to the
scientist.

The modelling strategies used to obtain 3D conformations from interaction data can be

divided in two categories: data-driven modeling and thermodynamics-based modelling.

Data-driven modelling

Data-driven modelling methods provide solutions, generally faster than thermodynamics-
based approaches, that are compatible with the given input data subject to the constraints
of the considered environment. In data-driven models all parameters can be derived from
the input data. Generally, data-driven methods adopt simplified representations of
chromatin using spheres or points as chromosome regions or /oci adopting a coarse-

grained “beads-on-a-string” configuration.
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Figure 3. Genomic regions 3D structure reconstruction workflow of data-driven modelling
methods. Step 1: The input preparation, usually, 3C-based contact data and sometimes empirical extra
parameters. Step 2: The three data-driven modelling approaches depending on the strategy used to model
the interaction frequency (IF). Step 3: Structural modelling with each tool defined sampling strategy,
and Step 4: generation of a consensus average structure or a group of structures. Figure adapted from
(Oluwadare et al. 2019).

According to the type of structures generated data-driven methods can be largely
classified in two main groups: consensus-based (Hu et al. 2013; J. Paulsen et al. 2015;
Rieber et al. 2017; J. Li et al. 2018; Abbas et al. 2019; F.Z. Li et al. 2020) or ensemble-
based (Rousseau et al. 2011; Tjong et al. 2016; Tuan Trieu et al. 2016b; T. Trieu et al.
2016a; Jonas Paulsen et al. 2017; Serra et al. 2017; Zhu et al. 2018; T. Trieu et al. 2019).
Consensus-based methods transform the interaction frequencies into a single 3D
conformation which, in the case of 3C data produced from a population of cells, represent
an average solution of the ill-defined modelling problem. Ensemble-based methods,
instead, take into consideration that the information has been produced from an ensemble
of cells that could eventually adopt different conformations. Therefore, they explore
solution spaces in which individual structures satisfy not all but some of the imposed

restraints. Different conformations satisfy different sets of input restraints forming a final

14



ensemble that satisfy most of the defined restraints. Ensemble-based methods aim to
reproduce the heterogeneity of the cell to cell variability of the population.
According to the method used in the modelling, data-driven methods can be divided in

three categories: distance-based, contact-based and probability-based methods.

- Distance-based methods (Tuan Trieu et al. 2016b; Jonas Paulsen et al. 2017; Rieber et
al. 2017; Serra et al. 2017; J. Li et al. 2018; T. Trieu et al. 2019): are characterized by the
initial conversion of the interaction frequencies to physical distances and the
reconstruction of the spatial coordinates that satisfy those distances. It is the most
followed approach in the determination of 3D structures probably inspired by classical
multidimensional scaling (Torgerson 1958). The main differences between the methods
in this category are how the interaction frequencies are converted to distances and the
method used to infer the coordinates from them. In a distance-based method a 3D
structure is initialized and an objective function is used to quantify the difference between
the inferred 3D structure and the distances expected from the obtained transformation.
The 3D structure is iteratively updated to minimize the objective function using
multidimensional scaling or other optimization techniques (J. Paulsen et al. 2015).
Although it is commonly assumed that the interaction frequency between two loci is
inversely related to its distance, the scaling factor of that relation might be different from
organism to organism and even among different cell types. The scaling factor is one of
the main parameters that the different methods try to optimize.

Some methods introduce additional restraints obtained empirically like the minimum and
maximum distances between adjacent loci, the positions of telomeres and centromeres or
the confinement of the nuclear lamina to produce more accurate reconstructions of the
3D models.

One of the main drawbacks of distance-based approaches is that weak interaction
frequencies, strongly affected by noise, are normally unreliable for the prediction of long-

range distances.

- Contact-based methods (T. Trieu et al. 2016a; Jonas Paulsen et al. 2017; Zhu et al.
2018): this group of methods use the interaction frequencies directly to model 3D
structures. As such, they do not require the pairs of regions to satisfy a specific distance.
Some methods falling into this category require distances to be below a certain threshold

as to simulate the 3C crosslinking (T. Trieu et al. 2016a). Others, model the frequencies
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as neighboring affinities to construct interaction networks and derive structures with

optimization processes inspired by manifold learning (Zhu et al. 2018).

- Probability-based methods (Rousseau et al. 2011; Hu et al. 2013; Tjong et al. 2016):
methods in this category model the interaction frequencies using probabilistic
frameworks. Considering that most of 3C-based assays are conducted in cell populations,
probabilistic methods are appropriate to consider the outcome data as an average of an
undetermined ensemble. The main advantage of these methods is that the uncertainties in
the experimental data can be overcome through a probabilistic representation. Systematic
biases such as GC content and the uneven distribution of the restriction enzyme cutting
sites need to be considered in the probabilistic models.

Probabilistic-based methods infer ensemble of structures, through Bayesian inference
(Hu et al. 2013) or maximum likelihood optimization (Rousseau et al. 2011; Tjong et al.
2016), that are statistically consistent with the input data as the best approximation of the

underlying true population of structures given the available data.

Thermodynamics-based modeling

The modelling strategies based on thermodynamics apply polymer physics principles to
simulate the dynamics of the chromatin fiber. These modelling approaches treat each
chromosome as a biopolymer frequently represented as a coarse-grained "beads-on-a-
string" model seeking to reproduce and understand the underlying principles of chromatin
organization by applying a set of parameters that characterize its global properties and
motion. The defined functions and properties governing the chromatin dynamics in the
simulations can be known from statistical physics or hypothesized from empirical
observations. With them, polymer physics models have been successfully used to

simulate chromosome folding at large-scales.

Different types of polymer models have been proposed to explain the observed behavior
of chromatin in the nucleus. Before the birth of Hi-C, a densely knotted and compact
conformation in equilibrium referred as "globule" was commonly proposed to simulate
chromatin (Miinkel et al. 1998). But the measure of the contact probability of two intra-
chromosomal loci depending on their genomic distance, brought the “fractal globule”

model to the scientists’ attention. The fractal globule is a long-lived and non-equilibrium

16



state proposed in the nineties (Grosberg et al. 1993) in which a compact unentangled
polymer crumples into a series of small globules under certain topological constraints
(Mirny 2011). Such polymer state is unknotted facilitating the unfolding and refolding in
the cell cycle and during gene activation and repression. Furthermore, a polymer in such
state tend to form spatial domains at the mega-base scale of the size observed in 3C data.
In contrast, the equilibrium globule is highly knotted and do not present similar spatial

domains.

However, the fractal globule model fails to explain certain experimental observations.
One of them is the plateau at large genomic distances observed in FISH experiments when
measuring the mean-square spatial distance between two genomic regions as a function
of their genomic distance. Such plateau is produced by the organization of chromosomes
into territories. Another observation that is not explained by the fractal globule model is
the variability of the exponential decay of the contact probability among different regions
and cell types. Moreover, one needs highly specific simulation constraints for a polymer
to reach the specific conditions of the fractal globule state in which it stays briefly before

converging to a different equilibrium state.

More recent polymer models are able to simulate more accurately the experimental
observations. The "String and Binders Switch model" (SBS) (Barbieri et al. 2012)
explains the genome folding as the effect of the binding of macromolecules (binders) on
chromosomes (string). Each chromosome has different binding sites to which certain
binders have specific affinities. The introduction in the simulations of the binders in
certain concentrations would explain the formation of domains and other observed
phenomena. Furthermore, the SBS model has been shown to be compatible with
thermodynamics mechanisms of phase separation in single cells (Conte et al. 2020) in
which chromatin adopt two main states: one in which is randomly folded and another
where it is organized in segregated globules. The concentration and affinity of the binders
switches the system from one state to the other in what is referred as phase separation.
The globular state allows the establishment of stable environments where specific
contacts are highly favored over stochastic encounters. The coexistence of the distinct
states in the cell population give rise to many different single-molecule conformations
which are compatible with the highly variable structural and temporal patterns of contacts

observed within TADs.

17



The "loop-extrusion" model (Sanborn et al. 2015; G. Fudenberg et al. 2016; Gassler et al.
2017) is based on the binding of loop-extrusion factors which extrude chromatin and form
the observed organizational domains by their continuous loading and unloading and the
presence of boundary elements.

Another suggested model hypothesizes on the formation of loops in the loop-extrusion
model as supercoiling processes induced by transcription (Racko et al. 2018). Supercoiled

chromatin would better explain the increase of inter-contacts within TADs.

18



Objectives

19



The main objective of this thesis is to develop computational tools for the analysis of the
three-dimensional structure of the genome contributing to the main two approaches used
to study it: microscopy and Chromosome Conformation Capture (3C) technologies.
Additionally, to combine Hi-C analysis techniques with innovative microscopy
technologies to relate the genome structure of individual cells with the average

population. To achieve the main objective, the following projects were conducted:

1. The provision of the indispensable computational tools to decode and analyze
OligoFISSEQ images. First, the design and implementation of an automated
decoding pipeline prepared to handle the high-throughput nature of the
technology. Second, the analysis of the results and the interpretation of the

structural information provided by OligoFISSEQ.

2. Contribute to the development of a new method for the modelling of genomic

regions from sparse 3C-based information.
3. The development of probabilistic TADbit (pTADbit) that produces ensembles of

three-dimensional structures of genomic regions combining Hi-C data and

information from imaging experiments using Machine Learning (ML).
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This thesis dissertation is composed of three scientific publications to which David
Castillo has significantly contributed. The first two manuscripts have been published in
Nature Methods and NAR Genomics and Bioinformatics. The third article will be
submitted to peer-review in the following months and a pre-print version is already
available in BioRxiv.

The first and third articles in which David is co-first and first author respectively
constitute the main projects of his PhD. The impact factors of the journals and the specific

contributions of David to each manuscript are indicated in the following section.

Marc A. Marti-Renom
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Huy Q. Nguyen'!, Shyamtanu Chattoraj™!, David Castillo™>, Son C. Nguyen, Guy Nir,

Antonios Lioutas, Elliot A. Hershberg, Nuno M. C. Martins, Paul L. Reginato,
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Author's contribution: This is the main published article of David's thesis. He
showed all his outstanding skills in designing and implementing the decoding
pipeline to de-multiplex the information in the OligoFISSEQ high-throughput
images. David’s contribution was essential to the analysis of the raw images and
the interpretation of the structural information provided by OligoFISSEQ.
Huy Nguyen and Shyamtanu Chattoraj designed the OligoFISSEQ protocol and

perform the described experiments.
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molecular dynamics.
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Chapter 1

3D mapping and accelerated super-resolution imaging of the human genome using
in situ sequencing

There is a need for methods that can image chromosomes with genome-wide coverage,
as well as greater genomic and optical resolution. We introduced OligoFISSEQ, a suite
of three methods that leverage fluorescence in situ sequencing (FISSEQ) of barcoded
Oligopaint probes to enable the rapid visualization of many targeted genomic regions.
Applying OligoFISSEQ to human diploid fibroblast cells, we show how four rounds of
sequencing are sufficient to produce 3D maps of 36 genomic targets across six
chromosomes in hundreds to thousands of cells, implying a potential to image thousands
of targets in only five to eight rounds of sequencing. We also used OligoFISSEQ to trace
chromosomes at finer resolution, following the path of the X chromosome through 46
regions, with separate studies showing compatibility of OligoFISSEQ with
immunocytochemistry. Finally, we combined OligoFISSEQ with OligoSTORM, laying
the foundation for accelerated single-molecule super-resolution imaging of large swaths

of, if not entire, human genomes.
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3D mapping and accelerated super-resolution
imaging of the human genome using in situ

sequencing

Huy Q. Nguyen®', Shyamtanu Chattoraj®'"*, David Castillo®2'4, Son C. Nguyen ®'2,

Guy Nir®'3, Antonios Lioutas’, Elliot A. Hershberg?, Nuno M. C. Martins ®', Paul L. Reginato®'35,
Mohammed Hannan', Brian J. Beliveau*®, George M. Church'?, Evan R. Daugharthy'3"%1,

Marc A. Marti-Renom ©®2°101% gnd C.-ting Wu®"3

There is a need for methods that can image chromosomes with genome-wide coverage, as well as greater genomic and optical
resolution. We introduce OligoFISSEQ, a suite of three methods that leverage fluorescence in situ sequencing (FISSEQ) of bar-
coded Oligopaint probes to enable the rapid visualization of many targeted genomic regions. Applying OligoFISSEQ to human
diploid fibroblast cells, we show how four rounds of sequencing are sufficient to produce 3D maps of 36 genomic targets across
six chromosomes in hundreds to thousands of cells, implying a potential to image thousands of targets in only five to eight
rounds of sequencing. We also use OligoFISSEQ to trace chromosomes at finer resolution, following the path of the X chromo-
some through 46 regions, with separate studies showing compatibility of OligoFISSEQ with immunocytochemistry. Finally, we
combined OligoFISSEQ with OligoSTORM, laying the foundation for accelerated single-molecule super-resolution imaging of

large swaths of, if not entire, human genomes.

high genomic resolution is becoming increasingly impor-

tant, with one potentially enabling class of methods being
fluorescence in situ hybridization (FISH)'. Indeed, it was FISH that
enabled the pioneering work demonstrating chromosome territo-
ries in interphase cells’. Of the several methods for FISH, a num-
ber are oligomer (oligo) based'; one such method is Oligopaints*
(see Supplementary Note 1 for additional examples), which appends
nongenomic sequences (Mainstreet and Backstreet) to enable mul-
tiple functionalities, including amplification, indirect visualiza-
tion via fluorophore-conjugated (secondary) oligonucleotides,
barcode-based multiplexing and sequential and combinatorial
labeling of DNA or RNA*!, In the context of megabase-level cover-
age, some studies have used these functionalities to walk along con-
tiguous megabases of the genome'*"*, with others labeling up to 40
regions on single chromosomes to reveal chromosomal paths®', and
still other studies visualizing entire, or nearly entire, genomes, one
chromosome or one chromosome arm at a time'*"”. Here we dem-
onstrate how streets enable a new technology, OligoFISSEQ, which
vastly increases the number of targets that can be visualized, putting
us within reach of genome-wide imaging via the visualization of a
multitude of subchromosomal regions. As OligoFISSEQ is compat-
ible with the single-molecule localization method OligoSTORM®*'’,
it also accelerates the speed with which genomic regions can be
visualized at super-resolution.

!! capacity to view genomes in situ, in their entirety and at

OligoFISSEQ is based on FISSEQ technologies that have been
honed for in situ detection of transcripts’»” (see Supplementary
Note 2 for recent iterations and earlier studies). Here we present
three strategies that direct the sequencing to barcodes embedded
in Oligopaint streets, wherein one strategy uses sequencing by
ligation (SBL), another uses sequencing by synthesis (SBS) and a
third strategy uses sequencing by hybridization (SBH). Focusing
on OligoFISSEQ with SBL, we map 66 genomic regions in human
diploid PGP1 skin fibroblast cells (XY; PGP1f) using only four
rounds of sequencing. We next introduce a method to improve
barcode detection and, in conjunction with OligoFISSEQ, trace the
human X chromosome by mapping 46 regions along its length. We
demonstrate that OligoFISSEQ is compatible with immunofluo-
rescence (IF) and then conclude by combining OligoFISSEQ with
OligoSTORM to achieve a much accelerated rate at which multiple
genomic regions (ranging in size from tens of kilobases to mega-
bases) can be visualized simultaneously at super-resolution.

Results

leverage next-generation sequencing methods*"** to provide in situ
3D spatial maps of transcripts that have been reverse transcribed
and then amplified. As FISSEQ can also be used for in situ decod-
ing of barcodes introduced during the generation of cDNA, we
reasoned that it might be possible for FISSEQ to read barcoded

'Department of Genetics, Harvard Medical School, Boston, MA, USA. 2CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science
and Technology (BIST), Barcelona, Spain. *Wyss Institute, Harvard Medical School, Boston, MA, USA. “Department of Genome Sciences, University of
Washington, Seattle, WA, USA. *Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. ®Brotman Baty
Institute for Precision Medicine, Seattle, WA, USA. "Department of Systems Biology, Harvard Medical School, Boston, MA, USA. 8ReadCoor, Cambridge,
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University of Pennsylvania, Philadelphia, PA, USA. ®Present address: ReadCoor, Cambridge, MA, USA. “These authors contributed equally: Huy Q. Nguyen,
Shyamtanu Chattoraj, David Castillo. ®e-mail: martirenom@cnag.crg.eu; twu@genetics.med.harvard.edu
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Oligopaints. Furthermore, by targeting hundreds to thousands of
identically barcoded Oligopaints to a genomic region, the combina-
tion of Oligopaints with FISSEQ, which we call OligoFISSEQ, could
both obviate the need for target amplification, typically required by
FISSEQ, and render the targeted chromosomal structure amenable
to imaging. Finally, as FISSEQ s carried out using diffraction-limited
microscopy, we anticipated a capacity of OligoFISSEQ to image
the same genomic regions in hundreds to thousands of cells and
thus provide the computational and statistical power necessary for
addressing cell-to-cell variability.

We began by designing an Oligopaint library that targeted 18,536
oligonucleotides to a 4.8-Mb single-copy region on human chro-
mosome 19 (Chr19-20K; Extended Data Fig. 1a) and then tested
whether it could be sequenced in situ, focusing first on SBL to effect
ligation-based interrogation of targets (LIT) and then on SBS to
effect synthesis-based interrogation of targets (SIT), implement-
ing hybridization-based interrogation of targets (HIT) only later
(Fig. la-e). Importantly, as Oligopaint streets can accommodate
multiple barcodes, we were able to design a single library to accom-
modate the sequencing chemistries of both LIT and SIT, with the
primer binding site and barcode for LIT embedded on Mainstreet
(5’ end of the Oligopaint oligonucleotide) and the primer binding
site and barcode for SIT embedded on Backstreet (3’ end of the
Oligopaint oligonucleotide; Fig. 1a). We use LIT and SIT to refer
to the steps of sequencing per se, and OligoFISSEQ-LIT (O-LIT)
and OligoFISSEQ-SIT (O-SIT) to refer to the use of LIT and SIT,
respectively, in the context of OligoFISSEQ.

With O-LIT (Fig. 1c and Extended Data Fig. 1b), the barcode was
read with SOLiD chemistry”, wherein each barcode digit (defined
as the smallest unit of a barcode; five nucleotides per digit) was read
by cleavable 8-mers carrying one of four fluorophores. In brief, a
sequencing primer was hybridized to the street, and a subsequent
barcode readout began by binding of the first barcode digit by a
labeled 8-mer, which was then ligated and imaged. The 8-mer was
then cleaved between nucleotides five and six, leaving the first five
nucleotidesand removing the label, allowing the next digit to be read.
Excluding the primer binding site, barcodes were 23 nucleotides in
length and sufficient to accommodate four rounds of sequencing
((four rounds of sequencingXfive nucleotides per digit)+ three
nucleotides uncleaved after the fourth round of sequencing); when
fully utilized, four- or eight-digit barcodes have the potential to dis-
tinguish 256 (4*) or 65,536 (4°) targets, respectively. Using O-LIT on
Chr19-20K, we recovered four-digit barcodes from 92.1% +5.7% of
PGP1f cells (n =85 cells from four replicates; Fig. 1f).

In the case of O-SIT (Fig. 1d and Extended Data Fig. 1b), bar-
codes were sequenced using Illumina NextSeq chemistry* via the
extension of primers one base at a time and using only two fluo-
rophores; one fluorophore was assigned to deoxycytidine (C), the
other was assigned to deoxythymidine (T), both fluorophores were
assigned simultaneously to deoxyadenosine (A), and deoxyguano-
sine (G) was left unlabeled (Fig. 1d,f). With each digit of the bar-
code being only a single nucleotide, SIT barcodes are compact,
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with an eight-nucleotide-long barcode theoretically able to identify
65,536 targets (4°). Following the application of O-SIT to Chrl9-
20K, we recovered four-digit barcodes from 90.8% +5.6% of PGP1f
cells (n=66 cells from four replicates; Fig. 1f).

Chr19-20K can also be co-opted for HIT through SBH (Fig. 1a),
reminiscent of strategies that have enabled Oligopaints to facilitate
transcriptome profiling®*'>'*, Here, we introduce SBH for 3D spa-
tial mapping of chromosomal DNA. In particular, we implemented
OligoFISSEQ-HIT (O-HIT) by appending SBH barcodes via two
bridge oligonucleotides'*'**"**—one hybridizing to the junction
of the LIT barcode and its primer sequence on Mainstreet and the
other hybridizing to the junction of the SIT barcode and its primer
sequence on Backstreet; SBH barcodes can also be embedded
directly into the streets. As each bridge carries two 20-nucleotide
barcode positions, each position encoding one of six possible bar-
codes, the resulting 24 (4 6) barcodes had the potential to identify
1,296 (6*) targets (Fig. le). Each barcode was identified via comple-
mentary labeled secondary oligonucleotides, and thus, using three
fluorophore species, eight rounds of hybridization (8 X 3) were suf-
ficient to identify all 24 barcodes in this iteration of O-HIT, with
the option to increase target capacity through additional barcode
positions, barcode sequences and/or fluorophore species. By using
O-HIT on Chrl9-20K, we successfully recovered four-digit bar-
codes from 91.6% + 3.8% of PGP1f cells (n =79 cells from four rep-
licates; Fig. 1f and Extended Data Fig. 1b).

Mapping 66 genomic regions with O-LIT. We next assessed the
potential of OligoFISSEQ to address multiple regions on multiple
chromosomes. We chose to work with O-LIT because it is expected
to scale without the increased costs predicted to accompany the scal-
ing up of purely hybridization-based technologies, such as O-HIT,
for which the number of species of labeled oligonucleotides, and
thus their cost, would increase as the number of targets increases.
In contrast, O-LIT reagents would remain the same regardless of
whether they target one region or hundreds or thousands of regions.
Furthermore, because the five-nucleotide O-LIT barcode digits are
relatively compact, they decrease the requisite length of Oligopaint
oligonucleotides, further reducing costs. In addition, because O-LIT
delivers a positive signal at each round of sequencing, its barcod-
ing is more robust, in contrast to O-SIT and O-HIT, which contain
‘blank’ readouts.

To assess the scalability of O-LIT, we designed an Oligopaint
library (36plex-5K; Fig. 2a) targeting six regions along each of six
chromosomes: chromosome 2 (Chr2; 242Mb), Chr3 (198 Mb),
Chr5 (181 Mb), Chr16 (90 Mb), Chr19 (58 Mb) and ChrX (156 Mb),
with a unique barcode for each of the 36 targets. Thus, 36plex-5K
targeted a total of 66 regions in PGP1f cells (six targets for each of
two homologs of the five autosomes and six targets on the single
X chromosome), each represented by 5,000 Oligopaint oligonucle-
otides and, together, encompassing 31.6 Mb, with targeted regions
ranging in size between 642kb and 1.22Mb (876 kb average). We
chose gene-poor chromosomes (5.4-6.1 genes per Mb; Chr2, Chr3,

Fig. 1| Using OligoFISSEQ to seq barcoded Oligopail

in situ. a, Oligopaint oligonucleotides used for OligoFISSEQ. Portions of the LIT and SIT

primer sites and barcodes can function as binding sites for HIT bridges (e), as well as priming sites to amplify the Oligopaint library. b, OligoFISSEQ
workflow. ¢, O-LIT workflow. After the phosphorylated LIT primer (P) is hybridized, it is ligated to an 8-mer (TGNNNIII), the first two nucleotides of which
correspond to a specific fluorophore; as Oligopaint barcodes are predefined, each fluorophore corresponds to only a single barcode digit. N denotes a
mixture of A, C, T or G; | denotes deoxyinosine, a universal base. d, O-SIT workflow. SIT primers contain 3" hydroxyls (OH). A (purple) and C (green)
are conjugated to distinct fluorophores and T (gray) is conjugated to two fluorophores, with G (black) remaining unlabeled. e, O-HIT workflow. In this
iteration, two bridge oligonucleotides (asterisks) bring in four barcode positions, for each of which there are six possible barcode sequences. As each
round of hybridization brings in three fluorophore-conjugated secondary oligonucleotides, each corresponding to one barcode sequence, eight rounds of
hybridization (24 labeled oligonucleotides) are sufficient in this case to determine the sequence at each barcode position. f, Representative images after
four rounds of O-LIT, O-SIT and O-HIT using Chr19-20K on PGP1f cells. Images are representative of maximum-intensity z-projections. The first round of
SIT identified deoxyadenosine (labeled by a combination of purple and green and thus appearing white). Mean barcode detection efficiencies with s.d.
values are shown from four replicates for LIT, SIT and HIT representing 85, 66 and 79 total cells, respectively.
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Chr5 and ChrX) and gene-rich chromosomes (10.8 and 23 genes
per Mb; Chrl6 and Chr19, respectively), as well as large chromo-
somes (242 Mb; Chr2) and small chromosomes (58 Mb; Chr19). We
positioned three targets along each chromosome arm—one target
as close as possible to the telomere, one in the center of the arm and

one as close as possible to the centromere, with intertarget distances
ranging from 7 Mb to 74.9 Mb (average of 28.8 Mb). The number of
Oligopaint oligonucleotides per target (5,000) was kept constant to
assess the robustness of LIT with respect to target size and different
densities of oligonucleotide binding sites (4-7.7 binding sites per
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Fig. 2 | OligoFISSEQ-LIT on 36plex-5K. a, Chromosome numbers are color coded to correspond with images in b. Each target corresponds to a unique
barcode. b, Metaphase chromosome spreads of male lymphoblast cells (left; cells from Applied Genetics; Methods) and interphase nuclei from PGP1f
cells (right) are representative of four replicates. All six targets on any single chromosome were labeled with secondary oligonucleotides carrying

the same species (color) of fluorophore. Chr19-20K was used as a positive control in metaphase chromosome spreads. Images are representative

of maximum-intensity z-projections. ¢, Four rounds of O-LIT off both streets of 36plex-5K. Images were deconvolved and represent five-color

merged maximum-intensity z-projections; n=1.d, 3D representation of the field of view (FOV) containing three cells sequenced with four rounds

of O-LIT. Sequencing rounds are represented on the z axis, with the first round being closest to the DAPI-determined nuclear outline (black). The
maximume-intensity z-projection of the sequencing signal from each round was taken, duplicated (a total of two images for better visualization) and then

stacked on top of each other. The lower left cell corresponds to the cell in c.

kb, average of 5.8). In addition, because all 36plex-5K Oligopaint
oligonucleotides targeting the same chromosome shared the same
reverse primer sequence, it was possible to use indirect labeling to
produce a six-banded pattern along all targeted chromosomes in
metaphase and distinctly colored territories in interphase cells (Fig.
2b). This outcome confirmed the accuracy of the library.

An every-pixel automated analysis pipeline. To improve tar-
get detection, we sequenced simultaneously off Mainstreet and
Backstreet (Fig. 2¢,d and Extended Data Fig. 1c—f), which, in the
case of 36plex-5K, carried the same barcode. Indeed, this strat-
egy identified 100% of the 66 targeted regions in PGPIf cells via
manual decoding (n=2 from two replicates; Extended Data Fig.
1f). However, as manual decoding does not scale well, we devel-
oped an automated pipeline to address a range of signal intensi-
ties and sizes by interrogating every pixel individually (Fig. 3a); a
centroid-based pipeline did not perform as well as the every-pixel
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pipeline (29.93% +4.9% versus 62.8% +4.8%, n=111 cells from
three replicates; Extended Data Fig. 1g).

The every-pixel pipeline detected 95% +5.15% of 36plex-5K tar-
geted regions but with many false positives (FPs; 574.86 + 325.38 FPs
per nucleus; n=611 cells from 15 replicates; Extended Data Fig. 2a,b).
Thus, we developed a two-tier system (Fig. 3a) in which tier 1 fil-
tered out pixels below a minimum signal intensity and/or patch size,
reducing FPs 165-fold (3.49+ 1.36 FPs per nucleus; 5.29% +2.06%)
while detecting 62.2% +6.68% of the targeted regions (~41/66) in
each nucleus (n=611 cells from 15 replicates; Extended Data Fig.
2¢,d). In tier 2, the requirements for pixel intensity and patch size
were lowered, after which barcode subsampling was applied, and all
newly detected signals from the same chromosome were required
to be within 4.5 pum of tier 1 detected regions. This proximity-based
filtering reflects the propensity of chromosomes to occupy distinct
territories’, as well as measurements of distances between consecu-
tive tier 1 regions along a chromosome (Methods; Supplementary
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Fig. 3 | Every-pixel analysis pipeline on 36plex-5K. a, Sequencing rounds (step 1) were analyzed at the level of individual pixels using tier 1 parameters
with thresholds for signal intensity and pixel patch size (step 2), and pixel patches were then decoded (step 3). Missing targets and FPs were filtered by
reanalyzing images with tier 2 parameters (step 4) to produce traces (step 5). Tier 2 decreased the thresholds for signal intensity and pixel patch size,
subsampled barcodes and applied filters for chromosome territories. Barcodes and color codes were designated as follows: 1, FITC; 2, Cy3; 3, TxRed; 4,
Cy5. b, Tier 2 detection efficiency of 36plex-5K after sequencing off both streets; 80.2% + 7.3% of targeted regions were detected in 611 cells from 15
replicates. ¢, Detection efficiencies from individual replicates are shown, with chromosomal targets on the x axis. The dashed red line marks the mean
of all chromosomal targets. 3gR3 and 5pR3 shared a barcode and were not included. Error bars represent the 95% bootstrap confidence interval (CI)
of the mean. ¢, Chromosome traces of Fig. 2c nucleus after tier 2. In total, 64 of 66 (97%) targeted regions were detected; n=1. d, Ball-and-stick traces
of the nucleus referred to in ¢. Colored spheres represent targets; black spheres represent undetected targets and were positioned by calculating the
median proportionate distance between flanking detected spheres. Gray lines between signals denote extrapolations. The asterisks mark the beginning
of chromosomes. e, Single-cell pairwise spatial distance matrix after tier 2 detection of the nucleus referred to in b. Homologs are displayed separately.
Centroids of targets were used for this and all subsequent spatial distance matrices. Gray lines denote undetected targets. f, 36plex-5K population
pairwise spatial distance measurements after tier 1detection (n=611 cells from 15 replicates). Homologous target measurements were combined.

Fig. 1), although in the context of chromosome rearrangements it ~ at least 70% (~46/66) of targeted regions recovered in ~70% of cells
would need to be modified. Tier 2 eliminated all FPs while detect-  (Fig. 3b and Extended Data Fig. 2e-g). The centroids of all detected
ing 80.2%+7.3% (~52/66) of targeted regions in each nucleus with  targets were then conceptually connected to produce ball-and-stick
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Fig. 4 | Improving O-LIT by using JEB. a, Design of Oligopaint oligonucleotides that use eLIT (left) and JEB-labeled 8-mers complementary to the
five-nucleotide eLIT barcode digit (right). eLIT is compatible with a variety of barcode configurations; our strategy used barcodes consisting of five

digits each, in which each digit was one of only four distinct five-nucleotide sequences. To further reduce the complexity of the pool of eight-nucleotide
oligonucleotides, we also used deoxyinosine® in positions 6, 7 and 8. In short, JEB technology reduced the pool of labeled oligonucleotides from 1,024 to
four (Extended Data Fig. 5a,b). b, eLIT workflow with JEB. ¢, Five rounds of sequencing with O-eLIT. PGP1f cells after the first round of sequencing (cropped
field of view) and images from five rounds (1-5) of sequencing of one nucleus (inset). Extranuclear puncta are fiducial TetraSpeck beads (Thermo Fisher).

Images are deconvolved maximume-intensity z-projections;

n=1.d, Tier 2 target detection efficiency of 36plex-1K after five rounds of O-LIT with SOLID

reagents (orange; average of 54.6%; n=41) or O-eLIT with JEB (blue; average of 74% +11.2%; n=440 from nine replicates). Detection efficiencies
from individual replicates are plotted. Error bars represent the 95% bootstrap Cl of the mean. e, First O-eLIT round of 129-plex (top; deconvolved
maximum-intensity z projection; n=1). Tier 2 tracings (middle; white spheres are tier 1duplicated barcodes that did not move to tier 2, with untraced
chromosomes boxed in color key). Sticks color-coded to facilitate visualization (bottom). Oligonucleotide target density was 5.8 to 11.9 per kb.

renditions of chromosomes, with undetected targets positioned by
calculating the median distance between flanking centroids (Fig.
3¢,d); ball-and-stick strategies have been used in other studies to
trace chromosome paths and are useful when assessing chromosome
structure and positioning™'*'”***!, Note that targets 3qR3 and 5pR3,
which were designed to share barcodes, were both detected at 69%
efficiency, boding well for the consistency and robustness of barcode
recovery. Similarly, 15 replicates using PGPIf cells produced simi-
lar ranges of barcode recovery, with no remarkable batch effects as
shown in the principal-component analysis (Extended Data Fig. 2h).

Development of eLIT to interrogate fine-scale genome organi-
zation. O-LIT mapping of 36plex-5K revealed the paths of all six
chromosomes (Fig. 3¢c,d and Extended Data Fig. 3a,b), producing
single-cell spatial genomics data (Fig. 3e,f and Extended Data Fig.
3c-e) that align with previous studies and thus argue the potential
of OligoFISSEQ to be informative. First, the chromosomes fell into
different territories’, with the smaller chromosomes (Chrl6 and
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Chr19) and larger chromosomes (Chr2, Chr3, Chr5 and ChrX)
positioned toward the center and periphery of the nucleus, respec-
tively (Extended Data Fig. 3f), in line with observations of a radial
positioning of chromosomes that places smaller chromosomes
more centrally>”. Consistent with this, median inter-homolog dis-
tances for the smaller chromosomes were less than those for the
larger chromosomes across hundreds of cells (Extended Data Fig.
4a; P=4.3x107"). These robust sample sizes also enabled consid-
eration of suggestions that diploid genomes can, under some cir-
cumstances, separate into two spatially distinct haploid sets™*.
Here, cluster analyses of 36plex-5K maps revealed that the five tar-
geted PGP1f autosomes spatially separated into two haploid sets in
6.9% (18/258) of cells (Extended Data Fig. 4b—e), which, however,
was statistically similar to proportions expected from randomized
controls (5% and 5.4% for directed random and completely ran-
dom). While definitive descriptions await the analysis of complete
genomes, this observation, compounded with studies of homolog
pairing and anti-pairing’, highlights the possibility that it is in
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Fig. 5 | Tracing 46 regions along the X chromosome. a, Targets of ChrX-46plex-2K and nuclei after the first round of O-eLIT sequencing off both streets

in PGP1f cells. Images are from deconvolved maximum-intensity z-projections. n=1. b, Five rounds of sequencing with O-eLIT off both streets; nucleus
from a (yellow square). DAPI-stained nucleus after the first round of sequencing (left). T, totality of targets labeled simultaneously with a secondary
oligonucleotide complementary to a barcode present on all oligonucleotides. Images are from deconvolved maximum-intensity z-projections; n=1. ¢, Tier
2 target detection efficiency after five rounds of O-eLIT off both streets in PGP1f cells. The mean detection efficiency (red dashed line) was 74.29% + 2.5%
(n=177 from seven replicates), and the average detection efficiency off one street was 73.7% + 2.97% (n =122 from five replicates) and off both streets
was 75.3% +1.97% (n=>55 from two replicates). Detection efficiencies from individual replicates are plotted. Error bars represent the 95% bootstrap Cl

of the mean. d,e, Chromosome traces (d) and 3D visualization (e) of the nucleus from b after tier 2 analysis and interpolation of missing targets. Sphere
color corresponds to chromosome cartoon in a; n=1. f, Single-cell pairwise spatial distances after interpolation of missing targets from the nucleusinb. g,
Population pairwise spatial distances (n=177 from seven replicates) after tier 1 detection (combining reads off Mainstreet with reads off both streets).

cell types that do not segregate the genome into haploid sets that for homologous chromosomes (Fig. 3f). The comparison of this
inter-homolog interactions will prevail. matrix to a Hi-C map of PGPIf cells" revealed a strong correla-

We also aggregated single-cell 36plex-5K data from 611 cells to  tion (r=0.705, P=1.77 X 10-""%; Extended Data Fig. 3e), once more
produce an average distance matrix, but this time combining data  indicating the robustness of O-LIT. Nevertheless, the matrices also
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differed, with O-LIT producing subchromosomal stripes of greater
or lesser distance, and the Hi-C matrix being more mottled. While
stripes may reflect discontinuities along a chromosome, they may
also suggest chromosome-specific””' and interchromosome-specific
signatures. For example, chromosomal regions that are overall fur-
ther from other regions may be relatively more buried within a
chromosome territory or nearer the nuclear membrane, while chro-
mosomal regions that are closer to other regions may be nearer to
the surface of chromosomal territories or less constrained to the
nuclear membrane. As for the mottled appearance of the Hi-C
matrix, it suggests that, at the scale of whole chromosomes, distances
on the order of microns may not always correlate with interaction
frequencies and distances amenable to Hi-C; indeed, an absence of
correlation may indicate that proximity and interaction are distinct
features. Thus, O-LIT matrices of distance and Hi-C matrices of
interaction frequency may, together, provide layers of information
that neither matrix alone can provide.

We next refined O-LIT so that it could target smaller genomic
regions, as well as trace chromosomes at higher genomic resolution.
However, because the commercial production of SOLIiD reagents
was discontinued at this juncture in our studies, we focused first
on developing an alternative to the SOLiD reagents, the outcome
of which was a method that ultimately improved signal detection.
SOLIiD chemistry reads sequences as dinucleotides using labeled
eight-nucleotide oligonucleotides (TGNNNIII, where the first two
positions represent all 16 dinucleotide combinations, positions 3-5
are degenerate and positions 6-8 are universal), thus entailing 1,024
(16 x4%) oligonucleotide species®. Because this level of complexity
is excessive for O-LIT, where barcodes are defined by the user, we
aimed to reduce the complexity of the oligonucleotide pool to the
minimum necessary for decoding O-LIT barcodes, reasoning fur-
ther that a minimally complex oligonucleotide pool might increase
signal over background measurements. Thus, taking advantage of
the universal base deoxyinosine”, we reduced the complexity of
the oligonucleotide pool from 1,024 to 4, referring to this strategy
as ‘just enough barcodes’ (JEB) and the LIT chemistry using this
strategy as eLIT (Fig. 4a,b). Application of OligoFISSEQ using eLIT
(O-€LIT) to a library targeting 9,267 Oligopaint oligonucleotides to
Chr19 (Chr19-9K) proved successful, yielding a 3.3-fold brighter
signal-to-nuclear-background ratio as compared to the application
of LIT to the same library using SOLiD oligonucleotides (n=55
cells for SOLID and 57 cells for JEB from two replicates; Extended
Data Fig. 5a,b).

Anticipating that the improved signal-to-nuclear background
ratio would improve genomic resolution, we generated a library
identifying smaller genomic regions (average of 173 kb) by directing
Oligopaint oligonucleotides to only the first 1,000 of the 5,000 oligo-
nucleotide targets defined by 36plex-5K for each designated genomic
region (Extended Data Fig. 5¢). Then, to benchmark this library,
called 36plex-1K, against 36plex-5K, we adopted the same barcodes
for 35 of 36 targets, with the exception being 5pR3, which was given
anew barcode; 5pR3 had previously shared a barcode with 3qR3 to
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enable assessment of barcode detection across different regions. Five
rounds of O-eLIT using only Mainstreet of 36plex-1K yielded a tier
2 barcode recovery efficiency of 74% + 11.2% (48 of 66; n=440 cells
from nine replicates), which was higher than that obtained with five
rounds of O-LIT (54.6%, n=41; Fig. 4c,d and Extended Data Fig.
5¢,d). O-eLIT of 36plex-1K gave homolog-resolved data (Extended
Data Fig. 5e-i). These findings argued that O-eLIT would be useful
genome wide. We recently imaged 249 regions with a genome-wide
library (129plex) corresponding to 129 100-kb targets spanning
all the autosomes (120 targets), ChrX (6 targets) and ChrY (3 tar-
gets). Five rounds of sequencing confirmed genome-wide capacity
(Methods); although inadvertent barcode duplications complicated
analyses, tier 2 can nevertheless detect 95% (165 of 174) of unique
barcodes, while tier 1 can detect 44% (33 of 75) of duplicated bar-
codes (Fig. 4e and Supplementary Table 12).

Fine ChrX tracing and suggestions of chromosome signatures.
To test the potential of O-eLIT to achieve finer genomic resolu-
tion, we applied an Oligopaint library, ChrX-46plex-2K, targeting
2,000 oligonucleotides to each of the 46 regions along the human
X chromosome, the number of targets aligning with a previous
study that used a hybridization-based Oligopaint strategy to image
40 regions of this chromosome’. The targets ranged in size from
253kb to 1.22Mb (average of 445kb), with an average distance
between targets of 2.75 Mb and total coverage of 20.6 Mb or 13.3%
of the chromosome (Fig. 5a). As such, ChrX-46plex-2K served as
an informative proxy for assessing the capacity of OligoFISSEQ
to accommodate all other chromosomes. Here we applied O-eLIT
to both streets and achieved a tier 2 barcode recovery effi-
ciency of 74.3% +2.5% in PGPIf cells (~34/46 targeted regions,
n=177 from seven replicates; Supplementary Fig. 2, Fig. 5b,c
and Extended Data Fig. 6a,b), interpolating the positions of any
target that had escaped detection (Methods). Although three tar-
gets were difficult to recover (X15, X19 and X31), the quality of
the data nevertheless permitted 176 traces spanning the entirety
of the X chromosome, single-cell spatial distance matrices and a
population-based spatial distance matrix that was strongly corre-
lated with a corresponding Hi-C map (r=0.641, P=7.074 X 1072%)
and inversely correlated with Hi-C interaction frequencies
(r=-0.84, P=5.08 X 10-%%), the latter producing an exponential
factor of 0.18 (Fig. 5d-g and Extended Data Fig. 6c—j), similarly to
that observed previously’. Furthermore, the chromosome traces
revealed two major clusters (Extended Data Fig. 7a-c; Calinski-
Harabasz index of 213.71) that differed in their radii of gyration
(t=-10.1; P=3.9x 10~"; Extended Data Fig. 7d), one cluster con-
sisting of 20 chromosomes (11%) and the other comprising 156
(89%) chromosomes. While the basis for this heterogeneity will
require additional study, whether it is the cell cycle, chromatin
accessibility and/or overall chromosome activity, these findings
emphasize the potential of O-eLIT to advance understanding of
the manner in which chromosomal material can be packaged and
whether that packaging correlates with function.

Fig. 6 | OligoFISSEQ ext and

pp a, O-eLIT detection of single-gene targets after sequencing off both streets. Colored squares mark gene

targets identified after five rounds of sequencing. Values reflect the percentage of targets detected out of 11 (5 autosomal genes x 2, in addition to DXZ4
on ChrX). Images are from deconvolved maximum-intensity z-projections and are representative of two replicates. b, Tier 1target detection efficiency
from the experiment in a (n=61 cells from two replicates). Tier 2 is inapplicable due to a lack of targets from the same chromosome. Detection efficiencies
from individual replicates are plotted. Error bars represent the 95% bootstrap Cl of the mean. ¢, Combining O-LIT and IF. 36plex-5K was sequenced for
four rounds with O-LIT off both streets, followed by IF and staining with wheat germ agglutinin (WGA). Images are from deconvolved maximum-intensity
z-projections with chromosome traces overlaid. n=1. d, 36plex-5K was hybridized to PGP1f cells and imaged with one round of OligoSTORM (2 h) to
visualize all 66 regions simultaneously, followed by four rounds of O-LIT (2-3 h per round) to decode targets. OligoSTORM image showing the entire FOV
with all unidentified targets (top left). Micrograph from the first round of O-LIT; image from deconvolved maximum-intensity z-projection (bottom left).
All six chromosomes were identified and arrayed, in super-resolution, around the central nucleus (right; central image decorated with colored squares,
color coded by chromosome). All 66 regions except for one region on Chr16 were detected and identified by O-LIT, with one homolog of Chr3 (asterisk)
not captured by OligoSTORM because it fell outside the FOV. All scale bars for OligoSTORM images represent Tum.
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Oligopaint libraries 36plex-5K and 36plex-1K have also enabled
analyses of chromosome folding. Combining the two datasets (for
36plex-5K, n=611 cells from 15 replicates; for 36plex-1K, n=440
cells from 9 replicates), we evaluated the angles formed by the chro-
mosomal segments flanking the centromeres (Extended Data Fig. 8a)
and observed that only a minority, if any, of the chromosomes
extend their p and q arms in polar opposite directions or are folded

MMP2: 297 oligonucleotides, 27 kb

DXZ4: 617 oligonucleotides, 136 kb

NATURE METHODS

into a hairpin; median values for the angles ranged from 74° to 94°
(Extended Data Fig. 8b,c). Furthermore, assessment of the angles
formed by the two contiguous chromosomal segments lying within
each arm (Extended Data Fig. 8a) showed that the p and q arm
angles were significantly different for Chr2, Chr3, Chr16 and Chr19
(n=686, 668, 586 and 760, respectively; P=4.15x10""%, 0.004,
1.36 X 10~ and 3.33 X 10~"", respectively; Extended Data Fig. 8c). As
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the larger angle was associated with the p (shorter) arm of Chr2 and
Chr19 and with the q (longer) arm of Chr3 and Chr16, these find-
ings cannot be explained solely by relative arm lengths. Consistent
with this, arm angle and arm length were not significantly correlated
(r=0.26, P=0.42; Extended Data Fig. 8d), leaving open the possi-
bility that arm angles reflect the impact of centromere structure on
flanking genomic regions and/or interdependence of the p and q
arms, the constraints of chromosomal territories or other intrinsic
organizational principles, Rabl configurations resulting from the
last cell division and/or the state of gene activity, such as accessi-
bilities underlying allelic skewing. Regardless of the reasons, these
observations of X-chromosome conformations (Extended Data Fig.
7a-d) and arm angles (Extended Data Fig. 8a-d) demonstrate the
potential of chromosome-wide imaging to address whether there
are chromosome-level structural signatures, such as may be indica-
tive of cell type, cell state and/or cellular health or age, with evi-
dence from a recent study of two chromosomes in Caenorhabditis
elegans aligning with these possibilities’’. Chromosome organiza-
tion may also reflect the evolutionary history of a chromosome**.
The capacity of OligoFISSEQ to generate large datasets will facilitate
the study of these potential paradigms of genome organization.

Single-geneidentification, IFand acceleration of super-resolution
imaging. OligoFISSEQ has proven versatile, capable of imaging
single regions in the size range of tens of kilobases and accom-
modating IF, as well as accelerating super-resolution imaging
(Fig. 6a,d, Extended Data Figs. 9a,b and 10a,b and Supplementary
Fig. 4a). With respect to single regions, we applied O-eLIT to six
genes ranging in size from 11kb to 136 kb (Fig. 6a,b): HES5 (11kb,
Chrl), MMP2 (27kb, Chr16), FL11 (39kb, Chrl1), ABL (45kb,
Chr9), BCR (100kb, Chr22) and DXZ4 (136 kb, ChrX). Detection
of the larger targets hovered between 43% and 80%, reaching as
high as 83.7%+4.38% for ABL (n=61 cells from two replicates;
Fig. 6b), and although detection of the smallest target HES5 was
low (9.82% + 3.79%), with the incorporation of amplification strat-
egies™’* we expect that detection of targets as small as, or even
smaller than, HES5 should become robust. Regarding IF, we con-
ducted four rounds of O-LIT using 36plex-5K and sequencing off
both streets, followed by immunocytochemical detection of anti-
bodies directed against a-tubulin, GAPDH and TOMM20, and
we were able to trace all six chromosomes, as well as obtain strong
signals for all three proteins (Fig. 6c and Extended Data Fig. 10a).
We have also applied ChrX-46plex-2K to IMR-90 human fibroblast
cells (XX) and then distinguished the active X (Xa) from the inac-
tive X (Xi) chromosome through IF to macroH2A.1, which pref-
erentially binds the latter (Extended Data Fig. 9a-1). Xi displayed
a lower radius of gyration (P=9.07 x 10-% Extended Data Fig. h)
and megadomain structures (Extended Data Fig. 9k,1), consistent
with Hi-C and FISH studies””-** and further validating the use of
O-eLIT for high-resolution chromosome tracing. Taken together,
these findings confirm the potential of OligoFISSEQ to enable dis-
coveries regarding the genome-wide spatial relationship between
genes and their epigenetic partners.

Lastly, we demonstrated the capacity of OligoFISSEQ to
improve the speed with which genomic regions can be imaged
using single-molecule localization microscopy. Here we focused on
OligoSTORM™', which combines Oligopaints® with stochastic opti-
cal reconstruction microscopy*, to provide super-resolution images
of genomic regions in a space-filling fashion and thus reveal detailed
volumetric structures®'>'*', The throughput of OligoSTORM,
however, hovers at ten to a few hundred cells per experiment, with
imaging times of up to 2h. In contrast, because OligoFISSEQ can
be carried out with diffraction-limited microscopy; it has the capac-
ity to image hundreds to thousands of cells per experiment, with
relatively negligible imaging times. Thus, we explored the possibil-
ity of accelerating super-resolution genome imaging by combining
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O-LIT with OligoSTORM (Fig. 6d, Extended Data Fig. 10b and
Supplementary Fig. 4a).

First, using 36plex-5K and bridge oligonucleotides containing bind-
ing sites for secondary oligonucleotides conjugated with a fluorophore
suitable for OligoSTORM (Alexa Fluor 647), we captured all 66 targets
simultaneously in a single 2-h round of OligoSTORM (Fig. 6d and
Extended Data Fig. 10b; see also Chr2-6plex in Supplementary Fig.
4a). Then, with only four rounds of O-LIT, we identified all 66 regions.
Thus, by combining OligoSTORM with OligoFISSEQ, we enabled a
36-fold reduction in imaging time and data storage demands (from
~2.73TB to ~76 GB; Fig. 6d), while achieving 17nm+5nm of lateral
precision and 50 nm +10nm of axial precision, and 40 nm+5nm of
lateral resolution and 60 nm+5nm of axial resolution. Extrapolating
to all 46 chromosomes of a diploid human nucleus and anticipating
many more than six targets per chromosome, this study demon-
strates the feasibility of simultaneously ‘OligoSTORMing’ hundreds
of regions of the genome. O-LIT should also permit OligoSTORM
walking along the genome, with many walks per nucleus. Previously,
we accomplished multi-walk imaging through temporal barcoding'.
Here, multiple rounds of OligoSTORM could produce super-resolved
walks in multiple regions of the genome, simultaneously, after which
all regions could be identified with O-LIT. In summary, given the
potential of O-LIT to identify hundreds to perhaps thousands of
regions, OligoSTORM should scale similarly.

Discussion

There is a growing need for methods that will enable the imaging of
entire genomes at high genomic and optical resolution while also sup-
porting the levels of throughput and reproducibility that are becom-
ing increasingly essential for understanding biological entities as
dynamic as the genome. To this end, we have described OligoFISSEQ,
a set of three methods for in situ genome mapping, demonstrat-
ing the potential of these methods to scale toward whole-genome
imaging. OligoFISSEQ also has the capacity to meld with other tech-
nologies and thus extend its usefulness further. For example, when
combined with homolog-specific Oligopaints (HOPs), it should
enable genome-wide studies in the context of parent-of-origin and,
with adjustments to the barcodes, OligoFISSEQ could also enable
multiplexed and/or multicolor visualization of chromosome folding
in combination with other technologies, such as OligopDNA-PAINT®,
Hi-M'"” and optical reconstruction of chromatin architecture (ORCA;
ref. »°). In terms of scaling, our capacity to map 46 regions on ChrX
at ~1 genomic target per 2.75Mb predicts that OligoFISSEQ could
accommodate a thousand or more targets in human nuclei, with
the potential to increase that number through a reduction in target
size, temporal barcoding to better resolve targets, additional rounds
of sequencing and incorporation of expansion microscopy™; pre-
liminary studies show that Chr19-9K can support eight rounds of
O-LIT (Extended Data Fig. 10c) and that OligoFISSEQ is feasible in
the context of hydrogels (Extended Data Fig. 10d,e). Scaling could
also be enhanced via microfluidics, which would significantly reduce
the time required for each round of sequencing by 15-20%. Indeed,
with the advent of improved enzymatics, methods for amplify-
ing signal (for example, SABER* and ClampFISH*) and superior
imaging, OligoFISSEQ should become applicable to the study of
smaller targets, such as enhancers and promoters. As important will
be improvements in image analysis. For example, implementation
of point spread function-fitting algorithms should improve spatial
resolution and thus scalability*, while a reduction in the dependence
on the proximity of signals to affirm true signal would permit bet-
ter detection of chromosome rearrangements, where targets that are
expected to be near each other are instead widely separated. Finally,
OligoFISSEQ should interface beautifully with other FISSEQ-based
technologies to achieve multi-omic views of the genome, with
each round of sequencing visualizing DNA, RNA*** and protein®’
simultaneously.
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We note that, as OligoFISSEQ has the capacity for significant
genome coverage and the potential to consistently identify the same
targets across thousands of cells, it is well suited for studying variabil-
ity ata handful of regions as well as addressing this challenging topic
at the level of the entire genome. Structural variability of specific
genomic features has now been widely observed””!"!»! 4161720214549
and, while often thought of locally, the impact of this structural
variability may reach globally'". Even a minor, seemingly inconse-
quential change in one part of the nucleus may have a profound
‘butterfly effect’ (ref. *°) on the global scale, with its impact poten-
tially contributing to and/or propagating gene regulatory states and
phase separations, perhaps even constituting essential, potentially
heritable signatures of the genome. Thus, although variability may
appear random at the local level, a genome-wide perspective may
reveal that apparent randomness actually reflects global responsive-
ness and an exquisitely controlled regulatory program that directs
structural conformations across the entire nucleus, as much the out-
come of evolution as any other honed genetic function.
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Methods

Materials. Lists of reagents and catalog numbers (Supplementary Table 1),
oligonucleotide sequences (Supplementary Tables 2-8 and 16) and library
information such as coordinates, barcodes and density (Supplementary Table 12)
are presented as supplementary information.

Oligopaint library design. All Oligopaint oligonucleotide sequences and
coordinates for libraries used in this study can be found in Supplementary Tables
2-6. Oligopaints® leverages the ability to computationally design and synthesize
sequence-specific oligonucleotide probes for FISH* (see Supplementary Note 1 for
additional examples). Oligopaint FISH probes were computationally designed for
optimal hybridization and high specificity. Oligopaint genome-binding sequences
were obtained from the Oligopaints website (https://oligopaints.hms.harvard.
edu/; ref. *'), using the hg19 genome with ‘Balanced’ settings. 129plex sequences
were obtained using OligoMiner on soft-masked hg38 sequence using a Tm
window of 42-47°C and a length range of 30-37 nucleotides*’. Genome homology
sequences of other libraries ranged from 35-41 nucleotides. Universal forward-
and reverse-priming sequences were appended to each Oligopaint oligonucleotide
using OligoLEGO (https://github.com/gnir/OligoLego/), allowing the libraries to
be PCR amplified and renewable. The universal priming sequences also served as
various OligoFISSEQ primer and bridge sites. Each library used in this study was
designed with specific features and is described in detail in the supplementary file
specific for each set.

LIT. For the Chr19-20K library, a portion of the universal forward-priming
sequence was used as the LIT primer binding site, followed by the LIT barcode.
Barcode and color-code designation was as follows: 4, Cy5/Alexa Fluor 647; 3,
TxRd; 2, Cy3; 1, FITC/Alexa Fluor 488.

The 36plex-5K library shared the same universal forward-priming sequence
among all oligonucleotides and contained chromosome-specific universal
reverse-priming sequences. Individual chromosome targets could be amplified,
hybridized and detected by using the universal reverse-priming sequence.
Universal forward-priming sequences were used as LIT primer binding sites for
18-nucleotide primers. In cases where O-LIT was performed off both Mainstreet
and Backstreet, a LIT primer binding site was hybridized to the Backstreet.
Barcodes were specified using sequences from OligoLego (https://github.com/
gnir/OligoLego/). Candidate barcode sequences were decoded to reveal color
codes using a MATLAB script (https://www.mathworks.com/). To maintain
color-code diversity between neighboring targets, barcodes were manually assigned
to targets (for example, barcodes were specified so that neighboring targets
would have different colors in the first round). Each LIT barcode digit required a
five-nucleotide sequence, while the last barcode digit required eight nucleotides
to allow adequate space for 8-mer binding. Thus, a four-digit barcode required 23
nucleotides in total. For 36plex-5K, the targets 3qR3 and 5pR2 contained the same
barcode sequences to assess barcode recovery from separate genomic targets.

JEB/O-eLIT barcodes. The 36plex-1K library selected a subregion of 36plex-
5K targets, with 1,000 Oligopaint oligonucleotides per target instead of 5,000
oligonucleotides. Additionally, 36plex-1K targets contained JEB-compatible
barcode digits. The 36plex-1K targets contained the same barcode digit color
coding as for 36plex-5K, with the exception of 5pR3. 36plex-1K could only be
sequenced using Mainstreet and not both streets.

The ChrX-46plex library was designed to span the entire human X
chromosome with 2,000 Oligopaint oligonucleotides per target. The library was
divided into two sublibraries, ChrX-23plex-odd and ChrX-23plex-even, with each
sublibrary targeting either odd (X1, X3, X5, ...) or even (X2, X4, X6, ...) targets.
Each sublibrary contained the same universal forward-priming sequences and
different universal reverse-priming sequences. ChrX-46plex barcodes contained
JEB digits and were also manually assigned to maintain color-code diversity
between neighboring targets. ChrX-46plex is compatible with sequencing
off both streets.

The six-gene library shared the same universal forward-priming sequence and
different universal reverse-priming sequences. Barcodes were manually specified
using JEB digits. The six-gene library is compatible with sequencing off both
streets.

The 129plex genome-wide library aims at imaging each chromosome arm
of the human genome using OligopFISSEQ. We selected the regions based on
the density of Oligopaint oligonucleotides that could be targeted (average, 8.6
oligonucleotide targets per kb) and position on the chromosome arm. First,
using a custom-curated R script, we used a sliding window of 100kb along all
chromosomes to calculate oligonucleotide target densities. Then, wherever
possible, we selected three regions for each chromosome arm: one near the
telomere, another near the centromere, and a third more centrally located, selecting
regions where the density of oligonucleotide targets would be above 6 perkb.

For some chromosome arms, we selected fewer than three regions owing to the
constraints of oligonucleotide target density. Each region corresponded to a
5-digit barcode. The 129plex was sequenced off both streets. Due to 21
inadvertently duplicated barcodes, 42 of the targets could not be assigned
(Supplementary Table 12).
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SIT barcode. For the Chr19-20K library, the universal reverse-priming sequence
was used as the SIT primer binding site, followed by the SIT barcode sequence.
Barcode and color-code designation was as follows: 4, Cy5; 3, Cy5+ Cy3; 2, Cy3; 1,
blank. For 36plex-1K, the universal reverse-priming sequence was used as the SIT
primer binding site, followed by SIT barcodes. Target color coding was designed to
be the same as for 36plex-5K but with SIT reagents.

HIT barcode. For the Chr19-20K library, bridging oligonucleotides (HIT bridges)
were designed to hybridize to Mainstreet and Backstreet. HIT bridges contained
binding sites for HIT readout oligonucleotides. HIT readout oligonucleotide
sequences were derived from OligoLego. Barcode and color-code designation was
as follows: 0, blank; 1, Alexa Fluor 647/Cy5; 2, Cy3B/Cy3; 3, FAM/Alexa Fluor 488.

For the 36plex-5K library, HIT bridges were designed to hybridize to
street-specific sequences for each target. This was done by designing bridges
flanking universal priming sites (forward and reverse), as well as the 5’ or 3’ ends
of LIT barcodes, due to similar LIT barcodes being present on both streets. HIT
bridges contained binding sites for HIT readout oligonucleotides derived from
OligoLego.

Oligopaint probe synthesis. Oligopaint oligonucleotides were purchased

as single-stranded oligonucleotide pools from CustomArray (http://www.
customarrayinc.com/oligos_main.htm/) or Twist Bioscience (https://www.
twistbioscience.com/) in 12,000 and 92,000 chip formats. Oligonucleotide

pools were amplified as previously described'*'* with minor modifications (a
step-by-step protocol can be found in Supplementary Protocol 1). Briefly, PCR
conditions for each library and sublibrary were optimized using real-time PCR

to obtain optimal template concentration, primer concentration and annealing
temperature. Next, libraries were linearly amplified with low-cycle PCR using Kapa
Taq reagents. dSDNA PCR products were purified using Zymo columns and eluted
with ultra-pure water (UPW). T7 RNA promoter sequence was then appended to
Oligopaints using REV primers containing the T7RNAP on the 5’ end. Note that
some users may opt to add the T7RNAP straight from the raw library. dSDNA PCR
products were purified using Zymo columns and eluted with UPW. PCR products
were then in vitro transcribed using HiScribe (NEB, E2040S) overnight at 37°C to
make RNA.

RNA products were reverse transcribed with Thermo Maxima H Minus
Reverse Transcriptase (Thermo Fisher, EP0753) to make cDNA. RNA was then
digested to leave single-standed DNA. This product was purified using Zymo
columns. Final single-standed DNA Oligopaint oligonucleotides were resuspended
at 100 puM in UPW and stored at —20°C until use. Linear PCR, touched-up PCR
and single-standed DNA Oligopaint oligonucleotides were quality checked by
running on 2% agarose DNA gels to confirm single bands were migrating at the
expected sizes during synthesis.

Other oligonucleotides. Sequences for all other oligonucleotides can be found

in Supplementary Tables 7 and 8. Primers, secondary fluorophore-labeled
oligonucleotides, LIT sequencing primers, SIT sequencing primers, JEB
oligonucleotides and molecular inversion probes were purchased from IDT
(https://www.idtdna.com/). HIT secondary oligonucleotides were purchased from
Bio-Synthesis (https://www.biosyn.com/). Alexa Fluor 405 activator fluorophore
was purchased from Thermo Fisher (https://www.thermofisher.com/).

Cell culture. Our study used two human cell lines: PGP1f and IMR-90. PGP1f cells
are primary human fibroblasts taken from the PGP1 male donor from the personal
Genome Project (Coriell, GM23248; ref. **). They were previously found to be of
normal karyotype'**. PGP1f cells were cultured in DMEM (Gibco) supplemented
with 10% FBS (Thermo Fisher; A3160401), 1X penicillin-streptomycin (Thermo
Fisher, 15140122) and 1X nonessential amino acids (Thermo Fisher, 11140050).
PGPIf cells were cultured for no more than five passages before thawing new
cultures. IMR-90 cells were cultured in DMEM supplemented with 10% FBS and
1x penicillin-streptomycin. Cells were cultured at 37°C in a 5% CO, incubator.

Sample preparation for OligoFISSEQ. Ibidi Sticky Slide VI (https://ibidi.com/,
80608) was used for all experiments except for metaphase spreads (Fig. 2b) and
hydrogels (Extended Data Fig. 10d,e). Ibidi slides were assembled and allowed

to cure overnight at 37°C before use. Each well required 100-200ul of reagent,
and we generally designated one hole as the inlet and the other hole as the outlet.
PGP1f cells from ~70% confluent 10-cm dishes were detached from the dishes
using 1 ml of trypsin (Thermo Fisher, 25-200-056), neutralized with 2-3ml of
fresh medium. Next, 100 pl of cells in suspension was added to each Ibidi well and
allowed to adhere and recover overnight at 37°C in an incubator. The following
day, the medium was aspirated and cells were washed with 1x PBS and fixed for
10min with 4% formaldehyde (Electron Microscopy Sciences, 15710) in a final
concentration of 1X PBS (Thermo Fisher, 10010-023). Fixative was removed and
cells were rinsed with 1x PBS. Cells were then permeabilized with 0.5% Triton
X-100 (Sigma-Aldrich, T8787-250ML) in a final concentration of 1x PBS for
15min on a rotator. Permeabilization reagent was aspirated and cells were rinsed in
0.1% Triton/1x PBS and stored in either this or PBS at 4°C until use. Samples were
used within 2-3 weeks of fixation.
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Cell samples for the molecular inversion probe and hydrogel experiments were
grown on rectangular glass microscope slides. Cells were plated similarly to the
Ibidi slides, except 150 ul of cells in suspension was plated onto discrete areas on
rectangular slides (previously etched with a glass etching pen to note the region)
and incubated overnight at 37°C in a 10-cm petri dish. The following day, the
same steps were performed as with Ibidi slides but in 50-ml Coplin jars. Cells were
stored in 1X PBT in Coplin jars until use. Metaphase spreads were purchased from
Applied Genetics (product: HMM).

DNA FISH. Step-by-step protocols can be found in Supplementary Protocols 2 and
3, which were adapted from Beliveau et al. * and based on previous studies™*. All
OligoFISSEQ methods begin with hybridization of primary Oligopaint libraries
overnight and then deviate. The following steps are common to LIT, SIT and HIT
with Ibidi slides (all steps were completed on a rotator unless specified otherwise).
Ibidi wells were washed with 0.1% PBT at room temperature for 5min and
incubated with 0.1 N HCI for 8 min. Two SSCT washes were performed. Cellular
RNA was digested with 50l of 2 pg ml~' RNase A (Thermo Fisher, EN0531) in

2x SSCT for each well. Slides were incubated in 37°C in a humidified chamber

for 1h. RNase A was washed out by adding 2x SSCT. Prehybridization began by
adding 50% formamide/2x SSCT for 10 min at room temperature. Prehybridization
continued with prewarmed (60°C) 50% formamide/2x SSCT added, and the slide
was placed on top of the heat block set in a 60 °C water bath for 20 min. Next, the
primary Oligopaint library was added, the samples were aspirated and 50 ul total
of primary Oligopaint oligonucleotide library (2 uM final concentration) was
added in hybridization mix (50% formamide, 2x SSCT and 10% dextran sulfate).
Samples with primary Oligopaint oligonucleotide libraries were then denatured,
wells were sealed with parafilm to prevent evaporation and the slide was placed on
a preheated hot block in an 80°C water bath for 3 min under the weight of a rubber
plug. Oligopaint oligonucleotide library hybridization to samples was performed
by placing samples in a humidified chamber at 42°C to incubate for >16h. The
next day, probes that did not hybridize were washed out by adding prewarmed
(60°C) 2x SSCT directly to each well containing primary hybe mix and were then
aspirated. New prewarmed 2x SSCT was added and samples were incubated on a
hot block for 15 min. This was repeated once and then again at room temperature.
After this wash, the protocol deviates for the techniques (see below). Note that
cellular DNA was stained after every two rounds of sequencing to maintain
adequate DAPI signal.

For detection of Oligopaints via secondary hybridization, samples were then
prepared for secondary oligonucleotide hybridization to primary oligonucleotide
streets for detection. Samples were washed with 30% formamide/2x SSCT for 8 min
and 50pl in total of secondary oligonucleotides and/or bridge oligonucleotides
was added at 1.2uM in 30% formamide/2x SSCT to each well. Samples
were incubated in a humidified chamber for 45 min at room temperature in
darkness. Nonhybridized secondary oligonucleotides were washed out with 30%
formamide/2x SSCT added directly to the samples, which were then aspirated and
incubated twice for 15 min on a rotator. Samples were washed twice with 2x SSCT
for 5min. In some experiments, DNA was counterstained with DAPI (Thermo
Fisher, D1306) in PBS for 10 min. Samples were then washed with 1x PBS twice
for 5min and imaged in 1x PBS or imaging buffer containing PBS, PCD, PCA and
Trolox (Supplementary Protocol 3).

For cells on rectangular slides, the same overall protocol as above was
performed but in Coplin jars, and wash volumes were scaled accordingly (25-ul
volumes for primary and secondary hybridizations). The protocol was modified as
follows: RNase was added directly to cells on a rectangular slide, which was covered
with a 22 X 22 mm? coverslip. Post-RNase washes were performed by transferring
the slide and coverslip to a Coplin jar and ‘sliding’ the coverslip off. The same
approach was used for secondary hybridization. Primary Oligopaint hybridization
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with 2x SSCT twice for 5min. Next, samples were prepared for the first round of
LIT by adding 100l of 1x Quick Ligation buffer (NEB, B6058S) for 8 min and
aspirated. LIT reaction mix (see Supplementary Protocol 3 for the recipe) was
prepared on ice. Before adding ligases, vigorous vortexing was performed on the
LIT reaction mix. After vortexing, ligases were added and mixed thoroughly by
pipetting. O-eLIT reagent was performed similarly but, instead of SOLiD purple
reagent mix, 40 pmol of each JEB oligonucleotide was added to each sample and
UPW was adjusted accordingly. Next, 100 ul of this mix was added to each well
and samples were incubated in a humidified chamber at 25°C for 55 min. LIT
reaction mix was then aspirated and samples were rinsed with 1 M guanadine
hydrochloride (GHCL; Sigma-Aldrich, G3273) and washed twice for 15min on a
rotator at room temperature. Samples were washed in 1x PBS for 5 min. Cellular
background fluorescence was reduced by treating the samples with 100l True
Black (Biotum, 23007) in 70% ethanol for 2 min. Three 1X PBS quick rinses and a
10-min wash were performed. Samples were then imaged in 1X PBS or imaging
buffer (see Supplementary Protocol 3 for recipe). Before proceeding to the next LIT
round, nonligated phosphates were treated with phosphatase (Quick CIP; NEB,
MO0508L) for 30 min at 37 °C. Quick CIP was then washed out with three GHCL
washes for 5min. The previous LIT round was cleaved to release the fluorophore
and regenerate the 5’ phosphate by rinsing and incubation for 15 min at room
temperature on a rotator with cleave 1, followed by the same for cleave 2. Samples
were then rinsed three times with GHCL and washed twice for 5min. The next
round of LIT could proceed with the pre-ligation step. After the last barcode digit
was read, the fluorophore was cleaved and all targets were detected by hybridizing
specific bridges and fluorophores as described above.

SIT. SIT is based on Oligopaint’ and SBS* technologies using the Illumina NextSeq
500/550 TG Kit (Illumina, TG-160-2002). After hybridization of the primary
Oligopaint library, samples were prepared for SIT primer binding by washing with
30% formamide/2x SSCT for 8 min, and 50 ul of LIT sequencing primer was added
at 1.2uM in 30% formamide/2x SSCT to each well. Samples were incubated in
humidified chambers for 45 min. Nonhybridized SIT primers were washed out with
30% formamide/2x SSCT, which was added directly to the samples, aspirated and
incubated twice for 15 min on a rotator. Samples were washed with 2x SSCT twice
for 5min. The first round of SIT proceeded by rinsing with 100 ul of prewarmed
(60°C) NextSeq polymerase solution (from reservoir 31) and then incubation on a
60°C heat block in a water bath for 5min. The samples were aspirated and washed
with 2x SSCT three times for 10 min. The samples were washed in 1xX PBS and then
imaged in 1x PBS or imaging buffer. Before proceeding onto the next SIT round,
samples were treated with NextSeq cleave solution (from reservoir 29) with a rinse
and then incubated for 5min on a 60°C heat block in a water bath. Samples were
then washed three times for 10 min in 2X SSCT. The next round of SIT could then
proceed. For all target identification, SIT primers containing Alexa Fluor 488 were
used, or secondary oligonucleotides with bridges were added.

HIT. HIT is based on Oligopaint* and SBH technologies®'**. After hybridization
of the primary Oligopaint library, samples were prepared for HIT bridge
oligonucleotide hybridization to primary oligonucleotide streets for detection. HIT
bridges for 36plex-5K were designed to span the universal priming region and part
of either the Mainstreet barcode or Backstreet barcode. Samples were washed with
30% formamide/2x SSCT for 8 min, and 50 ul of bridge oligonucleotides was added
at 1.2pM in 30% formamide/2x SSCT to each well. Samples were incubated in
humidified chambers for 45 min at room temperature in darkness. Nonhybridized
bridge oligonucleotides were washed out with 30% formamide/2x SSCT, which
was added directly to the samples, aspirated and incubated twice for 15min on a
rotator. The first round of HIT commenced with the addition of 50 ul to each well
with HIT secondary oligonucleotides specific to each round added at 1.2 uM in

was performed by adding primary Oligopaint mix directly to cells on a rec

slide, covering with a 22 X 22 mm? coverslip and sealing the edges with rubber
cement (Elmer’s). Rubber cement was allowed to dry for 3 min and the sample was
denatured on a heat block, similar to the process for Ibidi slides.

LIT. LIT is built upon Oligopaint’, SBL** and FISSEQ technologies™*** (see
Supplementary Note 2 and Supplementary Protocol 3 for recent iterations and

the step-by-step protocol). After hybridization of the primary Oligopaint library,
samples for O-LIT required treatment with phosphatase to deplete endogenous
phosphates that could prime ligation, contributing to background and poor

signal. The samples were washed with 50 ul of 1X NEB CutSmart buffer for 8 min.
Next, 50 ul of shrimp alkaline phosphatase (rSAP; NEB, M0371L; 7.5 ul rSAP

in 1X CutSmart) was added to each well followed by incubation at 37°C with
humidity for 1h. To inactivate phosphatase, the sample was then transferred to

a preheated heat block in a 65 °C water bath for 5min and washed twice with
preheated (65°C) 2x SSCT on the heat block for 5 min each. The slides were
washed for 5min in 2x SSCT at room temperature. Samples were then prepared for
LIT primer binding by washing with 30% formamide/2x SSCT for 8 min, and 50 ul
of LIT sequencing primer was added at 1.2 uM in 30% formamide/2x SSCT to each
well. Samples were incubated in humidified chambers for 45 min. Nonhybridized
LIT primers were washed out with 30% formamide/2x SSCT being washed directly
in, aspirated and incubated twice for 15min on a rotator. Samples were washed

30% for ide/2x SSCT for 45 min at room temperature in a dark humidified
chamber. Nonhybridized HIT secondary oligonucleotides were washed out with
30% formamide/2x SSCT, which was added directly to the samples, aspirated and
incubated twice for 15min on a rotator. Samples were washed with 2x SSCT twice
for 5min and then with 1x PBS for 5min. Samples were imaged in 1x PBS or
imaging buffer. Before proceeding to the next round, the secondary oligonucleotide
fluorophores from the previous HIT round were cleaved via rinsing and incubation
for 15 min with 1 mM TCEP (Sigma-Aldrich, 646547-10x1ml). Samples were
rinsed three times with PBS and the next HIT round commenced.

Immunofluorescence. To visualize proteins, samples were subjected to IE. After
OligoFISSEQ, Oligopaint oligonucleotides were removed by washing with 80%
formamide/2x SSCT twice for 7 min. Next, samples were washed with 2x SSCT for
3 min, rinsed with 1X PBS and fixed in 4% formaldehyde/PBS for 10 min. After PBS
rinses and permeabilization in 0.5% Triton/PBS for 10 min, samples were blocked
in 3% BSA/PBT for 1h. Primary antibodies diluted in 1% BSA/PBT were then
added to each well, and wells were sealed with parafilm and incubated overnight
at 4°C for >12h. The next day, primary antibodies were removed and three PBT
washes were performed. Secondary antibodies (Supplementary Table 1)

diluted in 1% BSA/PBT were then added at a 1:500 dilution for each, for 1h at
room temperature on a shaker. WGA (Thermo Fisher, W11261; 1:20) was also
added during the second incubation step. Three PBT washes for 5min each were

NATURE METHODS | www.nature.com/naturemethods

40



NATURE METHO

performed, and samples were restained with DAPI (1:1,000) for 10 min and imaged
in imaging buffer.

Hydrogel. Hydrogel embedding was based on work by Moffitt et al.* (see
Supplementary Protocol 4 for the step-by-step protocol). Cells for hydrogel
embedding were grown on rectangular glass slides. FISH was performed on these
slides as described in ‘DNA FISH’ After primary Oligopaint library hybridization,
samples were washed at 60°C in 2x SSCT for 20 min, then for 10 min at room
temperature and then with 1x PBS for 5min. In preparation for hydrogel
embedding, slides were air-dried for 5min and the area around cells was wiped
dry with a Kimwipe. Hydrogel reagents were combined in Eppendorf tubes on

ice and degassed on ice in a vacuum chamber (Thermo Fisher, 08-642-7) during
incubations. Cells were then washed for 10 min at 4°C with hydrogel mix without
APS and TEMED. Hydrogel mix was then removed from samples, and ~20 ul of
hydrogel solution (recipe in Supplementary Protocol 4) was spotted onto parafilm
on a gelation chamber slide (rectangular slide wrapped in parafilm, using two

22X 22 mm? coverslips as spacers on each end of the slide), then the slide sample
was flipped onto hydrogel solution/gelation chamber, being careful to spread the
hydrogel solution without forming bubbles. The sample was then incubated at
37°C for 1h in a vacuum chamber. After incubation, the gelation chamber was
carefully removed. The edges of the hydrogel disc were trimmed, and a diamond
etching pen was used to break the rectangular slide, preserving the gel/glass slide
portion. The gel/glass slide portion was then transferred to a 35-mm petri dish and
digested in 2ml of digestion buffer (recipe in Supplementary Protocol 4; ref. )
overnight at 37 °C. After overnight digestion, the cell/hydrogel dissociates from the
glass slide, so extra care was taken to avoid hydrogel damage. The digestion buffer
and glass slide were removed, and the hydrogel was washed in 2Xx SSCT three times
for 20 min each. The hydrogel was divided into smaller pieces for downstream
applications. To note orientation, hydrogel pieces were cut into distinct shapes, to
facilitate imaging and alignment downstream. After cutting, the hydrogel sample
was transferred to 1.5-ml Eppendorf tubes for easier handling.

Metaphase FISH. Unless otherwise stated, all steps were performed using Coplin
jars. Treatment commenced by adding 25 ul RNase A to the slides, sandwiching
under a 22 X 22 mm? coverslip and then incubating in a humidified chamber.
Primary Oligopaint hybridization was performed in the same way.

Diffraction-limited microscopy. OligoFISSEQ and diffraction-limited microscopy
were carried out using a widefield epifluorescence setup. A Nikon Eclipse Ti body
was equipped with a 60x 1.4-NA Plan Apo lambda objective (Nikon MRD01605),
Andor iXon Ultra EMCCD camera (DU-897U: 512 x 512 pixel FOV, 16-um pixel
size), X-Cite 120 LED Boost light source, motorized stage and off-the-shelf filter
sets from Chroma (~488 nm 49308 C191880; ~532nm 49309 C191881; ~594nm
49310 C191882; and ~647 nm 49009 C177216). Images were obtained with

ND4 and ND8 filters in place. Microscope operation was handled by Nikon NIS
Elements software. In general, z-stacks were obtained with 0.3-pum slices with an
exposure time of 200-300 ms and LED intensity of 20-60%, depending on the
library being imaged. zxy stage position was d within .nd2 d

and was essential for returning to the same FOV. Orientation of the sample into
the stage and sample holder was carefully maintained so as to enable returning to
the same FOV. This was important as the sample was removed after imaging and
between sequencing rounds.

OligoSTORM imaging. To combine OligoFISSEQ with OligoSTORM, we

first performed one round of OligpSTORM imaging on all targets (Chr2-6plex

or 36plex-5K) inside PGP1f male fibroblast cells by hybridizing Alexa Fluor
647-labeled secondary oligonucleotides that bind to the bridges (present in the
Backstreet of individual Oligopaint oligonucleotides, with each chromosome
containing a specific barcode), which contain a binding site for secondary
oligonucleotides. OligopSTORM samples were imaged on a Vutara 352 biplane
system with a X60 1.3-NA silicone objective (UPLSAPO60XS2, Olympus). For
single-molecule blinking, we used a switching buffer containing 2-mercaptoethanol
and GLOXY". The excitation laser power was set at 60% on the software (6.3kW
cm~2 at the objective) for the 640-nm laser and 0.5% on the software (0.08 kKW cm™2
at the objective) for the photoactivation laser of 405 nm. We used 30-40 z-slices of
0.1-pum thickness for each z-slice. Approximately 10-12 photoswitching cycles of
250 frames per cycle were used for each z-slice.

The OligoSTORM images were analyzed using Vutara SRX software'*. The
DBSCAN clustering algorithm was used to identify the clusters from the raw
image. Fifty particles within a 0.1-um distance were used for clustering. The mean
axial precision was 50+ 10nm in z, and the mean radial precision was 17 +5nm in
xy. The resolution of the super-resolved structures was calculated by Fourier ring
correlation analysis (a built-up feature in SRX software). Resolution was 40+ 5nm
inxyand 60+5nm in z.

Data visualization. Images were processed using either Nikon Elements or ImageJ/
FIJI°'. Image files (.nd2) were imported using the Bio-formats plugin®. Figure 2d
was generated using Image] (under Plugins > 3D viewer)®. Chromosome schematics
were generated using ChromoMap®. Figures were assembled in Adobe Illustrator.
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Micrograph images for publication figures were post-processed using brightness and
contrast enhancement (Image] > Image > Adjust > Brightness/contrast). GraphPad
Prism was also used for graphs. Molecular graphics and analyses were performed
with UCSF Chimera, developed by the Resource for Biocomputing, Visualization
and Informatics at the University of California and supported by the National
Institutes of Health (NIH; grant no. P41-GM103311; ref. ©).

Tier 1 detection. Preprocessing. Each round of OligoFISSEQ was imaged using five
channels: Alexa Fluor 647, Texas Red, Cy3, Alexa Fluor 488 and DAPI and a series
of z-slices. The z-stacks were deconvolved and background corrected using 20
iterations of the Richardson-Lucy algorithm using a theoretically calculated point
spread function with Nikon software®.

Rounds were compiled into hyperstacks composed of the five channels, a series
of z-slices and one frame per round. If an image had all the puncta labeled, as with
in toto images, it was included as a new additional frame. The hyperstacks were
aligned using the Fiji plugin ‘Correct 3D Drift’ (ref. “’). Images of DAPI-stained
nuclei were used to perform threshold segmentation and extract each individual
cell from the initial image as a separate region of interest. The segmentation
provided information about the location and the envelope of the individual nuclei
that made up each hyperstack. Nuclei with areas below 25 um? were discarded.

Detection of barcodes. To compare intensities from different channels, images were
normalized by dividing their intensities by the maximum intensity among the
values of all the z-slices in the same round and channel.

For the detection of barcodes and for each round, the intensities of every pixel
position were compared across different channels. A centroid-based pipeline
using TrackMate** did not perform as well in our study; thus, we moved forward
with this every-pixel approach. The channel with the highest value was kept as the
prevalent channel. At every pixel position, the transition between channels along
the different rounds was compared with the list of expected barcodes. A barcode
was assigned to a pixel position if the set of transitions coincided with the one
associated with the barcode. A maximum-intensity projection image was built by
averaging the intensities of the prevalent channels from every round. Connected
pixels that had the same barcode were grouped to form 3D patches. The following
information was collected and saved for each patch:

«  Barcode

»  Center position

«  Number of pixels forming part of the patch (size)

«  Maximum intensity of the pixels of the patch

«  Pixel position having the maximum intensity of the pixels of the patch

For an image with all puncta labeled, information on the intensity of each pixel
position was stored in an additional file.

Tier 2 detection. Chromosome tracing. Patches composed of a single pixel location
were discarded and the remainder were used in the tracing, disregarding the
intensity or size of the patch.

Patches with high intensity values were selected as the most confident and
were used to find the chromosome centers. We used an implementation of the
constrained k-means algorithm® to find the center of the set of barcodes belonging
to the same chromosome. To separate the homologs, we used a cannot-link
constraint in the two copies of the same region to avoid having them in the same
cluster. We used a sphere of radius 4.5 um with origin in the centers to delimit the
chromosome territory and filter out patches located outside.

The Domino sampler of the Integrative Modeling Platform™ was the core
element of the chromosome tracing. In Domino, each locus is represented by a
particle with a finite set of different possible locations in the image. The locations
are extracted from the list of patches having the same barcode as the one assigned
to the locus. The remaining factors of the proposed problem are encoded in the
system as restraints to the list of possible solutions. The following restraints are
imposed by the system to filter compatible solutions:

«  Two particles cannot share the same location or patch.

«  Two consecutive particles of the same chromosome should be closer than a
distance of 4 um for the 36plex dataset and 1 pm for ChrX-46plex.

«  Chromosomes must be confined in territories modeled as spheres of radius
4.5um.

Chromosome territory and the distance between consecutive regions
were inferred as explained in ‘Inferring chromosome territory and maximum
distance between consecutive regions. By applying these additional constraints
to the barcodes, we were able to use patches that had intensities below, but not
far from, the detection thresholds (Supplementary Table 14) and were likely
to be true positives. Patches with higher intensities and sizes are most likely
to be true-positive regions. Therefore, a score based on intensity and size was
assigned to each patch as a measure of the likelihood of the patch being a
true-positive detection. The list of patches was sorted by score and used as input
data as an iterative process to find the most probable path of each chromosome
(Supplementary Fig. 3).

The iterative process of tracing the chromosomes started by assigning patches
with high scores to the corresponding regions. The process was executed once per
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chromosome, considering all homologs at the same time because barcodes were
not designed to distinguish them. Domino was used to list all possible solutions
that were compatible with the imposed restraints. Each solution had a total score,
obtained by summing the scores of the individual patches that were selected in

that particular solution. We selected the conformation that had the highest total
score. In the case where two or more solutions yielded an identical total score, we
selected the solution that conformed to the shortest chromosome spatial length. An
iterative process was performed for assignment of regions, whereby the threshold
was lowered to allow more patches as input, and the previous approach was used to
select the remaining unassigned regions. This iterative process was finished when
all regions had been identified or there were no more input data to feed Domino.

Detection efficiency and false-positive ratios. To calculate the detection efficiency
per barcode, the datasets were filtered using intensity thresholds (Supplementary
Table 14) that were optimized for every experimental condition. Patches formed by
a single pixel were also discarded regardless of the intensity of the patch.

For 36plex datasets, we calculated the mean of the barcodes detected per
nuclei, excluding barcodes assigned to the X chromosome. In the ideal case, and
due to the ploidy, we expected two barcodes per nucleus. In reality, the datasets
may eventually include false positives or duplicates of patches that probably belong
to the same oligonucleotide, which will increase the ratio. Nuclei with a mean of
more than 2.5 barcodes were discarded because they were most likely in a mitotic
process. For ChrX-46plex, we followed a similar procedure and discarded nuclei
with a mean of detected barcodes that was greater than 1.5.

For each of the r ing nuclei, we computed the ratio of detected barcodes
versus expected barcodes. We expected two barcodes per cell, except for the
barcodes belonging to the X chromosome. The ratios per barcode and per cell were
capped to 1 and averaged over all cells to produce the detection efficiency. For the
false-positive ratio of the barcode, we instead calculated the excess of detections
as the detected value minus the expected value in cases where the detected value
was over the expected value, and we then computed the ratio of excess detections
versus the expected values.

Distance heat maps and Hi-C maps. For every traced nucleus, we calculated all
pairwise di between the d d regions and averaged the results among
all cells. For the average heat map of 36plex-5K, LIT dataset regions 3qR3 and
5pR3 were not taken into consideration because they shared the same barcode and
were therefore indistinguishable. Hi-C maps of PGP1f cells were obtained from
previous in situ Hi-C experiments'*. The values of the interaction frequencies in
the included Hi-C maps were extracted from the observed values of interaction
matrices produced at a resolution of 5Kb. The submatrices formed by the genomic
regions of each pair of probes were aggregated to obtain the interregional observed
interaction. Single-cell heat maps were built with the identification of homologous
chromosomes. The list of barcodes was traced according to the procedure
described in above in the ‘Chromosome tracing’ section of ‘Tier 2 detection’ All
pairwise distances of the traced regions were calculated. Non-identified regions
appear as gray columns and rows.

Inferring chromosome territory and the maximum distance between consecutive
regions. To infer the maximum distance between consecutive regions used in

the chromosome tracing, the list of detected barcodes for all 36plex datasets

was filtered to discard mitotic cells as explained in ‘Detection efficiency and
false-positive ratios. Patches formed by a single pixel were also filtered out.

After the filtering process, the 36plex dataset comprised 1,171 nuclei and 48,352
barcodes. Then, we calculated the distances between consecutive regions for each
chromosome in each nucleus (Supplementary Fig. 1). The histograms of those
distances show the expected bimodal distributions for the chromosomes, except for
chromosome X as foreseen from male cells. Bimodality is more evident in bigger
chromosomes because those tend to be in the periphery of the nucleus, while
smaller chromosomes prefer the interior. After inspection of the histograms, we
selected 4 um as the general maximum distance between consecutive regions and a
slightly higher value of 4.5um for the chromosome territory.

For the ChrX-46plex dataset, we followed a similar approach. After the filtering
process, ChrX-46plex contained 189 nuclei and 7,752 barcodes. Based on the
histograms of distances between consecutive regions, we selected 2.5 um as the
general maximum distance (Supplementary Fig. 2).

Clustering of 3D structures for ChrX-46plex. After tier 2 detection, we had 177
cells for the ChrX-46plex library, with an average of 34 detected regions. We
discarded one of the cells that had fewer than 23 identified barcodes so as to
meet the required 50% detection efficiency per cell in all the 3D structures. Next,
we calculated the pairwise distances for each chromosome between all of their
detected targets and used these as a measure of similarity to the built distance
matrix. We used the coincident distances between structures to cluster them
hierarchically using the Ward method. The Calinski-Harabasz criterion for
clustering evaluation was used to evaluate the optimal number of clusters.

ChrX-46plex-2K tracing in IMR-90 cells. O-eLIT with the ChrX-46plex-2K library
in IMR-90 cells was performed as in PGP1f cells. Five rounds of sequencing
were performed off both streets, followed by immunostaining for MacroH2A.1

(Abcam, ab183041) at 1:250 dilution to mark the inactive X chromosome. For the
every-pixel analysis, chromosome traces with fewer than 13 identified regions were
filtered out.

MacroH2A.1 IF images were aligned and segmented with the DAPI channel of
their OligoFISSEQ correspondence. For each nucleus, the position of maximum
intensity of the IF image was compared with the geometric center of the traced X
chromosomes. To filter out images without a clear IF signal, we only considered
nuclei where their maximum IF intensity was greater than two times the average
intensity inside. If the center was closer than 3.5 um, the X chromosome was
considered IF positive and annotated as inactive (Xi). The other X chromosome
in the nucleus was annotated as active (Xa). In cases where both homologs were
closer than 3.5 um to the IF signal, the closest homolog was annotated as Xi and the
farthest was annotated as Xa. The nuclei were manually checked to discard errors,
mainly due to overlapping cells that resulted in 40 Xi chromosomes, for which we
traced 31 homologs that were identified as Xa.

Generation of random nuclei for haploid separation. For the directed random
nuclei, we first calculated the mean and s.d. of the distance to the nuclear envelope
for every chromosome (Supplementary Table 15). We used this information to
generate a set of random nuclei where the chromosomes were randomly placed
following a normal distribution in which the mean and s.d. were equal to the values
calculated in the observed data. The positions of the large chromosomes in the
synthetic nuclei were biased toward the periphery, while the positions of the small
chromosomes were biased toward the nuclear interior. No spatial bias was used for
the completely random nuclei.

Histog of split h logs by k- . For the analysis, we selected 258
nuclei for which all centers of the 11 chromosomes were known. We used the
conventional k-means algorithm to cluster the positions of the chromosomes into
two groups and reported how many autosomes were split by the clustering, that is,
how many autosomes had one copy in one of the groups and the homolog in the
other group.

Method for the alignment of nuclei. For the analysis, we selected 258 nuclei for
which all centers of the 11 chromosomes were known. We used an implementation
of the constrained k-means algorithm® to cluster the chromosomes into two
groups: one group contained one copy of each autosome and the other group
contained the homolog. The X chromosome was assigned to the closest group. The
geometric centers of the clusters were joined and the resulting segment, together
with all the positions of the chromosomes, was rotated to be parallel to the x axis
and moved to leave the middle point toward the origin; x=0, y=0. In the rotation
of the nuclei, we kept the group containing the X chromosome at the left of

the y axis.

Density plots. The density plots were built using the kernel density estimation of the
projection to the xy plane of the position of the chromosomes.

Number of split homologs. We checked each aligned nucleus and reported how
many autosomes could be split by a virtual line along the y axis, that is, the number
of autosomes with one of the copies on the left of the y axis and the other on the
right of the y axis.

Number of split homologs left to right. We checked each aligned nucleus and
reported how many autosomes could be split by a virtual line parallel to the y axis
at different distances from the origin, that is, the number of autosomes with one of
their homologs on the left of the line and the other on the right of the line.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

All data are available in the main text or the supplementary materials, and materials
are available upon request. Information regarding all datasets (for example, cells,
replicates and filters) can be found in Supplementary Table 9. Source data are
provided with this paper.

Code availability
All code is available at https://github.com/3DGenomes/OligoFISSEQ/.
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Extended Data Fig. 1| Chr19-20K and 36plex-5K-O-LIT optimization. a, Chr19-20K targets 18,536 Oligopaint oligos to human chromosome 19. Right,
Chr19-20K detection with secondary oligo (red) in PGP1f cells representative of 5 replicates. b, Signal is completely removed in each OligoFISSEQ
method after cleavage. Images showing two rounds of sequencing with a cleavage step (C) and representative of 4 replicates. ¢, 36plex-5K O-LIT off of
both Mainstreet and Backstreet (MSBS; bottom, red) produces stronger signal than off of Mainstreet (MS; top, blue). Cy5 channel from first round of
O-LIT. n=1.d, O-LIT off of both streets produces stronger signal than off of MS. Grey intensity value measurements from yellow lines in panelc.n=1. e,
Raw, non-deconvolved field of view of cell from Figs. 2¢, d and 3a-c. Maximum z-projection. n=1. f, Manual decoding of cell from panel c and Figs. 2c,

d and 3a-c yields 100% target recovery. n=1. g, Tier1 detection efficiency after 36plex-5K O-LIT off of both streets and detected with TrackMate (blue,
29.93+4.9%) or Every-pixel (orange, 62.8% + 4.8%). n=111 cells from 3 replicates. Detection efficiency from individual replicates are plotted. Error bars
represent 95% bootstrap confidence interval of the mean.
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95 +515% of targeted regions are detected (n=611from 15 replicates). Detection efficiency from individual replicates are plotted. Error bars represent
95% bootstrap confidence interval of the mean. b, False positive (FP) discovery rate from panel a. FP discovery rate from individual replicates are plotted.
Error bars represent 95% bootstrap confidence interval of the mean. ¢, Tier 1 detection efficiency after 36plex-5K O-LIT off of Mainstreet (orange,
61.93+12%, n=53 from 2 replicates) versus off of both streets (blue, 62.17% + 6.68%, n=611 cells from 15 replicates). Detection efficiency from
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es are plotted. Error bars represent 95% bootstrap confidence
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bootstrap confidence interval of the mean. f, Detection efficiency after 36plex-5K O-LIT off of both streets for individual cells from 15 replicates in panel e.
g, Percentage of cells displaying a range of efficiencies of barcode detection after 36plex-5K O-LIT off of both streets. Data taken from panel e. h, Principal
component analysis showing lack of batch effect in 36plex datasets (n=1171 cells from 15 36plex-5K O-LIT replicates and 8 36plex-1K O-eLIT replicates).
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Extended Data Fig. 3 | O-LIT with 36plex-5K to interrogate genome organization. a, Chromosome traces of Cell 611 after Tier 2 detection of cell 611 after
four rounds of O-LIT 36plex-5K off of both streets. 59/66 (89%) of 36plex-5K targets were detected. Image is from the first round of O-LIT with target
identities. n=1. b, Ball and stick of Cell 611. Colored spheres represent chromosomal targets, while black spheres represent targets that were not detected
and, thus, were placed by calculating the median proportionate distance between flanking detected targets. Beginning of chromosome (for example 2pR1)
marked by an asterisk. ¢, Single-cell pairwise spatial distance matrix after Tier 1 (top) and Tier 2 (bottom) detection of the nucleus in Fig. 3. Targets are
represented on the x-axis with homologs separately displayed. Undetected targets are represented by grey lines. d, Single-cell pairwise spatial distance
matrix after Tier 1 (top) and Tier 2 (bottom) detection of Cell 611. Targets are represented on the x-axis with homologs separately displayed. Undetected
targets are represented by grey lines. e, 36plex-5K population pairwise spatial distances (top, from Fig. 3f). Average pairwise spatial distances from

cell population after Tier 1 detection (n=611from 15 replicates). (Spearman’s rank correlation 0.705, two-sided p-value for a hypothesis test whose

null hypothesis is that two sets of data are uncorrelated = 1.77e-174). Measurements from homologous targets were combined. Bottom, Hi-C data of
36plex-5K targets obtained from (Nir et al. 2018). f, Average distances between the nuclear membrane and the closest of the six targets imaged for each
chromosome. (n=686, 668, 364, 586, 760, and 494 for Chr2, 3, 5,16, 19, and X, respectively.) The thick line in each violin plot represents the Interquartile
range (IQR), the white dot marks the median and the thin lines extend 1.5 times the IQR.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | O-LIT with 36plex-5K to interrogate homolog organization. a, Minimum distances between heterologous and homologous
chromosomes. All measurements represent distances between the geometric centers of chromosomes for which all six targets were imaged. Distances
between a chromosome and a heterologous chromosome is the shorter of the two distances between that chromosome and the two homologous copies
of the heterologous chromosome (n=686, 668, 364, 586, 760, and 494 for Chr2, 3, 5, 16, 19, and X, respectively). Inter-homolog distances for Chr16 and
19 are less than those for Chr2, 3, and 5 (independent-samples t-test p=4.28 x10-37). Boxes represent the IQR (25th, 50th and 75th percentiles) and
whiskers extend 1.5 times the IQR. b, Number of cells with varying numbers of homologs split by K-means clustering. The K-means algorithm was applied
to 258 nuclei, individually, to cluster chromosomes into two groups based on proximity and then report the number of homolog pairs that were split by the
clustering. A value of “5" indicates that the homologs from each five pairs of imaged autosomes in a single nucleus clustered into two spatially separate
groups. Observed, PGP1f cells. Directed random, raw positions in Observed but with the chromosome identities of all positions randomized, with the
larger chromosomes (2, 3, 5) biased towards the nuclear periphery and smaller chromosomes (16 and 19) biased towards the nuclear interior. Completely
random category, randomization of the chromosome identities carried out with no spatial bias. The significance of each pair was evaluated from a two
proportion z-test with n =258 for each category with a null hypothesis of equal proportion and a significance level of 0.05. ¢, Density plots of homolog
positions. Built by using Kernel density estimation (KDE) of nuclei projected and aligned along the x-y plane of the position of the chromosomes. d, Pie
charts of total number of cells with homologs split by a virtual line along the y-axis. e, Number of aligned cells with homologs split by a virtual line parallel
to the y-axis at different distances from the origin, that is, number of autosomes with one of their homologs on the left of the line and the other on the right
(n=258 for each category). Boxes represent the IQR (25th, 50th and 75th percentiles) and whiskers extend 1.5 times the IQR.
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Extended Data Fig. 5 | O-eLIT with JEB. a, Chr19-9K. One round of O-LIT (SOLID) or O-eLIT (JEB) off of Mainstreet. Maximum z-projections
representative of 2 replicates. b, Chr19-9K signal over nuclear background measurements after one round of O-LIT (orange; n=113 puncta from 55 cells
from 2 replicates) or O-eLIT (blue; n=136 puncta from 57 cells from 2 replicates). Bar is the mean and SD. ¢, Tier 1detection of 36plex-1K after five rounds
of O-LIT with SOLID reagents (orange; average of 51.75%, n=41) or O-eLIT with JEB (blue; average of 61.2+10.2%, n=440 from 9 replicates). Detection
efficiency from individual replicates are plotted. Error bars represent 95% bootstrap confidence interval of the mean. 36plex-1K library shares first 1,000
Oligopaint oligos of each target in 36plex-5K. For example, for target 2pR1, 36plex-5K spans the chromosomal region from nt position 1,002,895 to
1,660,898 (~658 kb), whereas 36plex-1K spans the region from nt 1,002,895 to 1,147,495 (144 kb). d, FP discovery rate from panel c. SOLID = 7.49% and
JEB=8.95%. FP discovery rate from individual replicates are plotted. Error bars represent 95% bootstrap confidence interval of the mean. e, Chromosome
traces and ball and stick of Fig. 4c cell after Tier 2 detection and five rounds of O-eLIT 36plex-1K. 63/66 (95%) targets were detected. Asterisks, beginning
of chromosomes. n=1.f, Single-cell pairwise spatial distance matrices of panel C cell. g, 36plex-1K population pairwise spatial distance measurements
(top, from Fig. 3f). Average pairwise spatial distance from cell population after Tier 1 detection (n=440 from 9 replicates). Measurements from
homologous targets were combined. Bottom, Hi-C data of 36plex-5K targets obtained from (Nir et al. 2018). h, 36plex-1K detection rate for individual cells
from 9 replicates. i, Percentage of cells displaying a range of efficiencies of barcode detection after 36plex-1K O-eLIT off of Mainstreet.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | O-eLIT with ChrX-46plex-2K. a, ChrX-46plex-2K O-eLIT Tier 1 detection off of one street and off of both streets combined

(52.86 +5.78% from 177 cells from 7 replicates). Detection efficiency from individual replicates are plotted. Error bars represent 95% bootstrap
confidence interval of the mean. b, FP discovery rate from panel a. Error bars represent 95% bootstrap confidence interval of the mean. ¢, Single-cell
pairwise spatial distance matrix after Tier 1 (top) and Tier 2 (bottom) detection of Cell 1 from Fig. 5b. Undetected targets are represented by grey lines.

d, Chromosome traces (top) and ball and stick representation (bottom) of Cell 177 after Tier 2 detection and interpolation and five rounds of O-eLIT on
ChrX-46plex-2K off of both streets. Image is from the first round of O-eLIT with target identities. n=1. e, Single-cell pairwise spatial distance matrix after
Tier 1 (top), Tier 2 (bottom) of Cell 177 (left), and Tier 2 (top) and interpolation (bottom) of same cell (right). Undetected targets are represented by grey
lines. f, ChrX-46plex-2K population pairwise spatial distances (top). Average pairwise spatial distances from cell population after Tier 1detection (n=177
from 7 replicates). Bottom, Hi-C (Nir et al. 2018) data of ChrX-46plex-2K targets. (Spearman’s rank correlation 0.641, two-sided p-value for a hypothesis
test whose null hypothesis is that two sets of data are uncorrelated = 7.074e-245). g, ChrX-46plex-2K detection rate for individual cells from 7 replicates.
h, Percentage of cells displaying a range of efficiencies of barcode detection after ChrX-46plex-2K O-eLIT. i, Mean spatial distance versus Interaction
frequency of Hi-C (Nir et al. 2018) of ChrX-46plex-2K targets. Pearson correlation coefficient (r=—0.84) and p-value = 5.08E-275 (two-sided, using slope
= 0 for null hypothesis and Wald Test with t-distribution as test statistic) of the linear least-squares regression. j, Mean spatial distance versus genomic
distance for all pairwise ChrX-46plex-2K targets (n=177 from 7 replicates).
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Extended Data Fig. 7 | O-eLIT identifies clusters after ChrX-46plex O-eLIT. a, Hierarchical clustering based on structure of ChrX traces from ChrX-
46plex after 5 rounds of O-eLIT and Tier 2 detection yielded two clusters (Cluster 1=20; Cluster 2=156). See Methods for more details. b, ChrX
representative models (existing traces that are closer to the virtual centroid) of the two clusters obtained after Hierarchical clustering in panel a. ¢, ChrX-
46plex-2K population contact matrix of two clusters derived after Hierarchical clustering in panel a where pairwise spatial distances are considered to be
in contact if less than 2 um apart. d, Radius of gyration for the two clusters (Cluster 1=20; Cluster 2=156) derived after the hierarchical clustering shown
in panel a. The thick line in each violin plot represents the Interquartile range (IQR), the white dot marks the median and the thin lines extend 1.5 times the

IQR.
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Extended Data Fig. 8 | Angles from 36plex. a, Measurements of angles formed by three points along the p arm (left), g arm (right), and intersection of
vectors formed by pR2-pR3 and qR1-qR2 (middle) for each chromosome. Measurements were obtained by combining data from 36plex-5K and 36plex-1K
analyses and selecting chromosomes that had all six targets identified. Chr2: n=686, Chr3: n=668, Chr5: n=363, Chr16: n=586, Chr19: n=760, ChrX:
n=493 (n=1,051 cells from 24 replicates; for 36plex-5K, n=611 from 15 replicates; for 36plex-1K, n=440 from 9 replicates). b, Distribution of angles
formed by segments in panel a. The thick line in each violin plot represents the Interquartile range (IQR), the white dot marks the median and the thin
lines extend 1.5 times the IQR. ¢, Box plots comparing p and q arm angles. Two-sided student's t-test with null hypothesis of equal mean was performed
to compare arms, ns p>0.05, * p< 0.05, ** p<0.01, *** p< 0.001, **** p <0.0001. Boxes represent the IQR (25th, 50th and 75th percentiles) and
whiskers extend 1.5 times the IQR. Sample size information in a). Exact p-values for each chromosome: Chr.2=4.149¢-16, Chr.3=0.004, Chr.5=0.093,
Chr16=1.357e-14, Chr.19 =3.325e-11, Chr.X=0.101. d, Linear least-squares regression between arm angle and arm length with Pearson correlation
coefficient r=0.26 and p-value = 0.42 (two-sided, using slope = O for null hypothesis and Wald Test with t-distribution as test statistic).
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | O-eLIT comparison of X chromosomes in female IMR-90 cells after ChrX-46plex-2K O-eLIT off of both streets. a, First round of
O-eLIT sequencing. MacroH2A.1 immunostaining after five rounds of O-eLIT marks the Xi. n=1. b, ¢, Xi and Xa traces (b) and ball and stick (c) of panel

a nucleus after Tier 2 analysis and interpolation of missing targets. Sphere color corresponds to chromosome cartoon. n=1. d, Single-cell pairwise spatial
distances after interpolation of missing targets in panel a. e, Tier 2 target detection efficiency after five rounds of O-eLIT. 38.57% of targeted regions

are detected in 71 cells. Detection efficiency from individual replicates are plotted. Error bars represent 95% bootstrap confidence interval of the mean.

f, Population pairwise spatial distances after Tier 1detection (n=71 cells) and Hi-C data of IMR-90 cells (Rao et al. 2014). g, Population contact maps
(top) where two targets are considered to be in contact if less than 2 um apart (n=315 chromosomes). Bottom, Hi-C data as in panel f. (Spearman’s rank
correlation with the Hi-C matrix is r=0.733, two-sided p-value for a hypothesis test whose null hypothesis is that two sets of data are uncorrelated =
2.564 x10e-175). h, Radius of gyration for the Xi (n=40 chromosomes) and Xa (n=31chromosomes). The thick line in each violin plot represents the
Interquartile range (IQR), the white dot marks the median and the thin lines extend 1.5 times the IQR. P-value = 7.08 x10e-6 (two-sided t-test whose null
hypothesis is equal means). i, j, Linear plot of the mean spatial distance versus the genomic distance for all pairwise targets for Xi (n=40 chromosomes)
and Xa (n=31chromosomes). k-1, Population contact maps for Xi (n=40 chromosomes) and Xa (n=31 chromosomes) with eigenvector analysis used to
identify different domains. X1-X18 (white) and X19-X46 (grey) targets p and q arms, respectively.
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Extended Data Fig. 10 | OligoFISSEQ applications. a, O-eLIT and immunofluorescence (IF). 36plex-1K was sequenced 5 rounds with O-eLIT off
Mainstreet. Then, the same sample was prepared for IF and stained with antibodies. Samples were counterstained with wheat germ agglutinin (WGA) to
stain membranes. Images are from deconvolved, maximum z-projections representative of 2 replicates. b, Chromosomal regions imaged with OligoSTORM
from Fig. 6d enlarged and displayed separately. Orientation may differ from Fig. 6d. n=1. ¢, 8 rounds of O-LIT sequencing of Chr19-9K off of Mainstreet.
Images are maximum z-projections. Signal is detectable in all rounds even though the imaging was conducted without the advantage of eLIT, suggesting
that 8 rounds of O-eLIT will produce even stronger signals. Images are representative of 2 replicates. d, O-LIT is compatible with gel embedding and target
amplification via rolling circle amplification (RCA). Chr19-9K was hybridized to PGP1f cells, after which the sample was embedded in a hydrogel and then
cleared of cellular background with proteinase. Next, a molecular inversion probe (MIP) was hybridized to a Chr19-9K specific barcode on Backstreet as
well as a fluorophore labeled (purple) secondary oligo to Mainstreet to visualize Chr19-9K Oligopaint oligos. MIPs were circularized via ligation and RCA,
after which the first digit of the barcode was sequenced using O-LIT (green). Images are representative of two replicates. e, Comparison of secondary
fluorophore signal (2°) versus first round sequencing signal (LIT) from puncta in panel b images. Center values are mean values (3.4 for 20 and 4.9 for
O-LIT) with SD.
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Software and code

Policy information about availability of computer code

Data collection Nikon Elements (NIS ElementsAR ver. 5.02.01.) and Vutara SRX software were used to acquire images.
Data analysis Imagel/Fiji (version 2.0.0-rc-69/1.52p) were used to align, normalize, contrast, overlay, and measure images as described in the Methods
section.

Python (version 2.7) with custom scripts was used for image analysis.

Constrained K-means algorithm (version 1.5) https://zenodo.org/record/831850 was used for clustering.
Integrative Modelling Platform () was used for Tier 2 (https://www.ncbi.nIm.nih.gov/pubmed/22272186).
Domino (version) was used for Tier 2 tracing.

Seaborn package for Python was used to generate plots.

R (version 3.6.1) and R-Studio (version 1.2.1335) was used for initial image analysis.

GraphPad Prizm (version 8.2) was used to generate plots.

Microsoft Excel (version 16.16.7) was used to generate tables.

Adobe lllustrator (version 22.0.1) was used to assemble figures.

ChromoMap package for R by Lakshay Anand was used to generate chromosome cartoons (https://doi.org/10.1101/605600).
Nikon Elements (NIS ElementsAR ver. 5.02.01.) was used to process images and deconvolution.

Chimera was used for ball and stick visualizations (https://doi.org/10.1002/jcc.20084).

Python scripts will be available on GitHub (https://github.com/3DGenomes/OligoFISSEQ).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The data that support the findings of this study are available from the corresponding
author upon reasonable request. All raw and processed data will be made available upon request.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed as we aimed to obtain images of as many cells as possible given experimental constraints during
technology optimization. For all experiments with analysis, a minimum of 3 technological replicates were performed to confirm
reproducibility. We deemed this to be sufficient due to low observed variability between samples. Datasets were imaged to assess and
compare the efficiency of the different versions of OligoFISSEQ. The samples were aggregated to study the structural variability of the cell
population. We verified that the sample sizes were sufficient to capture such variability by comparing OligoFISSEQ distance matrices with
interaction frequency matrices obtained with Hi-C experiments as an orthogonal method (see “Distance heat-maps and Hi-C maps” of the
Material and Methods).

Data exclusions  Cells that did not pass initial quality control filtering were not included in downstream processing and analysis. Cells in mitotic process were
discarded from the analysis following the procedure described in the section “Detection efficiency and False Positives ratios” of the Material
and Methods.

A second exclusion is applied for cells which total detection efficiency in Tier 1 is below 25%. Those cells are mainly presenting imaging
distortions in one or more channels or are falling in the border of the images.
Exclusion criteria was pre-established, as we focused on interphase cells that were entirely imaged.

Replication All replication attempts were successful and detailed in Fig. S3, $6, S7, and Table S13. Preferential chromosome positioning as identified in our
study (Fig. S4, S5), was in line with reported observations in the literature. Additionally, we found that chromosomes segregated into distinct
regions (territories) in the nucleus, also in line with observations from the literature (Fluorescent In Situ Hybridization and Hi-C studies).

Randomization  Cells used for imaging were selected randomly and all imaged cells that passed quality filters were used for analysis, therefore, there was no
requirement for randomization.

Blinding Blinding was not performed as experimental conditions were evident from the image data. Analysis and quantifications were performed using
computational pipeline applied equally to all conditions and replicates for a given Oligopaint oligo library. Thresholds for detecting puncta
were chosen for each Oligopaint oligo library (see Table S14)
on graphs with objective properties that appeared indistinguishable across conditions.
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Antibodies

Antibodies used

Validation

Eukaryotic cell lines

Anti-Alpha Tubulin (Sigma-Aldrich: T9026) used at 1:500.

Anti-GAPDH (Abcam: ab9483) used at 1:200

Anti-TOMM20 (Abcam: ab78547) used at 1:500

Anti-macroH2A.1 (Abcam: ab183041) used at 1:250

Donkey Anti Mouse Cy5 (Jackson ImmunoResearch Laboratories: 715-175-150) used at 1:500 from 1.25mg/mL stock

Donkey Anti-Rabbit Cy3 (Jackson ImmunoResearch Laboratories: 711-165-152) used at 1:500 from 1.25mg/mL stock

Bovine Anti-Goat Alexa Fluor 594 (Jackson ImmunoResearch Laboratories: 805-585-180) used at 1:500 from 1.25mg/mL stock

Anti-Alpha Tubulin has been validated by Sigma-Aldrich to be specific in human cell lines (osteosarcoma and breast cancer) using
western blotting and in Hela cells by immunofluorescence microscopy (https://www.sigmaaldrich.com/catalog/product/sigma/
t9026°?lang=en&region=US).

Anti-GAPDH has been validated by Abcam to produce positive signal in whole cell lysates from Hela as well as human brain
tissue lysate as well as positive immunofluorescence signal in Hela cells (https://www.abcam.com/gapdh-antibody-loading-
control-ab9483.html).

Anti-TOMM20 has been validated by Abcam to produce positive signal in HEPG2 whole cell lysate and positive
immunofluorescence signal in HEPG2 cells (https://www.abcam.com/tomm20-antibody-mitochondrial-marker-ab78547.html).
Anti-macroH2A.1 has been validated by Abcam to produce positive signal in HAP1 lysates and reduced signal in HAP1 m2A1
knockouts (https://www.abcam.com/mh2al-antibody-epr93592-ab183041.html).

Policy information about cell lines

Cell line source(s)
Authentication
Mycoplasma contamination

Commonly misidentified lines
(See ICLAC register)

PGP1f (Human male fibroblasts, Coriell: GM23248), IMR-90 (Human female fibroblasts, ATCC: CCL-186)
None of the cell lines have been authenticated.
Cell lines were not tested for mycoplasma contamination but no indication of contamination was observed.

No commonly misidentified cell lines were used.
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Chapter 11

3D reconstruction of genomic regions from sparse interaction data

Chromosome conformation capture (3C) technologies measure the interaction frequency
between pairs of chromatin regions within the nucleus in a cell or a population of cells.
Some of these 3C technologies retrieve interactions involving non-contiguous sets of loci,
resulting in sparse interaction matrices. One of such 3C technologies is Promoter Capture
Hi-C (pcHi-C) that is tailored to probe only interactions involving gene promoters. As
such, pcHi-C provides sparse interaction matrices that are suitable to characterize short-
and long-range enhancer—promoter interactions. We introduced a new method to re-
construct the chromatin structural (3D) organization from sparse 3C-based datasets such
as pcHi-C. Our method allows for data normalization, detection of significant interactions
and reconstruction of the full 3D organization of the genomic region despite of the data
sparseness. Specifically, it builds, with as low as the 2—3% of the data from the matrix,
reliable 3D models of similar accuracy of those based on dense interaction matrices.
Furthermore, the method is sensitive enough to detect cell-type-specific 3D
organizational features such as the formation of different networks of active gene

communities.
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ABSTRACT

Chromosome conformation capture (3C) technolo-
gies measure the interaction frequency between
pairs of chromatin regions within the nucleus in a cell
or a population of cells. Some of these 3C technolo-
gies retrieve interactions involving non-contiguous
sets of loci, resulting in sparse interaction matrices.
One of such 3C technologies is Promoter Capture Hi-
C (pcHi-C) that is tailored to probe only interactions
involving gene promoters. As such, pcHi-C provides
sparse interaction matrices that are suitable to char-
acterize short- and long-range enhancer—promoter
interactions. Here, we introduce a new method to re-
construct the chromatin structural (3D) organization
from sparse 3C-based datasets such as pcHi-C. Our
method allows for data normalization, detection of
significant interactions and reconstruction of the full
3D organization of the genomic region despite of the
data sparseness. Specifically, it builds, with as low as
the 2-3% of the data from the matrix, reliable 3D mod-
els of similar accuracy of those based on dense in-
teraction matrices. Furthermore, the method is sen-
sitive enough to detect cell-type-specific 3D organi-
zational features such as the formation of different
networks of active gene communities.

INTRODUCTION

Chromatin within the nucleus is organized into higher or-
der structures that emerge at different genomic scales, from
chromosome territories (at tens of megabases scale), active
and inactive chromatin domains (at few megabases scale)
(1), self-interacting domains or TADs (at hundreds of kilo-
bases scale) (2,3,4) and long-range chromatin loops between
regulatory elements (at tens of kilobases scale). This multi-

scale organization has a direct impact on many biological
processes, such as gene regulation, DNA replication and cell
differentiation (5,6,7). Indeed, genome structure typically
reflects cell-type-specific differences in the transcription pat-
tern, and it is frequently rewired upon cell state changes and
disease onset (8). Thus, investigating the principles shaping
chromosome three-dimensional (3D) structure is pivotal to
shed light into the relationship between genome structure
and function.

Several experimental techniques are available to examine
chromatin organization (9). Amongst them, molecular bi-
ology methods, such as chromosome conformation capture
(3C) and its derivatives are widely used (10). These exper-
iments retrieve information about the frequency of inter-
action between loci in single (11,12,13) or in populations
of thousands to millions of cells and have been designed to
analyse the chromatin landscape at different genomic scales
(1,14,15,16). For example, some cell population-based ex-
periments allow the retrieval of unspecified interactions in
the whole genome (e.g. Hi-C (1), Micro-C (14), GAM (15)
and SPRITE (16)). Complementarily, other 3C-based ex-
periments are tailored to capture interactions centred on a
specific locus with the rest of the genome (e.g. 4C (17) and
multi-contact 4C (MC-4C) (18)) or on sets of dispersed loci
in the genome, such as loci enriched for a specific protein
(HiChIP) (19) or loci harbouring gene promoters (pcHi-
C) (20). Each class of 3C-based experiments provide differ-
ent but complementary insights on particular aspects of the
genome organization, and their analysis is dependent on the
experimental genomic resolution and on the inherent tech-
nical biases of each experimental procedures.

A variety of physics- and data-driven approaches for
genome 3D reconstruction have been developed to ex-
pose the principles shaping chromosome 3D structure
(21,22,23,24). For instance, data-driven (restraint-based)
modelling approaches as PGS (25,26), TADbit (27), 4Cin
(28) and TADdyn (29) have been implemented to re-

*To whom correspondence should be addressed. Tel: +34 934 020 542; Fax: +34 934 037 279; Email: martirenom@cnag.crg.cu
Correspondence may also be addressed to Irene Farabella. Tel: +34 934 031 945; Email: irene.farabella@cnag.crg.eu

© The Author(s) 2021. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

63



2 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 1

construct ensembles of chromatin 3D models from cell
population-based datasets. Others are focused on the 3D
modelling of chromatin based on single-cell Hi-C data, like
manifold based optimization (30) and NucDynamics (31).
However, the majority of the data-driven methods are based
on interaction experiments that have been designed to re-
trieve dense contact information from a continuous set of
loci or the whole genome, whilst other interaction exper-
iments are characterized by data sparseness (e.g. HiChIP
or pcHi-C). As such, data-driven methods for sparse data
modelling are needed.

Generally, the interaction profiles of sparse 3C-based
datasets have specific properties that set them apart from
other 3C-like techniques characterized by a dense inter-
action profile. Indeed, protein or promoter capture-based
interaction profiles are heavily biased on interactions be-
tween captured fragments and devoid of interactions be-
tween non-captured fragments. This fact poses the ques-
tion of whether this lack of information prevents the 3D
reconstruction of the whole loci of interest and its analy-
sis, or whether it is sufficient to allow for accurate 3D mod-
elling. To answer this question, we have implemented a new
method, which is tailored to integrative modelling and anal-
ysis of sparse 3C-based datasets. We have also validated
the procedure comparing the resulting reconstructed mod-
els with available dense experimental datasets, unveiling that
the 3D chromatin organization can be well recovered by in-
terrogating only a small percentage of loci. Additionally,
we have designed new tools to facilitate a robust differen-
tial analysis of the resulting models and showcased their
usability in comparative analyses using the B-globin locus
as a test case. Interestingly, comparing different cell-types,
we unveiled that the B-globin locus in cord-blood Erythrob-
lasts (cb-Ery), where its foetal and adult B-globin genes are
highly expressed, is hierarchically organized in a 3D net-
work of active gene communities that follows an expression
gradient.

MATERIALS AND METHODS
Experimental datasets

Structural data were obtained from publicly available 3C-
based chromatin interaction experiments of GM 12878 cells
(Hi-C GEO: GSE63525 and pcHi-C ArrayExpress: E-
MTAB-2323) (6,32), and cord-blood derived Erythrob-
lasts (cb-Ery), naive CD4+ T-cells (nCD4), and Monocytes
(Mon) (pcHi-C EGA: EGAS00001001911) (33).

Hi-C datasets processing.  The reads for each replicate were
mapped onto the GRCh38 reference genome, filtered and
merged using TADDit with default parameters (27). Then,
starting from the merged filtered fragments, the genome-
wide raw interaction maps were binned at 5 kilo-base (kb)
and normalized using OneD (34) as implemented in TAD-
bit (27).

pcHI-C datasets processing. For each experiment, the
reads were mapped onto the GRCh38 reference genome us-
ing TADbit (27) and were filtered applying the following fil-
ters: (i) self-circles, (ii) dangling-ends, (iii) errors, (iv) extra

dangling-ends, (v) duplicated reads and (vi) random breaks.
Next, we computed the reproducibility score to measure the
similarity between replicates from each pcHi-C dataset (35).
Then, for each cell-type, the different replicates from the
same experiment were merged into one dataset for further
analysis, making an exception with replicate ERR436029
from the GM 12878 pcHi-C dataset (E-MTAB-2323), which
was discarded due to a clearly low reproducibility score
when compared with the rest of the replicates (average of
0.24 with the other replicates as compared to the average
of 0.84 obtained between the other replicates). Using the
merged filtered fragments, the genome-wide raw interaction
maps of each cell-type were binned at 5 kb and normalized
using the PRoportion of INTeraction approach (PRINT,
next section).

Sparse data normalization PRoportion of INTeraction ap-
proach (PRINT). PRINT, a multi-stage normalization
procedure, weighs each pair of interacting bins with the
same philosophy as the visibility approach for Hi-C (36).
Starting from a raw interaction matrix as input, PRINT first
transforms the raw interaction between two bins (i and j)
into a percentage of interaction with respect to the rest of
the genome as:

binij
> row; + Y row; — bin;;

where (bin;;) represent the number of times in which bin 7
and j interact, and ) “row; and )_row; are the sum of all the
interactions of bins i and j, respectively, with all the genome
(self-interactions included). Then, the non-baited interac-
tions (that is, those bins containing only pcHi-C off-target
reads) are filtered out.

value;; =

PRINT assessment.  Using the benchmarking datasets de-
scribed above, each stage of PRINT normalization (raw
pcHi-C (pcHi-C-raw), pre-normalized pcHi-C (pcHi-C-
pre) and normalized pcHi-C (pcHi-C-norm)) was assessed
in comparison with the dense Hi-C interaction matrix by
calculating the Spearman’s rank correlation coefficient be-
tween interactions (bin;) present in both interaction matri-
ces.

Reconstructed 3D genomic regions

Benchmarking datasets.  We selected 12 genomic regions of
interest (Supplementary Table S1) as defined by Rao ef al.
(6). This set of genomic regions were predicted to result in
reliable 3D models based on their >0.7 MMP scores (37)
(Supplementary Table S2). Briefly, MMP score takes into
account the interaction matrix size, the contribution of sig-
nificant eigenvectors in the matrix and the skewness and
kurtosis of the z-scores distribution of the matrix to assess
their potential for being modelled (37).

Comparative analysis datasets. We selected a genomic re-
gion around a locus of interest (here the B-globin) defining
it in a semi-automatic manner in each cell-type. Briefly, a
viewpoint, which may be constituted by a bin or a set of
bins of interest, is selected. Here, as viewpoint we used bins

64



enclosing the active haemoglobin genes in cb-Ery (HBB,
HBD, HBG1 and HBG?2). Then, all the other bins that in-
teracted with the viewpoint bins in the normalized genome-
wide interaction matrix were selected. Each of these bins
were then scored by their cumulative normalized interaction
frequency values with the viewpoint bins. From this set only
the top intra-chromosomal 200 bins were selected since,
by visual inspection, they were the bins spanning the ge-
nomic region that best enclosed the viewpoint. Then an un-
weighted interaction network was generated with the nodes
corresponding to the top 200 bins and the viewpoint bins.
Edges between nodes were added if their pairwise cumula-
tive normalized interaction frequency value was in the top
200 interacting bins. Then, a series of transformations were
applied to the unweighted interaction network: (i) nodes
that are highly proximal in 1D genomic resolution (closer
than 25 kb) were merged into one node; and (ii) poorly con-
nected nodes in the network that had <5 edges were filtered
out (average number of edges per node in Mon, nCD4 and
cb-Ery were 200, 214 and 214, respectively). The extreme
nodes in terms of genomic coordinates were selected from
the final unweighted interaction network to represent the
optimal genomic region around the viewpoint. Here, to per-
form comparative analysis, we defined the optimal genomic
region around the viewpoint as the broader genomic region
that enclosed all of the genomic coordinates identified in
each cell-type.

3D chromosome ensemble reconstruction from sparse
datasets

Model representation. Each genomic region was described
with a beads-on-string model based-on the previously im-
plemented protocols (29,38) without bending rigidity po-
tential. Thus, a chromosome was represented with N spher-
ical beads with diameter o = 50 nm that contain 5 kb of
chromatin which determined the genomic unit length of
each model.

System set up for molecular dynamics. All simulations
were done using TADdyn (29). A generic random self-
avoiding walk algorithm was used to define the initial con-
formation of each model. The potential energy of each sys-
tem comprised the terms of the Kremer-Grest polymer
model (39) including chain-connectivity (Finitely Extensi-
ble Nonlinear Elastic, FENE) (40) and excluded volume
(purely repulsive Lennard-Jones) interactions. The initial
conformation was placed randomly inside a cubic simula-
tion box of size 1000 o centred at the origin of the Carte-
sian axis O = (0.0, 0.0, 0.0), tethered at the centre of the box
using a harmonic (K; = 50.0 kyT/o? and deq = 0.0 o) to
avoid any border effect and energy minimized using a short
run of the Polak-Ribiere version of the conjugate gradient
algorithm (41) to favour smooth adaptations of the imple-
mentations of the excluded volume and chain connectivity
interaction.

Encoding sparse data into TADdyn restraints. TADdyn

(29) empirically identifies the three optimal parameters
to be used for modelling based on a grid search ap-
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proach. These are: (i) maximal distance between two non-
interacting particles (maxdist); (ii) a lower-bound cut-off to
define particles that do not frequently interact (lowfreq);
and (3) an upper-bound cut-off to define particles that
frequently interact (upfieq). All possible combinations of
the parameters were explored in the intervals lowfreq =
(—=1.0,—0.5, 0, 0.5), upfreq = (—1, —0.5, 0, 0.5), maxdist =
(200, 300, 400, 500) nm and assessing each combination us-
ing distance thresholds to determine if two particles are in
contact (dcutoff) at 100,150, 200, 250, 300, 350, 450, 500
nm. For each of the combinations an ensemble of 100 3D
models was generated and the Spearman correlation coeffi-
cient between the contact map derived from each ensemble
and the experimental input interaction matrix was calcu-
lated. The top set of parameters for each region in each cell-
type were set for those resulting in the highest Spearman
correlation coefficient between the models contact map and
the input interaction matrix. To allow for a robust compar-
ative analysis (‘Materials and Methods’ section) the opti-
mal maxdist and the dcutoff parameters were selected based
on the consensus within the top optimal values for each
region in each cell-type. Optimal maxdist and the dcutoff
were set at 300 and 200 nm, respectively for the ensembles
of models reconstructed from the GM 12878, cb-Ery, nCD4
and Mon pcHi-C datasets. Once the three optimal param-
eters were defined, the type of restraints between each pair
of particles was set considering an inverse relationship be-
tween the frequencies of interactions of the contact map and
the corresponding spatial distances. Non-consecutive parti-
cles with contact frequencies above the upper-bound cut-off
were restrained by a harmonic oscillator at an equilibrium
distance, whilst those below the lower-bound cut-off were
maintained further apart than an equilibrium distance by
a lower-bound harmonic oscillator. To identify 3D mod-
els that best satisfy all the imposed restraints, the optimiza-
tion procedure was then performed using a steered molecu-
lar dynamic protocol. A total of 1000 replicate trajectories
were generated for each genomic region and dataset. Each
of the 1000 replicate trajectories, the conformation at the
end of the steering protocol (when the target spring con-
stant and equilibrium distance are reached) was retained to
form the final ensemble of 1000 3D models. For the cb-Ery,
nCD4 and Mon datasets, to account for possible mirrored
3D models within the final ensemble of 3D models, each
ensemble was then clustered based on structural similarity
score as implemented in TADDit (27) and only the models
from the most populated cluster were retained for further
analysis.

Steered molecular dynamics protocol. A steered molecu-
lar dynamics protocol was used to progressively favour the
imposition of the defined set of restraints between non-
consecutive particles. For each restraint, the equilibrium
distance was set to | particle diameter (o). The spring con-
stant k(L,t) was weighted with the sequence-separation L
between the constrained beads as in TADdyn (29) to en-
sure that the steering process was not dominated by the tar-
get pairs at the largest sequence separation. However, here
the k(L,t) was smoothly ramped during the steering phase
from zero to its maximum value.
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3D chromosome ensemble reconstruction from dense datasets

The reconstruction of 3D models of genomic regions
from dense data followed the modelling protocol described
above. That is, a grid search approach was used to se-
lect for the optimal parameters to be used for modelling.
The optimal maxdist and the dcutoff parameters were se-
lected based on the consensus within the top optimal val-
ues for each region in the GM12878 pcHi-C dataset and
set at 300 and 200 nm, respectively. Using these parameters,
the final ensemble of 1000 3D models was obtained start-
ing from the computed 1000 steered molecular dynamics
trajectories.

3D chromosome ensemble reconstruction from Virtual pcHi-
C derived from dense datasets

A dataset of Virtual pcHi-C interaction matrices was pro-
duced starting from the normalized Hi-C interaction ma-
trices at 5 kb resolution (GM 12878 cells GEO: GSE63525;
‘Materials and Methods’ section) and from the liftover
(https://genome.ucsc.edu/cgi-bin/hgLiftOver) list of cap-
tured fragments in pcHi-C GM 12878 experiment (32). The
obtained Virtual pcHi-C interaction matrices comprised
only interactions (bin;) in which either 7 or j enclose the
coordinates of a captured fragment. These interaction ma-
trices were used as input for the reconstruction of 3D mod-
els of genomic regions following the modelling protocol de-
scribed above. The optimal maxdist and the dcutoff param-
eters were set at 300 and 200 based on their consensus with
the parameters used in the GM 12878 pcHi-C dataset. A to-
tal of 1,000 steered molecular dynamics trajectories were
computed, and for each trajectory the conformations sat-
isfying the majority of the imposed constraints within a ra-
dius of 2 o were retained.

3D chromosome ensemble reconstruction from ‘synthetic’
sparse dataset

We used a previously published ‘toy genome’ (37) (that is,
the ensemble of models accounting for the formation of
TAD-like architecture with low structural variability and
high noise levels that comprises a total of 626 particles
at the highest genomic resolution) to randomly select 10
sets of 22 loci from the toy genome contact map (or syn-
thetic interaction maps). These loci mimic pcHi-C to gen-
erate reliable sparse interaction matrices comprising only
interactions (bin;) in which either i or j have been se-
lected as random captured loci. Each of these sets was then
randomly subsampled to generate ‘synthetic’ capture ma-
trices with 2, 4, 6, 10, 14 and 18 selected captured loci.
The obtained ‘synthetic’ capture matrices (70 in total) were
next used as input for the reconstruction of 3D models
of genomic regions following the modelling protocol de-
scribed above. The optimal maxdist and the dcutoff pa-
rameters were set at 500 and 200 nm. Using these pa-
rameters, a final ensemble of 100 3D models was recon-
structed for each ‘synthetic’ capture matrices comprising
the conformations that best satisfied the imposed restraints
in each of the computed 100 steered molecular dynamics
trajectories.

Analysis of the ensemble of 3D models

Contact map generation. For each ensemble of 3D models,
a contact map was calculated at 5 kb resolution to visualize
the frequencies of contacts in the ensemble. Two beads were
considered to constitute a contact when their euclidean dis-
tance was below 200 nm cut-off.

Matrix comparison. The degree of similarity between two
matrices was computed by comparing each cell from the
matrices, or a subset of them, using the Spearman’s rank
correlation coefficient (ry) as implemented in the Python li-
brary SciPy (42,43):

n 2
6 Z,‘=1 (rbin\l = rbin‘,))
n(n?—1)
where ryin, is the rank of the ith observation in one matrix,

T'bin,, 18 the rank of the ith observation in the other matrix
and n states for the number of pairs of observations.

ro=1

Particle-to-particle median distance correlation (ppMdC).
For each ensemble of 3D models, we differentiated three sets
comprising particles enclosing the coordinates of: (i) cap-
tured loci (capture), (ii) non-captured loci (other) and (iii)
all the loci (all). For each of the pairs of particles in a given
set we calculated the particle-to-particle median distance.
Then, the degree of similarity between two given sets was
computed using the Spearman’s rank correlation coefficient
between their particle-to-particle median distances. The pp-
MdC measure varies between —1.0 and 1.0 for compar-
isons where the particle-to-particle median distances per-
fectly anti-correlate or correlate, respectively.

Hierarchical clustering of ensembles of 3D models. Multi-
ple ensembles of 3D models were merged in a unique set and
the models were structurally superpose using pairwise rigid-
body superposition. Next, the all-vs-all distance root-mean-
square deviation (IRMSD) was calculated and the resulting
dRMSD matrix was hierarchically clustered using Ward’s
sum of squares method (44) as implemented in the Python
library SciPy (42).

Cell-specific expression profile. Publicly available (33)
expression matrix containing the expression values
(log(FPKM)) of each gene in cb-Ery, nCD4 and Mon
cell-types was downloaded (GeneExpressionMatrix.txt.gz
at https://osf.io/u8tzp/). The three datasets had two or more
replicates each (two cb-Ery, five Mac and eight nCD4,
respectively), thus the average expression value of each gene
from all replicates was used. Then, a cell-specific per-bin
cumulative expression profile of the chrl1:3 795 000-8
505 000 genomic region at 5 kb resolution was obtained
assigning the mean expression value of each gene (with
log(FPKM) > 0) to bins enclosing for the coordinates of its
transcription start site (coordinates retrieved from bioMart
(45)).

3D enrichment analysis. To study the spatial co-

localization of different regulatory elements and the
local levels of transcription (based on genome-wide ChIP-
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and RNA-seq data) around a selected locus (central view-
point) we implement a 3D enrichment analysis tool (named
‘radial-plot’) that allows the comparison of heterogeneous
sets of data from multiple data sources. Per each cell-type
a per-particle binarized chromatin marks profile in the
genomic region was generated starting from the ChIP-seq
signal of H3K27ac, H3K36me3, H3K4mel, H3K4me3,
H3K9me3 and H3K27me3 in cb-Ery, nCD4 and Mon
cell-types (33). A particle was considered enclosing for a
chromatin mark if a peak was present. Similarly, we also
constructed, for each cell-type, a per-particle binarized
transcription profile starting from the cell-specific expres-
sion profile (‘Materials and Methods’ section). Then the
3D spatial distribution of the 3D enrichment based on the
per-particle binarized profile around the chosen central
viewpoint was calculated as follow: (i) starting from the
central viewpoint an initial sphere with a radius of 200
nm was constructed; (i) a series of spherical shells, that
occupied a volume equal the initial sphere, were added; (iii)
each model in the ensemble of 3D models a particle of the
binarized profile was assigned to a spherical shell based
on its relative distance to the central viewpoint; (iv) each
spherical shell we performed Fisher’s exact tests for 2 x 2
contingency tables comparing the amount of particles with
or without signal in the spherical shell with the outside
ones, and the log of the odd ratios was assigned to the shell
if the P-value < 0.01. The obtained 3D enrichment was
then visualized as a 2D radial plot.

Defining gene communities: co-occurrence of expressed
genes. For each ensemble of 3D models, based on
their cell-specific expression profile (‘Materials and Meth-
ods’ section), we defined the set of expressed particles
(log(FPKM) > 0). Then, considering this set of particles,
an all-versus-all pairwise distances matrix was calculated in
each model and hierarchically clustered using Ward’s sum
of squares method (44) as implemented in the Python li-
brary SciPy (42). Then the Calinski-Harabasz index (46),
as implemented in the Python library Scikit-learn (47), was
used to determinate the optimal number of clusters in each
dendrogram. Then, for each ensemble, a co-occurrence ma-
trix was generated considering the percentage of models in
which a pair of particles belonged to the same cluster. The
co-occurrence measure varies between 0 and 100, where 0
indicates absence of co-occurrence and 100 indicates a sta-
ble co-occurrence within the ensemble of 3D models. The
co-occurrence matrix was next hierarchically clustered us-
ing Ward’s sum of squares method (44) and communities of
co-occurrent active genes were identified using the Calinski
—Harabasz index analysis in the dendrogram.

Communities stability within the ensemble of models. To
assess the stability of each community within the ensem-
ble we introduced the inter-community co-occurrence score
that defines the degree of unstable compositions of a com-
munity. It is computed as the mean co-occurrence values
between each gene in a community and the rest of the com-
munities.

Distance between communities and within community. To
describe the spatial arrangement of each community for a
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given ensemble of 3D models, we treated each community as
arigid body and calculated its centre of mass (COM) in each
3D model of the ensemble. Per each model the all-versus-
all pairwise distances between the COMs of each commu-
nities were computed and the mean distance values assigned
as the typical distance between communities. Similarly, per
each model, we also calculated the distance of each particle
in a given community and the COM of its community. The
within community distance of a given particle was defined
by its mean value in the ensemble of 3D models.

RESULTS
Overall modelling strategy for sparse 3C data

Sparse 3C datasets provide information of interactions that
involve a limited number of specific loci in the genome.
pcHi-C, for example, provides a promoter-centred view of
chromatin interactions, helping to assign distal regulatory
regions to their target genes, thus providing insights on
how gene expression might be controlled (32,33,48) and
how disease-associated genomic variation could affect gene
regulation (49). The main limitation of these sparse tech-
nologies, however, is the scarcity of specialized tools for
their analysis. Here, we have developed an integrative 3D
modelling method capable of dealing with data sparsity,
enabling the analysis and interpretation of pcHi-C data,
and tested it on 12 distinct loci (Benchmarking datasets;
‘Materials and Methods’ section and Supplementary Table
S1). Our method follows an integrative modelling procedure
comprising five steps (50): (i) gather experimental data and
process them to obtain the input interaction matrix for the
modelling approach, (ii) represent the selected chromatin
regions using a bead-spring polymer model with a particle
size proportional to the genomic resolution of the exper-
imental data, (iii) transform the frequency of interactions
into spatial retrains, (iv) sample the conformational space
by steered molecular dynamics and (v) analyse and validate
the obtained ensemble of 3D models (‘Materials and Meth-
ods’ section and Figure 1A).

In this work, we gathered pcHi-C interaction data (‘Ma-
terials and Methods’ section), whose processing step is piv-
otal to minimize the experimental biases from the capture
protocol. To this end, we designed a multi-stage normal-
ization procedure named PRINT (‘Materials and Meth-
ods’ section). PRINT weighs each interaction by dividing
it by the cumulative whole-genome interaction frequencies
of both of the interacting bins, regularizing the interaction
patterns for the fact that captured loci are highly enriched in
contacts. It also removes the pcHi-C unspecific interactions
between non-probed bins. To test quantitatively the perfor-
mance of our normalization procedure, we compared each
of the normalization stages of the pcHi-C matrices with the
respective Hi-C matrices normalized with OneD in each of
the selected loci (34). The median correlation between bins
with interaction data in both matrices was 0.27 (£0.025 Me-
dian Absolute Deviation (MAD)) for raw pcHi-C matrices
(pcHi-C-raw), increasing to 0.44 (£0.032 MAD) with the
pcHi-C pre-normalization step (pcHi-C-pre) and reaching
0.60 (£ 0.056 MAD) for fully normalized pcHi-C matrices
(pcHi-C-norm) (Supplementary Figure S1A), suggesting
that PRINT reduced successfully the target biases. Then,
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Figure 1. Integrative modelling for sparse datasets efficiently reconstructs the 3D organization of genomic loci. (A) Workflow of the integrative modelling
approach followed to build ensembles of chromatin 3D models from pcHi-C: (i) gathering the input interaction matrices with subsequent normalization
and filtering; (ii) representation of the chromatin fibre as a polymer with the particle size proportional to the resolution of the experiment; (iii) definition
of the scoring function used in the modelling procedure. Here, the scoring function comprises spatial restraints derived directly from the input interaction
data and from properties of the chromatin fibre (‘Materials and Methods’ section); (iv) sampling the conformational space by steered molecular dynamics
(‘Materials and Methods’ section); and (v) validation of the obtained ensemble of models and further analysis. Model images in all panels were created
with Chimera (74). (B) Representation of the input and output data from region 2 (Supplementary Table S1). The upper half of the panel refer to the
dense dataset (Hi-C), whereas the lower half refer to the sparse-datasets (pcHi-C). From left to right, the matrices of normalized interaction frequency
(‘Materials and Methods’ section) between each pair of bins, the contact matrix obtained from the ensemble of models of region 2 displays the percentage
of models in which two bins are found bellow the defined distance cut-off for the contact (‘Materials and Methods’ section), and the best model from the
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signal. (C) Comparison between model ensembles derived from sparse (pcHi-Cvirt and pcHi-C in grey and blue, respectively) and dense (Hi-C) datasets
assessed by the particle-to-particle median distance correlation (ppMdC; ‘Materials and Methods’ section). Three subsets of particles have been compared
given the enclosed loci: (i) captured loci (capture), (ii) non-captured loci (other) and (iii) all the loci (all). The grey dashed line indicates the median ppMdC
in the 12 analysed regions. (D) Element-wise Spearman correlation coefficients between the experimental Hi-C interaction matrices and the contact maps
derived from the model ensembles reconstructed from sparse data (pcHi-Cvirt and pcHi-C in grey and blue, respectively). The grey dashed line indicates
the median element-wise Spearman correlation coefficients in the 12 analysed regions.
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we represented the selected loci as a bead-spring polymer
model with a particle size set to 5 kb, taking into account
the restriction fragment lengths distribution in the bench-
marking datasets (Supplementary Figure S1B). Similarly to
TADbit (27) and TADdyn (29), to simulate the structural
conformation of genomic loci, we then transformed the in-
teraction frequencies associated with each bin pair into spa-
tial restraints (‘Materials and Methods’ section). The latter
were then imposed on the model using steered molecular
dynamics as sampling method in which the spring constant
associated to each restraint was ramped up as a function of
simulation time from zero to the value computed from the
interaction data. Lastly, we implemented new means for a
robust quantitative spatial differential analysis of genomic
loci.

Comparison between sparse and dense 3C-derived models

Dense 3C data have been extensively used to reconstruct the
3D organization of genomic loci (25,27,29,30). Here, to test
the reliability of our modelling approach, we used sparse
and dense datasets to build ensembles of models of the
same loci. Specifically, we applied our integrative method
for sparse data modelling to previously published pcHi-C
datasets of GM12878 cells (32) to reconstruct 3D model
ensembles of 12 distinct loci (Figure 1B and Supplemen-
tary Table S1) at a 5 kb resolution and compared them
with the corresponding ones reconstructed using Hi-C (6) at
the same genomic resolution. Additionally, to quantify the
effect of sparsity in the comparison independently of the
experimental protocol biases, we generated virtual pcHi-
C (pcHi-Cvirt) interaction matrices from the normalized
Hi-C datasets extracting the rows and columns probed in
the pcHi-C experiment (‘Materials and Methods’ section).
These virtual sparse matrices were then used to reconstruct
3D model ensembles of the selected loci.

The comparison between the sparse and dense derived
3D model ensembles revealed that it is possible to recover
most of the 3D organization of the dense dataset in spite
of the data sparsity (Figure 1C). Indeed, the all-versus-all
particle-to-particle median distance correlation (ppMdC)
between the sparse and dense derived 3D model ensembles
was 0.81 (£0.019 MAD) and 0.93 (+0.024 MAD) for both
pcHi-C and pcHi-Cvirt. Additionally, when comparing dis-
tances between particles that have both been captured in
the pcHi-C experiment (capture—capture), the ppMdC was
higher, reaching 0.91 (£0.054 MAD) for pcHi-C and 0.96
(£0.019 MAD) for pcHi-Cvirt. Consistently, when compar-
ing distances between non-captured particles with captured
particles (capture-other) or between non-captured particles
(other—other), the ppMdC indicated good agreement with
values of 0.84 (£0.03 MAD) and 0.95 (£0.02 MAD), and
0.81(£0.02 MAD)and 0.93 (£0.02 MAD), respectively, for
pcHi-C and pcHi-Cvirt in both comparisons (Figure 1C).
The results indicate that the sparse derived ensembles of
3D models are a good representation of the dense experi-
ment and that the intrinsic experimental biases of the cap-
ture experiment only minorly affect the 3D reconstruction.
Indeed, comparing the whole contact map computed from
the 3D model ensembles derived from sparse data directly
with the whole experimental Hi-C interaction matrices re-
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vealed that the reconstructed ensembles of models are in
good agreement with the dense experimental data having
an element-wise Spearman’s rank correlation coefficient of
0.73 (£0.02 MAD) and 0.86 (£0.02 MAD), for pcHi-C and
pcHi-Cvirt derived ensembles of models, respectively (Fig-
ure 1D). Overall, this suggest that the ensembles of models
reconstructed by our approach represent well the 3D orga-
nization of the selected genomic regions and, more impor-
tantly, recover the spatial arrangements of loci that are not
interrogated by the sparse experiment.

Reconstruction efficiency and data sparsity

To investigate the relationship between the reconstruction
efficiency and data sparsity, we simulated ‘synthetic’ capture
data. Briefly, we generated 10 different sets of ‘synthetic’
capture matrices that represent generic capture-like exper-
iments. We started from the contact matrix derived from a
3D toy-genome models ensemble that simulates roughly a
one Mb length genome (comprising more than 600 parti-
cles) with a TAD-like architecture, a high level of interac-
tion noise and low variability between models (37) (‘Mate-
rials and Methods’ section and Figure 2A). To build each of
the 10 ‘synthetic’ sets, we randomly selected 22 captured loci
and constructed 6 additional datasets of different sparsity
downsampling each set considering 2, 4, 6, 10, 14 and 18 loci
at a time, which mimics the distribution of captured probes
per Mb present in a typical genome-wide pcHi-C experi-
ment (Figure 2B). The constructed 70 capture-like matrices
thus aim to represent typical pcHi-C experimental design.
Using our integrative modelling method for sparse datasets,
we reconstructed, from each of the ‘synthetic’ capture ma-
trices in the dataset and their downsampled counterparts,
ensembles of 100 models and compared them with the ref-
erence toy-genome ensemble (Figure 2A). Independently of
the sets, the ppMdC between the sparse and dense model
ensembles increased with the number of captured particles
used in the modelling procedure reaching a median correla-
tion between sets of 0.82 (+/- 0.02 MAD with just 10 cap-
tures per Mb (Figure 2C). Notably, also with 4 and 6 cap-
tures per Mb the ppMdC reached 0.69 (£0.04 MAD) and
0.79 (£0.05 MAD) for four and six captures, respectively,
although with greater variation within sets. This suggests
that with 10 captured loci per Mb the uncertainty in the in-
put information is smaller, leading to more precisely recon-
structed models. Nevertheless, it is possible to reconstruct
good models also with fewer as four captured loci per Mb
although with a higher degree of variability. To quantify the
effect of data sparseness on model reconstruction, we next
measured the amount of input information used during the
modelling as the percentage of all possible interaction pairs
in the contact matrix (dense data input) and then assessed
it with the ppMdC. The results indicate that it was possible
for the majority of the sets (8/10) to reliably reconstruct the
reference toy genome (ppMdC > 0.8) with just 2-3% of all
the interaction pairs in the contact matrix used as restraints
(Figure 2D and Supplementary Figure S2). Taken together,
this analysis shows that it is possible to consistently recover
most of the 3D organization of a region of interest with 10
captured loci per Mb and with just 2-3% of all possible in-
teractions within a region captured.
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Cell-type-specific organization of the 3-globin locus

To illustrate the utility of our integrative approach in un-
veiling the differential organization of loci, we applied it
to the genomic region surrounding the B-globin locus in
three different cell-types (cb-Ery, nCD4 and Mon; ‘Materi-
als and Methods’ section) for which pcHi-C data are avail-
able (33). The selected genomic region contains five cod-
ing genes (HBB, HBD, HBG1, HBG2 and HBEI) with
developmental-stage-dependent expression (51), which is
finely regulated by a set of upstream enhancers known as
the locus control region (LCR) (52). This locus is known to
be in an active conformation in cb-Ery, where the LCR is
interacting mainly with expressed genes as HBB and HBD,
but not in nCD4 and Mon cells (33).

First, we defined the optimal region to be modelled based
on the interaction networks (in all cell-types) of the embry-
onic (HBG1 and HBG2) and adult (HBB and HBD) globin
genes with the rest of the genome at 5 kb resolution (‘Ma-
terials and Methods’ section). The defined region spanned
4.7Mb of chrl1 (chrl1:3 795 000-8 505 000 base-pairs (bp))
comprising several neighbouring genes and multiple long-
range regulatory elements. By applying our integrative ap-
proach, we generated an ensemble of 1000 3D models for
each cell-type. The packing of the genomic region was sig-
nificantly different in each cell-types with median radius of
gyration of 248 + 3, 242 + 2 and 237 + 2 nm for cb-Ery,
nCD4 and Mon, respectively (P-values < 9.1¢'% in each of
the pairwise comparisons using two-samples Kolmogorov—
Smirnov statistics) (Supplementary Figure S3A), with the
topology of the region in cb-Ery being less tightly packed
than in nCD4 and Mon. Each ensemble was then clustered
by structural similarity (27) and the models from the most
populated cluster were selected for the comparative anal-
ysis between cell-types. Clustering by dRMSD, confirmed
that the topology of the region was markedly different in
the three cell-types, with nCD4 and Mon folds being more
similar between each other than with cb-Ery (Figure 3B).
Particularly interesting is how the topology of the B-globin
locus (chr11:5 201 270-5 302 470) varied in the three cell-
types. Indeed, in Erythroblasts the B-globin locus appeared
to be located further from the main core of the region as
compared with naive CD4+ T cells and Monocytes, with
median distances between the centre of mass of the B-globin
locus of 286, 243 and 207 nm in cb-Ery, nCD4 and Mon, re-
spectively (P-values < 3.46e~'°! in all the pairwise cell-type
comparisons; two-samples Kolmogorov—Smirnov statistic)
(Supplementary Figure S3B).

To characterize this further, we focused specifically on the
B-globin locus and quantified its spatial organization with
respect to hypersensitive site 3 (HS3) in the LCR, which
is forming an intricate network of interaction with the B-
globin genes (53) and is required for their activation (54). In
line with this evidence, in the 3D ensemble of models rep-
resenting cb-Ery cells, HS3 was significantly closer to HBB,
HBD, HBGI1, HBG2 and HBEI genes than in the 3D en-
semble of models representing nCD4 and Mon (P-values <
0.007, two-samples Kolmogorov—-Smirnov test). In the lat-
ter two cell-types HS3 had a similar distance distribution
with HBB, HBD, HBG1 and HBG?2 genes (P-values > 0.01,
two samples Kolmogorov—Smirnov test) (Figure 3C).
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Performing 3D enrichment analysis of varied epigenetic
features and expression levels around HS3 (‘Materials and
Methods’ section), we unveiled a stark enrichment of active
chromatin marks (H3K27ac, H3K36me, H3K4mel and
H3K4me3) and expression levels, and a clear depletion of
inactive marks (H3K9me3 and H3K27me3) in cb-Ery. This
3D functional signature could not be inferred from the 2D
genomic track (Supplementary Figure S4A) and was absent
innCD4 and Mon, where active chromatin marks and tran-
script levels were depleted (Figure 3D and E; Supplemen-
tary Figure S5). Overall, our models recapitulated the dif-
ferent 3D organization of the B-globin locus and highlight
the existence of a specific 3D functional signature enriched
in active chromatin features that characterized the active B-
globin locus in cb-Ery.

Active gene communities in cb-Ery: a cell-type-specific 3D
signature

To examine whether the specific 3D functional signature of
the active B-globin locus influence its genomic neighbour-
hood, we investigated its long-range interaction patterns.
Comparative analysis of the distance profile between HBG2
(the most expressed gene in cb-Ery) and each of the se-
lected loci (chrl1: 3 795 000-8 505 000 bp), revealed the ex-
istence of an intricate cell-type-specific network of spatially
proximal expressed genes (Figure 4A), in line with previ-
ous observations of transcribed genes co-localizing in space
(24,55,56,57,58). This network comprised distal transcribed
sites (even located at 1.4 Mb away as STIM1) that showed
cell-type-specific spatial proximity. Indeed, HBG2 in cb-Ery
was in closer proximity with all other expressed loci of the
genomic neighbourhood than in nCD4 and Mon (Figure
4B).

To further characterize the cell-type-specific spatial dis-
tribution of these transcribed loci, we clustered their rela-
tive distances within the ensembles of 3D models and iden-
tified communities of expressed genomic loci (Figure 4C—
E and ‘Materials and Methods’ section). Then, we quanti-
fied the amount of times a given community of expressed
genomic loci occurred within the ensembles of 3D mod-
els (i.e. the co-occurrence score, ‘Materials and Methods’
section) and used this quantification as a proxy to define
the ‘community stability’. This analysis revealed the exis-
tence of highly variable communities of expressed genomic
loci that followed a cell-type-specific segregation in the 3D
space. Interestingly, the organization of these communities
was overall more stable in cb-Ery than in nCD4 and Mon,
where less defined communities were identified. Indeed, as
assessed by the mean inter-community co-occurrence scores
(‘Materials and Methods’ section), the cb-Ery network was
characterized by the presence of four stable communities
(‘Materials and Methods’ section and Table 1). Whilst the
nCD4 network was formed by three communities with over-
all low co-occurrence (although community 2 in this net-
work showed a stability in line with the communities in the
cb-Ery network), and the Mon network formed by only
two unstable communities (‘Materials and Methods’ sec-
tion and Table 1). Overall, the results highlight the pres-
ence of more defined 3D communities of expressed genes
in cb-Ery as compared to nCD4 and Mon, suggesting that
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Methods’ section). Purple line denotes the linear regression fit, the shading around the regression line represents the confidence interval, each community
is represented with different symbols (circle community 1; inverse triangle community 2; square community 3; and ex community 4).
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Table 1. Communities stability assessment

Mean Average
inter-community inter-community

Cell Community co-occurrence co-occurrence per cell

cb-Ery

2.96 3.06
4.90

0.54

3.85

11.49 9.16
3.83
12.17

10.33 10.33
10.33

nCD4

Mon

=W — BN —

Description — Cell: the cell-type data used to reconstruct the chromatin;
Community: the defined communities by Ward’s clustering; Mean inter-
community co-occurrence: communities stability score as defined in ‘Ma-
terials and Methods’ section; Average inter-community co-occurrence per
cell: average mean inter-community co-occurrence value of all the commu-
nities in each of the cells.

the co-occurrence of these segregated communities within
an ensemble of possible folds is part of the cell-type-specific
3D signature.

Next, we investigated whether the stability of the 3D com-
munities of expressed genes in cb-Ery could be related to
the high levels of expression of the B-globin genes (highest
as HBG2 with 10.86 FPKM, whilst the mean expression of
all the other expressed genes in nCD4 and Mon was 2.45
and 2.10 FPKM, respectively). Clustering the distance dis-
tribution between the centres of mass of each community
in cb-Ery (Figure 4F) revealed a clear hierarchical organi-
zation with the most expressed community, which included
the highly expressed B-globin locus (Supplementary Table
S3), located in the centre, and the least expressed commu-
nity in the periphery. This pattern was not present in nCD4,
and impossible to address in Mon with just two communi-
ties (Supplementary Figure S6A and B). This suggests a hi-
erarchical organization in cb-Ery, in which the location in
space of each of the communities and their levels of expres-
sion are related. Surprisingly, this hierarchy was also overall
present at the community level in cb-Ery, where the distance
between each gene to the centre of mass of the community
and its expression were negatively correlated (CC: —0.55,
P-value = 0.002; Figure 4G). This suggests the formation
in cb-Ery of a gradient of expression within the community
were the most expressed genes are located in the centre of
their communities and the less expressed ones are preferen-
tially located in the periphery in line with the organization
previously observed for the alpha-globin locus (24). This
overall community organization was not evident in nCD4
and Mon (Supplementary Figure S6C and D), thus suggest-
ing that the high expression of the B-globin loci in cb-Ery
could be associated with the establishment of a hierarchical
organization in the loci.

DISCUSSION

Here, we have introduced an integrative modelling method
for the 3D reconstruction, analysis and interpretation of
sparse 3C-based datasets such as pcHi-C. We also demon-
strate its usability in the comparative 3D analysis of ge-

nomic regions using the B-globin locus as an example,
showing that our method can detect cell-type-specific 3D
organizational features within genomic regions that can
lead to several important implications on the relationship
between genomic function and spatial genome organiza-
tion, such as the expression dependent organization of ac-
tive loci.

Generally, the analysis and interpretation of sparse 3C-
datasets is not trivial and specialized analytical tools
are required. In the case of pcHi-C, the available tools
(ChiCMaxima, Chicago, Chicdiff, Gothic, HiCapTools
(59,60,61,62,63)) are mainly focused on the implementation
of normalization strategies to reduce the impact of non-
biological biases and on strategies to detect interaction be-
tween captured loci. Conversely, the integrative modelling
method presented in this study has been designed for the
analysis and interpretation of sparse 3C-datasets in their
third dimension, allowing for data normalization, detection
of significative interaction, and most importantly, the recov-
ery of the full structural organization of a genomic region
despite of the data sparseness.

Indeed, here we extensively tested our procedure by com-
paring models reconstructed directly from sparse and dense
datasets, showing that 3D models reconstructed by the in-
tegrative modelling method for sparse data modelling are a
good representation of the dense experiment. In fact, model
reconstruction is only minorly affected by the intrinsic ex-
perimental biases of the capture experiment. Additionally,
and most importantly, our model procedure reproduces re-
markably well the whole 3D organization of the selected ge-
nomic regions even recovering the organization of loci that
are not included as input restraints and are not readily ob-
servable in the sparse experiment.

Next, to assess whether the 3D reconstructed models
were not only a bona fide representation of models based
on Hi-C datasets, we used a ‘synthetic’ toy genome with
known 3D organization (37) and proved that we can effi-
ciently model sparse pcHi-C-like datasets using as few as 2—
3% of all possible interaction data. Importantly, this quan-
tification highlights how the degree of sparseness of the data
is related to the efficiency of the 3D reconstruction process
and provide a general guideline for sparse data modelling.
In light of this, we speculate that our integrative approach
could easily be applied to different type of 3C datasets with
similar sparseness. For example, protein-centric chromatin
conformation method such as HiChIP (19) could be used as
input experiment to reconstruct the chromatin folding, as-
suming that the protein-capture biases of this type of exper-
iments are similar to the promoter-capture biases observed
in the pcHiC experiments.

Finally, to illustrate the utility of our integrative ap-
proach, we applied it to the B-globin locus, whose 3D or-
ganization has been extensively studied (51,53,64,65,66).
We investigated this locus in three different cell-types (cb-
Ery, nCD4 and Mon) and performed a comparative analy-
sis between them. In agreement with previous studies (33),
our models show that the topology of the B-globin lo-
cus varies in the three cell-types owing to their differen-
tial expression. Interestingly, our models also unveil that
the globin HBG2 gene is embedded in an epigenetically ac-
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tive and highly transcribed neighbourhood in cb-Ery giv-
ing rise to a locus-specific 3D functional signature. This
functional signature is absent in the models of other cell-
types (nCD4 and Mon), where the locus is not expressed.
We also show that this cell-specific organization, not only
occurs proximally to the B-globin genes but also involves
loci located at longer genomic distances (more than 1 Mb
away). Indeed, our 3D comparative analysis unveiled the
existence of an intricate cell-type-specific network of spa-
tially proximal expressed genes that forms gene commu-
nities that are segregated in the 3D space in a cell-type-
specific fashion. The identified communities are compat-
ible with the formation of chromatin foci in which tran-
scribed genes co-localize as a general mechanism to or-
ganize gene transcription (24,55,56,57,58,67). Interestingly,
we observed that the co-occurrence within the ensemble of
models of the identified cell-type-specific communities is
cell-type dependent, with the cb-Ery communities network
formed by more persistent communities than the nCD4 and
Mon community networks. This suggests that also the de-
gree of co-occurrence of the communities within the ensem-
ble is an important feature for the identification of a cell-
type-specific 3D signature. Additionally, we observed that
in cb-Ery, where the B-globin genes are highly expressed, the
communities present an overall hierarchical spatial organi-
zation, both between and within communities. This topol-
ogy is dependent on the level of transcription with highly ex-
pressed entities (entire community or specific gene within a
community) located in the core of the hierarchical 3D orga-
nization and low expressed entities found at the periphery.
We hypothesize that the observed communities could repre-
sent cell-type-specific transcription factories (24,67,68,69)
or phase-separated foci (70,71,72) organized following a
gradient of transcription with high concentration of nascent
transcripts and macromolecular protein complexes in the
core of the assemblies that create a ‘sticky’ environment for
the less expressed peripheral loci. This hierarchical organi-
zation is only marginally present in nCD4 and Mon, sug-
gesting that it contributes to the cell-type-specific 3D signa-
ture characterizing the B-globin region in cb-Ery. However,
the long-range interactions between the active 3-globin lo-
cus and other active gene loci have been seen to be not de-
pendent on the process of ongoing transcription or on the
binding of RNAPII to regulatory elements (73), suggesting
that the observed communities’ organization is more likely
dependent on high concentrations of other macromolecu-
lar protein complexes in the ‘“sticky’ core of the hierarchical
3D organization.

In summary, we have shown that sparse datasets like
pcHi-C can be effectively used to model in 3D the spatial
conformation of genomic domains. The resulting models re-
tain most of the genomic region organization and recover
also the organization of loci that are not readily observ-
able in the sparse experiment. Importantly, this is achiev-
able with a very small percentage (~2-3%) of all possi-
ble interaction data in the genomic region. Additionally,
our study not only provides a novel approach for sparse-
data 3D modelling but also introduces new tools for the
comparative analysis of genomic regions. Thus, it will aid
the discovery of cell-type-specific 3D signatures and help
deciphering complex mechanism underlying the cell-type-
specific 3D genome organization.
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DATA AVAILABILITY

Hi-C data for GM12878 cell line were obtained from
Gene Expression Omnibus (GEO) at the accession num-
ber GSE63525. pcHi-C data from GM 12878 cell line were
obtained from ArrayExpress at the accession number E-
MTAB-2323. pcHi-C data for cb-Ery, nCD4 and Mon
cells were obtained from the European Genome-phenome
Archive at the accession number EGAS00001001911. Ex-
pression matrix for cb-Ery, nCD4 and Mon cells was
downloaded from https://osf.io/u8tzp/ (GeneExpression-
Matrix.txt.gz).

The code used to reconstruct 3D models from the sparse-
data modelling approach, to analyze data and to generate
figures is available in the GitHub repository (https:/github.
com/3DGenomes/SparseDataModelling).
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Supplementary Data are available at NARGAB Online.
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Chapter 111

Probabilistic 3D-modelling of genomes and genomic domains by integrating high-
throughput imaging and Hi-C using machine learning

Among the existing techniques for interrogating the genome structure, Hi-C assays have
become the most performed experiments and constitute the majority of the publicly
available datasets. As a result, there is a continuous demand to create and improve
algorithms and methods to assist the scientific community in the interpretation of Hi-C
experimental data. Here we introduce probabilistic TADDbit (pTADbit), a new approach
that combines Deep Learning and restraint-based modelling to infer the three-
dimensional (3D) structure of genome and genomic domains interrogated by Hi-C
experiments. pTADDbit uses thousands of microscopy-based distances between genomic
loci to train a neural network model that aims at predicting the population distribution of
the spatial distance between two genomic loci based solely on their Hi-C interaction
frequency. pTADbit produces more accurate chromatin models compared to the original
TADDbit as well as other available 3D modeling methods, while drastically reducing the
required computation time. The resulting ensemble of models not only agree consistently
with independent measures obtained by imaging experiments but also better capture the
heterogeneity of the cell population. The development of pTADbit lays the basis for the
integration of data produced from high-throughput imaging assays into the 3D modelling

genomes and genomic domains.
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Abstract

Among the existing techniques for interrogating the genome structure, Hi-C assays have become
the most performed experiments and constitute the majority of the publicly available datasets. As a
result, there is a continuous demand to create and improve algorithms and methods to assist the
scientific community in the interpretation of Hi-C experimental data. Here we introduce probabilistic
TADDit (pTADDit), a new approach that combines Deep Learning and restraint-based modelling to
infer the three-dimensional (3D) structure of genome and genomic domains interrogated by Hi-C
experiments. pTADbit uses thousands of microscopy-based distances between genomic loci to train
a neural network model that aims at predicting the population distribution of the spatial distance
between two genomic loci based solely on their Hi-C interaction frequency. pTADbit produces more
accurate chromatin models compared to the original TADbit as well as other available 3D modeling
methods, while drastically reducing the required computation time. The resulting ensemble of models
not only agree consistently with independent measures obtained by imaging experiments but also
better capture the heterogeneity of the cell population. The development of pTADDbit lays the basis
for the integration of data produced from high-throughput imaging assays into the 3D modelling

genomes and genomic domains.
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Introduction

There are now clear evidences of the gene regulatory roles of the three-dimensional (3D) folding of
the DNA inside the nucleus [1-3], many of them unveiled by Chromosome Conformation Capture
(3C)-based technologies developed already twenty years ago [4]. Together with the proliferation of
the 3C techniques, there has been a parallel development of methods for the inference of the 3D
structure of the genome. Examples of recent developments include the reconstruction of structural
models from sparse interaction data [5], from single-cell Hi-C information [6], or genome-wide low-
resolution models of diploid genomes [7]. Thanks to the developed methods and their resulting
models, we are gaining key insights on specific biological processes in the field of structural
genomics [8]. The long list of implemented algorithms [9, 10] is a prove of the effort of the scientific
community to provide the needed tools to analyze and interpret 3C-based experiments.

Among the 3C techniques, Hi-C experiments are the most applied 3C assays resulting in the majority
of the publicly available datasets [11]. The main output of a Hi-C experiment is an interaction matrix
representing the frequency at which two regions (or loci) of the genome are found crosslinked
together within the nucleus in thousands to millions of cells. This population-based interaction matrix
provides fundamental information of the 3D structure of the genome but it is, at the same time,
difficult to interpret and integrate with other biological evidences as it is not a direct measure of the
spatial distances at which interactions occur [12]. Therefore, an accurate measure or estimation of
the physical distances at which genomic regions interact is essential for accurately characterizing

how nuclear processes occur.

The inference of the 3D structure of genomes based on experiments is a process that is referred as
3D modelling. One of the strategies for the determination of those 3D conformations is restraint-
based modelling in which the interaction frequency between fragments of DNA is transformed into a
set of spatial restraints that are then satisfied in the resulting structures [13]. In general, finding the
optimal equivalence between the frequencies and the physical distances is a key step, and requires
either computationally intensive algorithms or the introduction of empirical parameters. In the first
case, it is often found that the imposed restraints are similarly satisfied in conformations at different
scales. In the second, the inclusion of empirical parameters might introduce some degree of arbitrary
in the results. One of the available restraint-based solutions for the modelling of Hi-C information is
TADDit [14], a complete Python library covering all steps in the analysis of 3C-based data. TADDbit
models have already provided significant biological insights (see for example [15-17]). The modeling
step of the TADDit pipeline consists in the building of 3D ensembles from Hi-C interaction matrices.
The conversion of interaction frequencies to physical distances involves a comprehensive and
computationally expensive search of the optimal parameters that will produce models having the
proper scale. Moreover, and importantly, the resulting ensemble of models, which is based on the

population average contact frequency, has been shown not to fully reflect the variability observed in
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the cell population [18]. This inability to completely reproduce the cell-to-cell heterogeneity, far from
being exclusive to TADDbit, is a common drawback in many 3D modelling approaches.

Here we present probabilistic TADbit (pTADbit), developed to overcome the mentioned limitations
by using Machine Learning (ML) in the modelling of three-dimensional genomic regions. The main
idea of the new method is to use the abundant information of the recent high-throughput imaging
datasets [19, 20] to produce more accurate chromatin models. Classically, measures from imaging
assays like Fluorescent In Situ Hybridization (FISH) have been exclusively used to validate the
accuracy of the resulting models. Nowadays, and thanks to the recent advances in the imaging of
the genome [19-21], the amount of available large-scale datasets, both in terms of interrogated loci
and number of cells imaged, has exponentially increased allowing for the development of predictive
models based on Artificial Intelligence (Al). In pTADDbit, the distances between genomic loci obtained
from imaging experiments are used to train Neural Networks (NN). Such tens of thousands of image-
based distances between two particular loci are sufficient to generate a smooth histogram, which
can be then fitted to reconstruct a given mathematical function. Next, the NNs are trained to predict
the necessary parameters to reconstruct a probability density function of distances solely from the
Hi-C matrix and the genomic distance of the interacting loci (Fig. 1 and Methods). Convolutional
Neural Networks (CNN) are widely used in image classification and recognition tasks due to its
efficient use of two-dimensional convolutional layers. pTADbit benefits from that efficiency for the
extraction of features and the recognition of patterns in the Hi-C matrix, but instead of using the CNN
for the classification of the images, it combines the feature extraction with a regression layer to
predict a set of parameters. pTADDbit results in more accurate 3D models of genomes and genomic
domains when compared with the original TADbit and other available methods. It also results in
ensemble of conformations with variability closer to that observed by imaging. Finally, pTADbit

reduces the computation time attained by the original TADDbit and other restraint-based methods.
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Results
Neural Network validation

The distances from the public imaging datasets were grouped into histograms, which were next
approximated by exponentially modified Gaussian functions. Each function was depicted using three
parameters: K, loc and scale. The goal of the trained Neural Networks (NN) was thus to predict those
three parameters using only as input Hi-C data and the genomic distance between the pairs of loci
which distance needs to be predicted (Methods). Distances between regions of 30Kbp and 250Kbp
were used to train the short-range NN and the long-range NN, respectively. It is important to note
that the histograms could be better approximated by other existing mathematical functions or higher-
order fitting expressions like the Beta or a mixture of gaussian curves, but those approximations
required the estimation of more variables to reconstruct the histograms. For example, the
unnormalized Beta function is defined by four parameters compared to the three of the exponentially
modified Gaussian function. Nevertheless, the error incurred in the approximation of the histograms
did not significantly differ from the one obtained using other higher-order functions (Fig. 2a). Thus,
we focused on developing NN to predict the three parameters for exponentially modified Gaussian

functions.

The error in the estimation of the histograms to an exponentially modified Gaussian increased when
pairs of loci were closer in genomic distance as those histograms adopt shapes that better
approximate to a decreasing exponential than to a normal function (Fig. 2a). Additionally, the fitting
of the histograms to exponential Gaussian functions resulted on a large K variability for pairs of
consecutive loci (Fig. 2b). Finally, the obtained K values as a function of the Hi-C normalized
interaction frequency (Fig. 2c) indicated that pairs of loci interacting with similar frequencies could
be approximated by functions which Kvalue considerably differed (Fig. 2¢). Similar to the histograms
of distances between 30Kbp region, we approximated the histograms of distances between 250Kbp
regions with exponential Gaussian functions (Fig. 2d). The SSE error incurred in the approximation
was considerably smaller and more constant than the obtained in the short-range histograms. We
also observed a higher SSE in short genomic distances (Fig. 2d), which translated in a lower
accuracy in the prediction of the histograms in that regime. A large variability of the K'values in short
genomic distances was also observed in the fitting of the histograms of distances between 250kbp
regions (Fig. 2e).

Next, after determining the best function type to approximate the observed image distances, the
short-range NN was trained with 11,723 different histograms from 33,755 imaged cells using 70%
of the input data as a training set and the remaining 30% as a validation set. The predicted
parameters K, loc and scale of the histograms were compared to the expected values, which resulted

in high correlation coefficients (that is, K with r=0.96, loc with r=0.99, and scale with r=0.98, Fig. 3a).
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Importantly, the trained NN for short-range distances resulted in very good agreement for the loc
and scale parameter in all genomic distances tested. However, the agreement was not as good for
the K value, particularly in short genomic distances characterized by high interaction frequencies,
which probably reflects the above discussed inaccuracy of the histogram approximation for pairs of

consecutive loci.

Next, to assess the minimum number of imaged distances (or cells) required for a good accuracy
prediction by the NN, the CNNs were retrained and tested with increasing sample sizes of randomly
selected cells from the K562_chr21-28-30Mbp dataset, which is the one set with the largest number
of imaged cells (13,997 cells in total). The NN resulted in a plateau Mean Square Error around 1,500-
2,000 imaged cells for the three measures of K, loc, and scale (Fig. 3b). Interestingly, this is a similar
number of cells required to obtain dense Hi-C interaction maps using the so-called “low-input”
protocols [22], which may indicate that this is the minimum number of cells required to properly
capture the variability in genome structure in a population.

Finally, the long-range NN was trained with 61,789 histograms from 4,848 imaged cells using 70%
of the input data as training set and the remaining 30% as validation set. The predictions resulted in
high correlation coefficients with the expected values for each parameter K (r=0.87), loc (r=0.94) and
scale (r=0.93) (Fig. 3c).

pTADbit benchmarking

Numerous algorithms for the 3D modelling of chromatin exist [9, 13]. It is, however, difficult to find
implemented methods publicly available that can be directly compared with pTADbit. Many of the
existing packages follow a different approach by providing unique consensus solutions instead of
ensembles of structures. Others are tailored to model the genome at lower resolutions and are simply
not easy to adapt to building structures at 30Kbp. Despite these limitations, together with the original
TADbit method [14], we executed the Lorentzian 3D Genome (LorDG) [23] and the Chrom3D [24]
packages and compared their resulting models to those obtained by pTADDbit. The three methods,
as for pTADDbit, are able to provide ensembles of structures at the high-resolution (30Kbp) using as
input solely the Hi-C interaction matrix. Next, for the three methods, we generated an ensemble of
1,000 models of the region 40Mbp-42.5Mbp in chromosome 21 in IMR90 using as input a Hi-C
interaction matrix (Fig. 4a-d). As this genomic region has also been imaged but never used for the
NN training, we were able to directly compare the results of the models against observed image
distances.

An indirect way of benchmarking the generated models is to assess the agreement of a contact map
calculated from the generated ensemble of 3D confirmation with that of the input Hi-C interaction
matrix [14]. This is accomplished by producing contact maps simulating the crosslinking in the
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models at different cutoff distances. For example, the comparison of the 30Kbp resolution contact
map of the genomic region chr21:28-30Mbp in IMR90 obtained with pTADbit with 400nm cutoff
distance (Fig. 4b) results in a Stratum-adjusted Correlation Coefficient (SCC), a metric designed
specifically to compare Hi-C matrices [25], of 0.81. All the ensemble of models built by the compared
methods result in high SCC values for cutoff distances below 400nm except Chrom3D with values
that are slightly lower than the other ensembles. pTADbit and Chrom3D results are more consistent
across all distance cutoffs until 500nm (Fig. 4c). Interestingly, the original TADDbit has a level of
accuracy similar to pTADbit for the short range contacts as TADbit indeed optimizes the most likely
distance of an interaction given the input matrix [14]. However, the original TADbit clearly suffered
in identifying longer-range interactions present in the input Hi-C. This is not the case of the results
from pTADDit.

To have a more direct benchmarking of the models, we turned to independent imaging experiments
never used for modeling. We compared the pairwise median distances between all loci in the models
with the pairwise median distances of high-throughput images from the literature (Fig. 4d) [20]. As
LorDG and Chrom3D do not explicitly have a scaling factor to a priory assess the real size of the
resulting ensemble of models, we adjusted their size multiplying the model coordinates by the
median distances of the pTADDbit ensemble. That is, LorDG model distances were multiplied by 92.19
and Chrom3D by 49.49. The scaling of the LorDG and Chrom3D ensembles simplified the
comparison with the other ensembles. All methods resulted in good correlations for all modeled
cases (r=0.92 for TADbit, r=0.96 for pTADbit, 0.90 for Chrom3D, and 0.95 for LorDG, and Fig. 4d)
but the match of the distances with the ones obtained in the images differed considerably. The
original TADDbit ensemble exhibit a transformation that undervalued short distances and did not grow
linearly. The median distances in the pTADbit ensemble of models grew linearly at almost the same
rate as in the images but with a slightly scale offset. This scale offset could be caused by differences
in the protocols or conditions used in the acquisition of the images in this dataset compared to the
ones used in the datasets of the training of the NNs. Chrom3D did not consistently reproduce the
distances as the algorithm emphasizes a subset of bead pairs that significantly interact instead of
optimizing distances between large number of pairs. Finally, LorDG transformation was linear but it

also undervalued short distances and overvalued the long ones.

Next, to assess if the models reproduce the distance variability observed in the images, we plotted
the standard deviation of the pairwise distances with the genomic distance obtained in the
ensembles (Fig. 4e). We observed that TADbit and LorDG models were too deterministic for all
ranges of genomic distances. That is, did not result in an ensemble that captured the variability
observed in the images. In turn, Chrom3D models resulted also in lower variability in very short
genomic distances. This was likely a consequence of constraining only pairs which interaction values
are statistically significant. pTADbit ensemble resulted in a constant distance variability with the
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exception of a decrease in variability for very short genomic distances. Although pTADbit and
Chrom3D exhibit an increase of the variability of the ensemble of solutions observed in imaging
experiments, such variability is still lower for the generated models. The reduced variability of

distances in the solutions is further addressed in the Discussion section.

Finally, the computational burden of generating an ensemble of 1,000 models using the four methods
was assessed on a computational workstation with a 24 core Intel(R) Core (TM) i9-7960X
@2.80GHz with 128 Gb of RAM. The ensemble of models was generated for models of increasing
size between 1Mbp and 30Mbp (Fig. 4f). All methods followed an exponential increase trend as the
size of models increase with the exception of LorDG, which appeared to follow a more linear trend.
However, LorDG compared worse against all other methods in all tested genomic sizes. pTADDbit, in
contrast, favorably compared against all other methods for models larger than 7-8Mb, with a
reduction of computational time larger as the size of the models increased. In average, pTADDbit
required about 3.5h of computational time to generate 1,000 models of 30Mbp of size at 30Kbp
resolution (that is, 1,000 particles), which is about two thirds the time required for TADbit or
Chrom3D.

Modeling additional regions

After validating the ability of pTADDit to recover regions of the genome used in the training phase,
we next generated with pTADbit an ensemble of 1,000 structural models for each of the regions
54Mbp-58Mbp and 151Mbp-155Mbp of chromosome 4 in human foreskin fibroblasts (HFFs). The
contact maps obtained from the ensembles (Fig. 5a,b) resulted in high correlation with their
equivalent Hi-C matrices (SCC at 400nm of 0.60 and 0.81, respectively). The median distances
between various particles in the ensembles of models with the distances of publicly available imaging
data [26] labelling a total of 18 regions with bacterial artificial chromosome (BAC) probes also
resulted in high correlations of r=0.93 (Fig. 5¢) and r=0.89 (Fig. 5d) for the 54Mbp-58Mbp and
151Mbp-155Mbp in chromosome 4 in HFF, respectively. Finally, we verified that the contacts maps
of the ensembles agreed with the published measures at different distance cutoffs (150, 200 and
350 nm, Fig. 5e). The contact maps resulted in high correlation with the published percentages for
each of the cutoffs (r=0.83, 0.84 and 0.86 respectively), confirming the accuracy of the obtained

models.

Modelling full chromosome 19

With the reduction of the computation times in the generation of the ensembles, pTADbit can now
be applied to model large regions of the genome at high resolutions, including entire chromosomes.
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We next modeled the entire human chromosome 19 at 30Kbp (Fig. 6a), which results in a total of
1,971 particles. The ensemble of 1,000 models required a total of about 30h of computational time
on a single workstation with a 24 core Intel(R) Core (TM) i9-7960X @2.80GHz with 128 Gb of RAM.
As in the previous validations, the contact map of the ensemble (Fig. 6b) resulted in high correlation
with the Hi-C matrix of the chromosome (SCC=0.79). Finally, the standard deviation of the pairwise
distances across different genomic distances indicated that pTADbit may not capture full variability
for very short distances while resulting in larger standard deviations for larger ones (Fig. 6¢). This
was likely the result of combining the modelling of low- and high-resolution structures where the
Monte Carlo simulations of the low-resolution models are twice as the ones used in the high-
resolution ones (Methods).

88



&9

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.19.508575; this version posted September 19, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Discussion

pTADDit provides an update of the original TADbit [14], which makes use for the first time of large-
scale image data to train the required transformation of frequency of interactions observed using Hi-
C and the physical distance between loci measured by imaging technologies. Indeed, this
transformation is key to any algorithm aiming at modeling genomes and genomic domains. Briefly,
for the methods benchmarked in this study, the original TADbit included a configurable scale factor
that sets the amount of DNA in base-pairs contained in one nanometer. The scale factor drives the
structures to the proper range of distances during the optimization step in which a grid search is
conducted to find the optimal transformation. Chrom3D relies on two configurable parameters to
produce the structures with the appropriate scale: the nuclear radius and the volume of the modelled
chromosome as a percentage of it. It does not include any scaling factor for the modelling of genomic
regions shorter than full chromosomes. LorDG optimizes « in the transformation:

1

A= ——s
i IFL-‘;-(

where d;; is the distance between particles i and j and IF;; its interaction frequency but it does not
include any scaling factor. The new pTADbit is thus the first method to implicitly incorporate this
transformation in the NNs by integrating the training imaging datasets. The explicit transformation
from Hi-C data to distances is one the strengths of pTADbit compared to existing methods because
it allows the reduction of the computation times in the generation of the ensembles.

The approach to incorporate the imaging information in the modelling method consists in the
grouping of single cell distances into population-based histograms in which the information of the
exact conformation adopted by chromatin in each individual cell is lost. Those histograms are then
predicted and used in the production of ensembles of individual structures that follow the probabilistic
distributions. The impossibility of the prediction of the precise histogram solely from the Hi-C
information is overcome by their approximation to exponential Gaussian curves, which can be
depicted using three parameters K, loc and scale that can be accurately predicted by the NNs. The
approximation of the histograms using other higher-order curves decreased the error of the fitting
particularly for distances between consecutive regions but made their prediction more
computationally intensive as it required the optimization of additional parameters. Importantly, the
accuracy of the prediction for distances between consecutive loci did not significantly change the
shape of the chromatin structures, which is mainly driven by distances between far apart regions.

The limited number of high-resolution high-throughput imaging datasets is a restricting factor for the
size of the modelled regions. The distances used in the short-range NN were obtained from traces
of chromatin regions of 2Mbp length at 30Kbp. Therefore, the histograms predicted by the short-
range NN are, conceptually, not valid for pairs of fragments that are farther than the 2Mbp, which

10



bioRxiv preprint doi: https://doi.org/10.1101/2022.09.19.508575; this version posted September 19, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

restricts the total length of the modelled region. To overcome this limitation pTADDbit implements a
multi-resolution approach where distances from traces at lower resolution (250Kbp) are used to train
the long-range NN. Then, in the modelling process, low-resolution models are built first to determine
the shape of the structures at genomic distances that are above the limitation imposed by the short-
range NN. The distances of those low-resolution models are then used to produce the final high-

resolution conformations.

Recent studies highlight the importance of providing ensembles of structures as opposed to single
consensus solutions better capturing the heterogeneity of the cell population [7]. This is indeed one
of the main objectives of pTADDbit. However, pTADbit benchmarking still results in variabilities smaller
than those observed by microscopy (although significantly larger than other compared approaches).
The main reason relies in the assignment of the restraints during the modelling approach (Methods).
Each reconstructed histogram is used as a probability distribution function from where to sample the
distance restraints. The restraints imposed are mutually independent and randomly obtained from
the distributions. If, during the sampling process, a distance from the tail of the distribution (far from
the median) is assigned between fragment i/ and j, the probability of having a similar distance
assigned to jand the neighboring fragments of jis low. As a result, the obtained structures, although
having a high degree of variability, tend to penalize structures which pairs of distances have very
low probability to occur in the population.

We demonstrate that the ensemble of structures obtained with pTADbit not only are in high
agreement with both Hi-C interaction matrices and independent imaging data but they are also closer
to represent the large heterogeneity of the cell population. In that respect, we could have further
increased the degree of variability observed in the imaging data by increasing the number of Monte
Carlo simulations and keeping only the structures that have best satisfied the imposed restraints.
However, that would have increased the computation time, which is another of the advantages of
pTADbit. Moreover, although having imaging data from only a few regions of the genome, the
method is applicable to the rest of the human genome. However, we expect small biases in the
distance predictions caused by the scarcity of datasets used for the training of the NNs. Indeed, only
imaging data of specific regions of chromosome 21 are available at high-resolution. We anticipate
that the release of new high-throughput imaging datasets of different regions will allow us to increase
the accuracy of the predictions. Moreover, pTADDbit is not restricted to the existing trained NNs and
it is prepared to use other future TensorFlow networks trained with more extensive datasets.

In summary, pTADbit is a novel approach for the modelling of chromatin fiber that makes use of
imaging information to accelerate the generation of ensembles of 3D structures and to reproduce
more accurate models that better capture heterogeneity of the cell population.
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Methods
pTADbit architecture

TADDit, a broader pipeline for the analysis of Hi-C data, from the mapping of the sequenced reads
to the production of 3D ensemble, now includes pTADDit as part of its python package. Although
pTADDit represents a completely different approach in the generation of ensemble of genomic
regions, TADDit is the perfect container providing the required tools to produce the Hi-C matrices
and analyze the resulting structures. The neural networks used in pTADDbit were built using
TensorFlow [27] and can be replaced by other TensorFlow models as far as input and output

parameters are conserved.

Prediction of distance distributions

A short-range Convolutional Neural Network (CNN) and a long-range Neural Network (NN) were
trained to predict the distribution of distances between two chromatin loci from its Hi-C interaction
frequency and neighborhood. The short-range CNN was trained to predict distributions in Hi-C
matrices at 30Kbp resolution and can be used to determine the structure of the models at the finer
scale of TADs and sub-TADs (shorter than 1.5Mb). The long-range NN predicts distributions using
Hi-C matrices of 250Kbp and is used to shape the models in genomic ranges that are usually larger

than the average size of mammalian TADs (larger than 1.5Mb).

Histogram fitting

The short-range CNN was trained to predict histograms of distances obtained from extensive
imaging between genomic loci i and j using as input the interaction frequency, the genomic distance
and the corresponding Hi-C sub-matrices centered at jj. The long-range NN, instead, only used the
interaction frequency and the genomic distance as input. Distances were obtained from publicly
available high-throughput datasets of labelled regions in individual cells [19, 20].

For each cell, coordinates of the different imaged loci were converted to pairwise distances between
loci i and j. Next, the distribution of the distances jjimaged in the same cell type and genomic region
were stacked for 200 bins as “Observed data” (Fig. 1 second panel). Next, an exponentially modified
Gaussian distribution was fit to each histogram (Fig. 1 third panel). The probability density function
of the exponentially modified Gaussian distribution was:

fOsu0,0) = %e%(z" s -2 erfe (%)

where erfc is the complementary error function defined as:
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erfc(x) =1 —erf(x) = %fwe“tzdt
TJx

Such fitting was used as implemented in the SciPy python package (https://scipy.org). The three
parameters K, loc and scale in the parameterization thus corresponded to having loc and scale equal
to o and 4, respectively, and K=1/(c4). The objective of this procedure was to represent and be able
to reconstruct the histograms using the fewer number of parameters as possible; in our case the

triad K, loc and scale, which in turn will be predicted by our trained NNs.

Short-range Convolutional Neural Network

The short-range CNN (Fig. 7a) was composed by two inputs: one encoder for the submatrix that
was formed by three convolutional and two pooling layers and another encoder for the genomic
distance with a fully-connected layer. They both converged to a fully-connected layer with three
outputs K, loc and scale. Weights were trained using the Adam optimizer [28] to minimize the mean-
squared error (MSE) between the input and the output. Rectified linear unit (ReLU) activation
functions were used for hidden layers and softplus functions were used for the outputs to prevent
the prediction of negative values. The CNN was trained using as input datasets from Bintu et al.
2018 [19] (Table 1). The list of coordinates of the centers of the imaged 30Kbp segments were
obtained from https://github.com/BogdanBintu/Chromatinimaging and used to calculated the K, loc

and scale parameters of each pairwise distance as described in the previous section. Additionally,
Hi-C matrices of chromosome 21 were obtained from GEO database (GSE63525 [2] and
GSE104334[29]), normalized using Vanilla coverage [30] and scaled to the range 0 to 1. Then, for
each pair of genomic loci i and j, its K, loc and scale parameters were matched to the Hi-C 19x19
submatrix centered in the intersection of jj. Together with the genomic distance between loci i and j,
the Hi-C submatrix was used as input data to train the CNN. In addition, each K, loc and scale
parameters was assigned to Hi-C matrices with different sequencing depths to assure that the
predictions were not tied to a specific quality of the matrix. To evaluate the performance of the CNN,
a K-Fold Cross Validation [31] with 5 folds and 3 repeats was applied and an average mean absolute
error of 337.66 with a standard deviation of 18.39 was obtained. The reduced standard deviation
with respect to the average indicates that the performance of the CNN did not depend on any specific

partitioning of the training and validation sets and was independent of their random selection.

Long-range Neural Network
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The long-range NN (Fig. 7b) was composed by two fully-connected layers with the interaction
frequency as input and three outputs K, loc and scale. Weights were trained using the Adam
optimizer to minimize the mean-squared error (MSE) between the input and output. Rectified linear
unit (ReLU) activation functions were used for hidden layers and softplus functions were used for
the outputs to prevent the prediction of negative values. The NN was trained with the imaging dataset
of the p-arm of chromosome 2 from Su et al. 2020 [20] (Table 1). Similarly, the Hi-C matrix was
obtained from the GEO database (GSE104334[29]). We assigned the list of coordinates of the
centers of the imaged segments to their equivalent 250Kbp bins of the Hi-C matrix and proceed
similarly to the short-range CNN but in this case using just the Hi-C interaction frequency and the
genomic distance of each pair of loci. Therefore, the long-range neurons are trained to perform a

regression without the image recognition explained in the short-range CNN.

Bead-on-a-string models

Each 30Kbp bin (column or row) of the input Hi-C interaction matrix was represented by a spherical
particle which size was proportional to the number of nucleotides contained in the DNA fragment.
Those particles form a connected chain that mimic the polymeric nature of DNA in what is commonly

referred as a bead-on-a-string model.

Assignment of spatial restraints and scoring

To combine short and long-range restraints a multi-scale approach was adopted in the modelling
process by building low-resolution models and using their distances to restraint long-range
interactions. To produce the ensemble of models at low resolution, the input Hi-C matrix was first
downscaled to 250Kbp and used as input for the long-range NN to predict their corresponding K, loc
and scale parameters from the input frequency and genomic distance between the interrogated loci.
Using the predicted parameters of the exponentially modified Gaussian function, the distribution of
distances between two particles i and j in the population of models was recreated. Distances were
randomly sampled from the distributions and assigned as spatial restraints between jand j with the

following criteria:

+ Consecutive particles were always restrained to guarantee the continuity of the polymer
chain. The absence of restraints between two consecutive particles might result in the
disconnection of the chain, which is incompatible with the polymeric nature of chromatin.

e For non-consecutive particles, 60% of the possible pairs were randomly selected in each
individual model and restraint with a distance sampled from the distributions. Selecting
different restraint pairs in each structure increased the heterogeneity of the resulting
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ensemble. By using a small number of restraints, the computation time of the model was
reduced at the same time that the variability of the resulting conformations increased. Indeed,
the assignment of all possible restraints in each individual model would favor the introduction
of contradictory restraints if, for example, regions were brought together to close distance
while neighboring regions were taken apart. It is important to note that restraints that could
potentially produce triangle inequalities were discarded during the assignment of restraints
in each individual model. That is, for every triad of particles j, j, k the assignment of more
than two distance restraints between them was prevented. We found the percentage balance
60/40 between restraint and non-restraint pairs to be a good compromise between
computation time and variability of the resulting ensembles.

e The remaining 40% of the non-consecutive pairs were not restrained.

The spatial restraints used between pair of particles were implemented as harmonic oscillators that
penalize quadratically deviations from the given equilibrium distance. The mathematical function of

the restraint was:
UH;j = k;j(dij — do)?,

where da is the distance between particle jand particle jin the model, dp is the predicted equilibrium
distance sampled from the NN distribution and ka» is the harmonic constant that depends on the loc
parameter of the predicted distribution as follows:

kij = k(lOCmax — lOCi}' + 1)2,
being locmax the maximum loc parameter predicted for the model.

The sum of all the imposed harmonic restraints forms an objective function to minimize. To reach
that goal, a Monte Carlo simulated annealing sampling approach was used where the conformation
of the 3D model was randomly modified and the new configuration accepted or rejected according
to the Metropolis criteria [32]. The simulation was repeated with the spheres at different starting
random positions, generating each one a single model. The number of structures produced were
two times the number initially requested, conserving at the end of the process only the half that best
satisfied the imposed restraints. By increasing the number of simulations resulted in structures that
were more compatible with the imposed restraints. Considering the low-resolution of these models,
increasing the number of requested structures did not compromise the computation time. Finally, the
distances between pairs of particles in the low-resolution models were used to build the models at
higher resolution.

Next, low-resolution models at 250Kbp were used to produce high-resolution models at 30Kbp by
imposing as restraints all distances at 250Kbp for pairs of particles which genomic distance was
above the applicability of our short-range NN (that is, 1.5 Mb). Briefly, each 30Kbp particle in the
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high-resolution model was assigned to the 250Kbp containing it as distances of the low-resolution
models were considered as a good approximation to the distances of the high-resolution structures.
Each low-resolution structure was then used in the production of one high-resolution structure, as to
maintain the composition of the already optimized low-resolution ensemble. During the building of
the high-resolution models, the Hi-C submatrices at 30Kbp resolution were used as input to the
short-range CNN to predict the K, loc and scale parameters of the exponentially modified Gaussian
functions of each pair of loci i and j, which genomic distance was below 1.5Mbp. For pairs which
genomic distance was larger than 1.5Mbp, instead of sampling from the distributions, the optimized
distances obtained in each of the low-resolution models were used as restraints.

Analogously to the low-resolution models, the distribution of distances between pairs of particles
which genomic distance was below 1.5Mbp were recreated and randomly sampled to assign the
distances as spatial restraints. The assignments were as follows:

« Consecutive particles were always restrained to guarantee the continuity of the polymer
chain.

e For non-consecutive particles which genomic distance was below 1.5Mbp, 30% of the
possible pairs were randomly selected in each individual model and restraint with a distance
sampled from the distributions. We found that the assignment of 30% of the restraints in the
short genomic regime was enough to recreate the structural features without compromising
the computation times.

e For non-consecutive particles which genomic distance was above 1.5Mbp, 60% of the
possible pairs were randomly selected in each individual model and restrained with the
distances obtained from its starting low-resolution model.

e The remaining non-consecutive were not restrained.

Finally, the ensemble of conformations was built by minimizing the objective function with a Monte
Carlo sampler.

Three-dimensional (3D) modeling

The 3D models in pTADbit were generated by assigning the predicted distances between loci as
spatial restraints that were then satisfied using the Integrative Modeling Platform (IMP) [33]. The

procedure is in many ways similar to the previously published TADDbit [14].

Stratum-adjusted correlation coefficients (SCC)

To calculate the SCC coefficient, first the matrix is smoothed with a 2D mean filter to minimize the
effect of noise and biases and second, the Hi-C data is stratified according to their genomic distance.
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The smoothing filter is characterized by the span size h and the correlation is limited to a maximum
number of diagonals starting from the main one. The SCC measures in this manuscript were
calculated using a span size h of 3. In the case of the full chromosome 19, 4Mbp was used as the
maximum distance from the diagonal at which SCC was computed. All the diagonals were taken into
account for the rest of the matrices.

Production of the ensemble of models with TADbit, LorDG and Chrom3D

TADbit. The ensemble of 1,000 models generated with the original TADbit algorithm [14] was
obtained by performing an optimization step to find optimal values of -0.4 for lowfreq, O for upfreq
and 430 nm for the distance cutoff using a scale of 0.007. With those values, the final ensemble of
models was obtained as previously described [14].

Chrom3D. The ensemble of 1,000 models generated with the original Chrom3D algorithm [24] was

obtained following the publicly available protocol in https:/github.com/Chrom3D using a cooling-rate
of 0.001. The generation of individual models was parallelized with an in-house python script that
assigned a different seed number to each run.

LorDG. The ensemble of 1,000 models generated with the original LorDG algorithm [23] was
obtained following the publicly available protocol in https:/github.com/BDM-Lab/LorDG. LorDG

estimated the « parameter in the relation between the interaction frequency and the physical
distances to be 0.6.
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Table 1. Image datasets used in the different trained CNN.

CNN Label Cell line | Region (hg38) # Cells # Pairwise distances

Short-range IMR90_chr21-18-20Mb IMR90 18,627,714-20,577,518 1,277 2,080
Short-range IMR90_chr21-28-30Mb IMR90 28,000,071-29,949,939 4,871 2,080
Short-range K562_chr21-28-30Mb K562 28,000,071-29,949,939 13,997 2,080
Short-range HCT116_chr21-28-30Mb_untreated | HCT116 | 28,000,071-29,949,939 1,979 2,080
Short-range HCT116_chr21-34-37Mb_untreated | HCT116 | 34,628,096-37,117,534 11,631 3,403
Long-range Chr2-p-arm_replicate IMR90 1-94,750,001 4,848 61,789
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Figure 1. Schema of pTADDbit prediction of histograms. Imaging distances are compiled into

histograms which are approximated by exponential Gaussian functions. K, loc and scale parameters

depicting the functions are predicted by Neural Networks using Hi-C matrices.
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Figure 2. Histogram fitting. a Average Sum of Square Errors (SSE) of the fitting of the histograms
of distances between pairs of 30Kbp regions to four mathematical curves as a function of the
genomic distance. b K, loc and scale values of the fitted histograms of distances between pairs of
30Kbp regions to exponential Gaussian curves as a function of the genomic distance. ¢ K values of
the fitted histograms of distances between pairs of 30Kbp regions to exponential Gaussian curves
as a function of the interaction frequency. d Average SSE of the fitting of the histograms of distances
between pairs of 30Kbp regions to exponential Gaussian curves as a function of the genomic
distance. e K, loc and scale values of the fitted histograms of distances between pairs of 250Kbp

regions to exponential Gaussian curves as a function of the genomic distance.
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Figure 3. Observed vs. predicted values. a K, loc and scale values for the validation set of the
short-range CNN composed by 19,298 predictions. The Pearson correlation coefficients are 0.96,
0.99 and 0.98 for K, loc and scale, respectively. b Mean Square Log Error of the observed vs.
predicted K values and Mean Square Error of the observed vs. predicted loc and scale values for
the validation set of the short-range CNN using an increasing number of imaged cells. The training
of the CNN was repeated 5 times for each number of cells using random training and validation sets.
¢ Observed vs. predicted K, loc and scale values for the validation set of the long-range NN
composed by 111,669 predictions. The Pearson correlation coefficients (r) are 0.65, 0.93 and 0.93

for K, loc and scale, respectively.

21

100



bioRxiv preprint doi: https://doi.org/10.1101/2022.09.19.508575; this version posted September 19, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Standard deviation vs genomic distance.

Computation time of 1,000 models vs size

€ 200 ‘." s 2
100 - 2
I;I
LR — ) —

0]

Hours

00 05 10 15 20 25 0o s e dowep
)

Towe 1w 7ote
Pair genomic distance (Mbp) Genomic size

Figure 4. Model benchmarking. a Ensemble of models at 30Kbp of the genomic region 28Mbp-
30Mbp in chromosome 21 in IMR90 generated using TADbit (orange), pTADDbit (green), Chrom3D
(red) and LorDG (purple). The centroid model (the one closer to the average) is depicted by a tubular
shape colored from blue (40Mbp) to red (42.5Mbp) and the occupancy of the ensemble is
represented by a semi-transparent grey shadow. b Normalized Hi-C matrix of the genomic region
used to produce the ensembles in a (left panel) and contact map of the pTADbit ensemble using a
distance cutoff of 400 nm (right panel). ¢ Stratum-adjusted Correlation Coefficient (SCC) between
the contact map of the ensembles in a and the normalized Hi-C matrix in b using different distance
cutoffs and for all compared methods. d Comparison of the pairwise median distances between each
30Kbp probe in the imaged genomic region 40Mbp-42.5Mbp in chromosome 21 in IMR90 (n=7,591
cells) and all loci in the ensemble of 1,000 models of the same region produced by the original TADbit
(orange), pTADDit (green), Chrom3D (red), and LorDG (purple). The Pearson correlation coefficients
(r) were 0.92 for TADDbit, 0.96 for pTADDbit, 0.9 for Chrom3D and 0.95 for LorDG. e Standard deviation
of the distance between pairs of loci depending on its genomic distance in the ensemble of 1,000
models. f Computation time to produce an ensemble of 1,000 models of different genomic sizes for
the modelled region. Results were obtained using 24 cores in a workstation with an Intel(R) Core
(TM) i9-7960X @ 2.80GHz with 128 Gb of RAM.
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Figure 5. Model accuracy. a Hi-C matrix of the genomic region 54Mbp-58Mbp in chromosome 4 in
HFF (left) and contact map (right) using a distance cutoff of 400 nm of the ensemble of 1,000 models
generated from the matrix in a using pTADDbit. b Hi-C matrix of the genomic region 151Mbp-155Mbp
in chromosome 4 in HFF (left) and contact map (right) using a distance cutoff of 400 nm of the
ensemble of 1,000 models generated from the matrix in a using pTADbit. ¢ Comparison of the
pairwise median distances between each of the 9 probes in the imaged genomic region 54Mbp-
58Mbp in chromosome 4 in HFF (n=50,197 distances) and the corresponding loci in the ensemble
of 1,000 models of the same region produced by pTADDbit. The Pearson correlation coefficient (r) is
0.93. d Same as b for the genomic region 151Mbp-155Mbp (n=116,047 distances) resulting in a
Pearson correlation coefficient (r) of 0.89. e Comparison of the percentages of pairs of the 9 imaged
probes which distance is within 150, 200 and 350 nm each in the imaged genomic regions 54Mbp-
58Mbp and 151Mbp-155Mbp in chromosome 4 in HFF and the corresponding loci in the ensemble
of 1,000 models of the same region produced by pTADbit. The Pearson correlation coefficients (r)
are 0.83, 0.84 and 0.86 for 150, 200 and 350 nm, respectively.
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Figure 6. Model accuracy for an entire chromosome. a Ensemble of models at 30Kbp of the
chromosome 19 in IMR90 generated using pTADDbit. The centroid model (the one closer to the
average) is depicted by a tubular shape colored from blue to red and the occupancy of the ensemble
is represented by a semi-transparent grey shadow. b Normalized Hi-C matrix of the chromosome 19
used to produce the ensemble of models (top panel) and contact map of the pTADbit ensemble
using a distance cutoff of 400 nm (lower panel). ¢ Standard deviation of the distance between pairs

of loci depending on its genomic distance in the ensemble of 1,000 models.
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Figure 7. Convolutional Neural Network architectures. a Short-range Neural Network
architecture. The 19x19 pixels input sub-matrices pass through the initial convolutional layers that
performs a hierarchical decomposition of the information allowing the CNN to learn a wide range of
features, from the very local to the more global ones. The subsequent fully connected layers learn
non-linear combinations of the extracted features, combine them with the genomic distance of the
center of the sub-matrix and does a linear regression to estimate K, loc and scale. b Long-range
Neural Network architecture. The long-range NN is a simplified version of the short-range where the
convolutional layers are removed and the input consists only in the interaction frequency and the

genomic distance.
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Until the development of 3C techniques, imaging methods were the main approach used
to study the structure of the genome. The use of imaging, predominantly FISH, has
allowed the discovery of many important features of genome conformation, like the
existence of chromosome territories (Cremer et al. 2001) or the striking differences in
nuclear position and topology between some similarly sized chromosomes (Croft et al.
1999). Those used imaging techniques were characterized by their low-throughput nature
and its inability to evaluate high numbers of simultaneous loci in each individual cell.
Then, the emergence of 3C technology revolutionized the field of structural genomics by
bringing unprecedent resolutions and providing the necessary sample size to apply the
power of statistics to drive the scientific conclusions (S.S. Rao et al. 2014). Imaging was
then somewhat relegated, thanks to the orthogonality of the information provided, to a
validation method for 3C predictions. But the last innovations in microscopy, mostly in
the massive development of FISH probes, have given a new impulse to imaging
technologies. Indeed, the advances in the massive synthesis of custom and complex
oligonucleotides, led by Oligopaints (Beliveau et al. 2012), has opened a new era of multi-
targeted and high-throughput oligo-based microscopy. OligoFISSEQ, introduced in
Chapter I of this thesis, is part of this new age of oligo-based technologies.

Despite the unquestionable value of the provided information, 3C technology introduce
its inherent biases to the data and do not provide a direct measure of the physical distances
in the experiment. The analysis of cross-linked data is further challenged by the inclusion
of biases that are specific to the 3C method used. In Chapter II we provide a modelling
strategy that corrects those biases in the case of Promoter Capture Hi-C (pcHi-C).

This thesis project contributes to the provision of analysis tools and pipelines for both
imaging and 3C data and concludes with the development of pTADbit in Chapter III, a
tool that combines high-throughput imaging data and Hi-C.

3D mapping and accelerated super-resolution imaging of the human genome

using in situ sequencing

In Chapter I of this thesis, we designed and developed the decoding pipeline of the
oligoFISSEQ technique. In OligoFISSEQ images, the signal is entangled between the
different channels and sequencing rounds. The encoding of the information used by the

technique allows the imaging of large numbers of loci in individual cells in a reduced
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number of sequencing rounds. The multiplexing of the information, however, implies the

use of specialized algorithms to decode the signal.

We demonstrated the potential of OligoFISSEQ with the design and use of two libraries:
one targeting six regions along each of six human chromosomes: 2, 3, 5, 16, 19 and X
(36plex) and the other labelling 46 regions along the human X chromosome (ChrX-
46plex). The use of the 36plex library in male PGP1f cells allowed us to validate the
technique by reproducing well-known structural features like chromosome territories or
the tendency of smaller chromosomes to be positioned toward the center and larger
chromosomes towards the periphery of the nucleus. It also allowed us to show the
potential application of OligoFISSEQ to study the genome structure with enough number
of samples to reach statistical significance. We next showed the power of OligoFISSEQ
to trace chromosomes with finer genomic resolution by applying the ChrX-46plex library
to male PGPIf cells. We were able to generate 176 traces spanning the entire X
chromosome permitting both single-cell as well as population-based analysis. The
clustering of the traces revealed two major groups that differed significantly in their radii
of gyration, one cluster consisting of 20 chromosomes (11%) and the other comprising

156 (89%).

To exhibit the potential use of OligoFISSEQ with other labelling technologies, we applied
the ChrX-46plex library in female IMR90 cells in conjunction with immunofluorescence
(IF) to macroH2A.1 which preferentially binds the inactive X chromosome. Using
OligoFISSEQ we traced and analyzed separately the active and inactive X chromosomes
and were able to validate known features like their difference in occupied volume and the

separation in two megadomains of the inactive X chromosome.

Finally, we demonstrated the capacity of OligoFISSEQ to accelerate super-resolution
imaging. Combining OligoSTORM with four rounds of OligoFISSEQ we achieve a 36-

fold reduction in imaging time.

OligoFISSEQ is one of the multiplexing imaging technologies in the undeclared race to
image the full genome providing as high-resolution as possible. Bintu et al 2018 (Bintu
et al. 2018) is probably the first manuscript in which acquired imaging data enabled
enough resolution and throughput to match 3C-based data in the 2Mbp targeted regions.
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Not only that, up to date no multiplexing imaging dataset provides thousands of different
cells in a resolution as high as 30kbp. Their findings demonstrate that TADs are structures
present in single cells and not an emergent property of population averaging. The main
difference between OligoFISSEQ protocol and their multiplexed approach is the
entanglement of the signal in different wavelengths used by the former. That allows
OligoFISSEQ to image similar number of targets in fewer number of rounds. The sequel
manuscript from the same research group Su et al 2020 (Su et al. 2020) further improves
their multiplexing strategy using three different imaging wavelenghts and more than 200
sequencing rounds to image almost the entirety of chromosome 21 at 50kbp resolution.
Such an increase of the number of targets using the original protocol would have boosted
dramatically the cost of the experiments because the number of imaged loci grows only
linearly with the number of sequencing rounds. The cost factor is one of the advantages
of OligoFISSEQ against other technologies due to its reduced number of sequencing
rounds. Scaling to longer regions allowed them to better characterize certain domain
properties and demonstrate the tendency of loci in A and B compartments to spatially
segregate, although often incompletely, in single cells. In the same manuscript, they
accomplished the imaging of the full human genome in thousands of different cells using
a variation of MERFISH (K.H. Chen et al. 2015) tailored to DNA which translated in a
10-fold reduction in the number of rounds compare to the sequential approach. Although
the low resolution attained, the visualization of the full human genome is an astonishing
breakthrough in the field. Full genome imaging provides an unprecedent vision of the
genome organization that allowed them the study of the chromosome overlapping that
suggests the existence of substantial trans-chromosomal interactions.

SeqFISH+ (Takei et al. 2021) reaches also the full genome scale imaging mouse
embryonic stem cell nuclei at 1Mbp resolution using two microscope channels.
Simultaneously, they imaged several 1.5Mbp regions at 25kbp resolution using a third
one. In total they reach 3,660 different targets using 80 rounds of sequential hybridization
for the 1Mbp localizations and another 80 rounds for the 25kbp detailed regions, together
with 17 chromatin marks and subnuclear structures and the expression profile of 70
RNAs. With this strategy they observed that many DNA loci, especially active gene loci,
reside at the surface of nuclear bodies and zone interface.

Another recent addition to new multiplexing imaging technologies is in situ genome
sequencing (IGS) (Payne et al. 2021) which uses a different approach to reach full

genome visualization by combining in situ and ex situ sequencing. The use of ex situ
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sequencing allows the identification of the imaged loci with the precision required to
distinguish different alleles and spot their structural differences. However, their un-
targeted approach makes the method un-suitable for the examination of the structure of
specific loci compared to methods like OligoFISSEQ in which the targets are
bioinformatically designed. Indeed, the use of in sifu transposition to incorporate the
DNA-sequencing adapters randomly in the genome prevents the selection of a set of
specific loci.

All the mentioned technologies, including OligoFISSEQ, rely on customized detection
and analysis pipelines that combine image analysis and statistical approaches. Few
initiatives exist that englobe the needed tools to process all these different imaging
techniques. Maybe the closest to such platform would be Starfish (Axelrod et al. 2021),

a Python library that contains the basic functions for the analysis of spatial genomics.

3D reconstruction of genomic regions from sparse interaction data

In Chapter II of this thesis we presented a novel tool for the 3D reconstruction and
analysis of chromatin regions from the sparse interaction data obtained with 3C-based
experiments. These types of assays are conceived to capture interactions between specific
regions and the rest of the genome, for example, /oci enriched in a specific protein
(Mumbach et al. 2016) or regions known to contain gene promoters (Schoenfelder et al.
2015). Capturing specific interactions allows the production of high-resolution
interacting profiles. Contrary to the output of experiments providing continuous matrices
of pair-wise interactions, these profiles when represented as matrices are characterized
by data sparsity because the large majority of the cells in the interaction matrix belong to
non-captured fragments and, as such, are empty. Additionally, they are heavily biased on
interactions between captured fragments. Most of the computational tools for the analysis
of 3C experiments are designed to handle dense interaction matrices and are ill-suited for
the sparsity of the capture experiment’s profiles, for instance in the reconstruction of 3D

structural models.

In the case of pcHi-C, the existing tools (ChiCMaxima (Ben Zouari et al. 2019), Chicago
(Cairns et al. 2016), ... ) are mainly focused on the implementation of normalization
strategies to reduce the impact of biases and on the assessment of the significance of

interactions between captured loci. Contrarily, the work presented in this thesis allows
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the analysis and interpretation of pcHi-C assays by producing ensembles of three-
dimensional structures that are compatible with the experimental data. This methodology
covers the normalization of the data, the detection of significative interactions and finally

the recovery of the full structural organization of a genomic region in study.

In our approach, a genomic region is reconstructed using a restraint molecular dynamics
approach with TADdyn (Di Stefano et al. 2020). The polymer is constituted by spherical
beads of 50 nm of diameter each containing Skb of chromatin fiber and is subjected to
the potential energy composed by the chain stiffness, connectivity and excluded volume.
The known interaction frequencies are converted to spatial restraints that are imposed

progressively to the interacting beads using a steered molecular dynamics protocol.

Using the explained methodology, we modelled 12 genomic regions from Promoter
Capture Hi-C (pcHi-C) data and compared the ensemble of structures with their
equivalent ensembles reconstructed from Hi-C. Additionally, to quantify the effect of
sparsity in the comparison, we reconstructed ensembles from virtual capture interaction
matrices (pcHi-Cvirt) built by selecting from normalized Hi-C matrices the rows and

columns of the regions captured in the experiments.

The comparison between the sparse and dense derived 3D model ensembles revealed that
it is possible to recover most of the 3D organization of the dense dataset in spite of the
data sparsity. Indeed, we obtained high median distance correlation between the sparse
and dense derived 3D model ensembles for both pcHi-C and pcHi-Cvirt. In summary,
these results indicate that the sparse derived ensembles of 3D models are a good

representation of the dense experiments.

Probabilistic 3D-modelling of genomes and genomic domains by integrating

high-throughput imaging and Hi-C using machine learning

In Chapter III of this thesis, we introduced pTADbit which combines Hi-C interaction
data with high-throughput microscopy information to produce ensembles of 3D structures
that reproduce more reliably the heterogeneity of the cell population. In this regard,
pTADbit lays the foundations for the application of Artificial Intelligence in the

modelling of chromatin from 3C data.
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We demonstrated that pTADDbit produces 3D ensembles that are in high agreement with
both Hi-C interaction matrices and independent imaging data with inferred structures that
are closer to represent the large heterogeneity observed in imaging experiments.
Moreover, pTADbit compares favorably against other modelling frameworks while

drastically reducing the required computation time.

Although having imaging data from only a few regions of the genome, the method is
applicable, not surprisingly, to the rest of the human genome. However, we cannot discard
the presence of small biases in the distance predictions caused by the scarcity of datasets
used for the training of the NNs. We anticipate an increase in the accuracy of the
predictions with the release of new high-throughput imaging datasets of different regions.
Additionally, pTADbit is not restricted to the existing trained NNs and it is prepared to

use other future Tensorflow networks trained with more extensive datasets.

The use of distances from imaging experiments in neural networks (NNs) allows pTADbit
to overcome one of the major difficulties in the modelling of genomic regions: the
inference of the equivalence between interaction frequencies and distances. The direct
transformation from Hi-C data to distances is one the strengths of pTADbit compared to

existing methods.

Among the innumerable tools for the three-dimensional modelling of chromatin, it is
difficult to find tools that combine high-throughput imaging data and Hi-C. The main
reason is probably that imaging datasets are scarce and quite recent. A tool integrating
Hi-C and FISH data to obtain more accurate three-dimensional models is GEM-FISH
(Abbas et al. 2019). GEM-FISH allows the reconstruction of 3D models of chromosomes
integrating Hi-C and FISH data and prior biophysical knowledge of polymer physics. As
pTADbit, GEM does not rely on any specific conversion between the Hi-C contact
frequencies and the corresponding spatial distances, but directly encodes the proximity
of cross-linked data and FISH distances as spatial restraints. It also uses a divide-and-
conquer approach similar to pTADDbit in which a TAD-level lower-resolution structure is
first computed and finally integrated with higher-resolution conformations of each TAD

to complete the final 3D model of the chromosome.
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As for the use of Artificial Intelligence (Al) to 3C data, we find several examples where
deep learning is used to predict contact frequencies using as input different chromatin
features. For example, in DeepC (Schwessinger et al. 2020) or Akita (Geoff Fudenberg
et al. 2020) contact frequencies are predicted using the DNA sequence and different types
of neural networks. These applications of Al in the field of chromatin folding have the
objective of predicting Hi-C data while pTADbit focuses on the reconstruction of the 3D
structures from it.

To the best of our knowledge, no computational approach has been proposed previously

to predict interacting chromatin distances through Al using Hi-C data.
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Conclusion
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The two main approaches to study the structure of the genome are 3C technologies and
imaging. Although many tools exist for the analysis of 3C-based data, the innumerable
variations and adaptations of the technology makes still essential the provision of new
computational libraries. On the one hand, as part of this thesis, we developed a pipeline
for the reconstruction and analysis of Promoter Capture Hi-C (pcHi-C) a 3C technique
that generates sparse data. On the other hand, during the last years, imaging has
experienced a major revolution with the appearance of new high-throughput multiplexing
techniques capable of reaching unprecedent resolutions in single cells. In this thesis we
developed OligoFISSEQ, one of those emerging technologies and provide tools for the
analysis of its generated information. Finally, we developed a tool that combines 3C-
based and high-throughput imaging data to bring together information of both worlds to

enhance the three-dimensional reconstruction of genomic regions.

From Chapter I, we can specifically conclude:

1. We designed and implemented OligoFISSEQ a novel imaging technology to
visualize multiple genomic regions in hundreds and thousands of individual cells.

2. We demonstrated the capacity of OligoFISSEQ to study chromatin organization
in both individual cells and populations.

3. Thanks to its multiplexing strength, OligoFISSEQ has the potential to scale the
labelled regions in individual cells to hundreds or even thousands of /oci.

4. We showed the capacity of OligoFISSEQ to accelerate the rate at which multiple

genomic regions can be visualized in super-resolution images.

From Chapter II, we can specifically conclude:

1. We developed a bioinformatics tool for the reconstruction of the 3D organization
of chromatin from sparse pcHi-C datasets.

2. The structures reconstructed with our methodology are highly similar to those
obtained with benchmarked tools using dense datasets.

3. The designed methodology can be easily adapted to other sparse 3C-based data

sets.
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From Chapter III, we can specifically conclude:

1. We developed pTADbit, a novel approach for the reconstruction of the 3D
organization of chromatin from Hi-C data that makes use of imaging information
and Machine Learning (ML).

2. pTADbit produce ensembles of 3D models that reproduce more accurately the
heterogeneity of the cell population.

3. The inference of the equivalence between interaction frequencies and distances
from high-throughput imaging experiments allows pTADbit to dramatically

reduce the computation times in the generation of 3D structures.
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