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Bats are the only mammals capable of self-powered flight, an evolutionary
innovation based on the transformation of forelimbs into wings. The bat
wing is characterized by an extreme elongation of the second to fifth digits
with a wing membrane called the chiropatagium connecting them. Here

we investigated the developmental and cellular origin of this structure

by comparing bat and mouse limbs using omics tools and single-cell
analyses. Despite the substantial morphological differences between the
species, we observed an overall conservation of cell populations and gene
expression patterns including interdigital apoptosis. Single-cell analyses of
micro-dissected embryonic chiropatagium identified a specific fibroblast
population, independent of apoptosis-associated interdigital cells, as the
origin of this tissue. These distal cells express a conserved gene programme
including the transcription factors MEIS2 and TBX3, which are commonly
known to specify and pattern the early proximal limb. Transgenic ectopic
expression of MEIS2 and TBX3in mouse distal limb cells resulted in the
activation of genes expressed during wing development and phenotypic
changes related to wing morphology, such as the fusion of digits. Our results
elucidate fundamental molecular mechanisms of bat wing development
and illustrate how drastic morphological changes can be achieved through
repurposing of existing developmental programmes during evolution.

Evolution has fuelled the emergence of aremarkable variety of pheno-
types throughout the animal kingdom. In particular, the vertebrate
limb displays many fascinating adaptations? and has long served as a
prime example to study the genetic basis of phenotypic evolution®*.
An extreme example is the evolution of forelimbs (FLs) into wings in
bats (order Chiroptera), the only mammals capable of self-powered
flight. Interestingly, the oldest known bat fossil already presents wing-
structured FLs, suggesting that flight originated in the most recent
common ancestor of all bats’. Bat wings are thus a unique and ancient
structure, representing an exceptional model for studying limb diver-
sification. Likewise, examining the development of wings can shed
light on the mechanisms underlying morphological transformations
in evolution®’.

During development, limb buds arise from the lateral plate meso-
derm (LPM) under the control of three distinct signalling centres:
the zone of polarizing activity, the dorsal and ventral ectoderm, and
the apical ectodermal ridge®’. These centres confer cellular identity
alongthe anterior-posterior, dorsal-ventral and proximo-distal axes,
respectively. Outgrowth along the proximo-distal axis results in the
formation of three distinct elements: most proximally the stylopod,
followed by the zeugopod and distally the autopod, corresponding
to humerus/femur, radius-ulna/tibia-fibula and hand/foot, respec-
tively™ (Fig. 1a). The bat FL is characterized by elongation of all skel-
etal elements as well as the presence of membranes, which form the
wing. Changes are most pronounced in the autopod, with extremely
elongated digits II-V and an interdigital wing membrane connecting
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them, known as the chiropatagium. In contrast, inbat hindlimbs (HLs)
and most other pentadactyl species including humans and mice, the
tissue between the digits recedes during development resulting in
separate digits (Fig. 1a).

Experiments across different species have shown that retinoic acid
(RA)-induced apoptosis of interdigital cells plays a central role in digit
separation'". Consequently, one hypothesis for the persistence of
interdigital tissue in bats is the suppression of this apoptotic process.
Several studies have addressed this hypothesis; however, the results
have been inconclusive. Both pro- and anti-apoptotic markers were
found to be expressed in the developing chiropatagium™™. In addi-
tion, several comparative molecular studies have identified genes
with altered patterns of expression in developing wings"” . However,
the molecular and evolutionary bases of wing morphology develop-
ment remain largely unknown, partially due to the limitations of the
available methodologies at the time. Recently, single-cell approaches
have provided new tools to investigate cell identity and function at
unprecedented resolutionin many organisms, holding great potential
tounravel the basis of evolutionary innovation'. Yet, how cell fates are
molecularly determined and sustain the emergence of new morpholo-
gies remains one of the big unsolved questions in biology.

To investigate the molecular origins of wing formation, we per-
formed single-cell RNA sequencing (scRNA-seq) at multiple time points
during bat and equivalent mouse embryonic limb development. Our
data reveal conserved cell clusters and gene expression patterns
across species, including within the apoptosis-related cell popula-
tion. Additionally, we characterized the origin of the chiropatagium,
which is composed of fibroblastic cells that follow a differentiation
trajectory independent of RA-active interdigital cells and repurpose
agene programme typically restricted to the proximal limb. By ectopi-
cally expressing two upstream transcription factors (TFs) of this pro-
gramme, MEIS2 and TBX3, in the distal limb of transgenic mice, we
recapitulated key molecular and morphological features observedin
developing bat wings. Altogether, our findings demonstrate that an
existing proximal cell state and its gene regulatory programme are
repurposed inthe distal bat FL to generate a novel tissue in adifferent
spatial location.

Results

Conservation of cellular composition and interdigital cell death
We collected FLs and HLs for scRNA-seq from mice and bats (Carollia
perspicillata) covering critical developmental stages of digit separa-
tion and wing formation. Samplesincluded an early, morphologically
undifferentiated stage (embryonic day (E)11.5 in mice and equivalent
to CS15 stage in bats') and a later stage in which the digits form and
separate (E13.5in mice and CS17 in bats); we also included an inter-
mediate time point (E12.5) from mice (Fig. 1b). Using the Seurat v3
single-cell integration tool, we generated an interspecies single-cell
transcriptomics limb atlas (Fig. 1c). Cells from both species contrib-
uted similarly to all cell clusters (Extended Data Fig. 1). We identified
all major cell populations known to be present in developing limbs,
including muscle, ectoderm-derived and LPM-derived cells?*** (Fig. 1c
and Extended Data Fig. 1). Overall, both the composition and identity
oflimb cellsare largely conserved between the species despite notable
morphological differences.

As the LPM contributes to the formation of interdigital mesen-
chyme, cartilage, tendons and other connective tissues within the
limb, we specifically focused on this lineage. The LPM-derived cells
were further subdivided into 18 clusters and annotated by performing
differential gene expression analysis. Based on the calculated mark-
ers and previous studies®?*, we identified three main cell lineages:
chondrogenic, fibroblast and mesenchymal (Fig. 1d). The expression
of the marker genes used for cluster annotation (Fig. 1e), and marker
genes differentially expressed in each cluster (Extended Data Fig. 1),
was conserved across species.

Using thisinterspecies single-cell atlas, we first sought to address
the prevailing hypothesis that chiropatagium development is driven
by inhibition or reduction of apoptotic cell death in the interdigi-
tal tissue®. We identified a cluster of interdigital cells characterized
by high expression levels of Aldhla2 and Rdh10, components of RA
signalling. RA is regarded as a pivotal regulator of interdigital apop-
tosis and its expression pattern has been extensively employed to
discern the interdigital tissue?. Cells from this cluster (3 RA-Id) also
expressed main pro-apoptotic factors, including Bmp2 and Bmp?7,
highlighting it as a central population of apoptotic signalling in both
species (Fig. 1f)?. Within this cluster, we then analysed the expres-
sion of a larger number of genes associated with different cell death
processes such as Bcl2-, Bmp- and Fgf-associated signalling and
senescence”. Our data revealed no significant relative transcrip-
tional differences in pro- or anti-apoptotic factors for the cluster 3
RA-1d between species (Fig. 1g and Extended Data Fig. 2). Interest-
ingly, genes known to be distinctively expressed in the interdigital
tissue of bat wings, including the anti-apoptotic GremI”, also did not
show a difference in relative expression, suggesting expression in a
different cluster.

To further investigate the presence, intensity and distribution
of apoptosis, we stained bat limbs with LysoTracker, a marker of lyso-
somal activity that correlates with cell death?®. The differential digit
separation in bat limbs was used as an internal control: in bat HLs
all digits separate completely, whereas in the FLs only the first digit
separates from the second. Digits lI-V, in contrast, do not separate in
the wing, forming the chiropatagium. We found positive staininginall
interdigital zones of bat FLs, with minor differences to interdigit I-1I.
Likewise, staining in the HL interdigit tissue was similar in intensity
and distribution (Fig. 1h and Extended Data Fig. 2). In addition, we
confirmed that cell death in bat wings occurs via an apoptotic process
activated by the caspase cascade, asindicated by the positive staining
for cleaved caspase-3 proteininasimilar distribution as that described
for LysoTracker staining (Fig. 1h and Extended Data Fig. 2).

In summary, our analysis revealed that the cell composition
between mouse and bat limbs is highly conserved. Furthermore, cell
death, as shown by the qualitative assays used here, is present in all
interdigital tissues in the bats regardless of whether the digits get
separated or not. However, it appears more intense between digits I-11
of the FLs and HLs than in the other digits. Although it is difficult to
compare between species, our results show that interdigital apoptosis
isafeature of both bats and mice.

The developmental origin of the bat chiropatagium

Ascell death occurssimilarly in both bat and mouse cluster 3RA-1d, and
spatiallyinbothbat FLs and HLs, its inhibition is unlikely to account for
the persistence of interdigital tissue. To identify the cells that persist
and form the chiropatagium, we independently clustered the mouse
and bat datasets and compared them with the integrated results. The
clusters showed a good correspondence, with a high correlation of
gene expressionbetweenspecies (Fig.2a,b and Extended Data Fig. 3),
suggesting that the chiropatagiumis not associated to the emergence
of anovel cell cluster in the bat wing.

To trace the molecular and cellular nature of the chiropatagium,
we performed scRNA-seq from micro-dissected bat interdigital tissues
at a later stage (CS18, equivalent to E14.5 in mice; Fig. 2¢). We anno-
tated the chiropatagium-LPM-derived populations by label transfer
using the bat FL LPM data as a reference®°. This revealed that the
chiropatagium is primarily composed of three different populations
of fibroblast cells, with transcriptional correspondence to clusters
7 Fblr, 8 FbA and 10 Fbll1 (Fig. 2d). Differential expression analyses
against the whole FL LPM dataset showed that the chiropatagium
features highexpression of MEIS2, COL3A1, AKAP12and GREM1,among
others (Fig. 2e). Notably, the cluster 3 RA-Id was minimally represented
inthe chiropatagium (-1%; Fig. 2d), whichis consistent with the results
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Fig.1|Developmental cell states and interdigital apoptosis are conserved in
mouse and bat limbs. a, Scheme of key embryonic stages of mouse (blue) and
bat (red) limb development. b, t-SNE plots of mouse and bat FL and HL single-

cell datasets. The main cell populations are highlighted (red: LPM-derived

cells; orange: muscle cells; yellow: ectodermal cells). ¢, t-SNE plot of integrated
interspecies limb atlas. Main cell populations are highlighted asinb. d, t-SNE plot
of LPM-derived cells with cluster annotations. Main developmental lineages are
highlighted (red: mesenchymal; green: fibroblasts; blue: chondrogenic). e, Dot
plot showing marker gene expression used for cluster annotation (Supplementary
Datal). Colourintensity indicates expression level (blue: mouse; red: bat); dot
size indicates the percentage of cells expressing each gene. f, t-SNE plots of the
integrated data showing the expression of central components of RA metabolism
and BMP signalling involved in interdigital cell death. The arrow indicates the

RA-Id versus LPM-derived cells

interdigital cell population 3 RA-1d. g, Correlation of pro- (yellow) and anti-
apoptotic (red) genes in the 3 RA-Id cell population of mouse and bat. Includes
marker genes of this population (black) and genes previously reported to be
expressed inbat interdigits (green). Shownis the log2FC of gene expression
between the cluster 3 RA-Id versus the rest of the FL cells per species. A set of
random genes was included as control. Dashed lines represent a difference of 0.25
and-0.25 of the log2FCs. h, LysoTracker staining (upper) and immunostaining
against cleaved caspase-3 (lower) of bat FL stage CS17 with magnification of
interdigital regions (ID; arrows) between digits I and Il (which later lack interdigital
membrane) and IV and V (later connected by chiropatagium) shown on the right.
The arrows indicate the magnified regions. Merged images show DAPI (white) and
LysoTracker (red) or cleaved caspase-3 (yellow) signal. n = 2. Scale bars, 500 pm.

ofthe apoptosis staining (Fig. 1h). Thus, the cluster 3RA-Id canberuled
outasthe cellular source of the chiropatagium.

To further elucidate the origin of chiropatagium cells, we inferred
developmental trajectories in mouse and bat distal LPM clusters,

focusing on non-skeletal cells expressing Hoxd13, abona fide marker
of the autopodial lineage® . Using the RNA velocity tool scVelo, as
well as the pseudotime tool Slingshot, we identified independent
trajectories that share the same origin and are defined by differential
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Fig. 2| The chiropatagiumis composed of fibroblasts expressing MEIS2
following a unique developmental trajectory in the bat FL autopod.

a,b, Mouse (a) and bat (b) t-SNE plots of individual FL clustering. Main
developmental lineages are highlighted (red: mesenchymal; green: fibroblasts;
blue: chondrogenic). Cluster labels and colours are derived from Fig. 1d.

¢, t-SNE plot of chiropatagium cells at stage CS18. Colours and labels by
transcriptional correspondence to bat FL LPM-derived cells. d, Quantification
of correspondence between chiropatagium and LPM-derived cells. Asterisk
indicates the 3RA-Id cells. e, Marker genes of chiropatagium cells, compared
against bat FL LPM-derived cells. f, Differentiation trajectories of Hoxd13-
positive, non-chondrogenic cells of the mouse FL, derived from RNA velocity
and pseudotime analyses indicated by arrows. Trajectories are annotated based
onincreasing expression of marker genes. g-j, Expression of Aldhla2 (g), Meis2
(h), Bmp7 (i) and Grem1 (j) in mouse FL trajectories. k, Same as f, for bat cells.

1-0, Expression of ALDHIAZ2 (1), MEIS2 (m), BMP7 (n) and GREMI (o) in bat FL
trajectories. The arrow innand o indicates a unique MEIS2-positive trajectory
identified in the bat FL. p, Assignment of a proximal (dark blue) or distal (yellow)
identity to each cell of mouse and bat FL and HL. PD is the difference of the
expression score of the distal genes (Hoxd13, MsxI), minus the expression score
of the proximal gene (Shox2). Dashed lines outline the proximal-distal regions.
q, Scheme of assignment in p. r, Fraction of cells co-expressing Hoxd13 and Meis2
per cluster. Cluster 10 Fbll1is highlighted with an arrow. s, Marker genes of bat
cluster 10 Fbl1 against the rest of the LPM-derived cells. Ordered by adjusted
Pvalue (not shown, <0.01). Differential expression tested using a Wilcoxon rank
sum testimplemented in Seurat. t, Co-expression score of the genesins. The
distal and proximal cells highly expressing this programme are indicated with
arrows. u, Schematic of MEIS2-positive cell expression in proximal fibroblasts of
mice and bats, with distal expression specific to bat wings.

increased gene expression (Fig. 2f-o and Extended Data Fig. 4). For
example, the cluster 3RA-Id forms atrajectory withincreasing Aldhla2
expression (Fig. 2g,1). Moreover, in bat FL we identified an independ-
ent trajectory of fibroblasts marked by the expression of the TF MEIS2.

This trajectory was neither detected in mice nor in bat HLs, suggest-
ing a unique developmental specification for chiropatagium cells
(Fig.2h,m and Extended Data Fig. 4). Moreover, this MEIS2+ trajectory
also showed high expression of GREM1.Both of these have been shown

Nature Ecology & Evolution


http://www.nature.com/natecolevol

Article

https://doi.org/10.1038/s41559-025-02780-x

tobespecifically expressed inthe interdigital tissue of bat wings, as well
as other interdigital markers like Aldh1a2"". Thus, confirming that
this cell population shares this space with the cluster 3 RA-Id in bats.
Overall, these analyses further show that the chiropatagium develops
independently from the interdigital cluster 3 RA-Id. In contrast, this
tissueis primarily composed of fibroblast cells expressing MEIS2.

MEIS2is a TF that defines proximaliidentity at early limb stages***.
To explore its distal role during bat autopod morphogenesis, we first
defined the proximo-distalidentity for each cell and cluster across all
non-integrated datasets. Specifically, we calculated the gene expres-
sion ratio between distal (autopod) and proximal markers (Hoxd13 +
Msx1versus Shox2). Most clusters could be clearly identified as either
proximal or distal (Fig. 2p,q). Meis2was among the marker genes char-
acterizing the proximal non-skeletal cellsin all our samples (Extended
Data Figs. 3 and 4). We then quantified the fraction of Meis2-positive
cells in the distal region by calculating the co-expression of Hoxd13
and Meis2. This analysis revealed that the highest number of cells
expressing both factors and highest co-expression levels are foundin
the bat FLs (Fig. 2r, green colour, 16.4%). This co-expression pattern
specifically highlighted fibroblast cluster 10 (arrow in Fig. 2r), followed
by cluster 7, each one constituting ~1/3 of chiropatagium cells at later
stages (Fig.2d). We therefore focused on cluster 10 and, by comparing
itagainst the remaining LPM cells, identified 20 marker genesincluding
the TFs OSR1, TBX18and TBX3 (Fig. 2s). Given the unusual nature of this
cluster, withmany cells highly co-expressing distal and proximal mark-
ers, we explored the expression of these 20 genes across all samples.
Intriguingly, this gene set was found co-expressed at high levelsinthe
proximal fibroblasts (mostly clusters 8 and 9) of FLs and HLs of both
species, while its distal co-expression was unique to the bat FLs (Fig. 2t).
Similar results were found for the marker genes of cluster 7 (Extended
Data Fig. 5). Thus, the chiropatagium consists of fibroblasts that do
not derive from the cells of cluster 3 RA-Id. Rather, chiropatagium
cells display their own differentiation trajectory characterized by a
specific set of genes thatincludes MEIS2, a TF expressed prominently
inthe proximal limb (Fig. 2u).

Repurposing of a proximal gene programme in the distal

bat wing

Our analyses identified a fibroblast cluster that is unique to the dis-
tal bat FLs, yet expresses a gene set that is also present in proximal
fibroblast cells of mouse and bat limbs. To determine the degree of
transcriptional similarity among these clusters, we performed differ-
ential gene expression analyses in bat FLs comparing the proximal (8)
and distal (10) fibroblasts against the rest of the LPM cells. We found
223 overexpressed genes, 65% of them (144) displaying high relative
expressioninboth proximal and distal clusters (Fig.3a). Nevertheless,
asubset of genes was specific to distal or proximal clusters (25 and
64, respectively; Fig. 3b). Interestingly, 34 of the shared genes were
also highly expressed in mouse proximal fibroblasts, suggesting an
evolutionary conserved function for this gene set in limb fibroblasts
(triangular pointsin Fig. 3a,c). Thus, the distal MEIS2-positive cluster 10
ischaracterized by agene programme that shows substantial transcrip-
tional overlap with a proximal cluster. Gene ontology (GO) enrichment
analysis for the shared genes revealed distinct functions, including
mesenchymal proliferation, extracellular matrix (ECM) organization
and ameboidal-type cell migration (Fig. 3d). These processes are not
onlyindicative of fibroblast identity*, but also represent essential com-
ponents ofinterdigital remodelling® and may be highly relevantin the
context of wing development. Similar results were found for the gene
programme related to cluster 7 (Extended Data Fig. 6). To better under-
stand therelationship and hierarchies of the genes in the programme,
we performed ageneregulatory network analysis using SCENIC for each
cell cluster. This analysis placed MEIS2 in the regulon with the highest
regulon specificity score (RSS) within the bat cluster 10 (RSS > 0.23;
Extended Data Fig. 7). Furthermore, MEIS2 also appeared as a direct

regulator for numerous genes, including several that belong to the
shared proximo-distal programme (Fig. 3e and Extended Data Fig. 7).

To further elucidate how this gene programme is regulated, we
generated bulk transcriptomic and epigenomic datasets from distal
limbs by physically dissecting them at the level of the wrist (mouse
E15.5 and bat CS19 stages; Extended Data Fig. 8). Differential expres-
sion analyses between distal FLs and distal HLs showed only small
differences for mice, while bat distal FLs showed a higher number of
differentially expressed genes (DEGs) compared to HLs. Among the
most upregulated genes in bat FLs we found the TFs MEIS2, HOXD9,
HOXDI10, HOXA2 and TBX3, genes known to be early proximal markers
and patterning factors®®* (Extended Data Fig. 8). Differential enrich-
ment analyses for active epigenomic regions (marked by accessible
chromatinregions detected using anassay for transposase-accessible
chromatin (ATAC-seq) and chromatinimmunoprecipitation (ChIP-seq)
with an antibody against the H3K27ac) revealed a high number of
regions specific to the distal bat FL, enriched in TF binding sites for
RFX, ATF, GATA, ATG and, notably, MEIS (Fig. 3f,g and Extended Data
Fig. 8). As several analyses suggested that MEIS2 plays a critical role
in chiropatagium development, we profiled its chromatin binding in
distal bat limbs using a dual antibody ChIP-seq assay*‘. We found 4,212
MEIS-binding peaks in active accessible bat genomic regions (ATAC +
H3K27acpeaks), of which only 244 correspond to gene promoters. Only
27% (1,142) of the MEIS-binding peaks found in conserved mouse/bat
genomic regions (4,259) also display signatures of enhancer activity
(H3K27Ac enrichment) in the mouse distal FL. Based on these datawe
conclude that bat distal MEIS2 activity appears to associate with, and
thusregulate, a set of genes/enhancers that is different from those in
the mouse. As with other TFs, MEIS seems to bind to several enhancer
regions across large genomic distances*’; therefore we summed up all
MEIS-bound regions per regulatory domain, defined by genome-wide
chromatin interaction maps (Hi-C) from developing bat limbs. We
identified a subset of regulatory domains distinctly enriched with
MEIS2 binding signal (Extended DataFig. 8). By intersecting accessible
H3K27ac- and MEIS2-binding enriched domains with genes from the
distal/proximal fibroblast gene programme, we narrowed down the
list of candidate genes potentially regulated by MEIS2 to 71 (Fig. 3h).
The top 20 genes displaying the highest overall MEIS binding signal
in their regulatory domains included genes from the fibroblast gene
programme, like ECM components and TFs such as TBX3 and TBX18
(Fig. 3i, ranked from left to right according to the acetylation cover-
age). The striking pattern of chromatin activity profiles (H3K27ac
and MEIS2 binding) being constrained within regulatory domains is
exemplified for the TBX3 domain (Fig. 3j and TBX2in Extended Data
Fig. 8).In addition, we compared MEIS2 binding in the distal bat limb
with ChIP-seq data from early (F10.5) mouse embryoniclimbs**, where
MEIS1/2is known to have a crucial role in limb patterning. The limited
overlapinbound gene promoters (21regions) suggests that MEIS2 has
adistinct regulatory role and differential genome accessibility at both
stages (Extended Data Fig. 8).In summary, we identify MEIS2 as a criti-
cal TF regulating chiropatagium development, through the pervasive
binding at the chromatinlandscape of its associated gene programme.

Distalization of MEIS2 and TBX3 induces wing-related
phenotypes

Our previous analyses positioned MEIS2 and TBX3 as key regulators of
the gene programme associated with chiropatagium development. To
investigate their effects on limb developmental cell states, weinduced
the distal limb expression of these two TFs in transgenic mice. The
sequences of these TFsin both species result in highly similar proteins
(Extended DataFig. 9). Constructs were generated in which the bat cod-
ing sequences of MEIS2and TBX3were expressed under the control of a
previously characterized Bmp2 enhancer*'. This enhancer has specific
activity inthe distal non-skeletal mesenchymal and interdigital part of
the limb bud (Fig. 4a). This precise spatio-temporal activity allowed
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Fig. 3 | Proximo-distal dissection of mouse and bat limbs reveals repurposing
of a proximal gene programmein the distal bat FL. a, Correlation between DEGs
from distal (cluster 10) and proximal (clusters 8 and 9) MEIS2-positive clustersin
the bat FLidentified in Fig. 2. Shown is the log2FC of expression of the respective
cluster versus non-fibroblast LPM-derived cells (Supplementary Data 2).

Genes shared with mouse fibroblasts are depicted as triangles. The grey-shaded
regionis the area where the genes have alog2FC > 0.1in both comparisons.

b, Representative t-SNE plots of genes expressed in the distal, proximal or both
clusters of the bat FL. ¢, Venn diagram showing the overlap (brown) between
genes enriched in the proximal (dark blue) and distal (yellow) cells as well as the
genes shared with mouse fibroblasts (green). d, GO term enrichment analysis of
the shared genes from c. Shown are the top five enriched terms (Supplementary
Data3). Over-representation analysis implemented in ClusterProfiler (Methods).
e, SCENIC TF network analysis for genes enriched in cluster 10 FbIl. Red and blue

lines represent positive and negative regulatory connections, respectively.

f, Tornado plot showing H3K27ac peaks specific to the distal FL (dFL) as well as
common peaks of dFL and distal HL (dHL). Shown are regions from peak start
(PS) to peak end (PE). g, Motif enrichment in distal FL-specific H3K27ac peaks.
Shown are the top five binding motifs per TF family. De novo motif enrichment is
estimated using the cumulative hypergeometric distribution. h, Venn diagram
showing the overlap between genes in H3K27ac-enriched and MEIS2-binding
enriched topologically associated domains (TADs), as well as genes from the
fibroblast gene programme from a. i, Heatmaps showing the portion of each TAD
covered by H3K27ac peaks, and the mean signal per TAD of MEIS binding. Shown
are the top 20 genes by MEIS binding signal (Supplementary Data 4).j, Bat TBX3
locus with Hi-C from CS16 FLs on top, TAD calling below. The input-subtracted
H3K27ac and MEIS2 ChIP-seq tracks are depicted in pink and green, respectively.
RNA-seq tracks are shownin black.
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Fig. 4 | Distal expression of MEIS2 and TBX3 in transgenic mouse limbs
induces cellular and morphological features related to the chiropatagium.
a, Transgenics experiments. Bat MEIS2 and TBX3 coding sequences were
expressed in mouse limbs using a Bmp2 enhancer* with activity in distal and
interdigital mesenchyme (yellow). b, WISH from E12.5 wild-type and mutant
embryos showing distal activity of transgene constructs (n = 2). Scale bar,
1cm. ¢, Heatmaps showing DEGs from the chiropatagium gene programme in
affected single-cell clusters of mouse mutant limbs at E12.5 (Supplementary
Data5and 6). Non-significant and differences below 0.2510g2FC set to 0. The
number of upregulated genes from the fibroblast gene programme and of
over-representation Pvalues are on the right. Differential expression tested
using alikelihood-ratio test on azero-inflated regression implemented in
MAST (Methods). d, Proportion of GO term categories (biological functions)
upregulated in mutant mice. From the top ten GO terms of the affected cell
clusters. Individual GO terms are in Extended Data Fig. 10 and Supplementary
Data 7 and 8. Dev./morphog., development and morphogenesis; Metab./cell.,

metabolism and cellular processes; Epthl. cell diff., epithelial cell differentiation.
e, Correlation of affected mutant cells to the bat cluster 10 Fbl1, based on

the expression of genes from the gene programme. Depicted is the density

of the correlation of all cells in the affected clusters, and corresponding

clusters in mouse wild-type and bat FLs. Dashed line is the mean. f,g, Three-
dimensionalimaging of mouse wild-type and mutant limbs at E15.5 (n = 4).
Surface representation (f) and an Eosin Y staining cross-section (g) withan

arrow highlighting syndactyly. Scale bar, 200 pm. Magenta, Eosin Y; cyan,

nuclei; yellow, autofluorescence. h, Cross-sections with arrows indicating tissue
between the digits. Scale bar, 100 pm. i-k, Quantification of autopod surface
volume (i), cell number (j) and connective tissue volume (k) in wild-type and
mutant limbs. n=4. Error bars show the standard deviation. Numbers are Pvalues
of the differences of the mean calculated using a Dunnett test following a one-
way analysis of variance. When comparing the wild-type with the MEIS2 and TBX3
mutants, the exact Pvalues are 0.0062 and 0.003 for total volume, 0.0004 and
0.0009 for cell number, and 0.0423 and 0.0001 for connective tissue volume.
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the expression of these factors without inducing detrimental effects
in other tissues. In situ hybridization as well as bulk transcriptomic
analysis of mutant limbs at E12.5 validated specific expression of the
transgenes in distal mouse limbs (Fig. 4b and Extended Data Fig. 9).

We evaluated the impact on gene expression at cellular resolu-
tion by performing scRNA-seq on the mutant limbs at E12.5. Focusing
on distal clusters, we isolated Hoxd13-positive cells and integrated
them with corresponding datafrom our reference mouse atlas. Using
this approach, we performed a differential expression analysis on
the clusters where MEIS2 or TBX3 were differentially expressed in the
mutant samples (Fig. 4c). We found that the genes of the chiropatagium
gene programme were significantly over-represented within the DEGs
(Fig.4c).Interestingly, we see adownregulation of AldhIa2in the cells
of cluster 3 RA-Id, where Meis2 is ectopically expressed. GO enrich-
ment analysis showed that the upregulated genes areinvolved in ECM
production and proliferation processes, functions also characteristic
oftheidentified gene programme (Fig. 4d and Extended Data Fig. 10).
Moreover, we compared the transcriptomic correlation of mouse
wild-type and mutant cells to the mean gene expression of fibroblast
cluster 10 from bat FLs. This revealed that mouse mutant cells exhibit
higher similarity to these bat cells (Fig. 4e). These results highlight the
ability of these two TFs, MEIS2 and TBX3, to partially induce the specific
gene programme of the chiropatagium.

To evaluate the phenotypic consequences of ectopic distal MEIS2
and TBX3 expression, we performed three-dimensional (3D) imag-
ing of mutant and wild-type control limbs at a later developmental
stage (E15.5). We marked the nuclei with DRAQS and used Eosin Y as a
proxy to quantify ECM content (Fig. 4f,g). Both mutants showed a vis-
ible increase in the surface volume of the limbs. In addition, all TBX3
mutants displayed fusion of at least two digits (Fig. 4h and Extended
DataFig.10; n =4). Transversal sections of these limbs confirmed the
retention of the tissue between digits Iland I, resembling cutaneous
syndactyly inboth mutants (Fig. 4h). Quantification analyses of these
images revealed a significantincrease in the overall autopod volume,
cellnumber and connective tissue contentin both mutants (Fig. 4i-k).
These results indicate that the expression of MEIS2 and TBX3 in the
distal and interdigital mesenchyme canrecapitulate essential aspects
of bat wing development. This includes increased proliferation and
matrix production, resulting in retention of interdigital tissue with
consecutive fusion of digits. Overall, these analyses support that the
distal activation of a gene programme mediated by MEIS2 and TBX3
plays aroleinbat chiropatagium formation.

Discussion

This study aims to elucidate the molecular basis and cellular origin of
the interdigital wing membrane of bats, the chiropatagium. Previous
studies have attempted to identify the genes and mechanisms behind
this fascinating evolutionary adaptation. Candidate gene approaches,
forinstance, suggested aninvolvement of pro-apoptotic factorssuchas
BMPs**and their antagonist GREMI" or asecond wave of SHH expression
intheinterdigital space*’. More systematic approaches using transcrip-
tional profiling and the integration of regulatory dataidentified genes
of the HoxD cluster as well as components of canonical Wnt signal-
ling". Yet, these genome-wide studies lacked cellular resolution and
therefore much remains elusive. Here, by using scRNA-seq, we were
ableto assign expression patternsto specific cell populations thereby
disentangling previous contradictory observations. Cells expressing
RA/BMP pro-apoptotic factors in bats are equivalent to the cluster 3
RA-Id observed in mice, where interdigital regression takes place. In
contrast, distal bat fibroblasts express the BMP antagonist GREM1
(Fig.20) previously shown to be expressedin the interdigits of the wing,
but not the HLs". Even though these cells are in the same interdigital
space as the cluster 3 RA-Id cells, they originate from a distinct devel-
opmental trajectory eventually constituting the major component of
the chiropatagium. While we do not explore the developmental origin

of this cell population, their presence and persistence inan otherwise
disappearing tissue might be explained by their already differentiated
state. Experimental manipulations of developing chicken HLs show that
before anapoptotic fate, theinterdigital mesenchymeis naive with full
differentiation potential***, suggesting that apoptosis arises due to
the lack of differentiation or further survival signalling*®. It is, how-
ever, possible that suppression of RA/BMP signalling by factors such
as GREM1 serves as an additional factor protecting MEIS2+fibroblasts
from apoptosis. Furthermore, as shown by our transgenic experiments,
ectopic expression of MEIS2 results in a downregulation of Aldhla2,
indicating that Meis2 itself may have an anti-apoptotic effect.

Nonetheless, besides apoptosis, other mechanisms including
epidermal cell migration® and the remodelling of ECM components
areinvolvedininterdigital tissue regression*. This, together with our
results, indicates that apoptosisis not sufficient for sculpting the digits
inmammals. Indeed, further analysis of the fibroblast gene programme
identified an enrichment of genes associated with these processes, that
is, ECM organization, cell migration and proliferation. Alterations in
the balance between cell death and proliferation and migration are
likely to change the interdigital cell composition and can resultin the
retention of interdigital tissue (syndactyly)**".

A major challenge in comparative single-cell analyses lies in data
integration, whichrisks overcorrection and the consequent masking of
biological variation®. This was also of concern during our integration
of batand mouse data, where the interdigital distal fibroblasts forming
the bat chiropatagium clustered together with other fibroblasts from
bothspecies. However, ourindependent analyses of the bat limb cells
revealed conserved composition. Moreover, various analyses, includ-
ing micro-dissected chiropatagium scRNA-seq, trajectory analyses
and epigenomic profiling, revealed that such clustering was not arte-
factual. Instead, it reflected the activation of similar transcriptional
programmes through adistinct regulatory repertoire, ultimately driv-
ing a unique bat forewing-specific cell differentiation trajectory. It is
welldocumented that during evolution, the same set of genesis often
re-used®’. For example, the formation of lateral patagia enabling glid-
ing hasindependently appeared multiple times in marsupials through
convergent evolution, where the upstream factor Emx2is activated by
distinct regulatory elements in different glider species™.

Here we identify a gene programme that has been repurposed
through evolution, where two TFs, MEIS2 and TBX3, appear among
the primaryregulators. Specifically, we show that MEIS2 is a potential
directactivator of many other TFsinbat wings, regulating other down-
stream genes. Both factors were previously described in different bat
species (Miniopterus natalensis, Miniopterus schreibersii) as expressed
in the distal bat FL"", indicating a conserved function in wing devel-
opment. Meis2 has also been previously reported to be expressed
in distal E14.5 mouse limbs, based on in situ hybridization signal™.
However, our quantification based on scRNA-seq demonstrates that
the expression levels are low and are present in markedly fewer cells
compared with the bat FL (Fig. 2r). In contrast, MeisI and Meis2 (Meis)
homeobox TFs are well known to be robustly expressed early (<E11.5)
in the proximal part of the limb, where they determine the identity
of stylopod and zeugopod versus autopod®*. Accordingly, mutating
Meis TFs result in limb shortening due to altering the proximo-distal
segmental borders’*. The specification of proximal identity by Meis
genes is an ancient function conserved across the vertebrate lineage,
including mammals®*, birds**** and amphibians®. Interestingly, in
Drosophila, the Meis homologue hth is also required for proximal leg
development’. Likewise, Thx3 is a gene expressed in the proximal
limb mesenchyme and plays a crucial role during limb patterning
in establishing anterior-posterior boundaries®’. The importance of
MEIS2 and TBX3 in chiropatagium development is supported by our
studies in transgenic mice. The gene expression changes observed
in mutant limbs, together with the alterations in morphology, cell
number and matrix production, reflect key features associated with
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the gene programme of chiropatagium cells (Fig. 3). Thus, the ectopic
expression of MEIS2 or TBX3 in interdigital distal cells induces a gene
programme that partially resembles that observedinbatsandleads to
tissue retention. The recapitulation of only certain aspects of the wing
phenotypesis expected, as we are manipulating only one gene atatime
from an entire gene programme. Moreover, interspecies approaches
have inherent limitations, as the ectopic expression of these genes
occurs in a different molecular and cellular context. It is likely that
the expression pattern of MEIS2 observed in bats requires regulatory
changes rendering MEIS2 susceptible to specific FL autopod signals,
such as an FL-specific Hox code®®*’, This may encompass the observed
activation of 3’ anterior Hox paralogues like HOXA1/2.

Phenotypicevolutionaryinnovations can, in principle, arise from
gene duplications or losses. Yet, agenomic comparison of six bat refer-
ence genomes failed to reveal expansion or loss of any candidate gene
that might play a role in limb development®’. Alternatively, already
existing genes can be newly recruited into regulatory gene networks
(co-option)®"?, or regulatory changes can modify gene expression
within existing ones*****, Instead, our data point towards a high degree
of similarity in gene expression between species, suggesting the re-use
of atranscriptional programme already existent in the limb but ata
differentanatomical position. It is probable that the re-use of this gene
programme occurs within amarkedly disparate epigenetic landscape,
thereby activating slightly disparate and novel gene sets. A similar
scenario has recently been reported for skeletogenic cells found in
different parts of the body®’. Chondrocytes that originate from differ-
ent germ layers use distinct sets of regulatory elements for activation
of similar gene programmes. Like the chiropatagium cells, which are
equivalent at the transcriptional level to the proximal fibroblasts but
diverge at the gene regulatory level. Thus, even a change as drastic as
the development of a wing from individual digits can apparently be
achieved by relatively small changes and the repurposing of already
existing and active pathways. Following the principle of parsimony,
evolution constructed novelty by making minimal modifications to
already existing elements.

Methods
Animal samples
Mice. Wild-type mouse embryonic tissues were derived from crossings
of CD1 x CD1or C57BL/6) x129. Transgenic embryos were generated by
tetraploid aggregation®. Female mice of CD1genetic background were
used as foster mothers. Mice were kept in a controlled environment
(12 hlightand 12 hdark cycle, temperature of 20-22.2 °C, humidity of
30-50%) and water, food and bedding were changed regularly.

All animal experiments and procedures were conducted as
approved by LAGeSo Berlin under the following licence numbers:
ZHV120,G0176/19-MaS1_Z, G0243/18-SAld1_G and GO098/23-SAld1_G.

Bats. Bat samples (Carollia perspicillata) were obtained froma captive
population maintained at the PapilioramazooinKerzers, Switzerland.
To control population growth, some individuals were occasionally
culled by cervical dislocation performed by trained personnel, fol-
lowing general guidelines for animal handlingand in vivo research®. If
pregnant females were present among the culled individuals, embryos
were dissected and preserved for different molecular procedures.
Femalesinlate pregnancy were not culled for ethical reasons. In addi-
tion, bat samples from C. perspicillata were obtained from a breeding
colony housed at the Institute for Cell Biology and Neuroscience, at the
Goethe University in Frankfurt am Main (keeping permit authorized
by the RP Darmstadt). Samples collected from the Frankfurt colony
originated from bats that were euthanized for collecting brain tissue
without any further experimental manipulation (following § 4 Abs. 3 of
the German TierSchG). Infemale bats, after euthanizing, we addition-
ally checked for possible pregnancies (undetectable from the outside)
and embryos were dissected whenever present.

Genome annotation

To generate an annotation of C. perspicillata, we collected transcrip-
tomic data from long- (IsoSeq) and short-RNA reads, mapped those
to achromosome-scale assembly, and integrated gene predictions
using human (hg38), mouse (mm10) and another phyllostomid bat
(Phyllostomus discolor) as reference annotations. Briefly, IsoSeq data
were first analysed as in ref. 60 to produce high-quality open read-
ing frame predictions. Then, we implemented a strategy to classify
and filter transcripts-based features such as known canonical splice
sites, known non-canonical splice sites, novel canonical splice sites
and novel non-canonical splices. A small set of transcripts with sub-
optimal features were not used as input for the gene annotation. For
example, fusion transcripts (chimeras that include more than one
gene), intra-priming (transcripts with more than 85% or at least 10
contiguous adenines within 20 bp upstream of the 3’ end), low cov-
erage (transcripts supporting coding regions by less than 3 reads),
reverse-transcriptase-switching predictions (an exon-skipping pat-
tern due to a retrotranscription gap caused by secondary structures
inexpressed transcripts), nonsense-mediated decay (premature stop
codons) and intron retention were features all identified as subop-
timal. However, when possible, some of these transcripts were used
to annotate untranslated regions (UTRs). Transcript features used
for classification were identified using TAMA-GO®, Then, new TOGA
predictions were generated using an updated version®® (v. 8f09391;
https://github.com/hillerlab/TOGA). We used as reference genomes
human (hg38), mouse (mm10) and the pale spear-nosed bat (Phy!-
lostomus discolor).Finally, additional RNA-seq data from tissues were
generated and analysed, as described in ref. 60. Evidences (RNA-seq
transcripts, reclassified IsoSeq transcripts, TOGA predictions and pro-
teins) were integrated using EVM’°, and downstream steps to annotate
non-overlapping UTRs, enrich the annotation with non-coding RNAs
and assign gene names were performed as described in ref. 60.

The sensitive prediction of genes including UTRs led to typical
artefacts where agene name was assigned more than once. This some-
times caused amislabelling of an orthologous gene compared to arefer-
ence genome annotation (here hgl9). Additionally, in someinstances
(forexample, HOX gene clusters) transcripts annotated with a unique
coding sequence (CDS) were grouped artificially into a single gene
based on shared UTR exons. To correct these issues conservatively
we used sequence conservation to human (hgl9) determined via a
one-to-one comparison of both genomes via the alignment software
LAST”' with the following parameters: lastdb -uMAMS -R11-c; last-train-
revsym-matsym --gapsym-E0.05-C2; lastal-m10 -E0.05-C2.

As a prerequisite we lifted human CDS regions to the Carollia
genome. In cases where a CDS overlaps a conserved region, but a
boundary was not conserved, the boundary was interpolated via its
distance to the closest overlapping conserved region (approximate
lift-over). Known fusion genes and lifted genes with unusually large
intron size >30 kb were excluded from subsequent renaming or bound-
ary adjustments.

A Carolliatranscript was reassigned to areference gene nameif at
least 50% of the original CDS boundaries matched thelifted coordinates
ofthereference annotation, and if other transcripts of the original gene
shareless CDS boundaries to another reference gene. Once transcripts
and genes were renamed, transcripts extending beyond the bounda-
ries of the orthologous reference gene were clipped at the 5’/3’ UTRs.

Finally, for genomic regions without any gene annotation we
transferred exon annotations from hgl9 to Carollia via approximate
lift-over. While this procedure may detect mainly approximate or par-
tialgene annotations, it allowed us torecover an additional 500 genes
(for example, XIST) otherwise excluded from analyses. The genome
annotation resulted in 23,315 transcripts from 18,697 genes. To add
long non-coding transcripts, StringTie”> was used on the short-read
RNA-seq data to obtain a transcriptome annotation, which was pro-
cessed further with PLAR” toidentify long non-coding RNAs. The ones
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notoverlapping theinitial transcriptome were added to resultin 20,421
additional transcripts from 16,141 additional genes.

For the comparative analysis of mouse genes, we used genome
versionmm39 (GCF_000001635.27) with annotation release 109. Only
gene entries of type gene, exon, CDS, pseudogene, transcript, pri-
mary_transcriptand RNA types (excluding guide_RNA) were processed
further. Finally, gene models overlapping exons of known genes, or
predicted transcripts where an alternative curated RefSeq-entry (ID
starting with NM_or NR_) existed were removed. Additionally, three
fusion transcripts were removed.

Orthologue relationship was determined by a one-to-one com-
parison of the Carolliaand mouse genomes via LAST (same parameter
settings as for hgl19). A mouse gene was defined as an orthologue of
the Carollia gene with maximum of shared exon boundaries. In case
of ambiguity, the gene with highest overlap was assigned. As a con-
sequence, only one-to-one orthologue assignments were generated
(Supplementary Data11).

scRNA-seq
Single-cell isolation, methanol preservation and rehydration. For
single-cell gene expression analysis, mouse and bat embryonic limb
tissues were dissected and dissociated with trypsin. Cells were filtered
through a40-pum Flowmi Cell Strainer (Merck, no. BAH136800040) and
pelletedat300 x gat4 °Cfor 5 min. Cells were resuspendedin1volume
0.04% BSA/PBS and dehydrated by slowly adding 9 volumes of 100%
methanol. Samples were stored at —80 °C until library preparation.
Forrehydration, dehydrated cells were centrifuged at1,000 x gat
4 °Cfor10 minand washed twicein1 ml of rehydration buffer (1% BSA,
0.4 U pI Ambion RNse Inhibitor (Invitrogen, no. AM1682) and 0.2 U
pl'SUPERaseln RNase Inhibitor (Invitrogen, no. AM2696) in1x DPBS).
After the second wash, cells were resuspended in rehydration buffer,
counted and diluted to a concentration of 1,000 cells pl™.

10X Genomics scRNA-seq library preparation. Single-cell gene
expression libraries were prepared using the 10X Genomics Chromium
Next GEM Single Cell 3’ GEM, Library & Gel Bead Kit v3.1 (10X Genom-
ics, no. PN-1000121) according to the manufacturer’s instructions.
The aimed target cell recovery in each experiment was 10,000 cells.

To generate Gel beads in EMulsion (GEMs), reactions were assem-
bledina Chromium Next GEM Chip G (10X Genomics, no. PN-1000121).
Chips were run on a Chromium Controller X/iX. Sample indices were
added to the cDNAs via polymerase chain reaction (PCR) using the
Single Index Kit T Set A (10X Genomics, no. PN-1000213) or Dual Index
Kit TT Seat A (10X Genomics, no. PN-1000215). Library concentra-
tion was measured by Qubit dsDNA HS Assay Kit (Invitrogen, no.
Q33231) and quality was assessed using Bioanalyzer High Sensitivity
DNA Analysis Kit (Agilent, no. 5067-4626). Finally, scRNA-seq libraries
were sequenced on an Illumina NovaSeq 6000 with asynchronous
28 bp/90 bp paired-end reads. Single-cell experiments were performed
inbiological duplicates, with each replicate pair derived from asingle
differentindividual.

Single-cell RNA analysis

Filtering, normalization and integration. The different scRNA-seq
libraries were processed using 10X Genomics CellRanger v6.0.2" and
our custom genome annotations for C. perspicillata and M. musculus.
Individual count matrices were filtered for quality based on relative
unique molecular identifier (UMI) counts (removed >4 x mean and
<0.2 x median of the sample), percentage of ribosomal UMIs using
the median absolute deviation (MAD) (removed >median + (3 x MAD)
and <median + (3 x MAD)), and relation of UMI count/genes detected
(removed <0.15 and UMI count <2/3). The filtered datasets were inte-
grated in a species/limb manner (for example, all mouse FL datasets
together). For this we used Seurat v4.3.0”, first log normalizing each
dataset with afactor of 10,000 and scoring the cell cycle state of each

cell. Then, using the SCTransform tool we regressed the percentage
of ribosomal UMIs, the UMI count and the S and G2M cycle score of
each cell. Using the top 25% integration features, we found integra-
tionanchorsusing the SCT normalization, 20 first dimensionsand aK
filter of 100. These anchors were used with the Seurat v4.3.0 function
IntegrateData and the normalization method ‘SCT".

Dimensionality reduction and clustering. Using the integrated data
from the top variable features (standard variance > median + MAD
of the data) we calculated a principal component analysis (PCA) and
used the first 20 (18 for the chiropatagium samples) PCs downstream.
We calculated t-distributed Stochastic Neighbor Embedding (t-SNE)
plots using fast Fourier transform-accelerated interpolation-based
t-SNE”®in order toretain and represent the global structure of the data”.
Clusters were computed using FindNeighbors and FindCLusters witha
resolution of 0.7 and 42 as arandom seed. Marker genes for each cluster
were then calculated from the un-integrated expression data using a
minimum percentage of expression of 0.25, and a log2 fold change
(log2FC) threshold of 0.5.

The cellsidentified as LPM-derived were subsetted, and the same
process was followed to generate the presented individual datasets.
From the MmHI dataset, a cluster with a high proportion of haemo-
globin UMIs was removed.

Interspecies atlas. The integration of all Cp and Mm limb LPM-derived
cells followed the same logic. We subsetted the LPM cells from each
of the datasets, separated the individual libraries and used the same
workflow. For thisintegration we used the top 12.5% of the integration
features. To find clusters we used aresolution of 0.6. The identity labels
of thisintegration were used for the individually clustered datasets (for
example, Mm FI). Each cluster was first classified as one of the three
main groups of LPM cells by simple majority, and then was given the
identity of the most represented label from that group.

Apoptosis-related expression comparison. The cells from the inte-
grated cluster 3 RA-1d were compared against the rest of the cells in
a species/limb fashion (for example, cells within the Mm Fl dataset)
using the function FindMarkers with a minimum expression percentage
andalog2FCthreshold of 0.0001, using all genesrelated to apoptosis,
the marker genes from the cluster and 20 random marker genes from
other clusters.

Label transfer to chiropatagium cells. To transfer annotation labels
fromthe Cp FI-LPM dataset to the chiropatagium-LPM cells, we found
transfer anchors using the first 20 PCs and the SCT normalized data
and used the TranferData function.

Pseudotime analyses. We calculated RNA velocities using velo-
cyto’® on our single-cell libraries, using the stricter mode for the
Cp samples. From each individual LPM sample, we subsampled the
Hoxd13+ cells (>0 UMIs). Were-clustered and annotated the dataset,
and then exported it to an AnnData format and integrated the RNA
velocity to be further analysed. Using scvelo v0.3.27° we filtered
the data and found the first- and second-order moments with the
20 first PCs. We then ran the dynamical model and calculated RNA
velocity allowing for differential kinetics. Guided by the apparent
RNA velocity trajectories, and based on the identities of the clusters,
we subsetted the data further to remove the chondrogenic line-
age as much as possible. We then generated diffusion maps using
the first 15 PCs and chose the diffusion eigenvectors 1 and 2. Using
the Slingshot package we inferred trajectories of differentiation and
pseudotime values for each cell using the seurat-calculated clusters,
andtheapparentend and start clusters according to the RNA velocity.
With this data, we again computed RNA velocity without adynamical
model. Using CellRank v2.0.4%°, we computed velocity, connectivity

Nature Ecology & Evolution


http://www.nature.com/natecolevol

Article

https://doi.org/10.1038/s41559-025-02780-x

and pseudotime kernels, which were combined in proportions of
0.2,0.4 and 0.4, respectively.

Distal-proximal computational dissection. Each species/limb data-
set was given a proximal or distal score using Seurat. With the func-
tion AddModuleScore we scored each cell for the sets of genes distal
(MSX1, HOXD13), proximal (SHOX2), chondrogenic (SOX9, COL2AI)
and fibroblastic (DCN, ZFHX3). The same approach was used for
other sets of genes. Per cluster, we calculated the mean of the differ-
ence between the proximal-distal scores. We then assigned clusters
with the 1/3 most extreme score differences as very distal/proximal.
We then categorized genes as typical proximal or distal if in both
species they are expressed in at least 20% of the cells of 20% of the
corresponding clusters, and they show a difference of >0.15 log2FC
against the opposite cells. Genes highly expressed in the chondro-
genic lineage were excluded. In Extended Data Fig. 4a,b, we show
the top (by log2FC) 15 genes expressed in <15% of the opposite cells.
Co-expression of genes is measured as UMIs, > 0 and UMIs, > 0.

Proximo-distal fibroblast expression programme. In order tounder-
stand what defined the expression profile of proximal and distal fibro-
blasts, without detecting the differences between them, the distal
fibroblasts (10 FbI1) were compared against therest of the cells, except
proximal fibroblasts (cells from 8 FbA and 9 FbL labelled as 9 FbL in
the mainintegration), and vice versa. The fibroblast programme 2 was
doneinthe same way with cells from cluster 7 Fblr and cells from 8 FbA
labelled as 8 FbA inthe mainintegration. This was doneintworounds,
first using the highly variable genes, and then using all the genes that
had been detected as differentially expressed in both comparisons. GO
terms enrichment analyses were made using clusterProfiler® and all the
genes expressed in at least nine cells in the sample as the background
universe. The function simplify was then used with a cut-off of 0.6 on
the adjusted Pvalue.

Mutants’ analysis and differential expression. The single-cell data-
sets from mutant mice were subsetted for LPM cells expressing Hoxd13
andintegrated with corresponding cells from the mouse wild-type FL.
Each of the new clusters found was annotated on the wild-type Mm FI
dataset following the logic before. Using MAST®, cluster-wise we tested
for differential gene expression between the wild-type and mutant
cells. For this, we considered the highly variable genes, all the genes
part of our proximal/distal fibroblast programme, and excluded all
genes onthe X chromosome, mitochondrial and ribosomal genes. Only
those genes expressed in atleast15% of the cells from either genotype
were tested using MAST using a zIm with the formula ‘genotype +orig.
ident +percent.rp’. We then calculated an IrTest on the genotype coef-
ficient and a subsequent P value adjustment using p.adjust. A hyper-
geometric test was used to assess the over representation of the DE
genes (Pvalue<0.01log2FC > 0.25) in our programme. GO terms were
calculated on the totality of genes overexpressed in the mutant cells
per cluster using the approach described above. Wefiltered duplicated
terms based on the set of genes present. We then manually grouped
the top ten terms by adjusted P value of all clusters in the categories
presented in Fig. 4d. We calculated the mean expression of the genes
in our proximal/distal fibroblast programme in the cluster 10 Fbl1 of
the bat FL data, and then calculated the Pearson correlation of each
cell to this mean using the same genes. For this, we focused on the
clusters where we found overexpression of Meis2 and Tbx3 (P value
<0.0110g2FC > 0.15) in the mutants and the corresponding clusters
inthe Mm FL and Cp FL datasets.

Fluorescent microscopy apoptosis assays using LysoTracker
and Immunofluorescence against cleaved caspase-3

Bat embryonic limbs were dissected in cold DPBS and separately pro-
cessed for the two different cell death assays.

For the lysosomal staining, samples were transferred immediately
into 5-pm LysoTracker Red DND-99 (Invitrogen, no.12090146) in DPBS
andincubated at 37 °C for 45 min, then washed four timesin DPBS and
fixed overnight in 4% PFA/DPBS. After that, samples were washed for
10 minin DPBS, dehydrated through a methanol series (25, 50, 75 and
100%) and stored at —20 °C until imaging.

For the caspase assay, samples were fixed in 4% PFA/DPBS for 1to
2hat4°C, then washed three times and stored in DPBS at 4 °C until
immunofluorescent staining was performed. Samples were washed
twicein DPBS for 5 min, then permeabilizedin 0.5% Triton-X-PBS (PBST)
(3 x1hincubation) and blocked in 5% FCS/PBST overnight at 4 °C.
Anti-Cleaved-Caspase-3 (D175) Antibody (Rabbit Polyclonal, Cell Sig-
nalling Technology, no. 9661, lot 47) was diluted in blocking solution
(1:400) and incubated for 72 hat 4 °C. Samples were washed three times
with blocking solution and three times with PBST, and then incubated
in blocking solution overnight at 4 °C. Donkey Anti-RabbitIgG (H + L)
Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor568 (Invit-
rogen, no. A10042, lot 2306809) and DAPI were diluted in blocking
solution (1:1,000) and incubated for 48 hat 4 °C. Samples were washed
three times with blocking solution, three times with PBST, three times
with DPBS and post-fixed in 4% PFA/DPBS for 20 min.

Confocal fluorescence imaging. At this point, samples from both
experiments were similarly treated. They were washed three times
with 0.02 M phosphate buffer (pH 7.4) and cleared in refractive index
matchingsolution (13% Histodenz (Sigma-Aldrich D2158) in 0.02 MPB)
at4 °Cforatleast one day. Whole-mount limbs were thenimaged with
a Zeiss LSM880 confocal laser-scanning microscope in fast-Airyscan
mode. At least 20 z-stacks were imaged, covering the entire limbs.
Z-stacks were then merged as maximum intensity projection with the
ZEN software and Airyscan processing was performed. Scale bars were
added with Fiji.

Gene regulatory network analysis
Generegulatory networks were generated using the Pythonimplemen-
tation of SCENIC (pySCENIC)®.

Raw counts, without SCTransform, and cell-type identities were
extracted from the generated Seurat object. These counts were then
filtered as described by pySCENIC authors. Thisincluded filtering out
cells with less than 200 or more than 6,000 genes with counts, and
filtering genes appearingin less than three cells.

Vertebrate motifs were downloaded fromJASPAR at the following
link: https://jaspar.elixir.no/download/data/2024/CORE/JASPAR2024
CORE _vertebrates_non-redundant_pfms_jaspar.zip. These motifs were
converted to clusterbuster motifs using Biopython’s motif submodule,
forinputinto pySCENIC. TF and motif names were also extracted from
the downloaded motifs.

Adjacencies between these TFs were calculated with the filtered
counts, using pySCENIC’s GRN function. Regulons, highlighting
enriched motifs, were then calculated from these adjacencies using
pySCENIC’s CTX function. Cells where the TF or target gene expres-
sion were O were masked when calculating correlation between a
TF-target pair, both positive and negative regulons were calculated,
and no pruning was performed. pySCENIC’s default behaviour is to
prune regulons based on cis-regulatory information; however, owing
to lack of compatibility with the novel bat annotation, this step was
skipped. Hence, all enriched motifs are included, and regulons were
filtered downstream.

The areaunder the curve (AUC) was then calculated on these regu-
lons using the filtered counts, to determine regulon enrichment using
pySCENIC’s AUCELL function. This AUC information was combined
with cell-type labels to generate RSSs for both positive and negative
regulons across all cell types.

Finally, these RSSs were used to generate gene regulatory net-
works, determining the edges between regulon nodes. Only TF-target
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gene connections with a weight (adjacency) greater than 10 were
included, filtering out weak TF-target pairings. Moreover, target genes
withamean expressionacross all cells less than 0.05 were also excluded.

RNA-seq and analysis

Total RNA was extracted using RNeasy MiniKit (Quiagen, no. 74106) or
RNeasy Micro Kit (Quiagen, no. 74004) according to the manufacturer’s
instructions. Limb samples derived from E11.5and E13.5 as well as CS15
and CS17 embryos were directly homogenized in RTL buffer supple-
mented with 1% -mercaptoethanol and applied to spin columns. Limb
tissues from older embryonic stages (E15.5and CS19) were crushed in
liquid nitrogen using Bel-Art SP Scienceware Liquid Nitrogen-Cooled
Mini Mortar prior to homogenization. Genomic DNA was removed
using the RNase-Free DNase Set (Quiagen, no. 79254).

For gene expression analysis, samples were poly-A enriched and
libraries were prepared using the Kapa HyperPrep Kit (Roche, no.
07962347001). RNA libraries were sequenced on a Novaseq2 with
100 bp paired-end reads. RNA-seq experiments were performed in
biological duplicates for the bat samples. For the mouse samples, three
andfivebiological replicates were used for the TBX3 transgenic and for
the MEIS2transgenic and wild-type mice, respectively. Read mapping to
mm39 and C. perspicillatareference genomes was performed using the
STAR_2.6.1d software®* with the following options: --chimSegmentMin
10 --alignintronMin 20 --outFilterMismatchNoverReadLmax 0.05
--outSAMmode NoQS --outFilterMismatchNmax 10. For samples
obtained from transgenic animals, the transgene sequence was tem-
porarily merged with the genome annotation using the option -add.
For each sample, read counts per gene were obtained via the R func-
tion ‘featureCounts’, with the parameter --countReadPairs -s 2. For
visualization, counts per million (CPM)-normalized bigwig files were
created using the ‘bamCoverage’ tool from deepTools® or read counts
were normalized to reads per kilobase millionbased on the number of
uniquely mapped reads.

DEGs. DEGs were identified from featureCounts® count matrices
using DESeq2 v1.38.3 (R v4.2.2)¥. For each comparison, replicate
quality was assessed using PCA and Euclidean distance between
samples. When necessary, outlier replicates were removed from
further analysis. Lowly expressed genes were then filtered using
edgeR v3.40.2 filterbyexpr®® and non-annotated transcripts were
removed to ensure one-to-one comparisons between the species.
Counts were normalized and differential expression calculated as
log2FC from the mean of normalized counts. Genes were assigned
as differentially expressed for log2FC larger than +£0.5 and adjusted
Wald test Pvalue below 0.05.

ChIP-seq and analysis

Mouse and bat embryonic limbs were dissected and fixed in 1% for-
maldehyde in10% FCS/PBS and subsequently snap-frozen and stored
at-80 °Cuntil further processing. Chromatinimmunoprecipitations
were performed using the iDeal ChIP-seq Kit for Histones (Diagen-
ode, no. C01010051) and iDeal ChIP-seq Kit for Transcription Factors
(Diagenode, no. C01010055) according to the manufacturer’sinstruc-
tions. Briefly, fixed limbs were lysed and sonicated using a Bioruptor
Plus Sonication device (45 cycles, 30 s on, 30 s off, at high power set-
ting) in provided buffers. A total of 5 ug sheared chromatin was used
for histoneimmunoprecipitation with 1 pg of the following antibody:
anti-H3K27ac (Diagenode, no. C15410174, RRID:AB_2716835). For MEIS2
immunoprecipitation, 20 pg of sheared chromatin was used with two
anti-MEIS antibodies simultaneously, one recognizing the conserved
C-terminal domain of MEIS1a and MEIS2a, and the other recognizing
all MEIS2 isoforms as previously described*. A total of 2 ug of each
antibody was used perimmunoprecipitation. Antibodies were gener-
ously provided by M. Torres. Libraries were prepared using the Kapa
HyperPrep Kit (Roche, no.07962347001) and libraries were sequenced

on a NovaSeq2 with 100 bp paired-end reads. ChIP-seq experiments
were performed in biological duplicates.

E10.5MEIS1/2 ChIP datafrom mouse FLs were obtained from previ-
ously published data®.

Read mapping of the sequenced samples to mouse and bat refer-
ence genomes (mm39/carPer2) was performed using the STAR_2.6.1d
software®*. Reads were then filtered and sorted, and duplicates were
removed using SAMtools®. For visualization, CPM-normalized bigwig
files were created using deepTools ‘bamCoverage’ tool. Input samples
were subtracted using deepTools bamCompare®.

H3K27ac differential peak and motif enrichment analysis. Differen-
tial acetylationregions between distal FL (dFL) and distal HL (dHL), as
wellasacetylationregions commonin both conditions, were predicted
from ChIP-seq alignments using macs2°° bdgdiff command with the fol-
lowing parameter:-1800 -g 500 and a likelihood-ratio cut-off of1,000.

The coverage of dFL-specific acetylation regions relative to the
acetylation regions shared between dFL/dHL was calculated for each
topologically associated domain (TAD).

The dFL-specific acetylation regions and the acetylation regions
shared between dFL/dHL were firstintersected with accessible regions
in limbs (CS17). The dFL-specific accessible acetylation regions were
given as input and the commonly accessible acetylation regions as
background for motif enrichment analysis done by homer2”'. A g value
cut-off of 0.01was used for the enriched motifs. The list of significantly
enriched motifs was manually curated so that only the most significant
TF motifsin each gene family were retained.

Tornado plots were generated for peak distribution visualization
using deeptools v3.5.4% The scores per region were calculated using
computeMatrix in scale-regions mode, where the scores were based on
the ChIP bigwig pileup files and the regions based on BED files defining
the ChIP peaks.

MEIS binding analysis. MEIS2 binding signal of one of our dFL repli-
cates was aggregated by TADs. The signal (AUC) was calculated using
deepTools pyBigwig®. By analysing the second derivative of the density
distribution of the signal by TAD, we found the dividing point to the sub-
population of enriched TADs. The same procedure was carried out for
the coverage length of the acetylation peaks. Genes were categorized as
‘Cytoskeleton’,'/ECM’, or ‘“Transcription Factor’ using the Uniprot data-
base, if the keywords included the terms ‘Cytoskeleton’, ‘Extracellular
matrix’, or ‘DNA-binding’ OR “Transcription regulation’), respectively.

ATAC-seq

ATAC-seq protocol and library preparation was performed as previ-
ously described®. In short, bat limbs were dissected and dissociated
withtrypsin. Atotal of 50,000 cells per reaction were lysed and isolated
nuclei wereincubated with Tn5 Transposase (Illumina, no.20034197)
for transposition. DNA fragments were purified and barcoded adaptors
were added via PCR. Fragments were purified and sequenced as100 bp
paired-end reads on a NovaSeq 6000 system. ATAC-seq experiments
were performed in biological duplicates.

For processing, adaptors were trimmed with the cutadapt too
andreads were mapped toindexed reference genomes (mm39/carPer2)
using Bowtie2’*. Reads were then filtered and sorted, and duplicates
removed according to ChIP-seq processing. Reproducible peaks were
called using Genrich with default parameters.

]93

C. perspicillata embryonic fibroblast culture

Head- and organ-free tissue from a CS16/CS17 female bat embryo
(C. perspicillata) was minced in DMEM supplemented with 15% FCS
and cryo-frozen in DMEM containing 10% DMSO and 15% FCS until
further processing. To establish bat embryonic fibroblast culture,
tissue pieces were thawed and digested with trypsin for 20 min at
37 °C. Cells were centrifuged at 1,000 x g for 5 min, resuspended in
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fibroblast culture media (DMEM high glucose, 15% FCS, 1% Pen/Strep, 1%
L-glutamine) and transferred to asix-well plate for cell attachment and
expansion. Cells were splitinto a new culture flask when they reached
a density of approximately 80% or cryo-frozen in freezing media
(DMEM high glucose supplemented with 15% FCS and 10% DMSO) in
1-3 x10° aliquots. Fibroblast cells were cultured at 37 °C and 5% CO,.

Hi-C

Hi-C libraries from C. perspicillata embryonic fibroblast cells or bat
embryonic FLs were prepared as previously described”. In short,
approximately 1 x 10° fibroblast cells and 500,000 limb cells were
fixed in 2% formaldehyde in 10% FCS/PBS. After cell lysis, chromatin
was digested with Dpnllenzyme (NEB, no.R0543), digested ends were
marked with biotin-14-dATP (Invitrogen, no. 19524016) and subse-
quently ligated. Crosslinking was reversed, DNA precipitated and
sheared to afragment size of 300-600 bp using an S-Series 220 Covaris
sonicator. The biotin-containing fragments were pulled down with
Dynabeads MyOne Streptavidin T1 beads (Invitrogen, no. 65602) and
ends were repaired using Klenow Fragment DNA polymerase | (NEB,
no.M0210) and T4 DNA polymerase (NEB, no. M0203). Adaptors were
added to DNA fragments using NEBNext Multiplex Oligos for Illumina
kit (NEB, no. E7335S) and sequencing indices were added by PCR using
NEBNext Ultra Il Q5Master Mix (NEB, no. M0544). Hi-C libraries were
generated as three technical replicates and sequenced onaNovaSeq2
as100 bp paired-end reads.

For read processing, the C. perspicillata reference genome
(carPer2) was indexed with the short-read aligner BWA 0.7.17°°. Raw
reads from sequenced Hi-C libraries were then processed using the
Juicer pipeline v1.5.6”. The three replicates were processed indepen-
dently and subsequently merged after filtering and deduplication. Hi-C
maps with various bin sizes were generated usingJuicer tools 1.11.09°”
using the parameter pre-q 30. For displaying Hi-C maps as heatmaps,
KR-normalized maps with 5 kb bin size were used.

TAD calling. TADs were called using Hi-C data of C. perspicillata embry-
onic fibroblasts with the software TopDom”® (KR-normalized, resolu-
tion: 50 kb, window size: 10).

Cloning ectopic expression constructs

CRISPR-Cas9 single-guide RNA (sgRNA) construct targeting the safe
harbourlocus H11 was generated using the same sequence as previously
described”. sgRNA oligos were cloned into Bbs/ digested and dephos-
phorylated pSpCas9(BB)-2A-Puro (PX459) V2.0 vector (Addgene; no.
62988). sgRNA sequences can be found in Supplementary Table 1.

For cloning of expression constructs, a pUC-Amp plasmid con-
taining homology arms (0.7 kb) designed on the H11 knock-in site was
ordered from Twist Bioscience, and the Hsp68 promoter was used
as minimal promoter. A previously described interdigital enhancer
from the Bmp2 locus* was amplified from wild-type G4 cell DNA;
C.perspicillata MEIS2 cDNA was ordered from Twist Bioscience as a frag-
ment; C. perspicillata TBX3 cDNA was ordered from GeneWiz (Azenta
Life Sciences) asa pUC-Amp vector. Kozak sequence (GAGTGG), SV40
polyA signal were included in the design of both overexpression con-
structs. Backbones and fragments were amplified by PCR (PrimeSTAR
GXL Polymerase (Takara, no. RO50A)), introducing also overlapping
sequences necessary for Gibson assembly. Fragments were assembled
using Gibson Assembly Master Mix (NEB, no. M5510) and cloned into
5-alphaCompetent £. coli (NEB, no. C2987). Products were validated via
restriction digestion and subsequent sequencing. Plasmids were puri-
fied using Nucleobond Xtra Midi EF kit (Macherey-Nagel, no. 740420)
before transfection.

For alignment of MEIS2 and TBX3 protein sequences, bat and
mouse coding sequences were translated into amino acid sequences
using EXPASY'°. Sequences were aligned using the Multiple Sequence
Alignment tool MultAlin™".,

Mouse embryonic stem cell culture

Mouse G4 embryonic stem cell (ESC) culture (XY, 129S6/SvEvTac x
C57BL/6Ncr F1 hybrid) was performed as previously described'*>'%,
Briefly, mouse G4 ESCs were grown on a monolayer of mitomycin-
inactivated CD1 mouse embryonic fibroblast feeders on gelatin
coated dishes at 37 °C and 7.5% CO,. ESC culture medium contain-
ing knockout DMEM with 4.5 mg ml™ glucose and sodium pyru-
vate (Gibco, no. 10829-018) supplemented with 15% FCS (PANSera
ES, no. P30-2600), 10 mM glutamine (Lonza, no. BE17-605E),
1x penicillin/streptomycin (Lonza, no. DE17-603), 1x non-essential
amino acids (Gibco, no. 11140-35), 1x nucleosides (Chemicon, no.
ES-0008D), 0.1 mM beta-mercaptoethanol (Gibco, no.3150-010) and
1,000 Umlleukaemiainhibitory factor (Chemicon, no. ESG1107) was
changed daily. Mouse ESCs were split every 2-3 days or were frozen at
a density of 1 x 10° cells per cryovial in ESC medium containing 20%
FCSand10%DMSO and storedin liquid nitrogen. Cell lines used in this
study are summarized in Supplementary Table 1.

Knock-in genome editing using CRISPR technology
CRISPR-mediated genome editing was subsequently performed as
described previously'®*. In short, 300,000 G4 ESCs were seeded on
CD1feeders 16 h prior to transfection. For site-specific knock-ins at
Hillocus, ESCs were co-transfected with 8 pg of the sgRNA and 4 pug
of the knock-in homology construct. After 24 h, transfected cells
were split onto puromycin-resistant DR4 feeders in aratio of 1:3. For
antibiotic selection, cells were treated with puromycin for 48 h. For
recovery, mouse ESCs were grown for 4-6 days, after which single
colonies were picked into 96-well plates containing CD1feeders. Cells
were grown and split into triplicates after reaching sufficient size.
One plate was used for DNA harvesting and genotyping of clones.
The other two plates were frozen and stored at =80 °C for expansion
of positive clones.

Cloneswere screened for expression construct knock-ins by PCR
detecting site-specific insertion breakpoints. Copy numbers of the
insertions were then assessed by quantitative PCR. Positive clones
were selected for tetraploid complementation. All primers used for
these experiments can be found in Supplementary Table 2 and the
recombinant DNAs purchased to companies can be found in Supple-
mentary Table 3.

Generation of mutant embryos by tetraploid aggregation

For generation of transgenic embryos, selected mutant ESCs were
seeded on CD1feeders, grown for 2 days and thensubjected to aggrega-
tion by tetraploid morulacomplementation, as previously described®®.
Female mice of CD1strain were used as foster mothers.

Whole-mount insitu hybridization

MEIS2 transgene mRNAs were detected in embryos by WISH using
digoxigenin-labelled antisense RNA probes prepared with DIG RNA
labelling mix (Roche, no.11277073910). Embryos were dissected, fixed
in4% PFA/PBS overnight and dehydrated ina methanol series (25%, 50%,
75% methanolin 0.1% Tweenin DPBS) onice. They were stored in100%
methanolat-20 °C.Forstaining, embryos wererehydratedinareversed
methanol/PBST series, bleached in 6% H202/PBST for1h, treated with
10 pgml™proteinase Kin PBST for 5 min, and re-fixed in 4% PFA/PBS with
0.2%glutaraldehyde and 0.1% Tween 20. After washing in PBST,embryos
wereincubated in L1buffer (50% deionized formamide, 5x SSC,1% SDS,
0.1% Tween 20) at 68 °C for 10 min, followed by hybridization buffer
1(L1with 0.1% tRNA and 0.05% heparin) for 2 h, and then in hybridiza-
tion buffer 2 (hybridization buffer 1 plus 1.5 pg digoxigenin-labelled
RNA probe per embryo) overnight at 68 °C. The next day, unbound
probe was washed away using L1, L2 (50% deionized formamide,
2x SSC, 0.1% Tween 20) and L3 buffer (2x SSC, 0.1% Tween 20) for
three 30-minute intervals at 68 °C. Embryos were treated with RNase
solution (0.1 M NaCl, 0.01 M Tris pH 7.5, 0.2% Tween 20, 100 pg ml™
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RNaseA) for 1h, washed in PBST and blocked in TBST 1 (2% FBS, 0.2%
BSA) for 2 h at room temperature. They were then incubated with
1:5,000 anti-digoxigenin-conjugated to alkaline phosphatase anti-
body (Roche, n0.11093274910) in blocking solution overnight at 4 °C.
Unbound antibody was washed off with TBST 2 (TBST with 0.1% Tween
20, 0.05% levamisole). For staining, embryos were washed in alkaline
phosphatase buffer (0.02 M NaCl, 0.05 MMgCl2,0.1% Tween20,0.1M
Tris-HCI, 0.05% levamisole), and then stained with BM Purple AP Sub-
strate (Roche, no. 11442074). Finally, stained embryos were imaged
using a ZEISS SteREO Discovery.V12 microscope with a Leica DFC420
camera. The primers used to generate the transgene ME/S2 probe can
be foundinSupplementary Table 1.

Limb 3D imaging

PFA-fixed mouse embryo limb specimens were incubatedin a solution
of 25 uM DraQ5, dissolved in PermBlock solution (1% BSA, 0.5% Tween
20 in PBS), for 12 h. Following three washes with PBS-T, the stained
specimens were dehydrated in increasing methanol concentrations
(50%, 70%, 95% and 99% (v/v) methanol in ddH,0). Subsequently, the
specimens were stained in a solution of 1.5 pM Eosin Y, dissolved in a
1:1 methanol:BABB (benzyl alcohol:benzoate, ratio 1:2) solution for
4 h, followed by an optical clearing procedure with BABB solution
twice for4 heach.

After fluorescence whole-mount staining, optically cleared
embryolimb biopsies wereimaged using the Lightsheet 7 (Zeiss). The
stacks were captured with a step size of 2.5 pm and at 5x magnification.
TheZEN 3.1 (black edition) software was utilized for the operation of the
light sheet microscope and the acquisition of the images. The digital
3Dreconstruction of light sheetimage stacks was conducted using the
IMARIS Microscopy Image Analysis Software (Oxford Instruments).

All quantifications were performed using IMARIS microscopy
image analysis software. For the measurement of the volume of the
mouse limb, the autopod region devoid of fingers was considered and
analysed using the volume functionin IMARIS for each condition and
n=4independent specimens. The total number of cells was quantified
within DraQ5-positive nuclei of the autopod, excluding the fingers of
the limb, using the spots function in IMARIS for each condition and
fromn =4independent samples. For the quantification of connective
tissue in the limbs, Eosin Y-positive structures of the limbs were ana-
lysed using the volume functionin IMARIS for each conditionand n =4
independent specimens. The differences of the mean were calculated
using a Dunnett test following a one-way analysis of variance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Raw and processed functional data produced in this work have
been deposited in the Gene Expression Omnibus under GSE275848,
GSE275851, GSE275853, GSE275854 and GSE275855. The genome assem-
bly has been deposited at the NCBI repository under BioProject ID
PRJNA1265070 and BioSample ID SAMN48582796.
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Extended DataFig. 1| Integrated multi-species single-cell atlas. Related to Fig. 1.
a-cQuality control measurements of all single-cell libraries. nCount = Number
of UMl counts per cell, nFeature = Number of detected expressed genes, percent.
rp =percentage of UMIs originating from ribosomal genes. d Cell contribution of
each stage to the integrated atlas. e Species contribution to the integrated atlas.
fDot-plot showing the top 3 differentially expressed marker genes per cluster.
The color intensity indicates the expression level (blue: mouse; red: bat); the

dotsize represents the percentage of cells expressing respective genes. g Sub-
clustering of the muscle cells. h Dot-plot showing marker gene expression used
forintegrated cluster annotation. The color intensity indicates the expression
level (blue: mouse; red: bat); the dot size represents the percentage of cells
expressing respective marker genes. i Sub-clustering of the ectodermal cells.
jDot-plot showing marker gene expression used for integrated cluster
annotation.

Nature Ecology & Evolution


http://www.nature.com/natecolevol

Article

https://doi.org/10.1038/s41559-025-02780-x

A i {{
Forelimb N

1.00 Mouse Bat

r1.00
1|/o

0.75 +0.75

o
+0.50

Fraction
o
o
o

0.25 +0.25

0.00

E135 E11.5 Cs15 Cs17

C s D
o Markers

o Pro-Apopt.
o Anti-Apopt.
o Batld

o Random

»
Aldh1a2

Slit2
k)

Hindlimb CS17

Plk2 1

a3 &

Rbp1

05 Adar;tis‘g Bé?pz‘( “Rah10

tp2b1 SR Creb5

Adamts9-=, -\, Fg
Sorbs2 B8 NP1

¢ ° Msx2 Sfrp2

0.

o
o]
@

-3

)

:
L J

log2FC Mouse HL 3 RA-Id vs LPM-derived cells
Hindlimb CS17

-0.5 0.0 0.5 1.0
log2FC Bat HL 3 RA-Id vs LPM-derived cells

Extended Data Fig. 2 | Interdigital cell death in hindlimbs. Related to Fig. 1.
aand b Relative cell proportions over time in mouse and bat forelimbs and
hindlimbs. The proportions for Cluster 3 RA-Id are very similar between species:
5%in mouse FL, 4.3%in bat FL, and 3.2% and 3.8% in mouse and bat hindlimbs,
respectively. Colored side bars represent the main developmental lineages of the
LPM-derived cells. Dark gray bars represent significant changes in proportion.
cCorrelation of pro- (yellow) and anti-apoptotic (red) genes in the interspecies-
integrated cell population 3 RA-1d of mouse and bat. Marker genes of this cell
population are highlighted in blue; genes previously reported to be expressed
inbatinterdigital regions are highlighted in green. Shown is the log2FC of

Fraction

B ) {{
Hindlimb N

‘Mouse Bat

1.00 r1.00

® 1 MR
®2MP
34 30% ©® 3 RA-Id
® 4DP
5PP
®6MZ
® 7 Fblr
© 8FbA
9 FbL
® 10 Fbl1
® 11Pc
®12Tb
® 13 FbI5
© 14 ME
® 15 FbE
® 16 Chl
® 17 ChH
® 18 ChT

0.75 +0.75

o

o

t=}
-3
>

+0.50

0.25 +0.25

0.00

£0.00

E13.5

E11.5 Cs15

Cs17

LysoTracker

Merge Cleaved Caspase-3

differential gene expression analysis between the cluster 3 RA-1d versus the rest
of the LPM-derived mesenchyme per speciesin the HL. A set of random genes
wasincluded as control. Dashed lines represent a difference of 0.25and —0.25 of
the log2FCs (Supplementary Data 9). d LysoTracker staining (upper panel) and
immunostaining against Cleaved Caspase 3 protein (lower panel) of bat HL at
stage CS17 with magnification of interdigital regions between digits Iand Iland
IVandV (indicated by arrows) shown on right. Merged images show DAPI (white)
and LysoTracker (red) or Cleaved Caspase-3 (yellow) signal. Scale bars represent
500 pm. ID = Interdigital region.

Nature Ecology & Evolution


http://www.nature.com/natecolevol

https://doi.org/10.1038/s41559-025-02780-x

Forelimb

Mesenchymal cells c
Chrondrogenic cells
*. Fibroblast cells

tSNE2

tSNE1

MEIS2
e

Correlation D Correlation
indli TN
Hindlimb _a 0505
1.1 MR
1.2MR
2MP
| 4DP
"""""""" 5PP
6.1 MZ

L ks
<<
o o
~ ®
- -

3 RA-Id
10.1 Fbl1
10.2 Fbl1

g
2
N

Akap12
mm G
0123

o
N
©
ES

AKAP12

AKAP12 .

. ommm 012345
L 012345 £

o
w
z
12

tSNE1

Forelimb Hindlimb
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Extended Data Fig. 4 | Differentiation trajectories of distal limb cells. Related
to Fig.2.a Combined CellRank kernels (0.2 * Pseudotime, 0.4 * Connectivity,
0.4 * Pseudotime) showing transition probabilities between non-chondrogenic
Hoxd13+ cells of FLs of mouse (top) and bat (bottom). b Pseudotime values

per trajectory as calculated using slingshot for FLs of mouse (top) and bat
(bottom). ¢ Combined CellRank kernels showing transition probabilities
between non-chondrogenic Hoxd13+ cells of HLs of mouse (top) and bat
(bottom). d Pseudotime values per trajectory as calculated using slingshot for
HLs of mouse (top) and bat (bottom). e Differentiation trajectories of Hoxd13+,

non-chondrogenic cells of the mouse hindlimb, derived from RNA velocity and
pseudotime data indicated by arrows. Trajectories were annotated based on
increasing expression of marker genes. f-i Shown is the expression of Aldhla2,
Meis2, Bmp7 and Greml in mouse HL trajectories. j Differentiation trajectories

of HOXD13+, non-chondrogenic cells of the bat HL, derived from RNA velocity
and pseudotime data indicated by arrows. Trajectories were annotated based on
increasing expression of marker genes. k-n Shown is the expression of ALDHIA2,
MEIS2, BMP7 and GREMI in bat FL trajectories. o and p Expression pattern of the
genes used to annotate the differentiation trajectories in FLs (O) and HLs (P).
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Extended Data Fig. 5| Proximo - Distal digital dissection. Related to Fig. 2.
aExpressionin mouse FLs of the genes found to be markers of FL distal
mesenchymal cells, and the top 15 markers of FL proximal mesenchymal cells.
Genes are ordered from top to bottom from most distal to most proximal.
Clustersinthe same order from left to right. b Expression in bat FLs of the genes
found to be markers of FL distal mesenchymal cells, and the top 15 markers of
FL proximal mesenchymal cells. ¢ Assignment of a proximal (dark blue) or distal
(yellow) identity to each cell of mouse and bat fore- and hindlimbs based on
HoxdI3+ Msx1 and Shox2 expression per cell. Shown are the differences in the

proportion of proximally or distally assigned cells per cluster. PD = Difference
ofthe expression score of the distal genes, minus the expression score of

the proximal gene. d Co-expression of distal autopodial marker Hoxd13 and
chiropatagium marker Meis2in mouse and bat fore- and hindlimbs. Shown is the
fraction of cells co-expressing both genes per cluster. Cluster 7 Fblr is highlighted
withanarrow. e Marker genes of bat cluster 7 Fbir based on differential gene
expression between cluster 7 and the rest of the LPM-derived bat FL cells. fBat
cluster 7 Fblr gene set expression in mouse and bat fore- and hindlimbs. Shown s
the fraction of co-expression score of the whole marker gene set showninE.
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Extended Data Fig. 6 | Second proximal gene program in the distal bat
forelimb. Related to Fig. 3a. a Correlation between the differential expression of
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Extended Data Fig. 7| Gene regulatory network analyses. Related to Fig. 3e. aand b Positive (A) and negative (B) regulons from the gene regulatory network analyses
with SCENIC. ¢ Transcription factor network showing downstream regulators for MEIS2in bat forelimb cluster 10 Fbl1.
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Extended Data Fig. 8| Epigenetic and transcriptomic bulk analyses. Related
to Fig.3.aand b Volcano plot of the differentially expressed genes from bulk
RNA-seq between the dissected distal FL and distal HL in mice (A) and in bats (B).
cDistribution of the TADs in the Bat genome, and the fraction of each of them
covered by H3K27ac ChIP peaks specific to the distal FL. The vertical line shows
the cutoff used to determine the enriched TADs. d Distribution of the TADs in the
Bat genome, and the normalized (input subtracted) signal from MEIS binding
found within each of them. The vertical line shows the cutoff used to determine

the enriched TADs. e Bat TBX4/TBX2locus with Hi-C from CS16 FLs on top, TAD
calling below. The Input subtracted H3K27ac ChIP-seq track is depicted in pink
and input subtracted MEIS2 ChIP-seq track is shown in green. RNA-seq tracks

are showninblack. ChIP-seq and RNA-seq were performed on distally dissected
fore-and hindlimbs at CS18/19. Note the specific expression and acetylation of
TBX4in the HL and the specific MEIS2 binding sites throughout the TBX2 domain
unique to the distal FL. f Venn diagram showing the overlap (21) of MEIS-bound
promoters in mouse 10.5 limbs and bat CS19 distal limbs.
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Extended Data Fig. 9| MEIS2 and TBX3 protein alignment and transgene
expression of mutant limbs. Related to Fig. 4.aand b Alignment of bat and
mouse MEIS2 and TBX3 protein sequences. The DNA-binding domains are
highlighted in blue. c RNA-seq of distally dissected wildtype and mutant limbs
at E12.5 showing the normalized expression of MEIS2 and TBX3 transgenes.

n =5. Error bars = standard deviation. d and e Plots showing all the significantly
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cluster

differentially expressed genes (adjusted p-value < 0.01& [log2FC| > 0.25) in the
affected limb clusters of mouse mutant limbs at E12.5 (1MR and 3 RA-Id in MEIS2
mutant; 1MR, 3 RA-Id and 4 DP in TBX3 mutant). Differential expression tested
using alikelihood-ratio test on a zero-inflated regression implemented in MAST
(see methods). Genes from the chiropatagium gene program are highlighted.
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Extended Data Fig. 10 | GO enrichment and 3D imaging of mutant limbs.
Related to Fig. 4.aand b Barplots showing the proportion of GO-Terms categories
found upregulated in mutant mice. GO Term categories reflect biological
functions. Shown are the top 10 GO Terms for every affected cell cluster.
Over-representation analysis implemented in ClusterProfiler (see methods).
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|:| Any other significant area

Experiments of concern

Does the work involve any of these experiments of concern:
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Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin
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Any other potentially harmful combination of experiments and agents

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied.
Authentication Describe-any-atthentication-procedures foreach seed stock- tised-or-novel-genotype generated.—Describe-any-experiments-tused-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.




ChlP-seq

Data deposition

|Z| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE275851
May remain private before publication.

Files in database submission Meis2_D-FL_CS19 carPer2_WT_Rep2_L30879_S23 R1_001.fastq.gz
Meis2_D-FL_CS19 carPer2_WT_Rep2_L30879_S23 R2_001.fastq.gz
Meis2_D-FL_CS19 carPer2_WT Rep3_L31146_S5 R1_001.fastq.gz
Meis2_D-FL_CS19 carPer2_WT _Rep3_L31146_S5 R2_001.fastq.gz
Meis2_D-HL_CS19 carPer2_WT_Rep2_130881_S25 R1_001.fastq.gz
Meis2_D-HL_CS19 carPer2_WT_Rep2_130881_S25 R2_001.fastq.gz
Meis2_D-HL_CS19_carPer2_WT_Rep3_ 131148 _S7_R1_001.fastq.gz
Meis2_D-HL_CS19_carPer2_WT_Rep3_ 131148 _S7_R2_001.fastq.gz
Meis2_Input_D-FL_CS19_carPer2_WT_Rep2_L30875_S19 R1_001.fastq.gz
Meis2_Input_D-FL_CS19_carPer2_WT_Rep2_L30875_S19 R2_001.fastq.gz
Meis2_Input_D-FL_CS19_carPer2_WT_Rep3_L31150_S9 R1_001.fastq.gz
Meis2_Input_D-FL_CS19_carPer2_WT_Rep3_L31150_S9 R2_001.fastq.gz
Meis2_Input_D-HL_CS19_carPer2_WT_Rep2_L30877_S21_R1_001.fastq.gz
Meis2_Input_D-HL_CS19_carPer2_WT_Rep2_L30877_S21_R2_001.fastq.gz
Meis2_Input_D-HL_CS19_carPer2_WT_Rep3_L31152_S11_R1_001.fastq.gz
Meis2_Input_D-HL_CS19_carPer2_WT_Rep3_L31152_S11_R2_001.fastq.gz
H3K27ac_D-FL_CS19 carPer2_WT_Repl_L30030_S61_R1_001.fastq.gz
H3K27ac_D-FL_CS19 carPer2_WT_Repl_L30030_S61_R2_001.fastq.gz
H3K27ac_D-FL_CS19 carPer2_WT_Rep2_L30038_S69 R1_001.fastq.gz
H3K27ac_D-FL_CS19 carPer2_WT_Rep2_L30038_S69 R2_001.fastq.gz
H3K27ac_D-HL_CS19_carPer2_WT_Repl_ L30032_S63_R1_001.fastq.gz
H3K27ac_D-HL_CS19_carPer2_WT_Repl_ L30032_S63_R2_001.fastq.gz
H3K27ac_D-HL_CS19_carPer2_WT_Rep2_L30040_S71_R1_001.fastq.gz
H3K27ac_D-HL_CS19_carPer2_WT_Rep2_L30040_S71_R2_001.fastq.gz
Input_D-FL_CS19_carPer2_WT_Rep1l_L30288 S21_R1_001.fastq.gz

Input_D-FL_CS19_carPer2_WT_Rep1l_L30288 S21_R2_001.fastq.gz
Input_D-FL_CS19_carPer2_WT_Rep2_L30292_S25 R1_001.fastq.gz
Input_D-FL_CS19_carPer2_WT_Rep2_L30292_S25 R2_001.fastq.gz
Input_D-HL_CS19_carPer2_WT_Rep1_L30290_S23 R1_001.fastq.gz
Input_D-HL_CS19_carPer2_WT_Rep1_L30290_S23 R2_001.fastq.gz
Input_D-HL_CS19_carPer2_WT_Rep2_ 130294 _S27_R1_001.fastq.gz
Input_D-HL_CS19_carPer2_WT_Rep2_ 130294 _S27_R2_001.fastq.gz
H3K27ac_D-FL_CS19 carPer2_WT_merged_-IP.bw
H3K27ac_D-HL_CS19_carPer2_WT_merged_-IP.bw
Meis2_D-FL_CS19 carPer2_WT_merged-IP.bw
Meis2_D-HL_CS19_carPer2_WT_-IP_merged.bw
Meis2_carPer_CS19_dist_forelimb.narrowPeak
Meis2_carPer_CS19_dist_hindlimb.narrowPeak
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Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to

(e.g. UCSC) enable peer review. Write "no longer applicable" for "Final submission" documents.
Methodology

Replicates 2

Sequencing depth 50 Million pair end reads

Antibodies H3K27ac, anti-MEISa, anti-MEIS2

Peak calling parameters  Described in the methods

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software MACS2




Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.
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Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ] Used [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).




Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain || ROI-based [ | Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
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Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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