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Summary

 Comparative Modeling

 Alignment problem

 Modeling genes

 Modeling genomes and structural genomics
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Steps in Comparative Protein Structure Modeling
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Method % of Correct SeqA % of Correct SeqB Shift Score

ALIGN 41.55 41.84 0.44

BLAST2Se
q 26.09 26.07 0.32

PB (e-val) 42.95 43.11 0.48

ALIGN4D 55.34 55.49 0.61

Alignment problem 
Results: Comparison of alignment dependent measures



Alignment problem 
Results: Comparison of success rates

Method % of alignments at 
1Å

% of alignments at 
2Å

% of alignments at 
3Å

% of alignments at 
average

CE 20.50 82.50 100.00 82.50

ALIGN 8.50 23.00 35.00 21.00

BLAST2SEQ 8.00 21.50 30.00 20.00

PB (e-val) 8.00 31.00 45.50 29.50

ALIGN4D 11.50 37.00 55.50 35.50
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Mycoplasma genitalium MODPIPE Models

Not attempted
1%Attempted

24%

ALIGN4D
6%

Model only
16% PsiBlast only

12%

Model and PsiBlast
41%

Number of ORFs                        479
Average ORF length    364

~ 30 extra
accurate models
for M. g. genome.

~ 40,000 models
for TrEMBL-SP 
“genome”.

Alignment problem 
Results. Turn over.



Applications of Comparative Models

A. Šali & J. Kuriyan. 
TIBS 22, M20, 1999.

D. Baker & A. Sali. 
Science 294, 93, 2001.
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residues.

3. Tested by site-directed mutagenesis..

Huang et al. J. Clin. Immunol. 18,169,1998.
Matsumoto et al. J.Biol.Chem. 270,19524,1995.
Šali et al. J. Biol. Chem. 268, 9023, 1993.
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What is the physiological ligand of Brain Lipid-Binding Protein?

L. Xu, R. Sánchez, A. Šali, N. Heintz, J. Biol. Chem. 271, 24711, 1996.

BLBP/Docosahexaenoic acidBLBP/oleic acid

Ligand binding 
cavity

Cavity is not filled Cavity is filled

1. BLBP binds fatty 
acids.

2. Build a 3D model.

3. Find the fatty acid 
that fits most 
snuggly into the 
ligand binding 
cavity.

Predicting features of a model that are not present in the template
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Comparative modeling of the TrEMBL database

Unique sequences processed: 733,239 

Sequences with fold assignments or models: 415,937 (57%)

4/03/02       ~4 weeks on 500 Pentium III CPUs

70% of models based on <30% sequence identity to template.

On average, only a domain per protein is modeled
(an “average” protein has 2.5 domains of 175 aa).
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Conclusions
 Comparative models help to understand protein’s function: 

Detecting remote structural (functional?) relationships.
Revealing features that are not present in the templates.
Revealing features that are not recognizable from the sequence.

 Currently, useful 3D models can be obtained for domains in 
approximately 57% of the proteins (25% of domains), 
because of the improved methods and because of the 
many known protein structures and sequences.

 We will be able to calculate useful models for most globular 
domains in approximately 5 years, because of structural 
genomics.
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