# Modeling the Structures of Proteins and Macromolecular Assemblies





Marc A. Marti-Renom The Sali Lab http://salilab.org/

Depts. of Biopharmaceutical Sciences and Pharmaceutical Chemistry California Institute for Quantitative Biomedical Research University of California at San Francisco

## **From domains to assemblies**

domains



## Sequence versus Structure

GDCAGDFKIWYFGRTLLVAGAKDEFGAIDAW...

RTLAWYAGHLVAGAKDEFGGDFKIWYFGAID...

DFLLVAGAKDEFGKIWYFGGIDAWRTAGDCA...

HLVAGARTLAFGAIDWYAKDEFGGGDFKIWY...

ARTHLVAGFGGGAIDWYFKIWYAKLAFGDED...

GCTAGCTTAAGGCCTTCATGATCTTCTGAG...

AGGGCTCCTTCATGATAGCTTAAGGCTTAA...

AGGCCTTCATGGGGTTAACATATCTTCTGA...

CCTTCATGCTAGCTTAAGGGATCTTAACCG...



## **Determining the structures of proteins and assemblies**

Use structural information from any

source: measurement, first principles, rules,

resolution: low or high resolution

to obtain the set of all models that are consistent with it.

|                                                                                                                                                   |                                                                                                                                  | O                                                                                                    |                                                                                                      |                                        |                                                                                    |                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------|
| X-ray                                                                                                                                             | NMR                                                                                                                              | 2D & single particle                                                                                 | electron                                                                                             | immuno-                                | chemical                                                                           | affinity purification                        |
| crystallography                                                                                                                                   | an a strassanu                                                                                                                   | a la atura un trus a samu                                                                            |                                                                                                      |                                        |                                                                                    |                                              |
|                                                                                                                                                   | spectroscopy                                                                                                                     | electron microscopy                                                                                  | tomograpny                                                                                           | electron microscopy                    | cross-linking                                                                      | mass spectroscopy                            |
| subunit structure                                                                                                                                 | subunit structure                                                                                                                | electron microscopy                                                                                  | tomography                                                                                           | electron microscopy                    | cross-linking<br>subunit structure                                                 | mass spectroscopy                            |
| subunit structure<br>subunit shape                                                                                                                | subunit structure<br>subunit shape                                                                                               | subunit shape                                                                                        | subunit shape                                                                                        |                                        | cross-linking<br>subunit structure                                                 | mass spectroscopy                            |
| subunit structure<br>subunit shape<br>subunit-subunit contact                                                                                     | subunit structure<br>subunit shape<br>subunit-subunit contact                                                                    | subunit shape<br>subunit-subunit contact                                                             | subunit shape<br>subunit-subunit contact                                                             |                                        | cross-linking<br>subunit structure<br>subunit-subunit contact                      | subunit-subunit contact                      |
| subunit structure<br>subunit shape<br>subunit-subunit contact<br>subunit proximity                                                                | subunit structure<br>subunit shape<br>subunit-subunit contact<br>subunit proximity                                               | subunit shape<br>subunit-subunit contact<br>subunit proximity                                        | subunit shape<br>subunit-subunit contact<br>subunit proximity                                        | subunit proximity                      | cross-linking<br>subunit structure<br>subunit-subunit contact<br>subunit proximity | subunit-subunit contact                      |
| subunit structure<br>subunit shape<br>subunit-subunit contact<br>subunit proximity<br>subunit stoichiometry                                       | subunit structure<br>subunit shape<br>subunit-subunit contact<br>subunit proximity<br>subunit stoichiometry                      | subunit shape<br>subunit-subunit contact<br>subunit proximity                                        | subunit shape<br>subunit-subunit contact<br>subunit proximity                                        | subunit proximity                      | cross-linking<br>subunit structure<br>subunit-subunit contact<br>subunit proximity | subunit-subunit contact<br>subunit proximity |
| subunit structure<br>subunit shape<br>subunit-subunit contact<br>subunit proximity<br>subunit stoichiometry<br>assembly symmetry                  | subunit structure<br>subunit shape<br>subunit-subunit contact<br>subunit proximity<br>subunit stoichiometry<br>assembly symmetry | subunit shape<br>subunit-subunit contact<br>subunit proximity<br>assembly symmetry                   | subunit shape<br>subunit-subunit contact<br>subunit proximity<br>assembly symmetry                   | subunit proximity<br>assembly symmetry | cross-linking<br>subunit structure<br>subunit-subunit contact<br>subunit proximity | subunit-subunit contact<br>subunit proximity |
| subunit structure<br>subunit shape<br>subunit-subunit contact<br>subunit proximity<br>abunit stoichiometry<br>assembly symmetry<br>assembly shape | subunit structure<br>subunit shape<br>subunit-subunit contact<br>subunit proximity<br>assembly symmetry<br>assembly symmetry     | subunit shape<br>subunit-subunit contact<br>subunit proximity<br>assembly symmetry<br>assembly shape | subunit shape<br>subunit-subunit contact<br>subunit proximity<br>assembly symmetry<br>assembly shape | subunit proximity<br>assembly symmetry | cross-linking<br>subunit structure<br>subunit-subunit contact<br>subunit proximity | subunit-subunit contact<br>subunit proximity |



Sali, Earnest, Glaeser, Baumeister. From words to literature in structural proteomics. Nature 422, 216-225, 2003.

## Modeling proteins and macromolecular assemblies by satisfaction of spatial restraints

- 1) Representation of a system.
- 2) Scoring function (spatial restraints).
- 3) Optimization.

There is nothing but points and restraints on them.



# **Principles of protein structure**



## **Steps in Comparative Protein Structure Modeling**





A. Šali, *Curr. Opin. Biotech.* 6, 437, 1995. R. Sánchez & A. Šali, *Curr. Opin. Str. Biol.* 7, 206, 1997. M. Marti *et al. Ann. Rev. Biophys. Biomolec. Struct.*, 29, 291, 2000. http://salilab.org/

### Comparative modeling by satisfaction of spatial restraints MODELLER



A. Šali & T. Blundell. *J. Mol. Biol.* 234, 779, 1993.
J.P. Overington & A. Šali. *Prot. Sci.* 3, 1582, 1994.
A. Fiser, R. Do & A. Šali, *Prot. Sci.*, 9, 1753, 2000.

http://salilab.org/

## Typical errors in comparative models

**Incorrect template** 

**Misalignment** 



Region without a template

**TEMPLATE** 

MODEL

X-RAY



Distortion/shifts in aligned regions



Sidechain packing



Marti-Renom et al. Annu.Rev.Biophys.Biomol.Struct. 29, 291-325, 2000.

## **Model Accuracy**

Marti-Renom et al. Annu.Rev.Biophys.Biomol.Struct. 29, 291-325, 2000.

### **HIGH ACCURACY**

NM23 Seq id 77% Cα equiv 147/148 RMSD 0.41Å



Sidechains Core backbone Loops

X-RAY / MODEL

### **MEDIUM ACCURACY**

CRABP Seq id 41% Cα equiv 122/137 RMSD 1.34Å



Sidechains Core backbone Loops Alignment

### LOW ACCURACY

EDN Seq id 33% Cα equiv 90/134 RMSD 1.17Å



Sidechains Core backbone Loops Alignment Fold assignment

### Utility of protein structure models, despite errors



D. Baker & A. Sali. Science **294**, 93, 2001.

### Alignment errors are frequent and large



R. Sánchez & A. Šali, Proc. Natl. Acad. Sci. USA 95, 13597, 1998.

05/10/2004

# Minimizing errors in sequence-structure alignment

- Multiple sequence profiles.
- Complex gap penalty functions.
- Hidden Markov Models.
- Threading.

## Moulding: iterative alignment, model building, model assessment

B. John, A. Sali. Nucl. Acids Res., 31, 1982-1992, 2003.



## Moulding by a Genetic Algorithm approach



## **Genetic algorithm operators**



Also, "two point crossover" and "gap deletion".

## **Composite model assessment score**

Weighted linear combination of several scores:

- Pair ( $P_p$ ) and surface ( $P_s$ ) statistical potentials;
- Structural compactness (S<sub>C</sub>);
- Harmonic average distance score (H<sub>a</sub>);
- Alignment score  $(A_S)$ .

 $Z = 0.17 Z(P_P) + 0.02 Z(P_S) + 0.10 Z(S_C) + 0.26 Z(H_a) + 0.45 (A_S)$ 

 $Z(\text{score}) = (\text{score-} \mu)/\sigma$ 

- $\boldsymbol{\mu}$  ... average score of all models
- $\sigma \ldots$  standard deviation of the scores

## Application to a difficult modeling case 1BOV-1LTS



Sequence identity **4.4%** 

Initial model C $\alpha$  RMSD 10.1Å

Final model C $\alpha$  RMSD 3.6Å

## Benchmark with the "very difficult" test set

D. Fischer threading test set of 68 structural pairs (a subset of 19)

|                     | 0               |                    | Initial prediction |                      | Final prediction  |                      | Best prediction   |                      |
|---------------------|-----------------|--------------------|--------------------|----------------------|-------------------|----------------------|-------------------|----------------------|
| Target<br>-template | identity<br>[%] | Coverage<br>[% aa] | Cα<br>RMSD<br>[Å]  | CE<br>overlap<br>[%] | Cα<br>RMSD<br>[Å] | CE<br>overlap<br>[%] | Cα<br>RMSD<br>[Å] | CE<br>overlap<br>[%] |
| 1ATR-1ATN           | 13.8            | 94.3               | 19.2               | 20.2                 | 18.8              | 20.2                 | 17.1              | 24.6                 |
| 1BOV-1LTS           | 4.4             | 83.5               | 10.1               | 29.4                 | 3.6               | 79.4                 | 3.1               | 92.6                 |
| 1CAU-1CAU           | 18.8            | 96.7               | 11.7               | 15.6                 | 10.0              | 27.4                 | 7.6               | 47.4                 |
| 1COL-1CPC           | 11.2            | 81.4               | 8.6                | 44.0                 | 5.6               | 58.6                 | 4.8               | 59.3                 |
| 1LFB-1HOM           | 17.6            | 75.0               | 1.2                | 100.0                | 1.2               | 100.0                | 1.1               | 100.0                |
| 1NSB-2SIM           | 10.1            | 89.2               | 13.2               | 20.2                 | 13.2              | 20.1                 | 12.3              | 26.8                 |
| 1RNH-1HRH           | 26.6            | 91.2               | 13.0               | 21.2                 | 4.8               | 35.4                 | 3.5               | 57.5                 |
| 1YCC-2MTA           | 14.5            | 55.1               | 3.4                | 72.4                 | 5.3               | 58.4                 | 3.1               | 75.0                 |
| 2AYH-1SAC           | 8.8             | 78.4               | 5.8                | 33.8                 | 5.5               | 48.0                 | 4.8               | 64.9                 |
| 2CCY-1BBH           | 21.3            | 97.0               | 4.1                | 52.4                 | 3.1               | 73.0                 | 2.6               | 77.0                 |
| 2PLV-1BBT           | 20.2            | 91.4               | 7.3                | 58.9                 | 7.3               | 58.9                 | 6.2               | 60.7                 |
| 2POR-20MF           | 13.2            | 97.3               | 18.3               | 11.3                 | 11.4              | 14.7                 | 10.5              | 25.9                 |
| 2RHE-1CID           | 21.2            | 61.6               | 9.2                | 33.7                 | 7.5               | 51.1                 | 4.4               | 71.1                 |
| 2RHE-3HLA           | 2.4             | 96.0               | 8.1                | 16.5                 | 7.6               | 9.4                  | 6.7               | 43.5                 |
| 3ADK-1GKY           | 19.5            | 100.0              | 13.8               | 26.6                 | 11.5              | 37.7                 | 7.7               | 48.1                 |
| 3HHR-1TEN           | 18.4            | 98.9               | 7.3                | 60.9                 | 6.0               | 66.7                 | 4.9               | 79.3                 |
| 4FGF-81IB           | 14.1            | 98.6               | 11.3               | 24.0                 | 9.3               | 30.6                 | 5.4               | 41.2                 |
| 6XIA-3RUB           | 8.7             | 44.1               | 10.5               | 14.5                 | 10.1              | 11.0                 | 9.0               | 34.3                 |
| 9RNT-2SAR           | 13.1            | 88.5               | 5.8                | 41.7                 | 5.1               | 51.2                 | 4.8               | 69.0                 |
| AVERAGE             | 14.2            | 85.2               | 9.6                | 36.7                 | 7.7               | 44.8                 | 6.3               | 57.8                 |

# Alignment accuracy (CE overlap)

D. Fischer threading test set of 68 structural pairs (a subset of 19):

PSI-BLAST (sequence-profile alignment)25%SAM (Hidden Markov Models)36%

MOULDER (iterative sequence-structure alignment) 45%

# **Structural Genomics**

Sali. *Nat. Struct. Biol.* **5**, 1029, 1998. Sali *et al. Nat. Struct. Biol.*, **7**, 986, 2000. Sali. *Nat. Struct. Biol.* **7**, 484, 2001. Baker & Sali. *Science* **294**, 93, 2001.

Characterize most protein sequences based on related known structures.



The number of "families" is much smaller than the number of proteins.

Any one of the members of a family is fine.

There are ~16,000 30% seq id families (90%) (Vitkup *et al. Nat. Struct. Biol.* **8**, 559, 2001).



## **MODPIPE: Automated Large-Scale Comparative Modeling**

R. Sánchez & A. Šali, *Proc. Natl. Acad. Sci. USA* 95, 13597, 1998.

Eswar *et al*. Nucl. Acids Res. 31, 3375–3380, 2003.

Pieper et al., Nucl. Acids Res. 32, 2004.

N. Eswar, M. Marti-Renom, M.S. Madhusudhan, B. John, A. Fiser, R. Sánchez, F. Melo, N. Mirkovic, B. Webb, M.-Y. Shen, A. Šali.

# Synergy of crystallography and comparative modeling in structural genomics

Pieper *et al.*, *Nucl. Acids Res.* 32, 2004. http://salilab.org/modbase/models\_nysgxrc.html

| NYSGXRC X-ray Structure |                                 |                                                                 | MODBASE Models     |                    |      |       |
|-------------------------|---------------------------------|-----------------------------------------------------------------|--------------------|--------------------|------|-------|
| PDB<br>Code             | Database<br>Accession<br>Number | Annotation                                                      | Total<br>Sequences | Fold<br>&<br>Model | Fold | Model |
| 1b54                    | P38197                          | Hypothetical UPF0001 protein<br>YBL036C                         | 151                | 132                | 2    | 17    |
| 1f89                    | P49954                          | Hypothetical 32.5 kDa protein<br>YLR351C                        | 553                | 488                | 55   | 10    |
| 1njr                    | Q04299                          | Hypothetical 32.1 kDa protein in ADH3-RCA1 intergenic region    | 4                  | 1                  | 0    | 3     |
| 1nkq                    | P53889                          | Hypothetical 28.8 kDa protein in<br>PSD1-SKO1 intergenic region | 379                | 207                | 172  | 0     |
| 1jzt                    | P40165                          | Hypothetical 27.5 kDa protein in SPX19-GCR2 intergenic region   | 1058               | 39                 | 1006 | 13    |
| 1jr7                    | P76621                          | Hypothetical protein ygaT                                       | 11                 | 10                 | 0    | 1     |
| 1ku9                    | 3025177                         | YF63_METJA hypothetical protein<br>MJ1563                       | 598                | 131                | 214  | 253   |

## **Comparative modeling of the TrEMBL database**

Unique sequences processed: 1,182,126

Sequences with fold assignments or models: 659,495 (56%)

70% of models based on <30% sequence identity to template.

On average, only a domain per protein is modeled (an "average" protein has 2.5 domains of 175 aa).

#### http://salilab.org/modbase

Pieper et al., Nucl. Acids Res. 2004.



## Major bidirectional resources involving ModBase

| LICSE CHIMERA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>ExPASy Home page</u> <u>Site Map</u> <u>Search ExPASy</u> <u>Contact us</u> <u>PROSITE</u> <u>Proteomics rools</u> <u>Hosted by NCSC US</u> Mirror sites: <u>Bolivia Canada China Korea Switzerland Taiwan</u> Search Swiss-Prot/TrEMBL <u>For P2Y2_BOVIN</u> <u>Go</u> Clear <u>Swiss-Prot</u> <u>Protein knowledgebase</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| an Extensible Molecular Modeling Syste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SUISSON TREMBL<br>Computer-annotated supplement to Swiss-Prot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PROSITE         PS50262; G_PROTEIN_RECEP_F1_2; 1.           HOVERGEN         [Family / Alignment / Tree]           BLOCKS         O18951.           ProtoNet         O18951.           ProtoMap         O18951.           PRESAGE         O18951.           DIP         O18951.           ModBase         O18951.           SWISS-2DPAGE         Oet repion on 2D PAGE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| AFE CAN PARAMENT       AFE CAN PARAMENT <td< th=""><th>Image: Structure of Structure of</th></td<> | Image: Structure of |
| http://www.cgl.ucsf.edu/chimera/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Front

Top

http://www.cgl.ucsf.edu/chimera/ Daniel Greenblatt, Conrad C. Huang, Thomas E. Ferrin

Side

### MODBASE and associated resources http://salilab.org/





# Structural analysis of missense mutations in human BRCA1 BRCT domains

Nebojsa Mirkovic, Marc A. Marti-Renom, Barbara L. Weber, Andrej Sali and Alvaro N.A. Monteiro

Cancer Research (June 2004). 64:3790-97

Cannot measure the functional impact of every possible SNP at all positions in each protein! Thus, prediction based on general principles of protein structure is needed.



## Human BRCA1 and its two BRCT domains



Williams, Green, Glover. Nat. Struct. Biol. 8, 838, 2001

CONFIDENTIAL



#### BRACAnalysis <sup>™</sup> Comprehensive BRCA1-BRCA2 Gene Sequence Analysis Result



#### Interpretation

### GENETIC VARIANT OF UNCERTAIN SIGNIFICANCE

The BRCA2 variant H2116R results in the substitution of arginine for histidine at amino acid position 2116 of the BRCA2 protein. Variants of this type may or may not affect BRCA2 protein function. Therefore, the contribution of this variant to the relative risk of breast or ovarian cancer cannot be established solely from this analysis. The observation by Myriad Genetic Laboratories of this particular variant in an individual with a deleterious truncating mutation in BRCA2, however, reduces the likelihood that H2116R is itself deleterious.

Authorized Signature:

Brian E. Ward, Ph.D. Laboratory Director



These testresults should only be used in conjunction with the patient's clinical history and any previous analysis of appropriate family members. It is strongly recommended that these results be communicated to the patient in a sering that includes appropriate counseling. The accompanying Technical Specifications summary describes the analysis, method, performance characteristics, nomencicity, early interpretive optimic of this test. This test may be considered investigational by some states. This test was developed and its performance characteristics determined by Mynad Genetic Laboratores. It has not been reviewed by the U.S. Food and Drug Administration. The FDA has determined that such Genarace or approval is not necessary.

## **Missense mutations in BRCT domains by function**





## **Putative binding site on BRCA1**



Williams *et al.* 2004 Nature Structure Biology. **June 2004 11**:519 Mirkovic *et al.* 2004 Cancer Research. **June 2004 64**:3790





Putative binding site predicted in 2003 and accepted for publication on March 2004.

## From domains to assemblies

domains



A. Sali. NIH Workshop on Structural Proteomics of

05/10/2004

## S. cerevisiae ribosome



Fitting of comparative models into 15Å cryoelectron density map.

43 proteins could be modeled on 20-56% seq.id. to a known structure.

The modeled fraction of the proteins ranges from 34-99%.

C. Spahn, R. Beckmann, N. Eswar, P. Penczek, A. Sali, G. Blobel, J. Frank. *Cell* **107**, 361-372, 2001.

## **Common Evolutionary Origin of Coated Vesicles and Nuclear Pore Complexes**

D. Devos\*, S. Dokudovskaya, F. Alber\*, M.A. Marti-Renom\*, A. Sali \*, M. Rout, B. Chait

Rockefeller University, New York \*UCSF All Nucleoporins in the Nup84 Complex are Predicted to Contain  $\beta$ -Propeller and/or  $\alpha$ -Solenoid Folds







# NPC and Coated Vesicles Share the $\beta$ -Propeller and $\alpha$ -Solenoid Folds and Associate with Membranes



## **Evolution?**



## **Pore Formation**

Need to maintain the integrity of the nuclear envelope.

1. From analogy with clathrins: Likely membrane-bending activity of the Nup84 complex;

2. From the NPC model: Nup84 complex interacts with the membrane proteins and/or the membrane.

3. From the expression profile clustering and the model: the order of assembly of NPC.

## **Pore Formation Hypothesis**



## **Concluding remarks**

- At present, useful 3D models can be obtained for domains in ~ 50% of the proteins (20% of domains).
- Completeness in structural coverage (structural genomics).
- Assembly of domains into higher order complexes.

**Protein Structure Modeling** Andrej Sali **Bino John** Narayanan Eswar **Ursula Pieper** Roberto Sánchez (MSSM) András Fiser (AECOM) Francisco Melo (CU, Chile) Azat Badretdinov (Accelrys) M. S. Madhusudhan Ash Stuart Nebojša Mirkovic Valentin Ilyin (NE) Eric Feyfant (GI) Min-Yi Shen Ben Webb Rachel Karchin Mark Peterson

> Brain Lipid Binding Protein Liang Zhu (RU) Nat Heintz (RU)

> > **BRCA1** A. Monteiro (Cornel)

Fly p53 Shengkan Jin (RU) Arnie Levine (RU)

# **Acknowledgments**

http://salilab.org

Assemblies Frank Alber Damien Devos Maya Topf Dmitry Korkin Narayanan Eswar Fred Davis M.S. Madhusudhan Mike Kim

1D to 3D for biologists David Huassler (UCSC) Jim Kent (UCSC) Daryl Thomas (UCSC) Mark (UCSC) Rolf Apweiler (EBI)

> Chimera P. Babbitt T. Ferrin

#### Yeast NPC

Tari Suprapto (RU) Julia Kipper (RU) Wenzhu Zhang (RU) Liesbeth Veenhoff (RU) Sveta Dokudovskaya (RU) J. Zhou (USC) Mike Rout (RU) Brian Chait (RU)

> Ribosomes J. Frank

Structural Genomics Stephen Burley (SGX)

John Kuriyan (UCB) NY-SGXRC

> Mast Cell Proteases Rick Stevens (BWH)

NIH

NSF Sinsheimer Foundation A. P. Sloan Foundation Burroughs-Wellcome Fund Merck Genome Res. Inst. Mathers Foundation I.T. Hirschl Foundation The Sandler Family Foundation Human Frontiers Science Program SUN IBM Intel Structural Genomix